This commit is contained in:
Lana Steuck 2014-04-01 17:27:19 -07:00
commit 4452e6316f
240 changed files with 10936 additions and 2375 deletions

View File

@ -95,7 +95,9 @@ static task_t getTask(JNIEnv *env, jobject this_obj) {
#define CHECK_EXCEPTION_CLEAR_(value) if ((*env)->ExceptionOccurred(env)) { (*env)->ExceptionClear(env); return value; }
static void throw_new_debugger_exception(JNIEnv* env, const char* errMsg) {
(*env)->ThrowNew(env, (*env)->FindClass(env, "sun/jvm/hotspot/debugger/DebuggerException"), errMsg);
jclass exceptionClass = (*env)->FindClass(env, "sun/jvm/hotspot/debugger/DebuggerException");
CHECK_EXCEPTION;
(*env)->ThrowNew(env, exceptionClass, errMsg);
}
static struct ps_prochandle* get_proc_handle(JNIEnv* env, jobject this_obj) {
@ -129,6 +131,7 @@ static struct ps_prochandle* get_proc_handle(JNIEnv* env, jobject this_obj) {
JNIEXPORT void JNICALL
Java_sun_jvm_hotspot_debugger_bsd_BsdDebuggerLocal_init0(JNIEnv *env, jclass cls) {
symbolicatorID = (*env)->GetFieldID(env, cls, "symbolicator", "J");
CHECK_EXCEPTION;
taskID = (*env)->GetFieldID(env, cls, "task", "J");
CHECK_EXCEPTION;
@ -236,13 +239,16 @@ JNIEXPORT jobject JNICALL Java_sun_jvm_hotspot_debugger_bsd_BsdDebuggerLocal_loo
(JNIEnv *env, jobject this_obj, jlong addr) {
uintptr_t offset;
const char* sym = NULL;
jstring sym_string;
struct ps_prochandle* ph = get_proc_handle(env, this_obj);
if (ph != NULL && ph->core != NULL) {
sym = symbol_for_pc(ph, (uintptr_t) addr, &offset);
if (sym == NULL) return 0;
sym_string = (*env)->NewStringUTF(env, sym);
CHECK_EXCEPTION_(0);
return (*env)->CallObjectMethod(env, this_obj, createClosestSymbol_ID,
(*env)->NewStringUTF(env, sym), (jlong)offset);
sym_string, (jlong)offset);
}
return 0;
}
@ -749,11 +755,14 @@ static void fillLoadObjects(JNIEnv* env, jobject this_obj, struct ps_prochandle*
const char* name;
jobject loadObject;
jobject loadObjectList;
jstring nameString;
base = get_lib_base(ph, i);
name = get_lib_name(ph, i);
nameString = (*env)->NewStringUTF(env, name);
CHECK_EXCEPTION;
loadObject = (*env)->CallObjectMethod(env, this_obj, createLoadObject_ID,
(*env)->NewStringUTF(env, name), (jlong)0, (jlong)base);
nameString, (jlong)0, (jlong)base);
CHECK_EXCEPTION;
loadObjectList = (*env)->GetObjectField(env, this_obj, loadObjectList_ID);
CHECK_EXCEPTION;

View File

@ -51,9 +51,9 @@ public class G1CollectedHeap extends SharedHeap {
static private CIntegerField summaryBytesUsedField;
// G1MonitoringSupport* _g1mm;
static private AddressField g1mmField;
// MasterOldRegionSet _old_set;
// HeapRegionSet _old_set;
static private long oldSetFieldOffset;
// MasterHumongousRegionSet _humongous_set;
// HeapRegionSet _humongous_set;
static private long humongousSetFieldOffset;
static {

View File

@ -40,12 +40,8 @@ import sun.jvm.hotspot.types.TypeDataBase;
// Mirror class for HeapRegionSetBase. Represents a group of regions.
public class HeapRegionSetBase extends VMObject {
// uint _length;
static private CIntegerField lengthField;
// uint _region_num;
static private CIntegerField regionNumField;
// size_t _total_used_bytes;
static private CIntegerField totalUsedBytesField;
static private long countField;
static {
VM.registerVMInitializedObserver(new Observer() {
@ -58,21 +54,13 @@ public class HeapRegionSetBase extends VMObject {
static private synchronized void initialize(TypeDataBase db) {
Type type = db.lookupType("HeapRegionSetBase");
lengthField = type.getCIntegerField("_length");
regionNumField = type.getCIntegerField("_region_num");
totalUsedBytesField = type.getCIntegerField("_total_used_bytes");
countField = type.getField("_count").getOffset();
}
public long length() {
return lengthField.getValue(addr);
}
public long regionNum() {
return regionNumField.getValue(addr);
}
public long totalUsedBytes() {
return totalUsedBytesField.getValue(addr);
public HeapRegionSetCount count() {
Address countFieldAddr = addr.addOffsetTo(countField);
return (HeapRegionSetCount) VMObjectFactory.newObject(HeapRegionSetCount.class, countFieldAddr);
}
public HeapRegionSetBase(Address addr) {

View File

@ -0,0 +1,73 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot.gc_implementation.g1;
import java.util.Iterator;
import java.util.Observable;
import java.util.Observer;
import sun.jvm.hotspot.debugger.Address;
import sun.jvm.hotspot.runtime.VM;
import sun.jvm.hotspot.runtime.VMObject;
import sun.jvm.hotspot.runtime.VMObjectFactory;
import sun.jvm.hotspot.types.AddressField;
import sun.jvm.hotspot.types.CIntegerField;
import sun.jvm.hotspot.types.Type;
import sun.jvm.hotspot.types.TypeDataBase;
// Mirror class for HeapRegionSetCount. Represents a group of regions.
public class HeapRegionSetCount extends VMObject {
static private CIntegerField lengthField;
static private CIntegerField capacityField;
static {
VM.registerVMInitializedObserver(new Observer() {
public void update(Observable o, Object data) {
initialize(VM.getVM().getTypeDataBase());
}
});
}
static private synchronized void initialize(TypeDataBase db) {
Type type = db.lookupType("HeapRegionSetCount");
lengthField = type.getCIntegerField("_length");
capacityField = type.getCIntegerField("_capacity");
}
public long length() {
return lengthField.getValue(addr);
}
public long capacity() {
return capacityField.getValue(addr);
}
public HeapRegionSetCount(Address addr) {
super(addr);
}
}

View File

@ -114,7 +114,8 @@ public class HeapSummary extends Tool {
long survivorRegionNum = g1mm.survivorRegionNum();
HeapRegionSetBase oldSet = g1h.oldSet();
HeapRegionSetBase humongousSet = g1h.humongousSet();
long oldRegionNum = oldSet.regionNum() + humongousSet.regionNum();
long oldRegionNum = oldSet.count().length()
+ humongousSet.count().capacity() / HeapRegion.grainBytes();
printG1Space("G1 Heap:", g1h.n_regions(),
g1h.used(), g1h.capacity());
System.out.println("G1 Young Generation:");

View File

@ -287,8 +287,43 @@ else
@$(ECHO) "Error: trying to build a minimal target but JVM_VARIANT_MINIMAL1 is not true."
endif
remove_old_debuginfo:
ifeq ($(JVM_VARIANT_CLIENT), true)
ifeq ($(ZIP_DEBUGINFO_FILES),1)
ifeq ($(OSNAME), windows)
$(RM) -f $(EXPORT_CLIENT_DIR)/jvm.map $(EXPORT_CLIENT_DIR)/jvm.pdb
else
$(RM) -f $(EXPORT_CLIENT_DIR)/libjvm.debuginfo
endif
else
$(RM) -f $(EXPORT_CLIENT_DIR)/libjvm.diz
endif
endif
ifeq ($(findstring true, $(JVM_VARIANT_SERVER) $(JVM_VARIANT_ZERO) $(JVM_VARIANT_ZEROSHARK)), true)
ifeq ($(ZIP_DEBUGINFO_FILES),1)
ifeq ($(OSNAME), windows)
$(RM) -f $(EXPORT_SERVER_DIR)/jvm.map $(EXPORT_SERVER_DIR)/jvm.pdb
else
ifeq ($(OS_VENDOR), Darwin)
$(RM) -rf $(EXPORT_SERVER_DIR)/libjvm.dylib.dSYM
else
$(RM) -f $(EXPORT_SERVER_DIR)/libjvm.debuginfo
endif
endif
else
$(RM) -f $(EXPORT_SERVER_DIR)/libjvm.diz
endif
endif
ifeq ($(JVM_VARIANT_MINIMAL1),true)
ifeq ($(ZIP_DEBUGINFO_FILES),1)
$(RM) -f $(EXPORT_MINIMAL_DIR)/libjvm.debuginfo
else
$(RM) -f $(EXPORT_MINIMAL_DIR)/libjvm.diz
endif
endif
# Export file rule
generic_export: $(EXPORT_LIST)
generic_export: $(EXPORT_LIST) remove_old_debuginfo
export_product:
$(MAKE) BUILD_FLAVOR=$(@:export_%=%) generic_export
@ -841,4 +876,4 @@ include $(GAMMADIR)/make/jprt.gmk
export_jdk_product export_jdk_fastdebug export_jdk_debug \
create_jdk copy_jdk update_jdk test_jdk \
copy_product_jdk copy_fastdebug_jdk copy_debug_jdk \
$(HS_ALT_MAKE)/Makefile.make
$(HS_ALT_MAKE)/Makefile.make remove_old_debuginfo

View File

@ -101,7 +101,7 @@ CXXFLAGS = \
# This is VERY important! The version define must only be supplied to vm_version.o
# If not, ccache will not re-use the cache at all, since the version string might contain
# a time and date.
vm_version.o: CXXFLAGS += ${JRE_VERSION}
CXXFLAGS/vm_version.o += ${JRE_VERSION}
CXXFLAGS/BYFILE = $(CXXFLAGS/$@)

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -87,9 +87,10 @@ ifeq ($(INCLUDE_ALL_GCS), false)
g1BlockOffsetTable.cpp g1CardCounts.cpp g1CollectedHeap.cpp g1CollectorPolicy.cpp \
g1ErgoVerbose.cpp g1GCPhaseTimes.cpp g1HRPrinter.cpp g1HotCardCache.cpp g1Log.cpp \
g1MMUTracker.cpp g1MarkSweep.cpp g1MemoryPool.cpp g1MonitoringSupport.cpp g1OopClosures.cpp \
g1RemSet.cpp g1RemSetSummary.cpp g1SATBCardTableModRefBS.cpp g1_globals.cpp heapRegion.cpp \
g1RemSet.cpp g1RemSetSummary.cpp g1SATBCardTableModRefBS.cpp g1StringDedup.cpp g1StringDedupStat.cpp \
g1StringDedupTable.cpp g1StringDedupThread.cpp g1StringDedupQueue.cpp g1_globals.cpp heapRegion.cpp \
g1BiasedArray.cpp heapRegionRemSet.cpp heapRegionSeq.cpp heapRegionSet.cpp heapRegionSets.cpp \
ptrQueue.cpp satbQueue.cpp sparsePRT.cpp survRateGroup.cpp vm_operations_g1.cpp \
ptrQueue.cpp satbQueue.cpp sparsePRT.cpp survRateGroup.cpp vm_operations_g1.cpp g1CodeCacheRemSet.cpp \
adjoiningGenerations.cpp adjoiningVirtualSpaces.cpp asPSOldGen.cpp asPSYoungGen.cpp \
cardTableExtension.cpp gcTaskManager.cpp gcTaskThread.cpp objectStartArray.cpp \
parallelScavengeHeap.cpp parMarkBitMap.cpp pcTasks.cpp psAdaptiveSizePolicy.cpp \

View File

@ -33,7 +33,7 @@ jprt.need.sibling.build=false
# This tells jprt what default release we want to build
jprt.hotspot.default.release=jdk8
jprt.hotspot.default.release=jdk9
jprt.tools.default.release=${jprt.submit.option.release?${jprt.submit.option.release}:${jprt.hotspot.default.release}}
@ -47,72 +47,50 @@ jprt.sync.push=false
# sparc etc.
# Define the Solaris platforms we want for the various releases
jprt.my.solaris.sparcv9.jdk8=solaris_sparcv9_5.10
jprt.my.solaris.sparcv9.jdk7=solaris_sparcv9_5.10
jprt.my.solaris.sparcv9.jdk7u8=${jprt.my.solaris.sparcv9.jdk7}
jprt.my.solaris.sparcv9.jdk9=solaris_sparcv9_5.10
jprt.my.solaris.sparcv9=${jprt.my.solaris.sparcv9.${jprt.tools.default.release}}
jprt.my.solaris.x64.jdk8=solaris_x64_5.10
jprt.my.solaris.x64.jdk7=solaris_x64_5.10
jprt.my.solaris.x64.jdk7u8=${jprt.my.solaris.x64.jdk7}
jprt.my.solaris.x64.jdk9=solaris_x64_5.10
jprt.my.solaris.x64=${jprt.my.solaris.x64.${jprt.tools.default.release}}
jprt.my.linux.i586.jdk8=linux_i586_2.6
jprt.my.linux.i586.jdk7=linux_i586_2.6
jprt.my.linux.i586.jdk7u8=${jprt.my.linux.i586.jdk7}
jprt.my.linux.i586.jdk9=linux_i586_2.6
jprt.my.linux.i586=${jprt.my.linux.i586.${jprt.tools.default.release}}
jprt.my.linux.x64.jdk8=linux_x64_2.6
jprt.my.linux.x64.jdk7=linux_x64_2.6
jprt.my.linux.x64.jdk7u8=${jprt.my.linux.x64.jdk7}
jprt.my.linux.x64.jdk9=linux_x64_2.6
jprt.my.linux.x64=${jprt.my.linux.x64.${jprt.tools.default.release}}
jprt.my.linux.ppc.jdk8=linux_ppc_2.6
jprt.my.linux.ppc.jdk7=linux_ppc_2.6
jprt.my.linux.ppc.jdk7u8=${jprt.my.linux.ppc.jdk7}
jprt.my.linux.ppc.jdk9=linux_ppc_2.6
jprt.my.linux.ppc=${jprt.my.linux.ppc.${jprt.tools.default.release}}
jprt.my.linux.ppcv2.jdk8=linux_ppcv2_2.6
jprt.my.linux.ppcv2.jdk7=linux_ppcv2_2.6
jprt.my.linux.ppcv2.jdk7u8=${jprt.my.linux.ppcv2.jdk7}
jprt.my.linux.ppcv2.jdk9=linux_ppcv2_2.6
jprt.my.linux.ppcv2=${jprt.my.linux.ppcv2.${jprt.tools.default.release}}
jprt.my.linux.ppcsflt.jdk8=linux_ppcsflt_2.6
jprt.my.linux.ppcsflt.jdk7=linux_ppcsflt_2.6
jprt.my.linux.ppcsflt.jdk7u8=${jprt.my.linux.ppcsflt.jdk7}
jprt.my.linux.ppcsflt.jdk9=linux_ppcsflt_2.6
jprt.my.linux.ppcsflt=${jprt.my.linux.ppcsflt.${jprt.tools.default.release}}
jprt.my.linux.armvfpsflt.jdk8=linux_armvfpsflt_2.6
jprt.my.linux.armvfpsflt.jdk9=linux_armvfpsflt_2.6
jprt.my.linux.armvfpsflt=${jprt.my.linux.armvfpsflt.${jprt.tools.default.release}}
jprt.my.linux.armvfphflt.jdk8=linux_armvfphflt_2.6
jprt.my.linux.armvfphflt.jdk9=linux_armvfphflt_2.6
jprt.my.linux.armvfphflt=${jprt.my.linux.armvfphflt.${jprt.tools.default.release}}
# The ARM GP vfp-sflt build is not currently supported
#jprt.my.linux.armvs.jdk8=linux_armvs_2.6
#jprt.my.linux.armvs.jdk9=linux_armvs_2.6
#jprt.my.linux.armvs=${jprt.my.linux.armvs.${jprt.tools.default.release}}
jprt.my.linux.armvh.jdk8=linux_armvh_2.6
jprt.my.linux.armvh.jdk9=linux_armvh_2.6
jprt.my.linux.armvh=${jprt.my.linux.armvh.${jprt.tools.default.release}}
jprt.my.linux.armsflt.jdk8=linux_armsflt_2.6
jprt.my.linux.armsflt.jdk7=linux_armsflt_2.6
jprt.my.linux.armsflt.jdk7u8=${jprt.my.linux.armsflt.jdk7}
jprt.my.linux.armsflt.jdk9=linux_armsflt_2.6
jprt.my.linux.armsflt=${jprt.my.linux.armsflt.${jprt.tools.default.release}}
jprt.my.macosx.x64.jdk8=macosx_x64_10.7
jprt.my.macosx.x64.jdk7=macosx_x64_10.7
jprt.my.macosx.x64.jdk7u8=${jprt.my.macosx.x64.jdk7}
jprt.my.macosx.x64.jdk9=macosx_x64_10.7
jprt.my.macosx.x64=${jprt.my.macosx.x64.${jprt.tools.default.release}}
jprt.my.windows.i586.jdk8=windows_i586_6.1
jprt.my.windows.i586.jdk7=windows_i586_6.1
jprt.my.windows.i586.jdk7u8=${jprt.my.windows.i586.jdk7}
jprt.my.windows.i586.jdk9=windows_i586_6.1
jprt.my.windows.i586=${jprt.my.windows.i586.${jprt.tools.default.release}}
jprt.my.windows.x64.jdk8=windows_x64_6.1
jprt.my.windows.x64.jdk7=windows_x64_6.1
jprt.my.windows.x64.jdk7u8=${jprt.my.windows.x64.jdk7}
jprt.my.windows.x64.jdk9=windows_x64_6.1
jprt.my.windows.x64=${jprt.my.windows.x64.${jprt.tools.default.release}}
# Standard list of jprt build targets for this source tree
@ -143,9 +121,7 @@ jprt.build.targets.embedded= \
jprt.build.targets.all=${jprt.build.targets.standard}, \
${jprt.build.targets.embedded}, ${jprt.build.targets.open}
jprt.build.targets.jdk8=${jprt.build.targets.all}
jprt.build.targets.jdk7=${jprt.build.targets.all}
jprt.build.targets.jdk7u8=${jprt.build.targets.all}
jprt.build.targets.jdk9=${jprt.build.targets.all}
jprt.build.targets=${jprt.build.targets.${jprt.tools.default.release}}
# Subset lists of test targets for this source tree
@ -349,9 +325,7 @@ jprt.test.targets.embedded= \
${jprt.my.windows.i586.test.targets}, \
${jprt.my.windows.x64.test.targets}
jprt.test.targets.jdk8=${jprt.test.targets.standard}
jprt.test.targets.jdk7=${jprt.test.targets.standard}
jprt.test.targets.jdk7u8=${jprt.test.targets.jdk7}
jprt.test.targets.jdk9=${jprt.test.targets.standard}
jprt.test.targets=${jprt.test.targets.${jprt.tools.default.release}}
# The default test/Makefile targets that should be run
@ -399,9 +373,7 @@ jprt.make.rule.test.targets.standard = \
jprt.make.rule.test.targets.embedded = \
${jprt.make.rule.test.targets.standard.client}
jprt.make.rule.test.targets.jdk8=${jprt.make.rule.test.targets.standard}
jprt.make.rule.test.targets.jdk7=${jprt.make.rule.test.targets.standard}
jprt.make.rule.test.targets.jdk7u8=${jprt.make.rule.test.targets.jdk7}
jprt.make.rule.test.targets.jdk9=${jprt.make.rule.test.targets.standard}
jprt.make.rule.test.targets=${jprt.make.rule.test.targets.${jprt.tools.default.release}}
# 7155453: Work-around to prevent popups on OSX from blocking test completion

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -24,7 +24,6 @@
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
@ -37,6 +36,7 @@
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
@ -384,10 +384,10 @@ int Assembler::load_const_optimized(Register d, long x, Register tmp, bool retur
bool load_xa = (xa != 0) || (xb < 0);
bool return_xd = false;
if (load_xa) lis(tmp, xa);
if (xc) lis(d, xc);
if (load_xa) { lis(tmp, xa); }
if (xc) { lis(d, xc); }
if (load_xa) {
if (xb) ori(tmp, tmp, xb); // No addi, we support tmp == R0.
if (xb) { ori(tmp, tmp, (unsigned short)xb); } // No addi, we support tmp == R0.
} else {
li(tmp, xb); // non-negative
}
@ -409,18 +409,18 @@ int Assembler::load_const_optimized(Register d, long x, Register tmp, bool retur
// opt 4: avoid adding 0
if (xa) { // Highest 16-bit needed?
lis(d, xa);
if (xb) addi(d, d, xb);
if (xb) { addi(d, d, xb); }
} else {
li(d, xb);
}
sldi(d, d, 32);
if (xc) addis(d, d, xc);
if (xc) { addis(d, d, xc); }
}
// opt 5: Return offset to be inserted into following instruction.
if (return_simm16_rest) return xd;
if (xd) addi(d, d, xd);
if (xd) { addi(d, d, xd); }
return 0;
}
@ -696,4 +696,5 @@ void Assembler::test_asm() {
tty->print_cr("\ntest_asm disassembly (0x%lx 0x%lx):", code()->insts_begin(), code()->insts_end());
code()->decode();
}
#endif // !PRODUCT

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -139,7 +139,8 @@ inline void Assembler::cmpldi(ConditionRegister crx, Register a, int ui16) { A
inline void Assembler::cmplw( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 0, a, b); }
inline void Assembler::cmpld( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 1, a, b); }
inline void Assembler::isel(Register d, Register a, Register b, int c) { emit_int32(ISEL_OPCODE | rt(d) | ra(a) | rb(b) | bc(c)); }
inline void Assembler::isel(Register d, Register a, Register b, int c) { guarantee(VM_Version::has_isel(), "opcode not supported on this hardware");
emit_int32(ISEL_OPCODE | rt(d) | ra(a) | rb(b) | bc(c)); }
// PPC 1, section 3.3.11, Fixed-Point Logical Instructions
inline void Assembler::andi_( Register a, Register s, int ui16) { emit_int32(ANDI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); }
@ -531,9 +532,12 @@ inline void Assembler::fmr_(FloatRegister d, FloatRegister b) { emit_int32( FMR_
//inline void Assembler::mffgpr( FloatRegister d, Register b) { emit_int32( MFFGPR_OPCODE | frt(d) | rb(b) | rc(0)); }
//inline void Assembler::mftgpr( Register d, FloatRegister b) { emit_int32( MFTGPR_OPCODE | rt(d) | frb(b) | rc(0)); }
// add cmpb and popcntb to detect ppc power version.
inline void Assembler::cmpb( Register a, Register s, Register b) { emit_int32( CMPB_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
inline void Assembler::popcntb(Register a, Register s) { emit_int32( POPCNTB_OPCODE | rta(a) | rs(s)); };
inline void Assembler::popcntw(Register a, Register s) { emit_int32( POPCNTW_OPCODE | rta(a) | rs(s)); };
inline void Assembler::cmpb( Register a, Register s, Register b) { guarantee(VM_Version::has_cmpb(), "opcode not supported on this hardware");
emit_int32( CMPB_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
inline void Assembler::popcntb(Register a, Register s) { guarantee(VM_Version::has_popcntb(), "opcode not supported on this hardware");
emit_int32( POPCNTB_OPCODE | rta(a) | rs(s)); };
inline void Assembler::popcntw(Register a, Register s) { guarantee(VM_Version::has_popcntw(), "opcode not supported on this hardware");
emit_int32( POPCNTW_OPCODE | rta(a) | rs(s)); };
inline void Assembler::popcntd(Register a, Register s) { emit_int32( POPCNTD_OPCODE | rta(a) | rs(s)); };
inline void Assembler::fneg( FloatRegister d, FloatRegister b) { emit_int32( FNEG_OPCODE | frt(d) | frb(b) | rc(0)); }
@ -568,14 +572,17 @@ inline void Assembler::fctidz(FloatRegister d, FloatRegister b) { emit_int32( FC
inline void Assembler::fctiw( FloatRegister d, FloatRegister b) { emit_int32( FCTIW_OPCODE | frt(d) | frb(b) | rc(0)); }
inline void Assembler::fctiwz(FloatRegister d, FloatRegister b) { emit_int32( FCTIWZ_OPCODE | frt(d) | frb(b) | rc(0)); }
inline void Assembler::fcfid( FloatRegister d, FloatRegister b) { emit_int32( FCFID_OPCODE | frt(d) | frb(b) | rc(0)); }
inline void Assembler::fcfids(FloatRegister d, FloatRegister b) { emit_int32( FCFIDS_OPCODE | frt(d) | frb(b) | rc(0)); }
inline void Assembler::fcfids(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fcfids(), "opcode not supported on this hardware");
emit_int32( FCFIDS_OPCODE | frt(d) | frb(b) | rc(0)); }
// PPC 1, section 4.6.7 Floating-Point Compare Instructions
inline void Assembler::fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b) { emit_int32( FCMPU_OPCODE | bf(crx) | fra(a) | frb(b)); }
// PPC 1, section 5.2.1 Floating-Point Arithmetic Instructions
inline void Assembler::fsqrt( FloatRegister d, FloatRegister b) { emit_int32( FSQRT_OPCODE | frt(d) | frb(b) | rc(0)); }
inline void Assembler::fsqrts(FloatRegister d, FloatRegister b) { emit_int32( FSQRTS_OPCODE | frt(d) | frb(b) | rc(0)); }
inline void Assembler::fsqrt( FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrt(), "opcode not supported on this hardware");
emit_int32( FSQRT_OPCODE | frt(d) | frb(b) | rc(0)); }
inline void Assembler::fsqrts(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrts(), "opcode not supported on this hardware");
emit_int32( FSQRTS_OPCODE | frt(d) | frb(b) | rc(0)); }
// Vector instructions for >= Power6.
inline void Assembler::lvebx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEBX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
@ -703,7 +710,8 @@ inline void Assembler::vcmpgtsw_(VectorRegister d,VectorRegister a, VectorRegist
inline void Assembler::vcmpgtub_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
inline void Assembler::vcmpgtuh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
inline void Assembler::vcmpgtuw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
inline void Assembler::vand( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAND_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vand( VectorRegister d, VectorRegister a, VectorRegister b) { guarantee(VM_Version::has_vand(), "opcode not supported on this hardware");
emit_int32( VAND_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vandc( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VANDC_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vnor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
inline void Assembler::vor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -87,7 +87,7 @@ define_pd_global(uint64_t,MaxRAM, 4ULL*G);
define_pd_global(uintx, CodeCacheMinBlockLength, 4);
define_pd_global(uintx, CodeCacheMinimumUseSpace, 400*K);
define_pd_global(bool, TrapBasedRangeChecks, false);
define_pd_global(bool, TrapBasedRangeChecks, true);
// Heap related flags
define_pd_global(uintx,MetaspaceSize, ScaleForWordSize(16*M));

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -24,8 +24,6 @@
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
@ -1120,7 +1118,7 @@ address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
}
return _last_calls_return_pc;
}
#endif
#endif // ABI_ELFv2
void MacroAssembler::call_VM_base(Register oop_result,
Register last_java_sp,
@ -1794,7 +1792,7 @@ void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj
cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
bne(cr_reg, cas_label);
load_klass_with_trap_null_check(temp_reg, obj_reg);
load_klass(temp_reg, obj_reg);
load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
@ -1891,7 +1889,7 @@ void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj
// the bias from one thread to another directly in this situation.
andi(temp_reg, mark_reg, markOopDesc::age_mask_in_place);
orr(temp_reg, R16_thread, temp_reg);
load_klass_with_trap_null_check(temp2_reg, obj_reg);
load_klass(temp2_reg, obj_reg);
ld(temp2_reg, in_bytes(Klass::prototype_header_offset()), temp2_reg);
orr(temp_reg, temp_reg, temp2_reg);
@ -1927,7 +1925,7 @@ void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj
// that another thread raced us for the privilege of revoking the
// bias of this particular object, so it's okay to continue in the
// normal locking code.
load_klass_with_trap_null_check(temp_reg, obj_reg);
load_klass(temp_reg, obj_reg);
ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
orr(temp_reg, temp_reg, temp2_reg);
@ -2213,8 +2211,7 @@ void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Regis
stbx(R0, Rtmp, Robj);
}
#ifndef SERIALGC
#if INCLUDE_ALL_GCS
// General G1 pre-barrier generator.
// Goal: record the previous value if it is not null.
void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
@ -2328,14 +2325,17 @@ void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_v
// Get the address of the card.
lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val());
beq(CCR0, filtered);
assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
cmpwi(CCR0, Rtmp3 /* card value */, 0);
membar(Assembler::StoreLoad);
lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr); // Reload after membar.
cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val());
beq(CCR0, filtered);
// Storing a region crossing, non-NULL oop, card is clean.
// Dirty card and log.
li(Rtmp3, 0); // dirty
li(Rtmp3, CardTableModRefBS::dirty_card_val());
//release(); // G1: oops are allowed to get visible after dirty marking.
stbx(Rtmp3, Rbase, Rcard_addr);
@ -2362,7 +2362,7 @@ void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_v
bind(filtered_int);
}
#endif // SERIALGC
#endif // INCLUDE_ALL_GCS
// Values for last_Java_pc, and last_Java_sp must comply to the rules
// in frame_ppc64.hpp.
@ -2453,7 +2453,8 @@ void MacroAssembler::get_vm_result_2(Register metadata_result) {
void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
if (Universe::narrow_klass_base() != 0) {
load_const(R0, Universe::narrow_klass_base(), (dst != current) ? dst : noreg); // Use dst as temp if it is free.
// Use dst as temp if it is free.
load_const(R0, Universe::narrow_klass_base(), (dst != current && dst != R0) ? dst : noreg);
sub(dst, current, R0);
current = dst;
}

View File

@ -514,14 +514,14 @@ class MacroAssembler: public Assembler {
void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
#ifndef SERIALGC
#if INCLUDE_ALL_GCS
// General G1 pre-barrier generator.
void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
Register Rtmp1, Register Rtmp2, bool needs_frame = false);
// General G1 post-barrier generator
void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
#endif // SERIALGC
#endif
// Support for managing the JavaThread pointer (i.e.; the reference to
// thread-local information).

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -119,6 +119,7 @@ void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Registe
void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp,
bool for_compiler_entry) {
Label L_no_such_method;
assert(method == R19_method, "interpreter calling convention");
assert_different_registers(method, target, temp);
@ -131,17 +132,31 @@ void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register meth
__ lwz(temp, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
__ cmplwi(CCR0, temp, 0);
__ beq(CCR0, run_compiled_code);
// Null method test is replicated below in compiled case,
// it might be able to address across the verify_thread()
__ cmplwi(CCR0, R19_method, 0);
__ beq(CCR0, L_no_such_method);
__ ld(target, in_bytes(Method::interpreter_entry_offset()), R19_method);
__ mtctr(target);
__ bctr();
__ BIND(run_compiled_code);
}
// Compiled case, either static or fall-through from runtime conditional
__ cmplwi(CCR0, R19_method, 0);
__ beq(CCR0, L_no_such_method);
const ByteSize entry_offset = for_compiler_entry ? Method::from_compiled_offset() :
Method::from_interpreted_offset();
__ ld(target, in_bytes(entry_offset), R19_method);
__ mtctr(target);
__ bctr();
__ bind(L_no_such_method);
assert(StubRoutines::throw_AbstractMethodError_entry() != NULL, "not yet generated!");
__ load_const_optimized(target, StubRoutines::throw_AbstractMethodError_entry());
__ mtctr(target);
__ bctr();
}

View File

@ -891,6 +891,13 @@ definitions %{
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description.
source_hpp %{
// Header information of the source block.
// Method declarations/definitions which are used outside
// the ad-scope can conveniently be defined here.
//
// To keep related declarations/definitions/uses close together,
// we switch between source %{ }% and source_hpp %{ }% freely as needed.
// Returns true if Node n is followed by a MemBar node that
// will do an acquire. If so, this node must not do the acquire
// operation.
@ -1114,6 +1121,40 @@ static inline void emit_long(CodeBuffer &cbuf, int value) {
//=============================================================================
%} // interrupt source
source_hpp %{ // Header information of the source block.
//--------------------------------------------------------------
//---< Used for optimization in Compile::Shorten_branches >---
//--------------------------------------------------------------
const uint trampoline_stub_size = 6 * BytesPerInstWord;
class CallStubImpl {
public:
static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
// Size of call trampoline stub.
// This doesn't need to be accurate to the byte, but it
// must be larger than or equal to the real size of the stub.
static uint size_call_trampoline() {
return trampoline_stub_size;
}
// number of relocations needed by a call trampoline stub
static uint reloc_call_trampoline() {
return 5;
}
};
%} // end source_hpp
source %{
// Emit a trampoline stub for a call to a target which is too far away.
//
// code sequences:
@ -1125,9 +1166,7 @@ static inline void emit_long(CodeBuffer &cbuf, int value) {
// load the call target from the constant pool
// branch via CTR (LR/link still points to the call-site above)
const uint trampoline_stub_size = 6 * BytesPerInstWord;
void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
// Start the stub.
address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
if (stub == NULL) {
@ -1170,19 +1209,6 @@ void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int
__ end_a_stub();
}
// Size of trampoline stub, this doesn't need to be accurate but it must
// be larger or equal to the real size of the stub.
// Used for optimization in Compile::Shorten_branches.
uint size_call_trampoline() {
return trampoline_stub_size;
}
// Number of relocation entries needed by trampoline stub.
// Used for optimization in Compile::Shorten_branches.
uint reloc_call_trampoline() {
return 5;
}
//=============================================================================
// Emit an inline branch-and-link call and a related trampoline stub.
@ -1221,7 +1247,7 @@ EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address en
const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
// Emit the trampoline stub which will be related to the branch-and-link below.
emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
__ relocate(rtype);
}
@ -2023,17 +2049,34 @@ uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
//=============================================================================
uint size_exception_handler() {
// The exception_handler is a b64_patchable.
return MacroAssembler::b64_patchable_size;
}
%} // interrupt source
uint size_deopt_handler() {
// The deopt_handler is a bl64_patchable.
return MacroAssembler::bl64_patchable_size;
}
source_hpp %{ // Header information of the source block.
int emit_exception_handler(CodeBuffer &cbuf) {
class HandlerImpl {
public:
static int emit_exception_handler(CodeBuffer &cbuf);
static int emit_deopt_handler(CodeBuffer& cbuf);
static uint size_exception_handler() {
// The exception_handler is a b64_patchable.
return MacroAssembler::b64_patchable_size;
}
static uint size_deopt_handler() {
// The deopt_handler is a bl64_patchable.
return MacroAssembler::bl64_patchable_size;
}
};
%} // end source_hpp
source %{
int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_exception_handler());
@ -2050,7 +2093,7 @@ int emit_exception_handler(CodeBuffer &cbuf) {
// The deopt_handler is like the exception handler, but it calls to
// the deoptimization blob instead of jumping to the exception blob.
int emit_deopt_handler(CodeBuffer& cbuf) {
int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_deopt_handler());
@ -3438,7 +3481,7 @@ encode %{
const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
// Emit the trampoline stub which will be related to the branch-and-link below.
emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
__ relocate(_optimized_virtual ?
relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
}
@ -3481,7 +3524,7 @@ encode %{
const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
// Emit the trampoline stub which will be related to the branch-and-link below.
emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
assert(_optimized_virtual, "methodHandle call should be a virtual call");
__ relocate(relocInfo::opt_virtual_call_type);
}
@ -3531,7 +3574,7 @@ encode %{
const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
if (ra_->C->env()->failing())
return;
@ -8755,6 +8798,7 @@ instruct sqrtD_reg(regD dst, regD src) %{
// Single-precision sqrt.
instruct sqrtF_reg(regF dst, regF src) %{
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
predicate(VM_Version::has_fsqrts());
ins_cost(DEFAULT_COST);
format %{ "FSQRTS $dst, $src" %}
@ -11550,8 +11594,7 @@ instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
// effect no longer needs to be mentioned, since r0 is not contained
// in a reg_class.
format %{ "LD R12, addr of polling page\n\t"
"LD R0, #0, R12 \t// Safepoint poll for GC" %}
format %{ "LD R0, #0, R12 \t// Safepoint poll for GC" %}
ins_encode( enc_poll(0x0, poll) );
ins_pipe(pipe_class_default);
%}

View File

@ -34,6 +34,7 @@
#include "runtime/sharedRuntime.hpp"
#include "runtime/vframeArray.hpp"
#include "vmreg_ppc.inline.hpp"
#include "adfiles/ad_ppc_64.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
@ -52,10 +53,6 @@
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
// Used by generate_deopt_blob. Defined in .ad file.
extern uint size_deopt_handler();
class RegisterSaver {
// Used for saving volatile registers.
public:
@ -2782,7 +2779,7 @@ void SharedRuntime::generate_deopt_blob() {
// We can't grab a free register here, because all registers may
// contain live values, so let the RegisterSaver do the adjustment
// of the return pc.
const int return_pc_adjustment_no_exception = -size_deopt_handler();
const int return_pc_adjustment_no_exception = -HandlerImpl::size_deopt_handler();
// Push the "unpack frame"
// Save everything in sight.

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -23,17 +23,6 @@
*
*/
#include "precompiled.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/stubRoutines.hpp"
#ifdef TARGET_OS_FAMILY_aix
# include "thread_aix.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_linux
# include "thread_linux.inline.hpp"
#endif
// Implementation of the platform-specific part of StubRoutines - for
// a description of how to extend it, see the stubRoutines.hpp file.

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -402,6 +402,9 @@ void VM_Version::determine_features() {
CodeBuffer cb("detect_cpu_features", code_size, 0);
MacroAssembler* a = new MacroAssembler(&cb);
// Must be set to true so we can generate the test code.
_features = VM_Version::all_features_m;
// Emit code.
void (*test)(address addr, uint64_t offset)=(void(*)(address addr, uint64_t offset))(void *)a->function_entry();
uint32_t *code = (uint32_t *)a->pc();
@ -409,14 +412,15 @@ void VM_Version::determine_features() {
// Keep R3_ARG1 unmodified, it contains &field (see below).
// Keep R4_ARG2 unmodified, it contains offset = 0 (see below).
a->fsqrt(F3, F4); // code[0] -> fsqrt_m
a->isel(R7, R5, R6, 0); // code[1] -> isel_m
a->ldarx_unchecked(R7, R3_ARG1, R4_ARG2, 1); // code[2] -> lxarx_m
a->cmpb(R7, R5, R6); // code[3] -> bcmp
//a->mftgpr(R7, F3); // code[4] -> mftgpr
a->popcntb(R7, R5); // code[5] -> popcntb
a->popcntw(R7, R5); // code[6] -> popcntw
a->fcfids(F3, F4); // code[7] -> fcfids
a->vand(VR0, VR0, VR0); // code[8] -> vand
a->fsqrts(F3, F4); // code[1] -> fsqrts_m
a->isel(R7, R5, R6, 0); // code[2] -> isel_m
a->ldarx_unchecked(R7, R3_ARG1, R4_ARG2, 1); // code[3] -> lxarx_m
a->cmpb(R7, R5, R6); // code[4] -> bcmp
//a->mftgpr(R7, F3); // code[5] -> mftgpr
a->popcntb(R7, R5); // code[6] -> popcntb
a->popcntw(R7, R5); // code[7] -> popcntw
a->fcfids(F3, F4); // code[8] -> fcfids
a->vand(VR0, VR0, VR0); // code[9] -> vand
a->blr();
// Emit function to set one cache line to zero. Emit function descriptor and get pointer to it.
@ -426,6 +430,7 @@ void VM_Version::determine_features() {
uint32_t *code_end = (uint32_t *)a->pc();
a->flush();
_features = VM_Version::unknown_m;
// Print the detection code.
if (PrintAssembly) {
@ -450,6 +455,7 @@ void VM_Version::determine_features() {
// determine which instructions are legal.
int feature_cntr = 0;
if (code[feature_cntr++]) features |= fsqrt_m;
if (code[feature_cntr++]) features |= fsqrts_m;
if (code[feature_cntr++]) features |= isel_m;
if (code[feature_cntr++]) features |= lxarxeh_m;
if (code[feature_cntr++]) features |= cmpb_m;

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -33,6 +33,7 @@ class VM_Version: public Abstract_VM_Version {
protected:
enum Feature_Flag {
fsqrt,
fsqrts,
isel,
lxarxeh,
cmpb,
@ -46,6 +47,7 @@ protected:
enum Feature_Flag_Set {
unknown_m = 0,
fsqrt_m = (1 << fsqrt ),
fsqrts_m = (1 << fsqrts ),
isel_m = (1 << isel ),
lxarxeh_m = (1 << lxarxeh),
cmpb_m = (1 << cmpb ),
@ -72,6 +74,7 @@ public:
static bool is_determine_features_test_running() { return _is_determine_features_test_running; }
// CPU instruction support
static bool has_fsqrt() { return (_features & fsqrt_m) != 0; }
static bool has_fsqrts() { return (_features & fsqrts_m) != 0; }
static bool has_isel() { return (_features & isel_m) != 0; }
static bool has_lxarxeh() { return (_features & lxarxeh_m) !=0; }
static bool has_cmpb() { return (_features & cmpb_m) != 0; }

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -79,7 +79,7 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
address npe_addr = __ pc(); // npe = null pointer exception
__ load_klass_with_trap_null_check(rcvr_klass, R3);
// Set methodOop (in case of interpreted method), and destination address.
// Set method (in case of interpreted method), and destination address.
int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
#ifndef PRODUCT
@ -161,8 +161,6 @@ VtableStub* VtableStubs::create_itable_stub(int vtable_index) {
address npe_addr = __ pc(); // npe = null pointer exception
__ load_klass_with_trap_null_check(rcvr_klass, R3_ARG1);
//__ ld(rcvr_klass, oopDesc::klass_offset_in_bytes(), R3_ARG1);
BLOCK_COMMENT("Load start of itable entries into itable_entry.");
__ lwz(vtable_len, InstanceKlass::vtable_length_offset() * wordSize, rcvr_klass);
__ slwi(vtable_len, vtable_len, exact_log2(vtableEntry::size() * wordSize));
@ -199,7 +197,7 @@ VtableStub* VtableStubs::create_itable_stub(int vtable_index) {
itable_offset_search_inc;
__ lwz(vtable_offset, vtable_offset_offset, itable_entry_addr);
// Compute itableMethodEntry and get methodOop and entry point for compiler.
// Compute itableMethodEntry and get method and entry point for compiler.
const int method_offset = (itableMethodEntry::size() * wordSize * vtable_index) +
itableMethodEntry::method_offset_in_bytes();
@ -211,7 +209,7 @@ VtableStub* VtableStubs::create_itable_stub(int vtable_index) {
Label ok;
__ cmpd(CCR0, R19_method, 0);
__ bne(CCR0, ok);
__ stop("methodOop is null", 103);
__ stop("method is null", 103);
__ bind(ok);
}
#endif

View File

@ -3320,7 +3320,7 @@ void LIR_Assembler::rt_call(LIR_Opr result, address dest,
// if tmp is invalid, then the function being called doesn't destroy the thread
if (tmp->is_valid()) {
__ save_thread(tmp->as_register());
__ save_thread(tmp->as_pointer_register());
}
__ call(dest, relocInfo::runtime_call_type);
__ delayed()->nop();
@ -3328,7 +3328,7 @@ void LIR_Assembler::rt_call(LIR_Opr result, address dest,
add_call_info_here(info);
}
if (tmp->is_valid()) {
__ restore_thread(tmp->as_register());
__ restore_thread(tmp->as_pointer_register());
}
#ifdef ASSERT

View File

@ -69,7 +69,7 @@ void LIRItem::load_nonconstant() {
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::Oexception_opr; }
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::Oissuing_pc_opr; }
LIR_Opr LIRGenerator::syncTempOpr() { return new_register(T_OBJECT); }
LIR_Opr LIRGenerator::getThreadTemp() { return rlock_callee_saved(T_INT); }
LIR_Opr LIRGenerator::getThreadTemp() { return rlock_callee_saved(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); }
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
LIR_Opr opr;

View File

@ -66,6 +66,4 @@ define_pd_global(bool, OptimizeSinglePrecision, false);
define_pd_global(bool, CSEArrayLength, true );
define_pd_global(bool, TwoOperandLIRForm, false);
define_pd_global(intx, SafepointPollOffset, 0 );
#endif // CPU_SPARC_VM_C1_GLOBALS_SPARC_HPP

View File

@ -457,6 +457,13 @@ definitions %{
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source_hpp %{
// Header information of the source block.
// Method declarations/definitions which are used outside
// the ad-scope can conveniently be defined here.
//
// To keep related declarations/definitions/uses close together,
// we switch between source %{ }% and source_hpp %{ }% freely as needed.
// Must be visible to the DFA in dfa_sparc.cpp
extern bool can_branch_register( Node *bol, Node *cmp );
@ -468,6 +475,46 @@ extern bool use_block_zeroing(Node* count);
#define LONG_HI_REG(x) (x)
#define LONG_LO_REG(x) (x)
class CallStubImpl {
//--------------------------------------------------------------
//---< Used for optimization in Compile::Shorten_branches >---
//--------------------------------------------------------------
public:
// Size of call trampoline stub.
static uint size_call_trampoline() {
return 0; // no call trampolines on this platform
}
// number of relocations needed by a call trampoline stub
static uint reloc_call_trampoline() {
return 0; // no call trampolines on this platform
}
};
class HandlerImpl {
public:
static int emit_exception_handler(CodeBuffer &cbuf);
static int emit_deopt_handler(CodeBuffer& cbuf);
static uint size_exception_handler() {
if (TraceJumps) {
return (400); // just a guess
}
return ( NativeJump::instruction_size ); // sethi;jmp;nop
}
static uint size_deopt_handler() {
if (TraceJumps) {
return (400); // just a guess
}
return ( 4+ NativeJump::instruction_size ); // save;sethi;jmp;restore
}
};
%}
source %{
@ -1710,22 +1757,9 @@ uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
//=============================================================================
uint size_exception_handler() {
if (TraceJumps) {
return (400); // just a guess
}
return ( NativeJump::instruction_size ); // sethi;jmp;nop
}
uint size_deopt_handler() {
if (TraceJumps) {
return (400); // just a guess
}
return ( 4+ NativeJump::instruction_size ); // save;sethi;jmp;restore
}
// Emit exception handler code.
int emit_exception_handler(CodeBuffer& cbuf) {
int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
Register temp_reg = G3;
AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
MacroAssembler _masm(&cbuf);
@ -1746,7 +1780,7 @@ int emit_exception_handler(CodeBuffer& cbuf) {
return offset;
}
int emit_deopt_handler(CodeBuffer& cbuf) {
int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
// Can't use any of the current frame's registers as we may have deopted
// at a poll and everything (including G3) can be live.
Register temp_reg = L0;

View File

@ -1112,7 +1112,6 @@ void Assembler::bsfl(Register dst, Register src) {
}
void Assembler::bsrl(Register dst, Register src) {
assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBD);
@ -2343,6 +2342,11 @@ void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector25
emit_int8(imm8);
}
void Assembler::pause() {
emit_int8((unsigned char)0xF3);
emit_int8((unsigned char)0x90);
}
void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
assert(VM_Version::supports_sse4_2(), "");
InstructionMark im(this);
@ -2667,6 +2671,11 @@ void Assembler::rcll(Register dst, int imm8) {
}
}
void Assembler::rdtsc() {
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0x31);
}
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
@ -2976,6 +2985,11 @@ void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
}
void Assembler::xabort(int8_t imm8) {
emit_int8((unsigned char)0xC6);
emit_int8((unsigned char)0xF8);
emit_int8((unsigned char)(imm8 & 0xFF));
}
void Assembler::xaddl(Address dst, Register src) {
InstructionMark im(this);
@ -2985,6 +2999,24 @@ void Assembler::xaddl(Address dst, Register src) {
emit_operand(src, dst);
}
void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
InstructionMark im(this);
relocate(rtype);
if (abort.is_bound()) {
address entry = target(abort);
assert(entry != NULL, "abort entry NULL");
intptr_t offset = entry - pc();
emit_int8((unsigned char)0xC7);
emit_int8((unsigned char)0xF8);
emit_int32(offset - 6); // 2 opcode + 4 address
} else {
abort.add_patch_at(code(), locator());
emit_int8((unsigned char)0xC7);
emit_int8((unsigned char)0xF8);
emit_int32(0);
}
}
void Assembler::xchgl(Register dst, Address src) { // xchg
InstructionMark im(this);
prefix(src, dst);
@ -2998,6 +3030,12 @@ void Assembler::xchgl(Register dst, Register src) {
emit_int8((unsigned char)(0xC0 | encode));
}
void Assembler::xend() {
emit_int8((unsigned char)0x0F);
emit_int8((unsigned char)0x01);
emit_int8((unsigned char)0xD5);
}
void Assembler::xgetbv() {
emit_int8(0x0F);
emit_int8(0x01);
@ -4938,7 +4976,6 @@ void Assembler::bsfq(Register dst, Register src) {
}
void Assembler::bsrq(Register dst, Register src) {
assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_int8(0x0F);
emit_int8((unsigned char)0xBD);

View File

@ -1451,6 +1451,8 @@ private:
// Pemutation of 64bit words
void vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256);
void pause();
// SSE4.2 string instructions
void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
void pcmpestri(XMMRegister xmm1, Address src, int imm8);
@ -1535,6 +1537,8 @@ private:
void rclq(Register dst, int imm8);
void rdtsc();
void ret(int imm16);
void sahf();
@ -1632,16 +1636,22 @@ private:
void ucomiss(XMMRegister dst, Address src);
void ucomiss(XMMRegister dst, XMMRegister src);
void xabort(int8_t imm8);
void xaddl(Address dst, Register src);
void xaddq(Address dst, Register src);
void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
void xchgl(Register reg, Address adr);
void xchgl(Register dst, Register src);
void xchgq(Register reg, Address adr);
void xchgq(Register dst, Register src);
void xend();
// Get Value of Extended Control Register
void xgetbv();

View File

@ -604,8 +604,7 @@ void LIR_Assembler::return_op(LIR_Opr result) {
// Note: we do not need to round double result; float result has the right precision
// the poll sets the condition code, but no data registers
AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
relocInfo::poll_return_type);
AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
if (Assembler::is_polling_page_far()) {
__ lea(rscratch1, polling_page);
@ -619,8 +618,7 @@ void LIR_Assembler::return_op(LIR_Opr result) {
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
relocInfo::poll_type);
AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
guarantee(info != NULL, "Shouldn't be NULL");
int offset = __ offset();
if (Assembler::is_polling_page_far()) {

View File

@ -65,6 +65,4 @@ define_pd_global(bool, OptimizeSinglePrecision, true );
define_pd_global(bool, CSEArrayLength, false);
define_pd_global(bool, TwoOperandLIRForm, true );
define_pd_global(intx, SafepointPollOffset, 256 );
#endif // CPU_X86_VM_C1_GLOBALS_X86_HPP

View File

@ -129,6 +129,42 @@ define_pd_global(uintx, TypeProfileLevel, 111);
product(bool, UseFastStosb, false, \
"Use fast-string operation for zeroing: rep stosb") \
\
/* Use Restricted Transactional Memory for lock eliding */ \
product(bool, UseRTMLocking, false, \
"Enable RTM lock eliding for inflated locks in compiled code") \
\
experimental(bool, UseRTMForStackLocks, false, \
"Enable RTM lock eliding for stack locks in compiled code") \
\
product(bool, UseRTMDeopt, false, \
"Perform deopt and recompilation based on RTM abort ratio") \
\
product(uintx, RTMRetryCount, 5, \
"Number of RTM retries on lock abort or busy") \
\
experimental(intx, RTMSpinLoopCount, 100, \
"Spin count for lock to become free before RTM retry") \
\
experimental(intx, RTMAbortThreshold, 1000, \
"Calculate abort ratio after this number of aborts") \
\
experimental(intx, RTMLockingThreshold, 10000, \
"Lock count at which to do RTM lock eliding without " \
"abort ratio calculation") \
\
experimental(intx, RTMAbortRatio, 50, \
"Lock abort ratio at which to stop use RTM lock eliding") \
\
experimental(intx, RTMTotalCountIncrRate, 64, \
"Increment total RTM attempted lock count once every n times") \
\
experimental(intx, RTMLockingCalculationDelay, 0, \
"Number of milliseconds to wait before start calculating aborts " \
"for RTM locking") \
\
experimental(bool, UseRTMXendForLockBusy, false, \
"Use RTM Xend instead of Xabort when lock busy") \
\
/* assembler */ \
product(bool, Use486InstrsOnly, false, \
"Use 80486 Compliant instruction subset") \

View File

@ -301,7 +301,9 @@ void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::movptr(Register dst, AddressLiteral src) {
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
// scratch register is not used,
// it is defined to match parameters of 64-bit version of this method.
if (src.is_lval()) {
mov_literal32(dst, (intptr_t)src.target(), src.rspec());
} else {
@ -613,6 +615,15 @@ void MacroAssembler::decrementq(Address dst, int value) {
/* else */ { subq(dst, value) ; return; }
}
void MacroAssembler::incrementq(AddressLiteral dst) {
if (reachable(dst)) {
incrementq(as_Address(dst));
} else {
lea(rscratch1, dst);
incrementq(Address(rscratch1, 0));
}
}
void MacroAssembler::incrementq(Register reg, int value) {
if (value == min_jint) { addq(reg, value); return; }
if (value < 0) { decrementq(reg, -value); return; }
@ -681,15 +692,15 @@ void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
movq(dst, rscratch1);
}
void MacroAssembler::movptr(Register dst, AddressLiteral src) {
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
if (src.is_lval()) {
mov_literal64(dst, (intptr_t)src.target(), src.rspec());
} else {
if (reachable(src)) {
movq(dst, as_Address(src));
} else {
lea(rscratch1, src);
movq(dst, Address(rscratch1,0));
lea(scratch, src);
movq(dst, Address(scratch, 0));
}
}
}
@ -988,21 +999,38 @@ void MacroAssembler::andptr(Register dst, int32_t imm32) {
LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
}
void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
pushf();
if (reachable(counter_addr)) {
if (os::is_MP())
lock();
incrementl(as_Address(counter_addr));
} else {
lea(rscratch1, counter_addr);
if (os::is_MP())
lock();
incrementl(Address(rscratch1, 0));
}
popf();
void MacroAssembler::atomic_incl(Address counter_addr) {
if (os::is_MP())
lock();
incrementl(counter_addr);
}
void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
if (reachable(counter_addr)) {
atomic_incl(as_Address(counter_addr));
} else {
lea(scr, counter_addr);
atomic_incl(Address(scr, 0));
}
}
#ifdef _LP64
void MacroAssembler::atomic_incq(Address counter_addr) {
if (os::is_MP())
lock();
incrementq(counter_addr);
}
void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
if (reachable(counter_addr)) {
atomic_incq(as_Address(counter_addr));
} else {
lea(scr, counter_addr);
atomic_incq(Address(scr, 0));
}
}
#endif
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
@ -1274,6 +1302,325 @@ void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, La
}
#ifdef COMPILER2
#if INCLUDE_RTM_OPT
// Update rtm_counters based on abort status
// input: abort_status
// rtm_counters (RTMLockingCounters*)
// flags are killed
void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
if (PrintPreciseRTMLockingStatistics) {
for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
Label check_abort;
testl(abort_status, (1<<i));
jccb(Assembler::equal, check_abort);
atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
bind(check_abort);
}
}
}
// Branch if (random & (count-1) != 0), count is 2^n
// tmp, scr and flags are killed
void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
assert(tmp == rax, "");
assert(scr == rdx, "");
rdtsc(); // modifies EDX:EAX
andptr(tmp, count-1);
jccb(Assembler::notZero, brLabel);
}
// Perform abort ratio calculation, set no_rtm bit if high ratio
// input: rtm_counters_Reg (RTMLockingCounters* address)
// tmpReg, rtm_counters_Reg and flags are killed
void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data) {
Label L_done, L_check_always_rtm1, L_check_always_rtm2;
if (RTMLockingCalculationDelay > 0) {
// Delay calculation
movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
testptr(tmpReg, tmpReg);
jccb(Assembler::equal, L_done);
}
// Abort ratio calculation only if abort_count > RTMAbortThreshold
// Aborted transactions = abort_count * 100
// All transactions = total_count * RTMTotalCountIncrRate
// Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
cmpptr(tmpReg, RTMAbortThreshold);
jccb(Assembler::below, L_check_always_rtm2);
imulptr(tmpReg, tmpReg, 100);
Register scrReg = rtm_counters_Reg;
movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
imulptr(scrReg, scrReg, RTMAbortRatio);
cmpptr(tmpReg, scrReg);
jccb(Assembler::below, L_check_always_rtm1);
if (method_data != NULL) {
// set rtm_state to "no rtm" in MDO
mov_metadata(tmpReg, method_data);
if (os::is_MP()) {
lock();
}
orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
}
jmpb(L_done);
bind(L_check_always_rtm1);
// Reload RTMLockingCounters* address
lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
bind(L_check_always_rtm2);
movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
jccb(Assembler::below, L_done);
if (method_data != NULL) {
// set rtm_state to "always rtm" in MDO
mov_metadata(tmpReg, method_data);
if (os::is_MP()) {
lock();
}
orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
}
bind(L_done);
}
// Update counters and perform abort ratio calculation
// input: abort_status_Reg
// rtm_counters_Reg, flags are killed
void MacroAssembler::rtm_profiling(Register abort_status_Reg,
Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data,
bool profile_rtm) {
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
// update rtm counters based on rax value at abort
// reads abort_status_Reg, updates flags
lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
if (profile_rtm) {
// Save abort status because abort_status_Reg is used by following code.
if (RTMRetryCount > 0) {
push(abort_status_Reg);
}
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
// restore abort status
if (RTMRetryCount > 0) {
pop(abort_status_Reg);
}
}
}
// Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
// inputs: retry_count_Reg
// : abort_status_Reg
// output: retry_count_Reg decremented by 1
// flags are killed
void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
Label doneRetry;
assert(abort_status_Reg == rax, "");
// The abort reason bits are in eax (see all states in rtmLocking.hpp)
// 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
// if reason is in 0x6 and retry count != 0 then retry
andptr(abort_status_Reg, 0x6);
jccb(Assembler::zero, doneRetry);
testl(retry_count_Reg, retry_count_Reg);
jccb(Assembler::zero, doneRetry);
pause();
decrementl(retry_count_Reg);
jmp(retryLabel);
bind(doneRetry);
}
// Spin and retry if lock is busy,
// inputs: box_Reg (monitor address)
// : retry_count_Reg
// output: retry_count_Reg decremented by 1
// : clear z flag if retry count exceeded
// tmp_Reg, scr_Reg, flags are killed
void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
Label SpinLoop, SpinExit, doneRetry;
// Clean monitor_value bit to get valid pointer
int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
testl(retry_count_Reg, retry_count_Reg);
jccb(Assembler::zero, doneRetry);
decrementl(retry_count_Reg);
movptr(scr_Reg, RTMSpinLoopCount);
bind(SpinLoop);
pause();
decrementl(scr_Reg);
jccb(Assembler::lessEqual, SpinExit);
movptr(tmp_Reg, Address(box_Reg, owner_offset));
testptr(tmp_Reg, tmp_Reg);
jccb(Assembler::notZero, SpinLoop);
bind(SpinExit);
jmp(retryLabel);
bind(doneRetry);
incrementl(retry_count_Reg); // clear z flag
}
// Use RTM for normal stack locks
// Input: objReg (object to lock)
void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
Register retry_on_abort_count_Reg,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL, Label& IsInflated) {
assert(UseRTMForStackLocks, "why call this otherwise?");
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
assert(tmpReg == rax, "");
assert(scrReg == rdx, "");
Label L_rtm_retry, L_decrement_retry, L_on_abort;
if (RTMRetryCount > 0) {
movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
bind(L_rtm_retry);
}
if (!UseRTMXendForLockBusy) {
movptr(tmpReg, Address(objReg, 0));
testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
jcc(Assembler::notZero, IsInflated);
}
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
Label L_noincrement;
if (RTMTotalCountIncrRate > 1) {
// tmpReg, scrReg and flags are killed
branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
}
assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
bind(L_noincrement);
}
xbegin(L_on_abort);
movptr(tmpReg, Address(objReg, 0)); // fetch markword
andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
cmpptr(tmpReg, markOopDesc::unlocked_value); // bits = 001 unlocked
jcc(Assembler::equal, DONE_LABEL); // all done if unlocked
Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
if (UseRTMXendForLockBusy) {
xend();
movptr(tmpReg, Address(objReg, 0));
testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
jcc(Assembler::notZero, IsInflated);
movptr(abort_status_Reg, 0x1); // Set the abort status to 1 (as xabort does)
jmp(L_decrement_retry);
}
else {
xabort(0);
}
bind(L_on_abort);
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
}
bind(L_decrement_retry);
if (RTMRetryCount > 0) {
// retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
}
}
// Use RTM for inflating locks
// inputs: objReg (object to lock)
// boxReg (on-stack box address (displaced header location) - KILLED)
// tmpReg (ObjectMonitor address + 2(monitor_value))
void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
Register scrReg, Register retry_on_busy_count_Reg,
Register retry_on_abort_count_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL) {
assert(UseRTMLocking, "why call this otherwise?");
assert(tmpReg == rax, "");
assert(scrReg == rdx, "");
Label L_rtm_retry, L_decrement_retry, L_on_abort;
// Clean monitor_value bit to get valid pointer
int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
// Without cast to int32_t a movptr will destroy r10 which is typically obj
movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
movptr(boxReg, tmpReg); // Save ObjectMonitor address
if (RTMRetryCount > 0) {
movl(retry_on_busy_count_Reg, RTMRetryCount); // Retry on lock busy
movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
bind(L_rtm_retry);
}
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
Label L_noincrement;
if (RTMTotalCountIncrRate > 1) {
// tmpReg, scrReg and flags are killed
branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
}
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
bind(L_noincrement);
}
xbegin(L_on_abort);
movptr(tmpReg, Address(objReg, 0));
movptr(tmpReg, Address(tmpReg, owner_offset));
testptr(tmpReg, tmpReg);
jcc(Assembler::zero, DONE_LABEL);
if (UseRTMXendForLockBusy) {
xend();
jmp(L_decrement_retry);
}
else {
xabort(0);
}
bind(L_on_abort);
Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
}
if (RTMRetryCount > 0) {
// retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
}
movptr(tmpReg, Address(boxReg, owner_offset)) ;
testptr(tmpReg, tmpReg) ;
jccb(Assembler::notZero, L_decrement_retry) ;
// Appears unlocked - try to swing _owner from null to non-null.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
#ifdef _LP64
Register threadReg = r15_thread;
#else
get_thread(scrReg);
Register threadReg = scrReg;
#endif
if (os::is_MP()) {
lock();
}
cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
if (RTMRetryCount > 0) {
// success done else retry
jccb(Assembler::equal, DONE_LABEL) ;
bind(L_decrement_retry);
// Spin and retry if lock is busy.
rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
}
else {
bind(L_decrement_retry);
}
}
#endif // INCLUDE_RTM_OPT
// Fast_Lock and Fast_Unlock used by C2
// Because the transitions from emitted code to the runtime
@ -1350,17 +1697,26 @@ void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, La
// box: on-stack box address (displaced header location) - KILLED
// rax,: tmp -- KILLED
// scr: tmp -- KILLED
void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg, Register scrReg, BiasedLockingCounters* counters) {
void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
Register scrReg, Register cx1Reg, Register cx2Reg,
BiasedLockingCounters* counters,
RTMLockingCounters* rtm_counters,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data,
bool use_rtm, bool profile_rtm) {
// Ensure the register assignents are disjoint
guarantee (objReg != boxReg, "");
guarantee (objReg != tmpReg, "");
guarantee (objReg != scrReg, "");
guarantee (boxReg != tmpReg, "");
guarantee (boxReg != scrReg, "");
guarantee (tmpReg == rax, "");
assert(tmpReg == rax, "");
if (use_rtm) {
assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
} else {
assert(cx1Reg == noreg, "");
assert(cx2Reg == noreg, "");
assert_different_registers(objReg, boxReg, tmpReg, scrReg);
}
if (counters != NULL) {
atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()));
atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
}
if (EmitSync & 1) {
// set box->dhw = unused_mark (3)
@ -1419,12 +1775,20 @@ void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg
biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, counters);
}
#if INCLUDE_RTM_OPT
if (UseRTMForStackLocks && use_rtm) {
rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
stack_rtm_counters, method_data, profile_rtm,
DONE_LABEL, IsInflated);
}
#endif // INCLUDE_RTM_OPT
movptr(tmpReg, Address(objReg, 0)); // [FETCH]
testl (tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
jccb (Assembler::notZero, IsInflated);
testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
jccb(Assembler::notZero, IsInflated);
// Attempt stack-locking ...
orptr (tmpReg, 0x1);
orptr (tmpReg, markOopDesc::unlocked_value);
movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS
if (os::is_MP()) {
lock();
@ -1434,19 +1798,32 @@ void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg
cond_inc32(Assembler::equal,
ExternalAddress((address)counters->fast_path_entry_count_addr()));
}
jccb(Assembler::equal, DONE_LABEL);
jcc(Assembler::equal, DONE_LABEL); // Success
// Recursive locking
// Recursive locking.
// The object is stack-locked: markword contains stack pointer to BasicLock.
// Locked by current thread if difference with current SP is less than one page.
subptr(tmpReg, rsp);
// Next instruction set ZFlag == 1 (Success) if difference is less then one page.
andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
movptr(Address(boxReg, 0), tmpReg);
if (counters != NULL) {
cond_inc32(Assembler::equal,
ExternalAddress((address)counters->fast_path_entry_count_addr()));
}
jmpb(DONE_LABEL);
jmp(DONE_LABEL);
bind(IsInflated);
// The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
#if INCLUDE_RTM_OPT
// Use the same RTM locking code in 32- and 64-bit VM.
if (use_rtm) {
rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
rtm_counters, method_data, profile_rtm, DONE_LABEL);
} else {
#endif // INCLUDE_RTM_OPT
#ifndef _LP64
// The object is inflated.
//
@ -1576,7 +1953,7 @@ void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg
// Without cast to int32_t a movptr will destroy r10 which is typically obj
movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
mov (boxReg, tmpReg);
movptr (boxReg, tmpReg);
movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
testptr(tmpReg, tmpReg);
jccb (Assembler::notZero, DONE_LABEL);
@ -1587,9 +1964,11 @@ void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg
}
cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
// Intentional fall-through into DONE_LABEL ...
#endif // _LP64
#if INCLUDE_RTM_OPT
} // use_rtm()
#endif
// DONE_LABEL is a hot target - we'd really like to place it at the
// start of cache line by padding with NOPs.
// See the AMD and Intel software optimization manuals for the
@ -1631,11 +2010,9 @@ void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg
// should not be unlocked by "normal" java-level locking and vice-versa. The specification
// doesn't specify what will occur if a program engages in such mixed-mode locking, however.
void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg) {
guarantee (objReg != boxReg, "");
guarantee (objReg != tmpReg, "");
guarantee (boxReg != tmpReg, "");
guarantee (boxReg == rax, "");
void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
assert(boxReg == rax, "");
assert_different_registers(objReg, boxReg, tmpReg);
if (EmitSync & 4) {
// Disable - inhibit all inlining. Force control through the slow-path
@ -1667,14 +2044,41 @@ void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpR
biased_locking_exit(objReg, tmpReg, DONE_LABEL);
}
cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
movptr(tmpReg, Address(objReg, 0)); // Examine the object's markword
jccb (Assembler::zero, DONE_LABEL); // 0 indicates recursive stack-lock
#if INCLUDE_RTM_OPT
if (UseRTMForStackLocks && use_rtm) {
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
Label L_regular_unlock;
movptr(tmpReg, Address(objReg, 0)); // fetch markword
andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
cmpptr(tmpReg, markOopDesc::unlocked_value); // bits = 001 unlocked
jccb(Assembler::notEqual, L_regular_unlock); // if !HLE RegularLock
xend(); // otherwise end...
jmp(DONE_LABEL); // ... and we're done
bind(L_regular_unlock);
}
#endif
testptr(tmpReg, 0x02); // Inflated?
cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
jcc (Assembler::zero, DONE_LABEL); // 0 indicates recursive stack-lock
movptr(tmpReg, Address(objReg, 0)); // Examine the object's markword
testptr(tmpReg, markOopDesc::monitor_value); // Inflated?
jccb (Assembler::zero, Stacked);
// It's inflated.
#if INCLUDE_RTM_OPT
if (use_rtm) {
Label L_regular_inflated_unlock;
// Clean monitor_value bit to get valid pointer
int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
movptr(boxReg, Address(tmpReg, owner_offset));
testptr(boxReg, boxReg);
jccb(Assembler::notZero, L_regular_inflated_unlock);
xend();
jmpb(DONE_LABEL);
bind(L_regular_inflated_unlock);
}
#endif
// Despite our balanced locking property we still check that m->_owner == Self
// as java routines or native JNI code called by this thread might
// have released the lock.
@ -2448,7 +2852,9 @@ void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
Condition negated_cond = negate_condition(cond);
Label L;
jcc(negated_cond, L);
pushf(); // Preserve flags
atomic_incl(counter_addr);
popf();
bind(L);
}

View File

@ -27,6 +27,7 @@
#include "asm/assembler.hpp"
#include "utilities/macros.hpp"
#include "runtime/rtmLocking.hpp"
// MacroAssembler extends Assembler by frequently used macros.
@ -111,7 +112,8 @@ class MacroAssembler: public Assembler {
op == 0xE9 /* jmp */ ||
op == 0xEB /* short jmp */ ||
(op & 0xF0) == 0x70 /* short jcc */ ||
op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
"Invalid opcode at patch point");
if (op == 0xEB || (op & 0xF0) == 0x70) {
@ -121,7 +123,7 @@ class MacroAssembler: public Assembler {
guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
*disp = imm8;
} else {
int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
int imm32 = target - (address) &disp[1];
*disp = imm32;
}
@ -161,7 +163,6 @@ class MacroAssembler: public Assembler {
void incrementq(Register reg, int value = 1);
void incrementq(Address dst, int value = 1);
// Support optimal SSE move instructions.
void movflt(XMMRegister dst, XMMRegister src) {
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
@ -187,6 +188,8 @@ class MacroAssembler: public Assembler {
void incrementl(AddressLiteral dst);
void incrementl(ArrayAddress dst);
void incrementq(AddressLiteral dst);
// Alignment
void align(int modulus);
@ -654,8 +657,36 @@ class MacroAssembler: public Assembler {
#ifdef COMPILER2
// Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
// See full desription in macroAssembler_x86.cpp.
void fast_lock(Register obj, Register box, Register tmp, Register scr, BiasedLockingCounters* counters);
void fast_unlock(Register obj, Register box, Register tmp);
void fast_lock(Register obj, Register box, Register tmp,
Register scr, Register cx1, Register cx2,
BiasedLockingCounters* counters,
RTMLockingCounters* rtm_counters,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data,
bool use_rtm, bool profile_rtm);
void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
#if INCLUDE_RTM_OPT
void rtm_counters_update(Register abort_status, Register rtm_counters);
void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data);
void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
void rtm_stack_locking(Register obj, Register tmp, Register scr,
Register retry_on_abort_count,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL, Label& IsInflated);
void rtm_inflated_locking(Register obj, Register box, Register tmp,
Register scr, Register retry_on_busy_count,
Register retry_on_abort_count,
RTMLockingCounters* rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL);
#endif
#endif
Condition negate_condition(Condition cond);
@ -721,6 +752,7 @@ class MacroAssembler: public Assembler {
void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
@ -762,7 +794,14 @@ class MacroAssembler: public Assembler {
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
void cond_inc32(Condition cond, AddressLiteral counter_addr);
// Unconditional atomic increment.
void atomic_incl(AddressLiteral counter_addr);
void atomic_incl(Address counter_addr);
void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
#ifdef _LP64
void atomic_incq(Address counter_addr);
void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
#endif
void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
void lea(Register dst, AddressLiteral adr);
void lea(Address dst, AddressLiteral adr);
@ -1074,7 +1113,11 @@ public:
void movptr(Register dst, Address src);
void movptr(Register dst, AddressLiteral src);
#ifdef _LP64
void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
#else
void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
#endif
void movptr(Register dst, intptr_t src);
void movptr(Register dst, Register src);

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/task.hpp"
#include "runtime/rtmLocking.hpp"
// One-shot PeriodicTask subclass for enabling RTM locking
uintx RTMLockingCounters::_calculation_flag = 0;
class RTMLockingCalculationTask : public PeriodicTask {
public:
RTMLockingCalculationTask(size_t interval_time) : PeriodicTask(interval_time){ }
virtual void task() {
RTMLockingCounters::_calculation_flag = 1;
// Reclaim our storage and disenroll ourself
delete this;
}
};
void RTMLockingCounters::init() {
if (UseRTMLocking && RTMLockingCalculationDelay > 0) {
RTMLockingCalculationTask* task = new RTMLockingCalculationTask(RTMLockingCalculationDelay);
task->enroll();
} else {
_calculation_flag = 1;
}
}
//------------------------------print_on-------------------------------
void RTMLockingCounters::print_on(outputStream* st) {
tty->print_cr("# rtm locks total (estimated): " UINTX_FORMAT, _total_count * RTMTotalCountIncrRate);
tty->print_cr("# rtm lock aborts : " UINTX_FORMAT, _abort_count);
for (int i = 0; i < ABORT_STATUS_LIMIT; i++) {
tty->print_cr("# rtm lock aborts %d: " UINTX_FORMAT, i, _abortX_count[i]);
}
}

View File

@ -1817,6 +1817,13 @@ nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
// Frame is now completed as far as size and linkage.
int frame_complete = ((intptr_t)__ pc()) - start;
if (UseRTMLocking) {
// Abort RTM transaction before calling JNI
// because critical section will be large and will be
// aborted anyway. Also nmethod could be deoptimized.
__ xabort(0);
}
// Calculate the difference between rsp and rbp,. We need to know it
// after the native call because on windows Java Natives will pop
// the arguments and it is painful to do rsp relative addressing
@ -3170,6 +3177,12 @@ void SharedRuntime::generate_uncommon_trap_blob() {
};
address start = __ pc();
if (UseRTMLocking) {
// Abort RTM transaction before possible nmethod deoptimization.
__ xabort(0);
}
// Push self-frame.
__ subptr(rsp, return_off*wordSize); // Epilog!
@ -3355,6 +3368,14 @@ SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_t
address call_pc = NULL;
bool cause_return = (poll_type == POLL_AT_RETURN);
bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
if (UseRTMLocking) {
// Abort RTM transaction before calling runtime
// because critical section will be large and will be
// aborted anyway. Also nmethod could be deoptimized.
__ xabort(0);
}
// If cause_return is true we are at a poll_return and there is
// the return address on the stack to the caller on the nmethod
// that is safepoint. We can leave this return on the stack and

View File

@ -2012,6 +2012,13 @@ nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
// Frame is now completed as far as size and linkage.
int frame_complete = ((intptr_t)__ pc()) - start;
if (UseRTMLocking) {
// Abort RTM transaction before calling JNI
// because critical section will be large and will be
// aborted anyway. Also nmethod could be deoptimized.
__ xabort(0);
}
#ifdef ASSERT
{
Label L;
@ -3612,6 +3619,11 @@ void SharedRuntime::generate_uncommon_trap_blob() {
address start = __ pc();
if (UseRTMLocking) {
// Abort RTM transaction before possible nmethod deoptimization.
__ xabort(0);
}
// Push self-frame. We get here with a return address on the
// stack, so rsp is 8-byte aligned until we allocate our frame.
__ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
@ -3792,6 +3804,13 @@ SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_t
bool cause_return = (poll_type == POLL_AT_RETURN);
bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
if (UseRTMLocking) {
// Abort RTM transaction before calling runtime
// because critical section will be large and will be
// aborted anyway. Also nmethod could be deoptimized.
__ xabort(0);
}
// Make room for return address (or push it again)
if (!cause_return) {
__ push(rbx);

View File

@ -50,8 +50,13 @@ int VM_Version::_cpuFeatures;
const char* VM_Version::_features_str = "";
VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
// Address of instruction which causes SEGV
address VM_Version::_cpuinfo_segv_addr = 0;
// Address of instruction after the one which causes SEGV
address VM_Version::_cpuinfo_cont_addr = 0;
static BufferBlob* stub_blob;
static const int stub_size = 550;
static const int stub_size = 600;
extern "C" {
typedef void (*getPsrInfo_stub_t)(void*);
@ -234,9 +239,9 @@ class VM_Version_StubGenerator: public StubCodeGenerator {
// Check if OS has enabled XGETBV instruction to access XCR0
// (OSXSAVE feature flag) and CPU supports AVX
//
__ andl(rcx, 0x18000000);
__ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
__ cmpl(rcx, 0x18000000);
__ jccb(Assembler::notEqual, sef_cpuid);
__ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
//
// XCR0, XFEATURE_ENABLED_MASK register
@ -247,6 +252,47 @@ class VM_Version_StubGenerator: public StubCodeGenerator {
__ movl(Address(rsi, 0), rax);
__ movl(Address(rsi, 4), rdx);
__ andl(rax, 0x6); // xcr0 bits sse | ymm
__ cmpl(rax, 0x6);
__ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
//
// Some OSs have a bug when upper 128bits of YMM
// registers are not restored after a signal processing.
// Generate SEGV here (reference through NULL)
// and check upper YMM bits after it.
//
VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
// load value into all 32 bytes of ymm7 register
__ movl(rcx, VM_Version::ymm_test_value());
__ movdl(xmm0, rcx);
__ pshufd(xmm0, xmm0, 0x00);
__ vinsertf128h(xmm0, xmm0, xmm0);
__ vmovdqu(xmm7, xmm0);
#ifdef _LP64
__ vmovdqu(xmm8, xmm0);
__ vmovdqu(xmm15, xmm0);
#endif
__ xorl(rsi, rsi);
VM_Version::set_cpuinfo_segv_addr( __ pc() );
// Generate SEGV
__ movl(rax, Address(rsi, 0));
VM_Version::set_cpuinfo_cont_addr( __ pc() );
// Returns here after signal. Save xmm0 to check it later.
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
__ vmovdqu(Address(rsi, 0), xmm0);
__ vmovdqu(Address(rsi, 32), xmm7);
#ifdef _LP64
__ vmovdqu(Address(rsi, 64), xmm8);
__ vmovdqu(Address(rsi, 96), xmm15);
#endif
VM_Version::clean_cpuFeatures();
//
// cpuid(0x7) Structured Extended Features
//
@ -429,7 +475,7 @@ void VM_Version::get_processor_features() {
}
char buf[256];
jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
cores_per_cpu(), threads_per_core(),
cpu_family(), _model, _stepping,
(supports_cmov() ? ", cmov" : ""),
@ -446,8 +492,9 @@ void VM_Version::get_processor_features() {
(supports_avx() ? ", avx" : ""),
(supports_avx2() ? ", avx2" : ""),
(supports_aes() ? ", aes" : ""),
(supports_clmul() ? ", clmul" : ""),
(supports_clmul() ? ", clmul" : ""),
(supports_erms() ? ", erms" : ""),
(supports_rtm() ? ", rtm" : ""),
(supports_mmx_ext() ? ", mmxext" : ""),
(supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
(supports_lzcnt() ? ", lzcnt": ""),
@ -488,7 +535,7 @@ void VM_Version::get_processor_features() {
}
} else if (UseAES) {
if (!FLAG_IS_DEFAULT(UseAES))
warning("AES instructions not available on this CPU");
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
@ -521,10 +568,57 @@ void VM_Version::get_processor_features() {
}
} else if (UseAESIntrinsics) {
if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
warning("AES intrinsics not available on this CPU");
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
// Adjust RTM (Restricted Transactional Memory) flags
if (!supports_rtm() && UseRTMLocking) {
// Can't continue because UseRTMLocking affects UseBiasedLocking flag
// setting during arguments processing. See use_biased_locking().
// VM_Version_init() is executed after UseBiasedLocking is used
// in Thread::allocate().
vm_exit_during_initialization("RTM instructions are not available on this CPU");
}
#if INCLUDE_RTM_OPT
if (UseRTMLocking) {
if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
// RTM locking should be used only for applications with
// high lock contention. For now we do not use it by default.
vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
}
if (!is_power_of_2(RTMTotalCountIncrRate)) {
warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
}
if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
FLAG_SET_DEFAULT(RTMAbortRatio, 50);
}
} else { // !UseRTMLocking
if (UseRTMForStackLocks) {
if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
}
FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
}
if (UseRTMDeopt) {
FLAG_SET_DEFAULT(UseRTMDeopt, false);
}
if (PrintPreciseRTMLockingStatistics) {
FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
}
}
#else
if (UseRTMLocking) {
// Only C2 does RTM locking optimization.
// Can't continue because UseRTMLocking affects UseBiasedLocking flag
// setting during arguments processing. See use_biased_locking().
vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
}
#endif
#ifdef COMPILER2
if (UseFPUForSpilling) {
if (UseSSE < 2) {
@ -540,14 +634,28 @@ void VM_Version::get_processor_features() {
if (MaxVectorSize > 32) {
FLAG_SET_DEFAULT(MaxVectorSize, 32);
}
if (MaxVectorSize > 16 && UseAVX == 0) {
// Only supported with AVX+
if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
// 32 bytes vectors (in YMM) are only supported with AVX+
FLAG_SET_DEFAULT(MaxVectorSize, 16);
}
if (UseSSE < 2) {
// Only supported with SSE2+
// Vectors (in XMM) are only supported with SSE2+
FLAG_SET_DEFAULT(MaxVectorSize, 0);
}
#ifdef ASSERT
if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
tty->print_cr("State of YMM registers after signal handle:");
int nreg = 2 LP64_ONLY(+2);
const char* ymm_name[4] = {"0", "7", "8", "15"};
for (int i = 0; i < nreg; i++) {
tty->print("YMM%s:", ymm_name[i]);
for (int j = 7; j >=0; j--) {
tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
}
tty->cr();
}
}
#endif
}
#endif
@ -678,14 +786,6 @@ void VM_Version::get_processor_features() {
}
}
}
#if defined(COMPILER2) && defined(_ALLBSD_SOURCE)
if (MaxVectorSize > 16) {
// Limit vectors size to 16 bytes on BSD until it fixes
// restoring upper 128bit of YMM registers on return
// from signal handler.
FLAG_SET_DEFAULT(MaxVectorSize, 16);
}
#endif // COMPILER2
// Use count leading zeros count instruction if available.
if (supports_lzcnt()) {
@ -814,6 +914,11 @@ void VM_Version::get_processor_features() {
if (UseAES) {
tty->print(" UseAES=1");
}
#ifdef COMPILER2
if (MaxVectorSize > 0) {
tty->print(" MaxVectorSize=%d", MaxVectorSize);
}
#endif
tty->cr();
tty->print("Allocation");
if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
@ -856,6 +961,27 @@ void VM_Version::get_processor_features() {
#endif // !PRODUCT
}
bool VM_Version::use_biased_locking() {
#if INCLUDE_RTM_OPT
// RTM locking is most useful when there is high lock contention and
// low data contention. With high lock contention the lock is usually
// inflated and biased locking is not suitable for that case.
// RTM locking code requires that biased locking is off.
// Note: we can't switch off UseBiasedLocking in get_processor_features()
// because it is used by Thread::allocate() which is called before
// VM_Version::initialize().
if (UseRTMLocking && UseBiasedLocking) {
if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
FLAG_SET_DEFAULT(UseBiasedLocking, false);
} else {
warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
UseBiasedLocking = false;
}
}
#endif
return UseBiasedLocking;
}
void VM_Version::initialize() {
ResourceMark rm;
// Making this stub must be FIRST use of assembler

View File

@ -207,7 +207,9 @@ public:
: 2,
bmi2 : 1,
erms : 1,
: 22;
: 1,
rtm : 1,
: 20;
} bits;
};
@ -229,6 +231,9 @@ protected:
// 0 if this instruction is not available
static const char* _features_str;
static address _cpuinfo_segv_addr; // address of instruction which causes SEGV
static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
enum {
CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
CPU_CMOV = (1 << 1),
@ -254,7 +259,8 @@ protected:
CPU_ERMS = (1 << 20), // enhanced 'rep movsb/stosb' instructions
CPU_CLMUL = (1 << 21), // carryless multiply for CRC
CPU_BMI1 = (1 << 22),
CPU_BMI2 = (1 << 23)
CPU_BMI2 = (1 << 23),
CPU_RTM = (1 << 24) // Restricted Transactional Memory instructions
} cpuFeatureFlags;
enum {
@ -361,6 +367,9 @@ protected:
// extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
XemXcr0Eax xem_xcr0_eax;
uint32_t xem_xcr0_edx; // reserved
// Space to save ymm registers after signal handle
int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
};
// The actual cpuid info block
@ -438,6 +447,8 @@ protected:
result |= CPU_ERMS;
if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
result |= CPU_CLMUL;
if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
result |= CPU_RTM;
// AMD features.
if (is_amd()) {
@ -460,6 +471,21 @@ protected:
return result;
}
static bool os_supports_avx_vectors() {
if (!supports_avx()) {
return false;
}
// Verify that OS save/restore all bits of AVX registers
// during signal processing.
int nreg = 2 LP64_ONLY(+2);
for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
return false;
}
}
return true;
}
static void get_processor_features();
public:
@ -476,10 +502,26 @@ public:
static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
// The value used to check ymm register after signal handle
static int ymm_test_value() { return 0xCAFEBABE; }
static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; }
static void clean_cpuFeatures() { _cpuFeatures = 0; }
static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
// Initialization
static void initialize();
// Override Abstract_VM_Version implementation
static bool use_biased_locking();
// Asserts
static void assert_is_initialized() {
assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
@ -572,6 +614,7 @@ public:
static bool supports_aes() { return (_cpuFeatures & CPU_AES) != 0; }
static bool supports_erms() { return (_cpuFeatures & CPU_ERMS) != 0; }
static bool supports_clmul() { return (_cpuFeatures & CPU_CLMUL) != 0; }
static bool supports_rtm() { return (_cpuFeatures & CPU_RTM) != 0; }
static bool supports_bmi1() { return (_cpuFeatures & CPU_BMI1) != 0; }
static bool supports_bmi2() { return (_cpuFeatures & CPU_BMI2) != 0; }
// Intel features

View File

@ -474,7 +474,125 @@ reg_class vectory_reg(XMM0, XMM0b, XMM0c, XMM0d, XMM0e, XMM0f, XMM0g, XMM
%}
//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source_hpp %{
// Header information of the source block.
// Method declarations/definitions which are used outside
// the ad-scope can conveniently be defined here.
//
// To keep related declarations/definitions/uses close together,
// we switch between source %{ }% and source_hpp %{ }% freely as needed.
class CallStubImpl {
//--------------------------------------------------------------
//---< Used for optimization in Compile::shorten_branches >---
//--------------------------------------------------------------
public:
// Size of call trampoline stub.
static uint size_call_trampoline() {
return 0; // no call trampolines on this platform
}
// number of relocations needed by a call trampoline stub
static uint reloc_call_trampoline() {
return 0; // no call trampolines on this platform
}
};
class HandlerImpl {
public:
static int emit_exception_handler(CodeBuffer &cbuf);
static int emit_deopt_handler(CodeBuffer& cbuf);
static uint size_exception_handler() {
// NativeCall instruction size is the same as NativeJump.
// exception handler starts out as jump and can be patched to
// a call be deoptimization. (4932387)
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return NativeJump::instruction_size;
}
#ifdef _LP64
static uint size_deopt_handler() {
// three 5 byte instructions
return 15;
}
#else
static uint size_deopt_handler() {
// NativeCall instruction size is the same as NativeJump.
// exception handler starts out as jump and can be patched to
// a call be deoptimization. (4932387)
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return 5 + NativeJump::instruction_size; // pushl(); jmp;
}
#endif
};
%} // end source_hpp
source %{
// Emit exception handler code.
// Stuff framesize into a register and call a VM stub routine.
int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
__ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
// Emit deopt handler code.
int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_deopt_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
#ifdef _LP64
address the_pc = (address) __ pc();
Label next;
// push a "the_pc" on the stack without destroying any registers
// as they all may be live.
// push address of "next"
__ call(next, relocInfo::none); // reloc none is fine since it is a disp32
__ bind(next);
// adjust it so it matches "the_pc"
__ subptr(Address(rsp, 0), __ offset() - offset);
#else
InternalAddress here(__ pc());
__ pushptr(here.addr());
#endif
__ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
__ end_a_stub();
return offset;
}
//=============================================================================
// Float masks come from different places depending on platform.
#ifdef _LP64
static address float_signmask() { return StubRoutines::x86::float_sign_mask(); }

View File

@ -1297,59 +1297,6 @@ uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
//=============================================================================
uint size_exception_handler() {
// NativeCall instruction size is the same as NativeJump.
// exception handler starts out as jump and can be patched to
// a call be deoptimization. (4932387)
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return NativeJump::instruction_size;
}
// Emit exception handler code. Stuff framesize into a register
// and call a VM stub routine.
int emit_exception_handler(CodeBuffer& cbuf) {
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
__ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
uint size_deopt_handler() {
// NativeCall instruction size is the same as NativeJump.
// exception handler starts out as jump and can be patched to
// a call be deoptimization. (4932387)
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return 5 + NativeJump::instruction_size; // pushl(); jmp;
}
// Emit deopt handler code.
int emit_deopt_handler(CodeBuffer& cbuf) {
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
InternalAddress here(__ pc());
__ pushptr(here.addr());
__ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
__ end_a_stub();
return offset;
}
int Matcher::regnum_to_fpu_offset(int regnum) {
return regnum - 32; // The FP registers are in the second chunk
@ -12925,13 +12872,31 @@ instruct RethrowException()
// inlined locking and unlocking
instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
predicate(Compile::current()->use_rtm());
match(Set cr (FastLock object box));
effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
ins_cost(300);
format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
ins_encode %{
__ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
$scr$$Register, $cx1$$Register, $cx2$$Register,
_counters, _rtm_counters, _stack_rtm_counters,
((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
true, ra_->C->profile_rtm());
%}
ins_pipe(pipe_slow);
%}
instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
predicate(!Compile::current()->use_rtm());
match(Set cr (FastLock object box));
effect(TEMP tmp, TEMP scr, USE_KILL box);
ins_cost(300);
format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
ins_encode %{
__ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register, _counters);
__ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
$scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
%}
ins_pipe(pipe_slow);
%}
@ -12942,7 +12907,7 @@ instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
ins_cost(300);
format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
ins_encode %{
__ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
__ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
%}
ins_pipe(pipe_slow);
%}

View File

@ -1439,66 +1439,9 @@ uint MachUEPNode::size(PhaseRegAlloc* ra_) const
return MachNode::size(ra_); // too many variables; just compute it
// the hard way
}
//=============================================================================
uint size_exception_handler()
{
// NativeCall instruction size is the same as NativeJump.
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return NativeJump::instruction_size;
}
// Emit exception handler code.
int emit_exception_handler(CodeBuffer& cbuf)
{
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
__ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
uint size_deopt_handler()
{
// three 5 byte instructions
return 15;
}
// Emit deopt handler code.
int emit_deopt_handler(CodeBuffer& cbuf)
{
// Note that the code buffer's insts_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_deopt_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
address the_pc = (address) __ pc();
Label next;
// push a "the_pc" on the stack without destroying any registers
// as they all may be live.
// push address of "next"
__ call(next, relocInfo::none); // reloc none is fine since it is a disp32
__ bind(next);
// adjust it so it matches "the_pc"
__ subptr(Address(rsp, 0), __ offset() - offset);
__ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
__ end_a_stub();
return offset;
}
int Matcher::regnum_to_fpu_offset(int regnum)
{
@ -11387,13 +11330,31 @@ instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
// ============================================================================
// inlined locking and unlocking
instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
predicate(Compile::current()->use_rtm());
match(Set cr (FastLock object box));
effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
ins_cost(300);
format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
ins_encode %{
__ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
$scr$$Register, $cx1$$Register, $cx2$$Register,
_counters, _rtm_counters, _stack_rtm_counters,
((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
true, ra_->C->profile_rtm());
%}
ins_pipe(pipe_slow);
%}
instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr) %{
predicate(!Compile::current()->use_rtm());
match(Set cr (FastLock object box));
effect(TEMP tmp, TEMP scr, USE_KILL box);
ins_cost(300);
format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
ins_encode %{
__ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register, _counters);
__ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
$scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
%}
ins_pipe(pipe_slow);
%}
@ -11404,7 +11365,7 @@ instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
ins_cost(300);
format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
ins_encode %{
__ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
__ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
%}
ins_pipe(pipe_slow);
%}

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -28,6 +28,6 @@
#include "os_aix.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "thread_aix.inline.hpp"
#include "runtime/thread.inline.hpp"
#endif // OS_AIX_VM_MUTEX_AIX_INLINE_HPP

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -61,10 +61,10 @@
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "services/attachListener.hpp"
#include "services/runtimeService.hpp"
#include "thread_aix.inline.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
@ -3593,6 +3593,11 @@ void os::Aix::check_signal_handler(int sig) {
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
// No need to check this sig any longer
sigaddset(&check_signal_done, sig);
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
exception_name(sig, buf, O_BUFLEN));
}
} else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
tty->print("expected:" PTR32_FORMAT, os::Aix::get_our_sigflags(sig));

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,7 +25,7 @@
#include "precompiled.hpp"
#include "runtime/threadCritical.hpp"
#include "thread_aix.inline.hpp"
#include "runtime/thread.inline.hpp"
// put OS-includes here
# include <pthread.h>

View File

@ -3374,6 +3374,11 @@ void os::Bsd::check_signal_handler(int sig) {
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
// No need to check this sig any longer
sigaddset(&check_signal_done, sig);
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
exception_name(sig, buf, O_BUFLEN));
}
} else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));

View File

@ -109,6 +109,8 @@
#define MAX_PATH (2 * K)
#define MAX_SECS 100000000
// for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
@ -2434,7 +2436,6 @@ class Semaphore : public StackObj {
sem_t _semaphore;
};
Semaphore::Semaphore() {
sem_init(&_semaphore, 0, 0);
}
@ -2456,8 +2457,22 @@ bool Semaphore::trywait() {
}
bool Semaphore::timedwait(unsigned int sec, int nsec) {
struct timespec ts;
unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
// Semaphore's are always associated with CLOCK_REALTIME
os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
// see unpackTime for discussion on overflow checking
if (sec >= MAX_SECS) {
ts.tv_sec += MAX_SECS;
ts.tv_nsec = 0;
} else {
ts.tv_sec += sec;
ts.tv_nsec += nsec;
if (ts.tv_nsec >= NANOSECS_PER_SEC) {
ts.tv_nsec -= NANOSECS_PER_SEC;
++ts.tv_sec; // note: this must be <= max_secs
}
}
while (1) {
int result = sem_timedwait(&_semaphore, &ts);
@ -4560,6 +4575,11 @@ void os::Linux::check_signal_handler(int sig) {
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
// No need to check this sig any longer
sigaddset(&check_signal_done, sig);
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
exception_name(sig, buf, O_BUFLEN));
}
} else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
@ -5656,7 +5676,6 @@ void os::PlatformEvent::unpark() {
* is no need to track notifications.
*/
#define MAX_SECS 100000000
/*
* This code is common to linux and solaris and will be moved to a
* common place in dolphin.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -41,7 +41,6 @@ void OSThread::pd_initialize() {
_thread_id = 0;
sigemptyset(&_caller_sigmask);
_saved_interrupt_thread_state = _thread_new;
_vm_created_thread = false;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -82,20 +82,6 @@
void set_ucontext(ucontext_t* ptr) { _ucontext = ptr; }
static void SR_handler(Thread* thread, ucontext_t* uc);
// ***************************************************************
// java.lang.Thread.interrupt state.
// ***************************************************************
private:
JavaThreadState _saved_interrupt_thread_state; // the thread state before a system call -- restored afterward
public:
JavaThreadState saved_interrupt_thread_state() { return _saved_interrupt_thread_state; }
void set_saved_interrupt_thread_state(JavaThreadState state) { _saved_interrupt_thread_state = state; }
static void handle_spinlock_contention(int tries); // Used for thread local eden locking
// ***************************************************************

View File

@ -311,33 +311,6 @@ struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
return localtime_r(clock, res);
}
// interruptible infrastructure
// setup_interruptible saves the thread state before going into an
// interruptible system call.
// The saved state is used to restore the thread to
// its former state whether or not an interrupt is received.
// Used by classloader os::read
// os::restartable_read calls skip this layer and stay in _thread_in_native
void os::Solaris::setup_interruptible(JavaThread* thread) {
JavaThreadState thread_state = thread->thread_state();
assert(thread_state != _thread_blocked, "Coming from the wrong thread");
assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
OSThread* osthread = thread->osthread();
osthread->set_saved_interrupt_thread_state(thread_state);
thread->frame_anchor()->make_walkable(thread);
ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
}
JavaThread* os::Solaris::setup_interruptible() {
JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
setup_interruptible(thread);
return thread;
}
void os::Solaris::try_enable_extended_io() {
typedef int (*enable_extended_FILE_stdio_t)(int, int);
@ -353,41 +326,6 @@ void os::Solaris::try_enable_extended_io() {
}
}
#ifdef ASSERT
JavaThread* os::Solaris::setup_interruptible_native() {
JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
JavaThreadState thread_state = thread->thread_state();
assert(thread_state == _thread_in_native, "Assumed thread_in_native");
return thread;
}
void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
JavaThreadState thread_state = thread->thread_state();
assert(thread_state == _thread_in_native, "Assumed thread_in_native");
}
#endif
// cleanup_interruptible reverses the effects of setup_interruptible
// setup_interruptible_already_blocked() does not need any cleanup.
void os::Solaris::cleanup_interruptible(JavaThread* thread) {
OSThread* osthread = thread->osthread();
ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
}
// I/O interruption related counters called in _INTERRUPTIBLE
void os::Solaris::bump_interrupted_before_count() {
RuntimeService::record_interrupted_before_count();
}
void os::Solaris::bump_interrupted_during_count() {
RuntimeService::record_interrupted_during_count();
}
static int _processors_online = 0;
jint os::Solaris::_os_thread_limit = 0;
@ -3366,11 +3304,20 @@ bool os::can_execute_large_page_memory() {
// Read calls from inside the vm need to perform state transitions
size_t os::read(int fd, void *buf, unsigned int nBytes) {
INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
size_t res;
JavaThread* thread = (JavaThread*)Thread::current();
assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
ThreadBlockInVM tbiv(thread);
RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
return res;
}
size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
size_t res;
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
return res;
}
void os::naked_short_sleep(jlong ms) {
@ -4471,6 +4418,11 @@ void os::Solaris::check_signal_handler(int sig) {
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
// No need to check this sig any longer
sigaddset(&check_signal_done, sig);
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
exception_name(sig, buf, O_BUFLEN));
}
} else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
@ -5305,6 +5257,8 @@ int os::fsync(int fd) {
}
int os::available(int fd, jlong *bytes) {
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
jlong cur, end;
int mode;
struct stat64 buf64;
@ -5312,14 +5266,9 @@ int os::available(int fd, jlong *bytes) {
if (::fstat64(fd, &buf64) >= 0) {
mode = buf64.st_mode;
if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
/*
* XXX: is the following call interruptible? If so, this might
* need to go through the INTERRUPT_IO() wrapper as for other
* blocking, interruptible calls in this file.
*/
int n,ioctl_return;
INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
if (ioctl_return>= 0) {
*bytes = n;
return 1;
@ -6250,7 +6199,11 @@ bool os::is_headless_jre() {
}
size_t os::write(int fd, const void *buf, unsigned int nBytes) {
INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
size_t res;
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
return res;
}
int os::close(int fd) {
@ -6262,11 +6215,15 @@ int os::socket_close(int fd) {
}
int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
}
int os::send(int fd, char* buf, size_t nBytes, uint flags) {
INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
}
int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
@ -6287,11 +6244,14 @@ int os::timeout(int fd, long timeout) {
pfd.fd = fd;
pfd.events = POLLIN;
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
gettimeofday(&t, &aNull);
prevtime = ((julong)t.tv_sec * 1000) + t.tv_usec / 1000;
for(;;) {
INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
res = ::poll(&pfd, 1, timeout);
if(res == OS_ERR && errno == EINTR) {
if(timeout != -1) {
gettimeofday(&t, &aNull);
@ -6307,17 +6267,30 @@ int os::timeout(int fd, long timeout) {
int os::connect(int fd, struct sockaddr *him, socklen_t len) {
int _result;
INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
os::Solaris::clear_interrupted);
_result = ::connect(fd, him, len);
// Depending on when thread interruption is reset, _result could be
// one of two values when errno == EINTR
if (((_result == OS_INTRPT) || (_result == OS_ERR))
&& (errno == EINTR)) {
// On Solaris, when a connect() call is interrupted, the connection
// can be established asynchronously (see 6343810). Subsequent calls
// to connect() must check the errno value which has the semantic
// described below (copied from the connect() man page). Handling
// of asynchronously established connections is required for both
// blocking and non-blocking sockets.
// EINTR The connection attempt was interrupted
// before any data arrived by the delivery of
// a signal. The connection, however, will be
// established asynchronously.
//
// EINPROGRESS The socket is non-blocking, and the connec-
// tion cannot be completed immediately.
//
// EALREADY The socket is non-blocking, and a previous
// connection attempt has not yet been com-
// pleted.
//
// EISCONN The socket is already connected.
if (_result == OS_ERR && errno == EINTR) {
/* restarting a connect() changes its errno semantics */
INTERRUPTIBLE(::connect(fd, him, len), _result,\
os::Solaris::clear_interrupted);
RESTARTABLE(::connect(fd, him, len), _result);
/* undo these changes */
if (_result == OS_ERR) {
if (errno == EALREADY) {
@ -6335,20 +6308,23 @@ int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
if (fd < 0) {
return OS_ERR;
}
INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
os::Solaris::clear_interrupted);
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
RESTARTABLE_RETURN_INT((int)::accept(fd, him, len));
}
int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
sockaddr* from, socklen_t* fromlen) {
INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
os::Solaris::clear_interrupted);
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
RESTARTABLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen));
}
int os::sendto(int fd, char* buf, size_t len, uint flags,
struct sockaddr* to, socklen_t tolen) {
INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
os::Solaris::clear_interrupted);
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
RESTARTABLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen));
}
int os::socket_available(int fd, jint *pbytes) {
@ -6363,8 +6339,9 @@ int os::socket_available(int fd, jint *pbytes) {
}
int os::bind(int fd, struct sockaddr* him, socklen_t len) {
INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
os::Solaris::clear_interrupted);
assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
"Assumed _thread_in_native");
return ::bind(fd, him, len);
}
// Get the default path to the core file

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -311,24 +311,6 @@ class Solaris {
outdata, validity) : -1;
}
enum {
clear_interrupted = true
};
static void setup_interruptible(JavaThread* thread);
static void setup_interruptible_already_blocked(JavaThread* thread);
static JavaThread* setup_interruptible();
static void cleanup_interruptible(JavaThread* thread);
// perf counter incrementers used by _INTERRUPTIBLE
static void bump_interrupted_before_count();
static void bump_interrupted_during_count();
#ifdef ASSERT
static JavaThread* setup_interruptible_native();
static void cleanup_interruptible_native(JavaThread* thread);
#endif
static sigset_t* unblocked_signals();
static sigset_t* vm_signals();
static sigset_t* allowdebug_blocked_signals();

View File

@ -111,104 +111,7 @@ inline int os::closedir(DIR *dirp) {
//////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// macros for interruptible io and system calls and system call restarting
#define _INTERRUPTIBLE(_setup, _cmd, _result, _thread, _clear, _before, _after, _int_enable) \
do { \
_setup; \
_before; \
OSThread* _osthread = _thread->osthread(); \
if (_int_enable && _thread->has_last_Java_frame()) { \
/* this is java interruptible io stuff */ \
if (os::is_interrupted(_thread, _clear)) { \
os::Solaris::bump_interrupted_before_count(); \
_result = OS_INTRPT; \
} else { \
/* _cmd always expands to an assignment to _result */ \
if ((_cmd) < 0 && errno == EINTR \
&& os::is_interrupted(_thread, _clear)) { \
os::Solaris::bump_interrupted_during_count(); \
_result = OS_INTRPT; \
} \
} \
} else { \
/* this is normal blocking io stuff */ \
_cmd; \
} \
_after; \
} while(false)
// Interruptible io support + restarting of interrupted system calls
#ifndef ASSERT
#define INTERRUPTIBLE(_cmd, _result, _clear) do { \
_INTERRUPTIBLE( JavaThread* _thread = (JavaThread*)ThreadLocalStorage::thread(),_result = _cmd, _result, _thread, _clear, , , UseVMInterruptibleIO); \
} while((_result == OS_ERR) && (errno == EINTR))
#else
// This adds an assertion that it is only called from thread_in_native
// The call overhead is skipped for performance in product mode
#define INTERRUPTIBLE(_cmd, _result, _clear) do { \
_INTERRUPTIBLE(JavaThread* _thread = os::Solaris::setup_interruptible_native(), _result = _cmd, _result, _thread, _clear, , os::Solaris::cleanup_interruptible_native(_thread), UseVMInterruptibleIO ); \
} while((_result == OS_ERR) && (errno == EINTR))
#endif
// Used for calls from _thread_in_vm, not from _thread_in_native
#define INTERRUPTIBLE_VM(_cmd, _result, _clear) do { \
_INTERRUPTIBLE(JavaThread* _thread = os::Solaris::setup_interruptible(), _result = _cmd, _result, _thread, _clear, , os::Solaris::cleanup_interruptible(_thread), UseVMInterruptibleIO ); \
} while((_result == OS_ERR) && (errno == EINTR))
/* Use NORESTART when the system call cannot return EINTR, when something other
than a system call is being invoked, or when the caller must do EINTR
handling. */
#ifndef ASSERT
#define INTERRUPTIBLE_NORESTART(_cmd, _result, _clear) \
_INTERRUPTIBLE( JavaThread* _thread = (JavaThread*)ThreadLocalStorage::thread(),_result = _cmd, _result, _thread, _clear, , , UseVMInterruptibleIO)
#else
// This adds an assertion that it is only called from thread_in_native
// The call overhead is skipped for performance in product mode
#define INTERRUPTIBLE_NORESTART(_cmd, _result, _clear) \
_INTERRUPTIBLE(JavaThread* _thread = os::Solaris::setup_interruptible_native(), _result = _cmd, _result, _thread, _clear, , os::Solaris::cleanup_interruptible_native(_thread), UseVMInterruptibleIO )
#endif
// Don't attend to UseVMInterruptibleIO. Always allow interruption.
// Also assumes that it is called from the _thread_blocked state.
// Used by os_sleep().
#define INTERRUPTIBLE_NORESTART_VM_ALWAYS(_cmd, _result, _thread, _clear) \
_INTERRUPTIBLE(os::Solaris::setup_interruptible_already_blocked(_thread), _result = _cmd, _result, _thread, _clear, , , true )
#define INTERRUPTIBLE_RETURN_INT(_cmd, _clear) do { \
int _result; \
do { \
INTERRUPTIBLE(_cmd, _result, _clear); \
} while((_result == OS_ERR) && (errno == EINTR)); \
return _result; \
} while(false)
#define INTERRUPTIBLE_RETURN_INT_VM(_cmd, _clear) do { \
int _result; \
do { \
INTERRUPTIBLE_VM(_cmd, _result, _clear); \
} while((_result == OS_ERR) && (errno == EINTR)); \
return _result; \
} while(false)
#define INTERRUPTIBLE_RETURN_INT_NORESTART(_cmd, _clear) do { \
int _result; \
INTERRUPTIBLE_NORESTART(_cmd, _result, _clear); \
return _result; \
} while(false)
/* Use the RESTARTABLE macros when interruptible io is not needed */
// macros for restartable system calls
#define RESTARTABLE(_cmd, _result) do { \
do { \

View File

@ -2425,6 +2425,12 @@ LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
}
}
if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
VM_Version::is_cpuinfo_segv_addr(pc)) {
// Verify that OS save/restore AVX registers.
return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
}
if (t != NULL && t->is_Java_thread()) {
JavaThread* thread = (JavaThread*) t;
bool in_java = thread->thread_state() == _thread_in_Java;

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -49,8 +49,8 @@
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "thread_aix.inline.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
#ifdef COMPILER1

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,14 +25,14 @@
#include "precompiled.hpp"
#include "runtime/threadLocalStorage.hpp"
#include "thread_aix.inline.hpp"
#include "runtime/thread.hpp"
void ThreadLocalStorage::generate_code_for_get_thread() {
// nothing we can do here for user-level thread
// Nothing we can do here for user-level thread.
}
void ThreadLocalStorage::pd_init() {
// Nothing to do
// Nothing to do.
}
void ThreadLocalStorage::pd_set_thread(Thread* thread) {

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -24,8 +24,8 @@
*/
#include "precompiled.hpp"
#include "runtime/frame.inline.hpp"
#include "thread_aix.inline.hpp"
#include "runtime/frame.hpp"
#include "runtime/thread.hpp"
// Forte Analyzer AsyncGetCallTrace profiling support is not implemented on Aix/PPC.
bool JavaThread::pd_get_top_frame_for_signal_handler(frame* fr_addr, void* ucontext, bool isInJava) {

View File

@ -42,7 +42,6 @@ define_pd_global(intx, VMThreadStackSize, 512);
#endif // AMD64
define_pd_global(intx, CompilerThreadStackSize, 0);
define_pd_global(uintx, SurvivorRatio, 8);
define_pd_global(uintx, JVMInvokeMethodSlack, 8192);

View File

@ -492,6 +492,11 @@ JVM_handle_bsd_signal(int sig,
}
}
if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr(pc)) {
// Verify that OS save/restore AVX registers.
stub = VM_Version::cpuinfo_cont_addr();
}
// We test if stub is already set (by the stack overflow code
// above) so it is not overwritten by the code that follows. This
// check is not required on other platforms, because on other

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -24,8 +24,8 @@
*/
#include "precompiled.hpp"
#include "runtime/frame.inline.hpp"
#include "thread_linux.inline.hpp"
#include "runtime/frame.hpp"
#include "runtime/thread.hpp"
// Forte Analyzer AsyncGetCallTrace profiling support is not implemented on Linux/PPC.
bool JavaThread::pd_get_top_frame_for_signal_handler(frame* fr_addr, void* ucontext, bool isInJava) {

View File

@ -338,6 +338,11 @@ JVM_handle_linux_signal(int sig,
}
}
if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
// Verify that OS save/restore AVX registers.
stub = VM_Version::cpuinfo_cont_addr();
}
if (thread->thread_state() == _thread_in_Java) {
// Java thread running in Java code => find exception handler if any
// a fault inside compiled code, the interpreter, or a stub

View File

@ -459,6 +459,11 @@ JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
}
}
if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
// Verify that OS save/restore AVX registers.
stub = VM_Version::cpuinfo_cont_addr();
}
if (thread->thread_state() == _thread_in_vm) {
if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
stub = StubRoutines::handler_for_unsafe_access();

View File

@ -1582,6 +1582,8 @@ void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
}
// Fill in the bottom_type where requested
@ -3963,6 +3965,8 @@ void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *inden
}
if( inst->is_ideal_fastlock() ) {
fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
}
}

View File

@ -2526,7 +2526,7 @@ void LIRGenerator::do_Goto(Goto* x) {
// need to free up storage used for OSR entry point
LIR_Opr osrBuffer = block()->next()->operand();
BasicTypeList signature;
signature.append(T_INT);
signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
__ move(osrBuffer, cc->args()->at(0));
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),

View File

@ -308,9 +308,6 @@
develop(intx, InstructionCountCutoff, 37000, \
"If GraphBuilder adds this many instructions, bails out") \
\
product_pd(intx, SafepointPollOffset, \
"Offset added to polling address (Intel only)") \
\
develop(bool, ComputeExactFPURegisterUsage, true, \
"Compute additional live set for fpu registers to simplify fpu stack merge (Intel only)") \
\

View File

@ -961,7 +961,8 @@ void ciEnv::register_method(ciMethod* target,
AbstractCompiler* compiler,
int comp_level,
bool has_unsafe_access,
bool has_wide_vectors) {
bool has_wide_vectors,
RTMState rtm_state) {
VM_ENTRY_MARK;
nmethod* nm = NULL;
{
@ -1002,6 +1003,15 @@ void ciEnv::register_method(ciMethod* target,
methodHandle method(THREAD, target->get_Method());
#if INCLUDE_RTM_OPT
if (!failing() && (rtm_state != NoRTM) &&
(method()->method_data() != NULL) &&
(method()->method_data()->rtm_state() != rtm_state)) {
// Preemptive decompile if rtm state was changed.
record_failure("RTM state change invalidated rtm code");
}
#endif
if (failing()) {
// While not a true deoptimization, it is a preemptive decompile.
MethodData* mdo = method()->method_data();
@ -1028,13 +1038,15 @@ void ciEnv::register_method(ciMethod* target,
frame_words, oop_map_set,
handler_table, inc_table,
compiler, comp_level);
// Free codeBlobs
code_buffer->free_blob();
if (nm != NULL) {
nm->set_has_unsafe_access(has_unsafe_access);
nm->set_has_wide_vectors(has_wide_vectors);
#if INCLUDE_RTM_OPT
nm->set_rtm_state(rtm_state);
#endif
// Record successful registration.
// (Put nm into the task handle *before* publishing to the Java heap.)

View File

@ -365,7 +365,8 @@ public:
AbstractCompiler* compiler,
int comp_level,
bool has_unsafe_access,
bool has_wide_vectors);
bool has_wide_vectors,
RTMState rtm_state = NoRTM);
// Access to certain well known ciObjects.

View File

@ -478,6 +478,18 @@ public:
int invocation_count() { return _invocation_counter; }
int backedge_count() { return _backedge_counter; }
#if INCLUDE_RTM_OPT
// return cached value
int rtm_state() {
if (is_empty()) {
return NoRTM;
} else {
return get_MethodData()->rtm_state();
}
}
#endif
// Transfer information about the method to MethodData*.
// would_profile means we would like to profile this method,
// meaning it's not trivial.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -61,10 +61,6 @@ class java_lang_String : AllStatic {
static Handle basic_create(int length, TRAPS);
static void set_value( oop string, typeArrayOop buffer) {
assert(initialized, "Must be initialized");
string->obj_field_put(value_offset, (oop)buffer);
}
static void set_offset(oop string, int offset) {
assert(initialized, "Must be initialized");
if (offset_offset > 0) {
@ -122,12 +118,26 @@ class java_lang_String : AllStatic {
return hash_offset;
}
static void set_value(oop string, typeArrayOop buffer) {
assert(initialized && (value_offset > 0), "Must be initialized");
string->obj_field_put(value_offset, (oop)buffer);
}
static void set_hash(oop string, unsigned int hash) {
assert(initialized && (hash_offset > 0), "Must be initialized");
string->int_field_put(hash_offset, hash);
}
// Accessors
static typeArrayOop value(oop java_string) {
assert(initialized && (value_offset > 0), "Must be initialized");
assert(is_instance(java_string), "must be java_string");
return (typeArrayOop) java_string->obj_field(value_offset);
}
static unsigned int hash(oop java_string) {
assert(initialized && (hash_offset > 0), "Must be initialized");
assert(is_instance(java_string), "must be java_string");
return java_string->int_field(hash_offset);
}
static int offset(oop java_string) {
assert(initialized, "Must be initialized");
assert(is_instance(java_string), "must be java_string");

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -35,6 +35,9 @@
#include "oops/oop.inline2.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/hashtable.inline.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/g1/g1StringDedup.hpp"
#endif
// --------------------------------------------------------------------------
@ -728,6 +731,15 @@ oop StringTable::intern(Handle string_or_null, jchar* name,
string = java_lang_String::create_from_unicode(name, len, CHECK_NULL);
}
#if INCLUDE_ALL_GCS
if (G1StringDedup::is_enabled()) {
// Deduplicate the string before it is interned. Note that we should never
// deduplicate a string after it has been interned. Doing so will counteract
// compiler optimizations done on e.g. interned string literals.
G1StringDedup::deduplicate(string());
}
#endif
// Grab the StringTable_lock before getting the_table() because it could
// change at safepoint.
MutexLocker ml(StringTable_lock, THREAD);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -497,6 +497,7 @@
template(int_StringBuffer_signature, "(I)Ljava/lang/StringBuffer;") \
template(char_StringBuffer_signature, "(C)Ljava/lang/StringBuffer;") \
template(int_String_signature, "(I)Ljava/lang/String;") \
template(codesource_permissioncollection_signature, "(Ljava/security/CodeSource;Ljava/security/PermissionCollection;)V") \
/* signature symbols needed by intrinsics */ \
VM_INTRINSICS_DO(VM_INTRINSIC_IGNORE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, template, VM_ALIAS_IGNORE) \
\

View File

@ -460,7 +460,9 @@ void nmethod::init_defaults() {
_scavenge_root_link = NULL;
_scavenge_root_state = 0;
_compiler = NULL;
#if INCLUDE_RTM_OPT
_rtm_state = NoRTM;
#endif
#ifdef HAVE_DTRACE_H
_trap_offset = 0;
#endif // def HAVE_DTRACE_H

View File

@ -193,6 +193,12 @@ class nmethod : public CodeBlob {
jbyte _scavenge_root_state;
#if INCLUDE_RTM_OPT
// RTM state at compile time. Used during deoptimization to decide
// whether to restart collecting RTM locking abort statistic again.
RTMState _rtm_state;
#endif
// Nmethod Flushing lock. If non-zero, then the nmethod is not removed
// and is not made into a zombie. However, once the nmethod is made into
// a zombie, it will be locked one final time if CompiledMethodUnload
@ -414,6 +420,12 @@ class nmethod : public CodeBlob {
bool is_zombie() const { return _state == zombie; }
bool is_unloaded() const { return _state == unloaded; }
#if INCLUDE_RTM_OPT
// rtm state accessing and manipulating
RTMState rtm_state() const { return _rtm_state; }
void set_rtm_state(RTMState state) { _rtm_state = state; }
#endif
// Make the nmethod non entrant. The nmethod will continue to be
// alive. It is used when an uncommon trap happens. Returns true
// if this thread changed the state of the nmethod or false if

View File

@ -793,53 +793,6 @@ void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) {
}
}
// Apply the given closure to each oop in the space \intersect memory region.
void CompactibleFreeListSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
assert_lock_strong(freelistLock());
if (is_empty()) {
return;
}
MemRegion cur = MemRegion(bottom(), end());
mr = mr.intersection(cur);
if (mr.is_empty()) {
return;
}
if (mr.equals(cur)) {
oop_iterate(cl);
return;
}
assert(mr.end() <= end(), "just took an intersection above");
HeapWord* obj_addr = block_start(mr.start());
HeapWord* t = mr.end();
SpaceMemRegionOopsIterClosure smr_blk(cl, mr);
if (block_is_obj(obj_addr)) {
// Handle first object specially.
oop obj = oop(obj_addr);
obj_addr += adjustObjectSize(obj->oop_iterate(&smr_blk));
} else {
FreeChunk* fc = (FreeChunk*)obj_addr;
obj_addr += fc->size();
}
while (obj_addr < t) {
HeapWord* obj = obj_addr;
obj_addr += block_size(obj_addr);
// If "obj_addr" is not greater than top, then the
// entire object "obj" is within the region.
if (obj_addr <= t) {
if (block_is_obj(obj)) {
oop(obj)->oop_iterate(cl);
}
} else {
// "obj" extends beyond end of region
if (block_is_obj(obj)) {
oop(obj)->oop_iterate(&smr_blk);
}
break;
}
}
}
// NOTE: In the following methods, in order to safely be able to
// apply the closure to an object, we need to be sure that the
// object has been initialized. We are guaranteed that an object

View File

@ -351,7 +351,6 @@ class CompactibleFreeListSpace: public CompactibleSpace {
Mutex* freelistLock() const { return &_freelistLock; }
// Iteration support
void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
void oop_iterate(ExtendedOopClosure* cl);
void object_iterate(ObjectClosure* blk);

View File

@ -2496,7 +2496,8 @@ void CMSCollector::save_heap_summary() {
}
void CMSCollector::report_heap_summary(GCWhen::Type when) {
_gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
_gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
_gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
}
void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
@ -3162,16 +3163,6 @@ ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
cl->reset_generation();
}
void
ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
if (freelistLock()->owned_by_self()) {
Generation::oop_iterate(mr, cl);
} else {
MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
Generation::oop_iterate(mr, cl);
}
}
void
ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
if (freelistLock()->owned_by_self()) {

View File

@ -1285,7 +1285,6 @@ class ConcurrentMarkSweepGeneration: public CardGeneration {
void save_sweep_limit();
// More iteration support
virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
virtual void oop_iterate(ExtendedOopClosure* cl);
virtual void safe_object_iterate(ObjectClosure* cl);
virtual void object_iterate(ObjectClosure* cl);

View File

@ -1809,8 +1809,8 @@ class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
uint _regions_claimed;
size_t _freed_bytes;
FreeRegionList* _local_cleanup_list;
OldRegionSet* _old_proxy_set;
HumongousRegionSet* _humongous_proxy_set;
HeapRegionSetCount _old_regions_removed;
HeapRegionSetCount _humongous_regions_removed;
HRRSCleanupTask* _hrrs_cleanup_task;
double _claimed_region_time;
double _max_region_time;
@ -1819,19 +1819,19 @@ public:
G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
int worker_num,
FreeRegionList* local_cleanup_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
HRRSCleanupTask* hrrs_cleanup_task) :
_g1(g1), _worker_num(worker_num),
_max_live_bytes(0), _regions_claimed(0),
_freed_bytes(0),
_claimed_region_time(0.0), _max_region_time(0.0),
_local_cleanup_list(local_cleanup_list),
_old_proxy_set(old_proxy_set),
_humongous_proxy_set(humongous_proxy_set),
_old_regions_removed(),
_humongous_regions_removed(),
_hrrs_cleanup_task(hrrs_cleanup_task) { }
size_t freed_bytes() { return _freed_bytes; }
const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
bool doHeapRegion(HeapRegion *hr) {
if (hr->continuesHumongous()) {
@ -1844,13 +1844,22 @@ public:
_regions_claimed++;
hr->note_end_of_marking();
_max_live_bytes += hr->max_live_bytes();
_g1->free_region_if_empty(hr,
&_freed_bytes,
_local_cleanup_list,
_old_proxy_set,
_humongous_proxy_set,
_hrrs_cleanup_task,
true /* par */);
if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
_freed_bytes += hr->used();
hr->set_containing_set(NULL);
if (hr->isHumongous()) {
assert(hr->startsHumongous(), "we should only see starts humongous");
_humongous_regions_removed.increment(1u, hr->capacity());
_g1->free_humongous_region(hr, _local_cleanup_list, true);
} else {
_old_regions_removed.increment(1u, hr->capacity());
_g1->free_region(hr, _local_cleanup_list, true);
}
} else {
hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
}
double region_time = (os::elapsedTime() - start);
_claimed_region_time += region_time;
if (region_time > _max_region_time) {
@ -1883,12 +1892,8 @@ public:
void work(uint worker_id) {
double start = os::elapsedTime();
FreeRegionList local_cleanup_list("Local Cleanup List");
OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
HRRSCleanupTask hrrs_cleanup_task;
G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
&old_proxy_set,
&humongous_proxy_set,
&hrrs_cleanup_task);
if (G1CollectedHeap::use_parallel_gc_threads()) {
_g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
@ -1900,13 +1905,10 @@ public:
assert(g1_note_end.complete(), "Shouldn't have yielded!");
// Now update the lists
_g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
NULL /* free_list */,
&old_proxy_set,
&humongous_proxy_set,
true /* par */);
_g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
{
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
_g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
_max_live_bytes += g1_note_end.max_live_bytes();
_freed_bytes += g1_note_end.freed_bytes();
@ -1920,14 +1922,14 @@ public:
G1HRPrinter* hr_printer = _g1h->hr_printer();
if (hr_printer->is_active()) {
HeapRegionLinkedListIterator iter(&local_cleanup_list);
FreeRegionListIterator iter(&local_cleanup_list);
while (iter.more_available()) {
HeapRegion* hr = iter.get_next();
hr_printer->cleanup(hr);
}
}
_cleanup_list->add_as_tail(&local_cleanup_list);
_cleanup_list->add_ordered(&local_cleanup_list);
assert(local_cleanup_list.is_empty(), "post-condition");
HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
@ -1971,7 +1973,6 @@ void ConcurrentMark::cleanup() {
return;
}
HRSPhaseSetter x(HRSPhaseCleanup);
g1h->verify_region_sets_optional();
if (VerifyDuringGC) {
@ -2017,8 +2018,8 @@ void ConcurrentMark::cleanup() {
// that calculated by walking the marking bitmap.
// Bitmaps to hold expected values
BitMap expected_region_bm(_region_bm.size(), false);
BitMap expected_card_bm(_card_bm.size(), false);
BitMap expected_region_bm(_region_bm.size(), true);
BitMap expected_card_bm(_card_bm.size(), true);
G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
&_region_bm,
@ -2144,7 +2145,7 @@ void ConcurrentMark::completeCleanup() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
_cleanup_list.verify_optional();
_cleanup_list.verify_list();
FreeRegionList tmp_free_list("Tmp Free List");
if (G1ConcRegionFreeingVerbose) {
@ -2157,9 +2158,9 @@ void ConcurrentMark::completeCleanup() {
// so it's not necessary to take any locks
while (!_cleanup_list.is_empty()) {
HeapRegion* hr = _cleanup_list.remove_head();
assert(hr != NULL, "the list was not empty");
assert(hr != NULL, "Got NULL from a non-empty list");
hr->par_clear();
tmp_free_list.add_as_tail(hr);
tmp_free_list.add_ordered(hr);
// Instead of adding one region at a time to the secondary_free_list,
// we accumulate them in the local list and move them a few at a
@ -2179,7 +2180,7 @@ void ConcurrentMark::completeCleanup() {
{
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
g1h->secondary_free_list_add_as_tail(&tmp_free_list);
g1h->secondary_free_list_add(&tmp_free_list);
SecondaryFreeList_lock->notify_all();
}
@ -2528,6 +2529,11 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
assert(!rp->discovery_enabled(), "Post condition");
}
if (has_overflown()) {
// We can not trust g1_is_alive if the marking stack overflowed
return;
}
g1h->unlink_string_and_symbol_table(&g1_is_alive,
/* process_strings */ false, // currently strings are always roots
/* process_symbols */ true);

View File

@ -25,7 +25,7 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
#include "gc_implementation/g1/heapRegionSets.hpp"
#include "gc_implementation/g1/heapRegionSet.hpp"
#include "utilities/taskqueue.hpp"
class G1CollectedHeap;

View File

@ -24,6 +24,14 @@
#include "precompiled.hpp"
#include "gc_implementation/g1/g1BiasedArray.hpp"
#include "memory/padded.inline.hpp"
// Allocate a new array, generic version.
address G1BiasedMappedArrayBase::create_new_base_array(size_t length, size_t elem_size) {
assert(length > 0, "just checking");
assert(elem_size > 0, "just checking");
return PaddedPrimitiveArray<u_char, mtGC>::create_unfreeable(length * elem_size);
}
#ifndef PRODUCT
void G1BiasedMappedArrayBase::verify_index(idx_t index) const {

View File

@ -25,8 +25,8 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1BIASEDARRAY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1BIASEDARRAY_HPP
#include "memory/allocation.hpp"
#include "utilities/debug.hpp"
#include "memory/allocation.inline.hpp"
// Implements the common base functionality for arrays that contain provisions
// for accessing its elements using a biased index.
@ -48,11 +48,7 @@ protected:
_bias(0), _shift_by(0) { }
// Allocate a new array, generic version.
static address create_new_base_array(size_t length, size_t elem_size) {
assert(length > 0, "just checking");
assert(elem_size > 0, "just checking");
return NEW_C_HEAP_ARRAY(u_char, length * elem_size, mtGC);
}
static address create_new_base_array(size_t length, size_t elem_size);
// Initialize the members of this class. The biased start address of this array
// is the bias (in elements) multiplied by the element size.

View File

@ -0,0 +1,317 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/nmethod.hpp"
#include "gc_implementation/g1/g1CodeCacheRemSet.hpp"
#include "memory/iterator.hpp"
G1CodeRootChunk::G1CodeRootChunk() : _top(NULL), _next(NULL), _prev(NULL) {
_top = bottom();
}
void G1CodeRootChunk::reset() {
_next = _prev = NULL;
_top = bottom();
}
void G1CodeRootChunk::nmethods_do(CodeBlobClosure* cl) {
nmethod** cur = bottom();
while (cur != _top) {
cl->do_code_blob(*cur);
cur++;
}
}
FreeList<G1CodeRootChunk> G1CodeRootSet::_free_list;
size_t G1CodeRootSet::_num_chunks_handed_out = 0;
G1CodeRootChunk* G1CodeRootSet::new_chunk() {
G1CodeRootChunk* result = _free_list.get_chunk_at_head();
if (result == NULL) {
result = new G1CodeRootChunk();
}
G1CodeRootSet::_num_chunks_handed_out++;
result->reset();
return result;
}
void G1CodeRootSet::free_chunk(G1CodeRootChunk* chunk) {
_free_list.return_chunk_at_head(chunk);
G1CodeRootSet::_num_chunks_handed_out--;
}
void G1CodeRootSet::free_all_chunks(FreeList<G1CodeRootChunk>* list) {
G1CodeRootSet::_num_chunks_handed_out -= list->count();
_free_list.prepend(list);
}
void G1CodeRootSet::purge_chunks(size_t keep_ratio) {
size_t keep = G1CodeRootSet::_num_chunks_handed_out * keep_ratio / 100;
if (keep >= (size_t)_free_list.count()) {
return;
}
FreeList<G1CodeRootChunk> temp;
temp.initialize();
temp.set_size(G1CodeRootChunk::word_size());
_free_list.getFirstNChunksFromList((size_t)_free_list.count() - keep, &temp);
G1CodeRootChunk* cur = temp.get_chunk_at_head();
while (cur != NULL) {
delete cur;
cur = temp.get_chunk_at_head();
}
}
size_t G1CodeRootSet::static_mem_size() {
return sizeof(_free_list) + sizeof(_num_chunks_handed_out);
}
size_t G1CodeRootSet::fl_mem_size() {
return _free_list.count() * _free_list.size();
}
void G1CodeRootSet::initialize() {
_free_list.initialize();
_free_list.set_size(G1CodeRootChunk::word_size());
}
G1CodeRootSet::G1CodeRootSet() : _list(), _length(0) {
_list.initialize();
_list.set_size(G1CodeRootChunk::word_size());
}
G1CodeRootSet::~G1CodeRootSet() {
clear();
}
void G1CodeRootSet::add(nmethod* method) {
if (!contains(method)) {
// Try to add the nmethod. If there is not enough space, get a new chunk.
if (_list.head() == NULL || _list.head()->is_full()) {
G1CodeRootChunk* cur = new_chunk();
_list.return_chunk_at_head(cur);
}
bool result = _list.head()->add(method);
guarantee(result, err_msg("Not able to add nmethod "PTR_FORMAT" to newly allocated chunk.", method));
_length++;
}
}
void G1CodeRootSet::remove(nmethod* method) {
G1CodeRootChunk* found = find(method);
if (found != NULL) {
bool result = found->remove(method);
guarantee(result, err_msg("could not find nmethod "PTR_FORMAT" during removal although we previously found it", method));
// eventually free completely emptied chunk
if (found->is_empty()) {
_list.remove_chunk(found);
free(found);
}
_length--;
}
assert(!contains(method), err_msg(PTR_FORMAT" still contains nmethod "PTR_FORMAT, this, method));
}
nmethod* G1CodeRootSet::pop() {
do {
G1CodeRootChunk* cur = _list.head();
if (cur == NULL) {
assert(_length == 0, "when there are no chunks, there should be no elements");
return NULL;
}
nmethod* result = cur->pop();
if (result != NULL) {
_length--;
return result;
} else {
free(_list.get_chunk_at_head());
}
} while (true);
}
G1CodeRootChunk* G1CodeRootSet::find(nmethod* method) {
G1CodeRootChunk* cur = _list.head();
while (cur != NULL) {
if (cur->contains(method)) {
return cur;
}
cur = (G1CodeRootChunk*)cur->next();
}
return NULL;
}
void G1CodeRootSet::free(G1CodeRootChunk* chunk) {
free_chunk(chunk);
}
bool G1CodeRootSet::contains(nmethod* method) {
return find(method) != NULL;
}
void G1CodeRootSet::clear() {
free_all_chunks(&_list);
_length = 0;
}
void G1CodeRootSet::nmethods_do(CodeBlobClosure* blk) const {
G1CodeRootChunk* cur = _list.head();
while (cur != NULL) {
cur->nmethods_do(blk);
cur = (G1CodeRootChunk*)cur->next();
}
}
size_t G1CodeRootSet::mem_size() {
return sizeof(this) + _list.count() * _list.size();
}
#ifndef PRODUCT
void G1CodeRootSet::test() {
initialize();
assert(_free_list.count() == 0, "Free List must be empty");
assert(_num_chunks_handed_out == 0, "No elements must have been handed out yet");
// The number of chunks that we allocate for purge testing.
size_t const num_chunks = 10;
{
G1CodeRootSet set1;
assert(set1.is_empty(), "Code root set must be initially empty but is not.");
set1.add((nmethod*)1);
assert(_num_chunks_handed_out == 1,
err_msg("Must have allocated and handed out one chunk, but handed out "
SIZE_FORMAT" chunks", _num_chunks_handed_out));
assert(set1.length() == 1, err_msg("Added exactly one element, but set contains "
SIZE_FORMAT" elements", set1.length()));
// G1CodeRootChunk::word_size() is larger than G1CodeRootChunk::num_entries which
// we cannot access.
for (uint i = 0; i < G1CodeRootChunk::word_size() + 1; i++) {
set1.add((nmethod*)1);
}
assert(_num_chunks_handed_out == 1,
err_msg("Duplicate detection must have prevented allocation of further "
"chunks but contains "SIZE_FORMAT, _num_chunks_handed_out));
assert(set1.length() == 1,
err_msg("Duplicate detection should not have increased the set size but "
"is "SIZE_FORMAT, set1.length()));
size_t num_total_after_add = G1CodeRootChunk::word_size() + 1;
for (size_t i = 0; i < num_total_after_add - 1; i++) {
set1.add((nmethod*)(2 + i));
}
assert(_num_chunks_handed_out > 1,
"After adding more code roots, more than one chunks should have been handed out");
assert(set1.length() == num_total_after_add,
err_msg("After adding in total "SIZE_FORMAT" distinct code roots, they "
"need to be in the set, but there are only "SIZE_FORMAT,
num_total_after_add, set1.length()));
size_t num_popped = 0;
while (set1.pop() != NULL) {
num_popped++;
}
assert(num_popped == num_total_after_add,
err_msg("Managed to pop "SIZE_FORMAT" code roots, but only "SIZE_FORMAT" "
"were added", num_popped, num_total_after_add));
assert(_num_chunks_handed_out == 0,
err_msg("After popping all elements, all chunks must have been returned "
"but are still "SIZE_FORMAT, _num_chunks_handed_out));
purge_chunks(0);
assert(_free_list.count() == 0,
err_msg("After purging everything, the free list must be empty but still "
"contains "SIZE_FORMAT" chunks", _free_list.count()));
// Add some more handed out chunks.
size_t i = 0;
while (_num_chunks_handed_out < num_chunks) {
set1.add((nmethod*)i);
i++;
}
{
// Generate chunks on the free list.
G1CodeRootSet set2;
size_t i = 0;
while (_num_chunks_handed_out < num_chunks * 2) {
set2.add((nmethod*)i);
i++;
}
// Exit of the scope of the set2 object will call the destructor that generates
// num_chunks elements on the free list.
}
assert(_num_chunks_handed_out == num_chunks,
err_msg("Deletion of the second set must have resulted in giving back "
"those, but there is still "SIZE_FORMAT" handed out, expecting "
SIZE_FORMAT, _num_chunks_handed_out, num_chunks));
assert((size_t)_free_list.count() == num_chunks,
err_msg("After freeing "SIZE_FORMAT" chunks, they must be on the free list "
"but there are only "SIZE_FORMAT, num_chunks, _free_list.count()));
size_t const test_percentage = 50;
purge_chunks(test_percentage);
assert(_num_chunks_handed_out == num_chunks,
err_msg("Purging must not hand out chunks but there are "SIZE_FORMAT,
_num_chunks_handed_out));
assert((size_t)_free_list.count() == (ssize_t)(num_chunks * test_percentage / 100),
err_msg("Must have purged "SIZE_FORMAT" percent of "SIZE_FORMAT" chunks"
"but there are "SSIZE_FORMAT, test_percentage, num_chunks,
_free_list.count()));
// Purge the remainder of the chunks on the free list.
purge_chunks(0);
assert(_free_list.count() == 0, "Free List must be empty");
assert(_num_chunks_handed_out == num_chunks,
err_msg("Expected to be "SIZE_FORMAT" chunks handed out from the first set "
"but there are "SIZE_FORMAT, num_chunks, _num_chunks_handed_out));
// Exit of the scope of the set1 object will call the destructor that generates
// num_chunks additional elements on the free list.
}
assert(_num_chunks_handed_out == 0,
err_msg("Deletion of the only set must have resulted in no chunks handed "
"out, but there is still "SIZE_FORMAT" handed out", _num_chunks_handed_out));
assert((size_t)_free_list.count() == num_chunks,
err_msg("After freeing "SIZE_FORMAT" chunks, they must be on the free list "
"but there are only "SSIZE_FORMAT, num_chunks, _free_list.count()));
// Restore initial state.
purge_chunks(0);
assert(_free_list.count() == 0, "Free List must be empty");
assert(_num_chunks_handed_out == 0, "No elements must have been handed out yet");
}
void TestCodeCacheRemSet_test() {
G1CodeRootSet::test();
}
#endif

View File

@ -0,0 +1,188 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1CODECACHEREMSET_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1CODECACHEREMSET_HPP
#include "memory/allocation.hpp"
#include "memory/freeList.hpp"
#include "runtime/globals.hpp"
class CodeBlobClosure;
class G1CodeRootChunk : public CHeapObj<mtGC> {
private:
static const int NUM_ENTRIES = 32;
public:
G1CodeRootChunk* _next;
G1CodeRootChunk* _prev;
nmethod** _top;
nmethod* _data[NUM_ENTRIES];
nmethod** bottom() const {
return (nmethod**) &(_data[0]);
}
nmethod** end() const {
return (nmethod**) &(_data[NUM_ENTRIES]);
}
public:
G1CodeRootChunk();
~G1CodeRootChunk() {}
static size_t word_size() { return (size_t)(align_size_up_(sizeof(G1CodeRootChunk), HeapWordSize) / HeapWordSize); }
// FreeList "interface" methods
G1CodeRootChunk* next() const { return _next; }
G1CodeRootChunk* prev() const { return _prev; }
void set_next(G1CodeRootChunk* v) { _next = v; assert(v != this, "Boom");}
void set_prev(G1CodeRootChunk* v) { _prev = v; assert(v != this, "Boom");}
void clear_next() { set_next(NULL); }
void clear_prev() { set_prev(NULL); }
size_t size() const { return word_size(); }
void link_next(G1CodeRootChunk* ptr) { set_next(ptr); }
void link_prev(G1CodeRootChunk* ptr) { set_prev(ptr); }
void link_after(G1CodeRootChunk* ptr) {
link_next(ptr);
if (ptr != NULL) ptr->link_prev((G1CodeRootChunk*)this);
}
bool is_free() { return true; }
// New G1CodeRootChunk routines
void reset();
bool is_empty() const {
return _top == bottom();
}
bool is_full() const {
return _top == (nmethod**)end();
}
bool contains(nmethod* method) {
nmethod** cur = bottom();
while (cur != _top) {
if (*cur == method) return true;
cur++;
}
return false;
}
bool add(nmethod* method) {
if (is_full()) return false;
*_top = method;
_top++;
return true;
}
bool remove(nmethod* method) {
nmethod** cur = bottom();
while (cur != _top) {
if (*cur == method) {
memmove(cur, cur + 1, (_top - (cur + 1)) * sizeof(nmethod**));
_top--;
return true;
}
cur++;
}
return false;
}
void nmethods_do(CodeBlobClosure* blk);
nmethod* pop() {
if (is_empty()) {
return NULL;
}
_top--;
return *_top;
}
};
// Implements storage for a set of code roots.
// All methods that modify the set are not thread-safe except if otherwise noted.
class G1CodeRootSet VALUE_OBJ_CLASS_SPEC {
private:
// Global free chunk list management
static FreeList<G1CodeRootChunk> _free_list;
// Total number of chunks handed out
static size_t _num_chunks_handed_out;
static G1CodeRootChunk* new_chunk();
static void free_chunk(G1CodeRootChunk* chunk);
// Free all elements of the given list.
static void free_all_chunks(FreeList<G1CodeRootChunk>* list);
// Return the chunk that contains the given nmethod, NULL otherwise.
// Scans the list of chunks backwards, as this method is used to add new
// entries, which are typically added in bulk for a single nmethod.
G1CodeRootChunk* find(nmethod* method);
void free(G1CodeRootChunk* chunk);
size_t _length;
FreeList<G1CodeRootChunk> _list;
public:
G1CodeRootSet();
~G1CodeRootSet();
static void initialize();
static void purge_chunks(size_t keep_ratio);
static size_t static_mem_size();
static size_t fl_mem_size();
// Search for the code blob from the recently allocated ones to find duplicates more quickly, as this
// method is likely to be repeatedly called with the same nmethod.
void add(nmethod* method);
void remove(nmethod* method);
nmethod* pop();
bool contains(nmethod* method);
void clear();
void nmethods_do(CodeBlobClosure* blk) const;
bool is_empty() { return length() == 0; }
// Length in elements
size_t length() const { return _length; }
// Memory size in bytes taken by this set.
size_t mem_size();
static void test() PRODUCT_RETURN;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1CODECACHEREMSET_HPP

View File

@ -39,6 +39,7 @@
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
#include "gc_implementation/g1/g1YCTypes.hpp"
#include "gc_implementation/g1/heapRegion.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
@ -169,14 +170,6 @@ public:
int calls() { return _calls; }
};
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
bool do_card_ptr(jbyte* card_ptr, int worker_i) {
*card_ptr = CardTableModRefBS::dirty_card_val();
return true;
}
};
YoungList::YoungList(G1CollectedHeap* g1h) :
_g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
_survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
@ -524,7 +517,7 @@ G1CollectedHeap* G1CollectedHeap::_g1h;
// Private methods.
HeapRegion*
G1CollectedHeap::new_region_try_secondary_free_list() {
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
while (!_secondary_free_list.is_empty() || free_regions_coming()) {
if (!_secondary_free_list.is_empty()) {
@ -540,7 +533,7 @@ G1CollectedHeap::new_region_try_secondary_free_list() {
assert(!_free_list.is_empty(), "if the secondary_free_list was not "
"empty we should have moved at least one entry to the free_list");
HeapRegion* res = _free_list.remove_head();
HeapRegion* res = _free_list.remove_region(is_old);
if (G1ConcRegionFreeingVerbose) {
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
"allocated "HR_FORMAT" from secondary_free_list",
@ -562,7 +555,7 @@ G1CollectedHeap::new_region_try_secondary_free_list() {
return NULL;
}
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
"the only time we use this to allocate a humongous region is "
"when we are allocating a single humongous region");
@ -574,19 +567,21 @@ HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
"forced to look at the secondary_free_list");
}
res = new_region_try_secondary_free_list();
res = new_region_try_secondary_free_list(is_old);
if (res != NULL) {
return res;
}
}
}
res = _free_list.remove_head_or_null();
res = _free_list.remove_region(is_old);
if (res == NULL) {
if (G1ConcRegionFreeingVerbose) {
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
"res == NULL, trying the secondary_free_list");
}
res = new_region_try_secondary_free_list();
res = new_region_try_secondary_free_list(is_old);
}
if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
// Currently, only attempts to allocate GC alloc regions set
@ -603,12 +598,9 @@ HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
if (expand(word_size * HeapWordSize)) {
// Given that expand() succeeded in expanding the heap, and we
// always expand the heap by an amount aligned to the heap
// region size, the free list should in theory not be empty. So
// it would probably be OK to use remove_head(). But the extra
// check for NULL is unlikely to be a performance issue here (we
// just expanded the heap!) so let's just be conservative and
// use remove_head_or_null().
res = _free_list.remove_head_or_null();
// region size, the free list should in theory not be empty.
// In either case remove_region() will check for NULL.
res = _free_list.remove_region(is_old);
} else {
_expand_heap_after_alloc_failure = false;
}
@ -626,7 +618,7 @@ uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
// Only one region to allocate, no need to go through the slower
// path. The caller will attempt the expansion if this fails, so
// let's not try to expand here too.
HeapRegion* hr = new_region(word_size, false /* do_expand */);
HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
if (hr != NULL) {
first = hr->hrs_index();
} else {
@ -1298,7 +1290,6 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
HRSPhaseSetter x(HRSPhaseFullGC);
verify_region_sets_optional();
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
@ -1928,10 +1919,10 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
_g1mm(NULL),
_refine_cte_cl(NULL),
_full_collection(false),
_free_list("Master Free List"),
_secondary_free_list("Secondary Free List"),
_old_set("Old Set"),
_humongous_set("Master Humongous Set"),
_free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
_secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
_old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
_humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
_free_regions_coming(false),
_young_list(new YoungList(this)),
_gc_time_stamp(0),
@ -1963,7 +1954,7 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
int n_queues = MAX2((int)ParallelGCThreads, 1);
_task_queues = new RefToScanQueueSet(n_queues);
int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
assert(n_rem_sets > 0, "Invariant.");
_worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
@ -2079,7 +2070,7 @@ jint G1CollectedHeap::initialize() {
guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
"too many cards per region");
HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
_bot_shared = new G1BlockOffsetSharedArray(_reserved,
heap_word_size(init_byte_size));
@ -2182,6 +2173,8 @@ jint G1CollectedHeap::initialize() {
// values in the heap have been properly initialized.
_g1mm = new G1MonitoringSupport(this);
G1StringDedup::initialize();
return JNI_OK;
}
@ -2369,8 +2362,12 @@ public:
};
size_t G1CollectedHeap::recalculate_used() const {
double recalculate_used_start = os::elapsedTime();
SumUsedClosure blk;
heap_region_iterate(&blk);
g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
return blk.result();
}
@ -3462,6 +3459,11 @@ void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
if (!silent) gclog_or_tty->print("RemSet ");
rem_set()->verify();
if (G1StringDedup::is_enabled()) {
if (!silent) gclog_or_tty->print("StrDedup ");
G1StringDedup::verify();
}
if (failures) {
gclog_or_tty->print_cr("Heap:");
// It helps to have the per-region information in the output to
@ -3479,8 +3481,13 @@ void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
}
guarantee(!failures, "there should not have been any failures");
} else {
if (!silent)
gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
if (!silent) {
gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
if (G1StringDedup::is_enabled()) {
gclog_or_tty->print(", StrDedup");
}
gclog_or_tty->print(") ");
}
}
}
@ -3573,6 +3580,9 @@ void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
st->cr();
_cm->print_worker_threads_on(st);
_cg1r->print_worker_threads_on(st);
if (G1StringDedup::is_enabled()) {
G1StringDedup::print_worker_threads_on(st);
}
}
void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
@ -3581,6 +3591,9 @@ void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
}
tc->do_thread(_cmThread);
_cg1r->threads_do(tc);
if (G1StringDedup::is_enabled()) {
G1StringDedup::threads_do(tc);
}
}
void G1CollectedHeap::print_tracing_info() const {
@ -3887,7 +3900,6 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
print_heap_before_gc();
trace_heap_before_gc(_gc_tracer_stw);
HRSPhaseSetter x(HRSPhaseEvacuation);
verify_region_sets_optional();
verify_dirty_young_regions();
@ -4386,6 +4398,8 @@ void G1CollectedHeap::finalize_for_evac_failure() {
void G1CollectedHeap::remove_self_forwarding_pointers() {
assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
double remove_self_forwards_start = os::elapsedTime();
G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
if (G1CollectedHeap::use_parallel_gc_threads()) {
@ -4413,6 +4427,8 @@ void G1CollectedHeap::remove_self_forwarding_pointers() {
}
_objs_with_preserved_marks.clear(true);
_preserved_marks_of_objs.clear(true);
g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
}
void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
@ -4634,9 +4650,7 @@ bool G1ParScanThreadState::verify_task(StarTask ref) const {
#endif // ASSERT
void G1ParScanThreadState::trim_queue() {
assert(_evac_cl != NULL, "not set");
assert(_evac_failure_cl != NULL, "not set");
assert(_partial_scan_cl != NULL, "not set");
StarTask ref;
do {
@ -4727,6 +4741,12 @@ oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
oop forward_ptr = old->forward_to_atomic(obj);
if (forward_ptr == NULL) {
Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
// alloc_purpose is just a hint to allocate() above, recheck the type of region
// we actually allocated from and update alloc_purpose accordingly
HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
if (g1p->track_object_age(alloc_purpose)) {
// We could simply do obj->incr_age(). However, this causes a
// performance issue. obj->incr_age() will first check whether
@ -4754,6 +4774,13 @@ oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
obj->set_mark(m);
}
if (G1StringDedup::is_enabled()) {
G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
to_region->is_young(),
queue_num(),
obj);
}
size_t* surv_young_words = surviving_young_words();
surv_young_words[young_index] += word_sz;
@ -4832,55 +4859,6 @@ void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
assert(has_partial_array_mask(p), "invariant");
oop from_obj = clear_partial_array_mask(p);
assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
assert(from_obj->is_objArray(), "must be obj array");
objArrayOop from_obj_array = objArrayOop(from_obj);
// The from-space object contains the real length.
int length = from_obj_array->length();
assert(from_obj->is_forwarded(), "must be forwarded");
oop to_obj = from_obj->forwardee();
assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
objArrayOop to_obj_array = objArrayOop(to_obj);
// We keep track of the next start index in the length field of the
// to-space object.
int next_index = to_obj_array->length();
assert(0 <= next_index && next_index < length,
err_msg("invariant, next index: %d, length: %d", next_index, length));
int start = next_index;
int end = length;
int remainder = end - start;
// We'll try not to push a range that's smaller than ParGCArrayScanChunk.
if (remainder > 2 * ParGCArrayScanChunk) {
end = start + ParGCArrayScanChunk;
to_obj_array->set_length(end);
// Push the remainder before we process the range in case another
// worker has run out of things to do and can steal it.
oop* from_obj_p = set_partial_array_mask(from_obj);
_par_scan_state->push_on_queue(from_obj_p);
} else {
assert(length == end, "sanity");
// We'll process the final range for this object. Restore the length
// so that the heap remains parsable in case of evacuation failure.
to_obj_array->set_length(end);
}
_scanner.set_region(_g1->heap_region_containing_raw(to_obj));
// Process indexes [start,end). It will also process the header
// along with the first chunk (i.e., the chunk with start == 0).
// Note that at this point the length field of to_obj_array is not
// correct given that we are using it to keep track of the next
// start index. oop_iterate_range() (thankfully!) ignores the length
// field and only relies on the start / end parameters. It does
// however return the size of the object which will be incorrect. So
// we have to ignore it even if we wanted to use it.
to_obj_array->oop_iterate_range(&_scanner, start, end);
}
class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
G1CollectedHeap* _g1h;
@ -5022,13 +5000,9 @@ public:
ReferenceProcessor* rp = _g1h->ref_processor_stw();
G1ParScanThreadState pss(_g1h, worker_id, rp);
G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, rp);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, rp);
pss.set_evac_closure(&scan_evac_cl);
pss.set_evac_failure_closure(&evac_failure_cl);
pss.set_partial_scan_closure(&partial_scan_cl);
G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss, rp);
G1ParScanMetadataClosure only_scan_metadata_cl(_g1h, &pss, rp);
@ -5270,6 +5244,33 @@ void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive
g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
}
if (G1StringDedup::is_enabled()) {
G1StringDedup::unlink(is_alive);
}
}
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
bool do_card_ptr(jbyte* card_ptr, int worker_i) {
*card_ptr = CardTableModRefBS::dirty_card_val();
return true;
}
};
void G1CollectedHeap::redirty_logged_cards() {
guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
double redirty_logged_cards_start = os::elapsedTime();
RedirtyLoggedCardTableEntryFastClosure redirty;
dirty_card_queue_set().set_closure(&redirty);
dirty_card_queue_set().apply_closure_to_all_completed_buffers();
DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
dcq.merge_bufferlists(&dirty_card_queue_set());
assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}
// Weak Reference Processing support
@ -5453,14 +5454,9 @@ public:
G1STWIsAliveClosure is_alive(_g1h);
G1ParScanThreadState pss(_g1h, worker_id, NULL);
G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL);
pss.set_evac_closure(&scan_evac_cl);
pss.set_evac_failure_closure(&evac_failure_cl);
pss.set_partial_scan_closure(&partial_scan_cl);
G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL);
G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL);
@ -5565,13 +5561,9 @@ public:
HandleMark hm;
G1ParScanThreadState pss(_g1h, worker_id, NULL);
G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL);
pss.set_evac_closure(&scan_evac_cl);
pss.set_evac_failure_closure(&evac_failure_cl);
pss.set_partial_scan_closure(&partial_scan_cl);
assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
@ -5695,13 +5687,9 @@ void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
// We do not embed a reference processor in the copying/scanning
// closures while we're actually processing the discovered
// reference objects.
G1ParScanHeapEvacClosure scan_evac_cl(this, &pss, NULL);
G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
G1ParScanPartialArrayClosure partial_scan_cl(this, &pss, NULL);
pss.set_evac_closure(&scan_evac_cl);
pss.set_evac_failure_closure(&evac_failure_cl);
pss.set_partial_scan_closure(&partial_scan_cl);
assert(pss.refs()->is_empty(), "pre-condition");
@ -5883,6 +5871,9 @@ void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
G1STWIsAliveClosure is_alive(this);
G1KeepAliveClosure keep_alive(this);
JNIHandles::weak_oops_do(&is_alive, &keep_alive);
if (G1StringDedup::is_enabled()) {
G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
}
}
release_gc_alloc_regions(n_workers, evacuation_info);
@ -5900,6 +5891,8 @@ void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
// strong code roots for a particular heap region.
migrate_strong_code_roots();
purge_code_root_memory();
if (g1_policy()->during_initial_mark_pause()) {
// Reset the claim values set during marking the strong code roots
reset_heap_region_claim_values();
@ -5926,41 +5919,15 @@ void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
enqueue_discovered_references(n_workers);
if (G1DeferredRSUpdate) {
RedirtyLoggedCardTableEntryFastClosure redirty;
dirty_card_queue_set().set_closure(&redirty);
dirty_card_queue_set().apply_closure_to_all_completed_buffers();
DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
dcq.merge_bufferlists(&dirty_card_queue_set());
assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
redirty_logged_cards();
}
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
HRRSCleanupTask* hrrs_cleanup_task,
bool par) {
if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
if (hr->isHumongous()) {
assert(hr->startsHumongous(), "we should only see starts humongous");
free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
} else {
_old_set.remove_with_proxy(hr, old_proxy_set);
free_region(hr, pre_used, free_list, par);
}
} else {
hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
}
}
void G1CollectedHeap::free_region(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
bool par) {
bool par,
bool locked) {
assert(!hr->isHumongous(), "this is only for non-humongous regions");
assert(!hr->is_empty(), "the region should not be empty");
assert(free_list != NULL, "pre-condition");
@ -5971,72 +5938,58 @@ void G1CollectedHeap::free_region(HeapRegion* hr,
if (!hr->is_young()) {
_cg1r->hot_card_cache()->reset_card_counts(hr);
}
*pre_used += hr->used();
hr->hr_clear(par, true /* clear_space */);
free_list->add_as_head(hr);
hr->hr_clear(par, true /* clear_space */, locked /* locked */);
free_list->add_ordered(hr);
}
void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
HumongousRegionSet* humongous_proxy_set,
bool par) {
assert(hr->startsHumongous(), "this is only for starts humongous regions");
assert(free_list != NULL, "pre-condition");
assert(humongous_proxy_set != NULL, "pre-condition");
size_t hr_used = hr->used();
size_t hr_capacity = hr->capacity();
size_t hr_pre_used = 0;
_humongous_set.remove_with_proxy(hr, humongous_proxy_set);
// We need to read this before we make the region non-humongous,
// otherwise the information will be gone.
uint last_index = hr->last_hc_index();
hr->set_notHumongous();
free_region(hr, &hr_pre_used, free_list, par);
free_region(hr, free_list, par);
uint i = hr->hrs_index() + 1;
while (i < last_index) {
HeapRegion* curr_hr = region_at(i);
assert(curr_hr->continuesHumongous(), "invariant");
curr_hr->set_notHumongous();
free_region(curr_hr, &hr_pre_used, free_list, par);
free_region(curr_hr, free_list, par);
i += 1;
}
assert(hr_pre_used == hr_used,
err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
"should be the same", hr_pre_used, hr_used));
*pre_used += hr_pre_used;
}
void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
bool par) {
if (pre_used > 0) {
Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
assert(_summary_bytes_used >= pre_used,
err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
"should be >= pre_used: "SIZE_FORMAT,
_summary_bytes_used, pre_used));
_summary_bytes_used -= pre_used;
void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
const HeapRegionSetCount& humongous_regions_removed) {
if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
_old_set.bulk_remove(old_regions_removed);
_humongous_set.bulk_remove(humongous_regions_removed);
}
if (free_list != NULL && !free_list->is_empty()) {
}
void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
assert(list != NULL, "list can't be null");
if (!list->is_empty()) {
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
_free_list.add_as_head(free_list);
}
if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
_old_set.update_from_proxy(old_proxy_set);
}
if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
_humongous_set.update_from_proxy(humongous_proxy_set);
_free_list.add_ordered(list);
}
}
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
assert(_summary_bytes_used >= bytes,
err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
_summary_bytes_used, bytes));
_summary_bytes_used -= bytes;
}
class G1ParCleanupCTTask : public AbstractGangTask {
G1SATBCardTableModRefBS* _ct_bs;
G1CollectedHeap* _g1h;
@ -6194,7 +6147,7 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& e
}
}
rs_lengths += cur->rem_set()->occupied();
rs_lengths += cur->rem_set()->occupied_locked();
HeapRegion* next = cur->next_in_collection_set();
assert(cur->in_collection_set(), "bad CS");
@ -6227,7 +6180,8 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& e
// And the region is empty.
assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
free_region(cur, &pre_used, &local_free_list, false /* par */);
pre_used += cur->used();
free_region(cur, &local_free_list, false /* par */, true /* locked */);
} else {
cur->uninstall_surv_rate_group();
if (cur->is_young()) {
@ -6255,10 +6209,8 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& e
young_time_ms += elapsed_ms;
}
update_sets_after_freeing_regions(pre_used, &local_free_list,
NULL /* old_proxy_set */,
NULL /* humongous_proxy_set */,
false /* par */);
prepend_to_freelist(&local_free_list);
decrement_summary_bytes(pre_used);
policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
}
@ -6370,10 +6322,10 @@ bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample)
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
OldRegionSet *_old_set;
HeapRegionSet *_old_set;
public:
TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
bool doHeapRegion(HeapRegion* r) {
if (r->is_empty()) {
@ -6402,9 +6354,10 @@ void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
TearDownRegionSetsClosure cl(&_old_set);
heap_region_iterate(&cl);
// Need to do this after the heap iteration to be able to
// recognize the young regions and ignore them during the iteration.
_young_list->empty_list();
// Note that emptying the _young_list is postponed and instead done as
// the first step when rebuilding the regions sets again. The reason for
// this is that during a full GC string deduplication needs to know if
// a collected region was young or old when the full GC was initiated.
}
_free_list.remove_all();
}
@ -6412,13 +6365,13 @@ void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
bool _free_list_only;
OldRegionSet* _old_set;
HeapRegionSet* _old_set;
FreeRegionList* _free_list;
size_t _total_used;
public:
RebuildRegionSetsClosure(bool free_list_only,
OldRegionSet* old_set, FreeRegionList* free_list) :
HeapRegionSet* old_set, FreeRegionList* free_list) :
_free_list_only(free_list_only),
_old_set(old_set), _free_list(free_list), _total_used(0) {
assert(_free_list->is_empty(), "pre-condition");
@ -6458,6 +6411,10 @@ public:
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
assert_at_safepoint(true /* should_be_vm_thread */);
if (!free_list_only) {
_young_list->empty_list();
}
RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
heap_region_iterate(&cl);
@ -6493,6 +6450,7 @@ HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
bool young_list_full = g1_policy()->is_young_list_full();
if (force || !young_list_full) {
HeapRegion* new_alloc_region = new_region(word_size,
false /* is_old */,
false /* do_expand */);
if (new_alloc_region != NULL) {
set_region_short_lived_locked(new_alloc_region);
@ -6551,14 +6509,16 @@ HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
assert(FreeList_lock->owned_by_self(), "pre-condition");
if (count < g1_policy()->max_regions(ap)) {
bool survivor = (ap == GCAllocForSurvived);
HeapRegion* new_alloc_region = new_region(word_size,
!survivor,
true /* do_expand */);
if (new_alloc_region != NULL) {
// We really only need to do this for old regions given that we
// should never scan survivors. But it doesn't hurt to do it
// for survivors too.
new_alloc_region->set_saved_mark();
if (ap == GCAllocForSurvived) {
if (survivor) {
new_alloc_region->set_survivor();
_hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
} else {
@ -6615,23 +6575,22 @@ void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
FreeRegionList* _free_list;
OldRegionSet* _old_set;
HumongousRegionSet* _humongous_set;
uint _region_count;
HeapRegionSet* _old_set;
HeapRegionSet* _humongous_set;
FreeRegionList* _free_list;
public:
VerifyRegionListsClosure(OldRegionSet* old_set,
HumongousRegionSet* humongous_set,
FreeRegionList* free_list) :
_old_set(old_set), _humongous_set(humongous_set),
_free_list(free_list), _region_count(0) { }
HeapRegionSetCount _old_count;
HeapRegionSetCount _humongous_count;
HeapRegionSetCount _free_count;
uint region_count() { return _region_count; }
VerifyRegionListsClosure(HeapRegionSet* old_set,
HeapRegionSet* humongous_set,
FreeRegionList* free_list) :
_old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
_old_count(), _humongous_count(), _free_count(){ }
bool doHeapRegion(HeapRegion* hr) {
_region_count += 1;
if (hr->continuesHumongous()) {
return false;
}
@ -6639,14 +6598,31 @@ public:
if (hr->is_young()) {
// TODO
} else if (hr->startsHumongous()) {
_humongous_set->verify_next_region(hr);
assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
_humongous_count.increment(1u, hr->capacity());
} else if (hr->is_empty()) {
_free_list->verify_next_region(hr);
assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
_free_count.increment(1u, hr->capacity());
} else {
_old_set->verify_next_region(hr);
assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
_old_count.increment(1u, hr->capacity());
}
return false;
}
void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
old_set->total_capacity_bytes(), _old_count.capacity()));
guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
free_list->total_capacity_bytes(), _free_count.capacity()));
}
};
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
@ -6662,16 +6638,14 @@ void G1CollectedHeap::verify_region_sets() {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
// First, check the explicit lists.
_free_list.verify();
_free_list.verify_list();
{
// Given that a concurrent operation might be adding regions to
// the secondary free list we have to take the lock before
// verifying it.
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
_secondary_free_list.verify();
_secondary_free_list.verify_list();
}
_old_set.verify();
_humongous_set.verify();
// If a concurrent region freeing operation is in progress it will
// be difficult to correctly attributed any free regions we come
@ -6694,16 +6668,10 @@ void G1CollectedHeap::verify_region_sets() {
// Finally, make sure that the region accounting in the lists is
// consistent with what we see in the heap.
_old_set.verify_start();
_humongous_set.verify_start();
_free_list.verify_start();
VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
heap_region_iterate(&cl);
_old_set.verify_end();
_humongous_set.verify_end();
_free_list.verify_end();
cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
}
// Optimized nmethod scanning
@ -6804,6 +6772,13 @@ void G1CollectedHeap::migrate_strong_code_roots() {
g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
}
void G1CollectedHeap::purge_code_root_memory() {
double purge_start = os::elapsedTime();
G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}
// Mark all the code roots that point into regions *not* in the
// collection set.
//
@ -6874,7 +6849,7 @@ public:
// Code roots should never be attached to a continuation of a humongous region
assert(hrrs->strong_code_roots_list_length() == 0,
err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
" starting at "HR_FORMAT", but has "INT32_FORMAT,
" starting at "HR_FORMAT", but has "SIZE_FORMAT,
HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
hrrs->strong_code_roots_list_length()));
return false;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -34,7 +34,7 @@
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/g1YCTypes.hpp"
#include "gc_implementation/g1/heapRegionSeq.hpp"
#include "gc_implementation/g1/heapRegionSets.hpp"
#include "gc_implementation/g1/heapRegionSet.hpp"
#include "gc_implementation/shared/hSpaceCounters.hpp"
#include "gc_implementation/shared/parGCAllocBuffer.hpp"
#include "memory/barrierSet.hpp"
@ -243,18 +243,18 @@ private:
MemRegion _g1_committed;
// The master free list. It will satisfy all new region allocations.
MasterFreeRegionList _free_list;
FreeRegionList _free_list;
// The secondary free list which contains regions that have been
// freed up during the cleanup process. This will be appended to the
// master free list when appropriate.
SecondaryFreeRegionList _secondary_free_list;
FreeRegionList _secondary_free_list;
// It keeps track of the old regions.
MasterOldRegionSet _old_set;
HeapRegionSet _old_set;
// It keeps track of the humongous regions.
MasterHumongousRegionSet _humongous_set;
HeapRegionSet _humongous_set;
// The number of regions we could create by expansion.
uint _expansion_regions;
@ -497,13 +497,14 @@ protected:
// check whether there's anything available on the
// secondary_free_list and/or wait for more regions to appear on
// that list, if _free_regions_coming is set.
HeapRegion* new_region_try_secondary_free_list();
HeapRegion* new_region_try_secondary_free_list(bool is_old);
// Try to allocate a single non-humongous HeapRegion sufficient for
// an allocation of the given word_size. If do_expand is true,
// attempt to expand the heap if necessary to satisfy the allocation
// request.
HeapRegion* new_region(size_t word_size, bool do_expand);
// request. If the region is to be used as an old region or for a
// humongous object, set is_old to true. If not, to false.
HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
// Attempt to satisfy a humongous allocation request of the given
// size by finding a contiguous set of free regions of num_regions
@ -757,6 +758,29 @@ public:
G1HRPrinter* hr_printer() { return &_hr_printer; }
// Frees a non-humongous region by initializing its contents and
// adding it to the free list that's passed as a parameter (this is
// usually a local list which will be appended to the master free
// list later). The used bytes of freed regions are accumulated in
// pre_used. If par is true, the region's RSet will not be freed
// up. The assumption is that this will be done later.
// The locked parameter indicates if the caller has already taken
// care of proper synchronization. This may allow some optimizations.
void free_region(HeapRegion* hr,
FreeRegionList* free_list,
bool par,
bool locked = false);
// Frees a humongous region by collapsing it into individual regions
// and calling free_region() for each of them. The freed regions
// will be added to the free list that's passed as a parameter (this
// is usually a local list which will be appended to the master free
// list later). The used bytes of freed regions are accumulated in
// pre_used. If par is true, the region's RSet will not be freed
// up. The assumption is that this will be done later.
void free_humongous_region(HeapRegion* hr,
FreeRegionList* free_list,
bool par);
protected:
// Shrink the garbage-first heap by at most the given size (in bytes!).
@ -835,30 +859,6 @@ protected:
G1KlassScanClosure* scan_klasses,
int worker_i);
// Frees a non-humongous region by initializing its contents and
// adding it to the free list that's passed as a parameter (this is
// usually a local list which will be appended to the master free
// list later). The used bytes of freed regions are accumulated in
// pre_used. If par is true, the region's RSet will not be freed
// up. The assumption is that this will be done later.
void free_region(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
bool par);
// Frees a humongous region by collapsing it into individual regions
// and calling free_region() for each of them. The freed regions
// will be added to the free list that's passed as a parameter (this
// is usually a local list which will be appended to the master free
// list later). The used bytes of freed regions are accumulated in
// pre_used. If par is true, the region's RSet will not be freed
// up. The assumption is that this will be done later.
void free_humongous_region(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
HumongousRegionSet* humongous_proxy_set,
bool par);
// Notifies all the necessary spaces that the committed space has
// been updated (either expanded or shrunk). It should be called
// after _g1_storage is updated.
@ -1228,21 +1228,17 @@ public:
bool is_on_master_free_list(HeapRegion* hr) {
return hr->containing_set() == &_free_list;
}
bool is_in_humongous_set(HeapRegion* hr) {
return hr->containing_set() == &_humongous_set;
}
#endif // ASSERT
// Wrapper for the region list operations that can be called from
// methods outside this class.
void secondary_free_list_add_as_tail(FreeRegionList* list) {
_secondary_free_list.add_as_tail(list);
void secondary_free_list_add(FreeRegionList* list) {
_secondary_free_list.add_ordered(list);
}
void append_secondary_free_list() {
_free_list.add_as_head(&_secondary_free_list);
_free_list.add_ordered(&_secondary_free_list);
}
void append_secondary_free_list_if_not_empty_with_lock() {
@ -1284,27 +1280,9 @@ public:
// True iff an evacuation has failed in the most-recent collection.
bool evacuation_failed() { return _evacuation_failed; }
// It will free a region if it has allocated objects in it that are
// all dead. It calls either free_region() or
// free_humongous_region() depending on the type of the region that
// is passed to it.
void free_region_if_empty(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
HRRSCleanupTask* hrrs_cleanup_task,
bool par);
// It appends the free list to the master free list and updates the
// master humongous list according to the contents of the proxy
// list. It also adjusts the total used bytes according to pre_used
// (if par is true, it will do so by taking the ParGCRareEvent_lock).
void update_sets_after_freeing_regions(size_t pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
bool par);
void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
void prepend_to_freelist(FreeRegionList* list);
void decrement_summary_bytes(size_t bytes);
// Returns "TRUE" iff "p" points into the committed areas of the heap.
virtual bool is_in(const void* p) const;
@ -1659,6 +1637,9 @@ public:
// that were not successfully evacuated are not migrated.
void migrate_strong_code_roots();
// Free up superfluous code root memory.
void purge_code_root_memory();
// During an initial mark pause, mark all the code roots that
// point into regions *not* in the collection set.
void mark_strong_code_roots(uint worker_id);
@ -1671,6 +1652,8 @@ public:
// in symbol table, possibly in parallel.
void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
// Redirty logged cards in the refinement queue.
void redirty_logged_cards();
// Verification
// The following is just to alert the verification code
@ -1797,8 +1780,6 @@ protected:
size_t _undo_waste;
OopsInHeapRegionClosure* _evac_failure_cl;
G1ParScanHeapEvacClosure* _evac_cl;
G1ParScanPartialArrayClosure* _partial_scan_cl;
int _hash_seed;
uint _queue_num;
@ -1926,14 +1907,6 @@ public:
return _evac_failure_cl;
}
void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
_evac_cl = evac_cl;
}
void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
_partial_scan_cl = partial_scan_cl;
}
int* hash_seed() { return &_hash_seed; }
uint queue_num() { return _queue_num; }
@ -1981,19 +1954,121 @@ public:
false /* retain */);
}
}
private:
#define G1_PARTIAL_ARRAY_MASK 0x2
inline bool has_partial_array_mask(oop* ref) const {
return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
}
// We never encode partial array oops as narrowOop*, so return false immediately.
// This allows the compiler to create optimized code when popping references from
// the work queue.
inline bool has_partial_array_mask(narrowOop* ref) const {
assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
return false;
}
// Only implement set_partial_array_mask() for regular oops, not for narrowOops.
// We always encode partial arrays as regular oop, to allow the
// specialization for has_partial_array_mask() for narrowOops above.
// This means that unintentional use of this method with narrowOops are caught
// by the compiler.
inline oop* set_partial_array_mask(oop obj) const {
assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
}
inline oop clear_partial_array_mask(oop* ref) const {
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
}
void do_oop_partial_array(oop* p) {
assert(has_partial_array_mask(p), "invariant");
oop from_obj = clear_partial_array_mask(p);
assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
assert(from_obj->is_objArray(), "must be obj array");
objArrayOop from_obj_array = objArrayOop(from_obj);
// The from-space object contains the real length.
int length = from_obj_array->length();
assert(from_obj->is_forwarded(), "must be forwarded");
oop to_obj = from_obj->forwardee();
assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
objArrayOop to_obj_array = objArrayOop(to_obj);
// We keep track of the next start index in the length field of the
// to-space object.
int next_index = to_obj_array->length();
assert(0 <= next_index && next_index < length,
err_msg("invariant, next index: %d, length: %d", next_index, length));
int start = next_index;
int end = length;
int remainder = end - start;
// We'll try not to push a range that's smaller than ParGCArrayScanChunk.
if (remainder > 2 * ParGCArrayScanChunk) {
end = start + ParGCArrayScanChunk;
to_obj_array->set_length(end);
// Push the remainder before we process the range in case another
// worker has run out of things to do and can steal it.
oop* from_obj_p = set_partial_array_mask(from_obj);
push_on_queue(from_obj_p);
} else {
assert(length == end, "sanity");
// We'll process the final range for this object. Restore the length
// so that the heap remains parsable in case of evacuation failure.
to_obj_array->set_length(end);
}
_scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
// Process indexes [start,end). It will also process the header
// along with the first chunk (i.e., the chunk with start == 0).
// Note that at this point the length field of to_obj_array is not
// correct given that we are using it to keep track of the next
// start index. oop_iterate_range() (thankfully!) ignores the length
// field and only relies on the start / end parameters. It does
// however return the size of the object which will be incorrect. So
// we have to ignore it even if we wanted to use it.
to_obj_array->oop_iterate_range(&_scanner, start, end);
}
// This method is applied to the fields of the objects that have just been copied.
template <class T> void do_oop_evac(T* p, HeapRegion* from) {
assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
"Reference should not be NULL here as such are never pushed to the task queue.");
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
// Although we never intentionally push references outside of the collection
// set, due to (benign) races in the claim mechanism during RSet scanning more
// than one thread might claim the same card. So the same card may be
// processed multiple times. So redo this check.
if (_g1h->in_cset_fast_test(obj)) {
oop forwardee;
if (obj->is_forwarded()) {
forwardee = obj->forwardee();
} else {
forwardee = copy_to_survivor_space(obj);
}
assert(forwardee != NULL, "forwardee should not be NULL");
oopDesc::encode_store_heap_oop(p, forwardee);
}
assert(obj != NULL, "Must be");
update_rs(from, p, queue_num());
}
public:
oop copy_to_survivor_space(oop const obj);
template <class T> void deal_with_reference(T* ref_to_scan) {
if (has_partial_array_mask(ref_to_scan)) {
_partial_scan_cl->do_oop_nv(ref_to_scan);
} else {
if (!has_partial_array_mask(ref_to_scan)) {
// Note: we can use "raw" versions of "region_containing" because
// "obj_to_scan" is definitely in the heap, and is not in a
// humongous region.
HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
_evac_cl->set_region(r);
_evac_cl->do_oop_nv(ref_to_scan);
do_oop_evac(ref_to_scan, r);
} else {
do_oop_partial_array((oop*)ref_to_scan);
}
}

View File

@ -30,6 +30,7 @@
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "utilities/taskqueue.hpp"

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2014 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,7 @@
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
#include "gc_implementation/g1/g1Log.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
// Helper class for avoiding interleaved logging
class LineBuffer: public StackObj {
@ -168,7 +169,9 @@ G1GCPhaseTimes::G1GCPhaseTimes(uint max_gc_threads) :
_last_termination_attempts(_max_gc_threads, SIZE_FORMAT),
_last_gc_worker_end_times_ms(_max_gc_threads, "%.1lf", false),
_last_gc_worker_times_ms(_max_gc_threads, "%.1lf"),
_last_gc_worker_other_times_ms(_max_gc_threads, "%.1lf")
_last_gc_worker_other_times_ms(_max_gc_threads, "%.1lf"),
_cur_string_dedup_queue_fixup_worker_times_ms(_max_gc_threads, "%.1lf"),
_cur_string_dedup_table_fixup_worker_times_ms(_max_gc_threads, "%.1lf")
{
assert(max_gc_threads > 0, "Must have some GC threads");
}
@ -229,6 +232,16 @@ void G1GCPhaseTimes::note_gc_end() {
_last_gc_worker_other_times_ms.verify();
}
void G1GCPhaseTimes::note_string_dedup_fixup_start() {
_cur_string_dedup_queue_fixup_worker_times_ms.reset();
_cur_string_dedup_table_fixup_worker_times_ms.reset();
}
void G1GCPhaseTimes::note_string_dedup_fixup_end() {
_cur_string_dedup_queue_fixup_worker_times_ms.verify();
_cur_string_dedup_table_fixup_worker_times_ms.verify();
}
void G1GCPhaseTimes::print_stats(int level, const char* str, double value) {
LineBuffer(level).append_and_print_cr("[%s: %.1lf ms]", str, value);
}
@ -250,6 +263,14 @@ double G1GCPhaseTimes::accounted_time_ms() {
// Strong code root migration time
misc_time_ms += _cur_strong_code_root_migration_time_ms;
// Strong code root purge time
misc_time_ms += _cur_strong_code_root_purge_time_ms;
if (G1StringDedup::is_enabled()) {
// String dedup fixup time
misc_time_ms += _cur_string_dedup_fixup_time_ms;
}
// Subtract the time taken to clean the card table from the
// current value of "other time"
misc_time_ms += _cur_clear_ct_time_ms;
@ -299,20 +320,43 @@ void G1GCPhaseTimes::print(double pause_time_sec) {
}
print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms);
print_stats(1, "Code Root Migration", _cur_strong_code_root_migration_time_ms);
print_stats(1, "Code Root Purge", _cur_strong_code_root_purge_time_ms);
if (G1StringDedup::is_enabled()) {
print_stats(1, "String Dedup Fixup", _cur_string_dedup_fixup_time_ms, _active_gc_threads);
_cur_string_dedup_queue_fixup_worker_times_ms.print(2, "Queue Fixup (ms)");
_cur_string_dedup_table_fixup_worker_times_ms.print(2, "Table Fixup (ms)");
}
print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
double misc_time_ms = pause_time_sec * MILLIUNITS - accounted_time_ms();
print_stats(1, "Other", misc_time_ms);
if (_cur_verify_before_time_ms > 0.0) {
print_stats(2, "Verify Before", _cur_verify_before_time_ms);
}
if (G1CollectedHeap::heap()->evacuation_failed()) {
double evac_fail_handling = _cur_evac_fail_recalc_used + _cur_evac_fail_remove_self_forwards +
_cur_evac_fail_restore_remsets;
print_stats(2, "Evacuation Failure", evac_fail_handling);
if (G1Log::finest()) {
print_stats(3, "Recalculate Used", _cur_evac_fail_recalc_used);
print_stats(3, "Remove Self Forwards", _cur_evac_fail_remove_self_forwards);
print_stats(3, "Restore RemSet", _cur_evac_fail_restore_remsets);
}
}
print_stats(2, "Choose CSet",
(_recorded_young_cset_choice_time_ms +
_recorded_non_young_cset_choice_time_ms));
print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
if (G1DeferredRSUpdate) {
print_stats(2, "Redirty Cards", _recorded_redirty_logged_cards_time_ms);
}
print_stats(2, "Free CSet",
(_recorded_young_free_cset_time_ms +
_recorded_non_young_free_cset_time_ms));
if (G1Log::finest()) {
print_stats(3, "Young Free CSet", _recorded_young_free_cset_time_ms);
print_stats(3, "Non-Young Free CSet", _recorded_non_young_free_cset_time_ms);
}
if (_cur_verify_after_time_ms > 0.0) {
print_stats(2, "Verify After", _cur_verify_after_time_ms);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2014 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -131,6 +131,15 @@ class G1GCPhaseTimes : public CHeapObj<mtGC> {
double _cur_collection_par_time_ms;
double _cur_collection_code_root_fixup_time_ms;
double _cur_strong_code_root_migration_time_ms;
double _cur_strong_code_root_purge_time_ms;
double _cur_evac_fail_recalc_used;
double _cur_evac_fail_restore_remsets;
double _cur_evac_fail_remove_self_forwards;
double _cur_string_dedup_fixup_time_ms;
WorkerDataArray<double> _cur_string_dedup_queue_fixup_worker_times_ms;
WorkerDataArray<double> _cur_string_dedup_table_fixup_worker_times_ms;
double _cur_clear_ct_time_ms;
double _cur_ref_proc_time_ms;
@ -142,6 +151,8 @@ class G1GCPhaseTimes : public CHeapObj<mtGC> {
double _recorded_young_cset_choice_time_ms;
double _recorded_non_young_cset_choice_time_ms;
double _recorded_redirty_logged_cards_time_ms;
double _recorded_young_free_cset_time_ms;
double _recorded_non_young_free_cset_time_ms;
@ -223,6 +234,37 @@ class G1GCPhaseTimes : public CHeapObj<mtGC> {
_cur_strong_code_root_migration_time_ms = ms;
}
void record_strong_code_root_purge_time(double ms) {
_cur_strong_code_root_purge_time_ms = ms;
}
void record_evac_fail_recalc_used_time(double ms) {
_cur_evac_fail_recalc_used = ms;
}
void record_evac_fail_restore_remsets(double ms) {
_cur_evac_fail_restore_remsets = ms;
}
void record_evac_fail_remove_self_forwards(double ms) {
_cur_evac_fail_remove_self_forwards = ms;
}
void note_string_dedup_fixup_start();
void note_string_dedup_fixup_end();
void record_string_dedup_fixup_time(double ms) {
_cur_string_dedup_fixup_time_ms = ms;
}
void record_string_dedup_queue_fixup_worker_time(uint worker_id, double ms) {
_cur_string_dedup_queue_fixup_worker_times_ms.set(worker_id, ms);
}
void record_string_dedup_table_fixup_worker_time(uint worker_id, double ms) {
_cur_string_dedup_table_fixup_worker_times_ms.set(worker_id, ms);
}
void record_ref_proc_time(double ms) {
_cur_ref_proc_time_ms = ms;
}
@ -251,6 +293,10 @@ class G1GCPhaseTimes : public CHeapObj<mtGC> {
_recorded_non_young_cset_choice_time_ms = time_ms;
}
void record_redirty_logged_cards_time_ms(double time_ms) {
_recorded_redirty_logged_cards_time_ms = time_ms;
}
void record_cur_collection_start_sec(double time_ms) {
_cur_collection_start_sec = time_ms;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -31,6 +31,7 @@
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/g1Log.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
@ -194,17 +195,19 @@ class G1PrepareCompactClosure: public HeapRegionClosure {
G1CollectedHeap* _g1h;
ModRefBarrierSet* _mrbs;
CompactPoint _cp;
HumongousRegionSet _humongous_proxy_set;
HeapRegionSetCount _humongous_regions_removed;
void free_humongous_region(HeapRegion* hr) {
HeapWord* end = hr->end();
size_t dummy_pre_used;
FreeRegionList dummy_free_list("Dummy Free List for G1MarkSweep");
assert(hr->startsHumongous(),
"Only the start of a humongous region should be freed.");
_g1h->free_humongous_region(hr, &dummy_pre_used, &dummy_free_list,
&_humongous_proxy_set, false /* par */);
hr->set_containing_set(NULL);
_humongous_regions_removed.increment(1u, hr->capacity());
_g1h->free_humongous_region(hr, &dummy_free_list, false /* par */);
hr->prepare_for_compaction(&_cp);
// Also clear the part of the card table that will be unused after
// compaction.
@ -217,16 +220,13 @@ public:
: _g1h(G1CollectedHeap::heap()),
_mrbs(_g1h->g1_barrier_set()),
_cp(NULL, cs, cs->initialize_threshold()),
_humongous_proxy_set("G1MarkSweep Humongous Proxy Set") { }
_humongous_regions_removed() { }
void update_sets() {
// We'll recalculate total used bytes and recreate the free list
// at the end of the GC, so no point in updating those values here.
_g1h->update_sets_after_freeing_regions(0, /* pre_used */
NULL, /* free_list */
NULL, /* old_proxy_set */
&_humongous_proxy_set,
false /* par */);
HeapRegionSetCount empty_set;
_g1h->remove_from_old_sets(empty_set, _humongous_regions_removed);
}
bool doHeapRegion(HeapRegion* hr) {
@ -317,6 +317,10 @@ void G1MarkSweep::mark_sweep_phase3() {
// have been cleared if they pointed to non-surviving objects.)
sh->process_weak_roots(&GenMarkSweep::adjust_pointer_closure);
if (G1StringDedup::is_enabled()) {
G1StringDedup::oops_do(&GenMarkSweep::adjust_pointer_closure);
}
GenMarkSweep::adjust_marks();
G1AdjustPointersClosure blk;

View File

@ -80,53 +80,6 @@ public:
virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
};
#define G1_PARTIAL_ARRAY_MASK 0x2
inline bool has_partial_array_mask(oop* ref) {
return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
}
// We never encode partial array oops as narrowOop*, so return false immediately.
// This allows the compiler to create optimized code when popping references from
// the work queue.
inline bool has_partial_array_mask(narrowOop* ref) {
assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
return false;
}
// Only implement set_partial_array_mask() for regular oops, not for narrowOops.
// We always encode partial arrays as regular oop, to allow the
// specialization for has_partial_array_mask() for narrowOops above.
// This means that unintentional use of this method with narrowOops are caught
// by the compiler.
inline oop* set_partial_array_mask(oop obj) {
assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
}
template <class T> inline oop clear_partial_array_mask(T* ref) {
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
}
class G1ParScanPartialArrayClosure : public G1ParClosureSuper {
G1ParScanClosure _scanner;
public:
G1ParScanPartialArrayClosure(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state, ReferenceProcessor* rp) :
G1ParClosureSuper(g1, par_scan_state), _scanner(g1, par_scan_state, rp)
{
assert(_ref_processor == NULL, "sanity");
}
G1ParScanClosure* scanner() {
return &_scanner;
}
template <class T> void do_oop_nv(T* p);
virtual void do_oop(oop* p) { do_oop_nv(p); }
virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
};
// Add back base class for metadata
class G1ParCopyHelper : public G1ParClosureSuper {
protected:
@ -173,15 +126,8 @@ typedef G1ParCopyClosure<G1BarrierKlass, false> G1ParScanMetadataClosure;
typedef G1ParCopyClosure<G1BarrierNone, true> G1ParScanAndMarkExtRootClosure;
typedef G1ParCopyClosure<G1BarrierKlass, true> G1ParScanAndMarkMetadataClosure;
// The following closure type is defined in g1_specialized_oop_closures.hpp:
//
// typedef G1ParCopyClosure<G1BarrierEvac, false> G1ParScanHeapEvacClosure;
// We use a separate closure to handle references during evacuation
// failure processing.
// We could have used another instance of G1ParScanHeapEvacClosure
// (since that closure no longer assumes that the references it
// handles point into the collection set).
typedef G1ParCopyClosure<G1BarrierEvac, false> G1ParScanHeapEvacFailureClosure;

View File

@ -462,8 +462,9 @@ void G1RemSet::cleanup_after_oops_into_collection_set_do() {
int into_cset_n_buffers = into_cset_dcqs.completed_buffers_num();
if (_g1->evacuation_failed()) {
// Restore remembered sets for the regions pointing into the collection set.
double restore_remembered_set_start = os::elapsedTime();
// Restore remembered sets for the regions pointing into the collection set.
if (G1DeferredRSUpdate) {
// If deferred RS updates are enabled then we just need to transfer
// the completed buffers from (a) the DirtyCardQueueSet used to hold
@ -482,6 +483,8 @@ void G1RemSet::cleanup_after_oops_into_collection_set_do() {
}
assert(n_completed_buffers == into_cset_n_buffers, "missed some buffers");
}
_g1->g1_policy()->phase_times()->record_evac_fail_restore_remsets((os::elapsedTime() - restore_remembered_set_start) * 1000.0);
}
// Free any completed buffers in the DirtyCardQueueSet used to hold cards

View File

@ -0,0 +1,208 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
#include "gc_implementation/g1/g1StringDedupQueue.hpp"
#include "gc_implementation/g1/g1StringDedupStat.hpp"
#include "gc_implementation/g1/g1StringDedupTable.hpp"
#include "gc_implementation/g1/g1StringDedupThread.hpp"
bool G1StringDedup::_enabled = false;
void G1StringDedup::initialize() {
assert(UseG1GC, "String deduplication only available with G1");
if (UseStringDeduplication) {
_enabled = true;
G1StringDedupQueue::create();
G1StringDedupTable::create();
G1StringDedupThread::create();
}
}
bool G1StringDedup::is_candidate_from_mark(oop obj) {
if (java_lang_String::is_instance(obj)) {
bool from_young = G1CollectedHeap::heap()->heap_region_containing_raw(obj)->is_young();
if (from_young && obj->age() < StringDeduplicationAgeThreshold) {
// Candidate found. String is being evacuated from young to old but has not
// reached the deduplication age threshold, i.e. has not previously been a
// candidate during its life in the young generation.
return true;
}
}
// Not a candidate
return false;
}
void G1StringDedup::enqueue_from_mark(oop java_string) {
assert(is_enabled(), "String deduplication not enabled");
if (is_candidate_from_mark(java_string)) {
G1StringDedupQueue::push(0 /* worker_id */, java_string);
}
}
bool G1StringDedup::is_candidate_from_evacuation(bool from_young, bool to_young, oop obj) {
if (from_young && java_lang_String::is_instance(obj)) {
if (to_young && obj->age() == StringDeduplicationAgeThreshold) {
// Candidate found. String is being evacuated from young to young and just
// reached the deduplication age threshold.
return true;
}
if (!to_young && obj->age() < StringDeduplicationAgeThreshold) {
// Candidate found. String is being evacuated from young to old but has not
// reached the deduplication age threshold, i.e. has not previously been a
// candidate during its life in the young generation.
return true;
}
}
// Not a candidate
return false;
}
void G1StringDedup::enqueue_from_evacuation(bool from_young, bool to_young, uint worker_id, oop java_string) {
assert(is_enabled(), "String deduplication not enabled");
if (is_candidate_from_evacuation(from_young, to_young, java_string)) {
G1StringDedupQueue::push(worker_id, java_string);
}
}
void G1StringDedup::deduplicate(oop java_string) {
assert(is_enabled(), "String deduplication not enabled");
G1StringDedupStat dummy; // Statistics from this path is never used
G1StringDedupTable::deduplicate(java_string, dummy);
}
void G1StringDedup::oops_do(OopClosure* keep_alive) {
assert(is_enabled(), "String deduplication not enabled");
unlink_or_oops_do(NULL, keep_alive);
}
void G1StringDedup::unlink(BoolObjectClosure* is_alive) {
assert(is_enabled(), "String deduplication not enabled");
// Don't allow a potential resize or rehash during unlink, as the unlink
// operation itself might remove enough entries to invalidate such a decision.
unlink_or_oops_do(is_alive, NULL, false /* allow_resize_and_rehash */);
}
//
// Task for parallel unlink_or_oops_do() operation on the deduplication queue
// and table.
//
class G1StringDedupUnlinkOrOopsDoTask : public AbstractGangTask {
private:
G1StringDedupUnlinkOrOopsDoClosure _cl;
public:
G1StringDedupUnlinkOrOopsDoTask(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
bool allow_resize_and_rehash) :
AbstractGangTask("G1StringDedupUnlinkOrOopsDoTask"),
_cl(is_alive, keep_alive, allow_resize_and_rehash) {
}
virtual void work(uint worker_id) {
double queue_fixup_start = os::elapsedTime();
G1StringDedupQueue::unlink_or_oops_do(&_cl);
double table_fixup_start = os::elapsedTime();
G1StringDedupTable::unlink_or_oops_do(&_cl, worker_id);
double queue_fixup_time_ms = (table_fixup_start - queue_fixup_start) * 1000.0;
double table_fixup_time_ms = (os::elapsedTime() - table_fixup_start) * 1000.0;
G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
g1p->phase_times()->record_string_dedup_queue_fixup_worker_time(worker_id, queue_fixup_time_ms);
g1p->phase_times()->record_string_dedup_table_fixup_worker_time(worker_id, table_fixup_time_ms);
}
};
void G1StringDedup::unlink_or_oops_do(BoolObjectClosure* is_alive, OopClosure* keep_alive, bool allow_resize_and_rehash) {
assert(is_enabled(), "String deduplication not enabled");
G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
g1p->phase_times()->note_string_dedup_fixup_start();
double fixup_start = os::elapsedTime();
G1StringDedupUnlinkOrOopsDoTask task(is_alive, keep_alive, allow_resize_and_rehash);
if (G1CollectedHeap::use_parallel_gc_threads()) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
g1h->set_par_threads();
g1h->workers()->run_task(&task);
g1h->set_par_threads(0);
} else {
task.work(0);
}
double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
g1p->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
g1p->phase_times()->note_string_dedup_fixup_end();
}
void G1StringDedup::threads_do(ThreadClosure* tc) {
assert(is_enabled(), "String deduplication not enabled");
tc->do_thread(G1StringDedupThread::thread());
}
void G1StringDedup::print_worker_threads_on(outputStream* st) {
assert(is_enabled(), "String deduplication not enabled");
G1StringDedupThread::thread()->print_on(st);
st->cr();
}
void G1StringDedup::verify() {
assert(is_enabled(), "String deduplication not enabled");
G1StringDedupQueue::verify();
G1StringDedupTable::verify();
}
G1StringDedupUnlinkOrOopsDoClosure::G1StringDedupUnlinkOrOopsDoClosure(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
bool allow_resize_and_rehash) :
_is_alive(is_alive),
_keep_alive(keep_alive),
_resized_table(NULL),
_rehashed_table(NULL),
_next_queue(0),
_next_bucket(0) {
if (allow_resize_and_rehash) {
// If both resize and rehash is needed, only do resize. Rehash of
// the table will eventually happen if the situation persists.
_resized_table = G1StringDedupTable::prepare_resize();
if (!is_resizing()) {
_rehashed_table = G1StringDedupTable::prepare_rehash();
}
}
}
G1StringDedupUnlinkOrOopsDoClosure::~G1StringDedupUnlinkOrOopsDoClosure() {
assert(!is_resizing() || !is_rehashing(), "Can not both resize and rehash");
if (is_resizing()) {
G1StringDedupTable::finish_resize(_resized_table);
} else if (is_rehashing()) {
G1StringDedupTable::finish_rehash(_rehashed_table);
}
}

View File

@ -0,0 +1,202 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUP_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUP_HPP
//
// String Deduplication
//
// String deduplication aims to reduce the heap live-set by deduplicating identical
// instances of String so that they share the same backing character array.
//
// The deduplication process is divided in two main parts, 1) finding the objects to
// deduplicate, and 2) deduplicating those objects. The first part is done as part of
// a normal GC cycle when objects are marked or evacuated. At this time a check is
// applied on each object to check if it is a candidate for deduplication. If so, the
// object is placed on the deduplication queue for later processing. The second part,
// processing the objects on the deduplication queue, is a concurrent phase which
// starts right after the stop-the-wold marking/evacuation phase. This phase is
// executed by the deduplication thread, which pulls deduplication candidates of the
// deduplication queue and tries to deduplicate them.
//
// A deduplication hashtable is used to keep track of all unique character arrays
// used by String objects. When deduplicating, a lookup is made in this table to see
// if there is already an identical character array somewhere on the heap. If so, the
// String object is adjusted to point to that character array, releasing the reference
// to the original array allowing it to eventually be garbage collected. If the lookup
// fails the character array is instead inserted into the hashtable so that this array
// can be shared at some point in the future.
//
// Candidate selection
//
// An object is considered a deduplication candidate if all of the following
// statements are true:
//
// - The object is an instance of java.lang.String
//
// - The object is being evacuated from a young heap region
//
// - The object is being evacuated to a young/survivor heap region and the
// object's age is equal to the deduplication age threshold
//
// or
//
// The object is being evacuated to an old heap region and the object's age is
// less than the deduplication age threshold
//
// Once an string object has been promoted to an old region, or its age is higher
// than the deduplication age threshold, is will never become a candidate again.
// This approach avoids making the same object a candidate more than once.
//
// Interned strings are a bit special. They are explicitly deduplicated just before
// being inserted into the StringTable (to avoid counteracting C2 optimizations done
// on string literals), then they also become deduplication candidates if they reach
// the deduplication age threshold or are evacuated to an old heap region. The second
// attempt to deduplicate such strings will be in vain, but we have no fast way of
// filtering them out. This has not shown to be a problem, as the number of interned
// strings is usually dwarfed by the number of normal (non-interned) strings.
//
// For additional information on string deduplication, please see JEP 192,
// http://openjdk.java.net/jeps/192
//
#include "memory/allocation.hpp"
#include "oops/oop.hpp"
class OopClosure;
class BoolObjectClosure;
class ThreadClosure;
class outputStream;
class G1StringDedupTable;
//
// Main interface for interacting with string deduplication.
//
class G1StringDedup : public AllStatic {
private:
// Single state for checking if both G1 and string deduplication is enabled.
static bool _enabled;
// Candidate selection policies, returns true if the given object is
// candidate for string deduplication.
static bool is_candidate_from_mark(oop obj);
static bool is_candidate_from_evacuation(bool from_young, bool to_young, oop obj);
public:
// Returns true if both G1 and string deduplication is enabled.
static bool is_enabled() {
return _enabled;
}
static void initialize();
// Immediately deduplicates the given String object, bypassing the
// the deduplication queue.
static void deduplicate(oop java_string);
// Enqueues a deduplication candidate for later processing by the deduplication
// thread. Before enqueuing, these functions apply the appropriate candidate
// selection policy to filters out non-candidates.
static void enqueue_from_mark(oop java_string);
static void enqueue_from_evacuation(bool from_young, bool to_young,
unsigned int queue, oop java_string);
static void oops_do(OopClosure* keep_alive);
static void unlink(BoolObjectClosure* is_alive);
static void unlink_or_oops_do(BoolObjectClosure* is_alive, OopClosure* keep_alive,
bool allow_resize_and_rehash = true);
static void threads_do(ThreadClosure* tc);
static void print_worker_threads_on(outputStream* st);
static void verify();
};
//
// This closure encapsulates the state and the closures needed when scanning
// the deduplication queue and table during the unlink_or_oops_do() operation.
// A single instance of this closure is created and then shared by all worker
// threads participating in the scan. The _next_queue and _next_bucket fields
// provide a simple mechanism for GC workers to claim exclusive access to a
// queue or a table partition.
//
class G1StringDedupUnlinkOrOopsDoClosure : public StackObj {
private:
BoolObjectClosure* _is_alive;
OopClosure* _keep_alive;
G1StringDedupTable* _resized_table;
G1StringDedupTable* _rehashed_table;
size_t _next_queue;
size_t _next_bucket;
public:
G1StringDedupUnlinkOrOopsDoClosure(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
bool allow_resize_and_rehash);
~G1StringDedupUnlinkOrOopsDoClosure();
bool is_resizing() {
return _resized_table != NULL;
}
G1StringDedupTable* resized_table() {
return _resized_table;
}
bool is_rehashing() {
return _rehashed_table != NULL;
}
// Atomically claims the next available queue for exclusive access by
// the current thread. Returns the queue number of the claimed queue.
size_t claim_queue() {
return (size_t)Atomic::add_ptr(1, &_next_queue) - 1;
}
// Atomically claims the next available table partition for exclusive
// access by the current thread. Returns the table bucket number where
// the claimed partition starts.
size_t claim_table_partition(size_t partition_size) {
return (size_t)Atomic::add_ptr(partition_size, &_next_bucket) - partition_size;
}
// Applies and returns the result from the is_alive closure, or
// returns true if no such closure was provided.
bool is_alive(oop o) {
if (_is_alive != NULL) {
return _is_alive->do_object_b(o);
}
return true;
}
// Applies the keep_alive closure, or does nothing if no such
// closure was provided.
void keep_alive(oop* p) {
if (_keep_alive != NULL) {
_keep_alive->do_oop(p);
}
}
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUP_HPP

View File

@ -0,0 +1,162 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "gc_implementation/g1/g1StringDedupQueue.hpp"
#include "memory/gcLocker.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/stack.inline.hpp"
G1StringDedupQueue* G1StringDedupQueue::_queue = NULL;
const size_t G1StringDedupQueue::_max_size = 1000000; // Max number of elements per queue
const size_t G1StringDedupQueue::_max_cache_size = 0; // Max cache size per queue
G1StringDedupQueue::G1StringDedupQueue() :
_cursor(0),
_empty(true),
_dropped(0) {
_nqueues = MAX2(ParallelGCThreads, (size_t)1);
_queues = NEW_C_HEAP_ARRAY(G1StringDedupWorkerQueue, _nqueues, mtGC);
for (size_t i = 0; i < _nqueues; i++) {
new (_queues + i) G1StringDedupWorkerQueue(G1StringDedupWorkerQueue::default_segment_size(), _max_cache_size, _max_size);
}
}
G1StringDedupQueue::~G1StringDedupQueue() {
ShouldNotReachHere();
}
void G1StringDedupQueue::create() {
assert(_queue == NULL, "One string deduplication queue allowed");
_queue = new G1StringDedupQueue();
}
void G1StringDedupQueue::wait() {
MonitorLockerEx ml(StringDedupQueue_lock, Mutex::_no_safepoint_check_flag);
while (_queue->_empty) {
ml.wait(Mutex::_no_safepoint_check_flag);
}
}
void G1StringDedupQueue::push(uint worker_id, oop java_string) {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint");
assert(worker_id < _queue->_nqueues, "Invalid queue");
// Push and notify waiter
G1StringDedupWorkerQueue& worker_queue = _queue->_queues[worker_id];
if (!worker_queue.is_full()) {
worker_queue.push(java_string);
if (_queue->_empty) {
MonitorLockerEx ml(StringDedupQueue_lock, Mutex::_no_safepoint_check_flag);
if (_queue->_empty) {
// Mark non-empty and notify waiter
_queue->_empty = false;
ml.notify();
}
}
} else {
// Queue is full, drop the string and update the statistics
Atomic::inc_ptr(&_queue->_dropped);
}
}
oop G1StringDedupQueue::pop() {
assert(!SafepointSynchronize::is_at_safepoint(), "Must not be at safepoint");
No_Safepoint_Verifier nsv;
// Try all queues before giving up
for (size_t tries = 0; tries < _queue->_nqueues; tries++) {
// The cursor indicates where we left of last time
G1StringDedupWorkerQueue* queue = &_queue->_queues[_queue->_cursor];
while (!queue->is_empty()) {
oop obj = queue->pop();
// The oop we pop can be NULL if it was marked
// dead. Just ignore those and pop the next oop.
if (obj != NULL) {
return obj;
}
}
// Try next queue
_queue->_cursor = (_queue->_cursor + 1) % _queue->_nqueues;
}
// Mark empty
_queue->_empty = true;
return NULL;
}
void G1StringDedupQueue::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl) {
// A worker thread first claims a queue, which ensures exclusive
// access to that queue, then continues to process it.
for (;;) {
// Grab next queue to scan
size_t queue = cl->claim_queue();
if (queue >= _queue->_nqueues) {
// End of queues
break;
}
// Scan the queue
unlink_or_oops_do(cl, queue);
}
}
void G1StringDedupQueue::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, size_t queue) {
assert(queue < _queue->_nqueues, "Invalid queue");
StackIterator<oop, mtGC> iter(_queue->_queues[queue]);
while (!iter.is_empty()) {
oop* p = iter.next_addr();
if (*p != NULL) {
if (cl->is_alive(*p)) {
cl->keep_alive(p);
} else {
// Clear dead reference
*p = NULL;
}
}
}
}
void G1StringDedupQueue::print_statistics(outputStream* st) {
st->print_cr(
" [Queue]\n"
" [Dropped: "UINTX_FORMAT"]", _queue->_dropped);
}
void G1StringDedupQueue::verify() {
for (size_t i = 0; i < _queue->_nqueues; i++) {
StackIterator<oop, mtGC> iter(_queue->_queues[i]);
while (!iter.is_empty()) {
oop obj = iter.next();
if (obj != NULL) {
guarantee(Universe::heap()->is_in_reserved(obj), "Object must be on the heap");
guarantee(!obj->is_forwarded(), "Object must not be forwarded");
guarantee(java_lang_String::is_instance(obj), "Object must be a String");
}
}
}
}

View File

@ -0,0 +1,97 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPQUEUE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPQUEUE_HPP
#include "memory/allocation.hpp"
#include "oops/oop.hpp"
#include "utilities/stack.hpp"
class G1StringDedupUnlinkOrOopsDoClosure;
//
// The deduplication queue acts as the communication channel between the stop-the-world
// mark/evacuation phase and the concurrent deduplication phase. Deduplication candidates
// found during mark/evacuation are placed on this queue for later processing in the
// deduplication thread. A queue entry is an oop pointing to a String object (as opposed
// to entries in the deduplication hashtable which points to character arrays).
//
// While users of the queue treat it as a single queue, it is implemented as a set of
// queues, one queue per GC worker thread, to allow lock-free and cache-friendly enqueue
// operations by the GC workers.
//
// The oops in the queue are treated as weak pointers, meaning the objects they point to
// can become unreachable and pruned (cleared) before being popped by the deduplication
// thread.
//
// Pushing to the queue is thread safe (this relies on each thread using a unique worker
// id), but only allowed during a safepoint. Popping from the queue is NOT thread safe
// and can only be done by the deduplication thread outside a safepoint.
//
// The StringDedupQueue_lock is only used for blocking and waking up the deduplication
// thread in case the queue is empty or becomes non-empty, respectively. This lock does
// not otherwise protect the queue content.
//
class G1StringDedupQueue : public CHeapObj<mtGC> {
private:
typedef Stack<oop, mtGC> G1StringDedupWorkerQueue;
static G1StringDedupQueue* _queue;
static const size_t _max_size;
static const size_t _max_cache_size;
G1StringDedupWorkerQueue* _queues;
size_t _nqueues;
size_t _cursor;
volatile bool _empty;
// Statistics counter, only used for logging.
uintx _dropped;
G1StringDedupQueue();
~G1StringDedupQueue();
static void unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, size_t queue);
public:
static void create();
// Blocks and waits for the queue to become non-empty.
static void wait();
// Pushes a deduplication candidate onto a specific GC worker queue.
static void push(uint worker_id, oop java_string);
// Pops a deduplication candidate from any queue, returns NULL if
// all queues are empty.
static oop pop();
static void unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl);
static void print_statistics(outputStream* st);
static void verify();
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPQUEUE_HPP

View File

@ -0,0 +1,162 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1StringDedupStat.hpp"
G1StringDedupStat::G1StringDedupStat() :
_inspected(0),
_skipped(0),
_hashed(0),
_known(0),
_new(0),
_new_bytes(0),
_deduped(0),
_deduped_bytes(0),
_deduped_young(0),
_deduped_young_bytes(0),
_deduped_old(0),
_deduped_old_bytes(0),
_idle(0),
_exec(0),
_block(0),
_start(0.0),
_idle_elapsed(0.0),
_exec_elapsed(0.0),
_block_elapsed(0.0) {
}
void G1StringDedupStat::add(const G1StringDedupStat& stat) {
_inspected += stat._inspected;
_skipped += stat._skipped;
_hashed += stat._hashed;
_known += stat._known;
_new += stat._new;
_new_bytes += stat._new_bytes;
_deduped += stat._deduped;
_deduped_bytes += stat._deduped_bytes;
_deduped_young += stat._deduped_young;
_deduped_young_bytes += stat._deduped_young_bytes;
_deduped_old += stat._deduped_old;
_deduped_old_bytes += stat._deduped_old_bytes;
_idle += stat._idle;
_exec += stat._exec;
_block += stat._block;
_idle_elapsed += stat._idle_elapsed;
_exec_elapsed += stat._exec_elapsed;
_block_elapsed += stat._block_elapsed;
}
void G1StringDedupStat::print_summary(outputStream* st, const G1StringDedupStat& last_stat, const G1StringDedupStat& total_stat) {
double total_deduped_bytes_percent = 0.0;
if (total_stat._new_bytes > 0) {
// Avoid division by zero
total_deduped_bytes_percent = (double)total_stat._deduped_bytes / (double)total_stat._new_bytes * 100.0;
}
st->date_stamp(PrintGCDateStamps);
st->stamp(PrintGCTimeStamps);
st->print_cr(
"[GC concurrent-string-deduplication, "
G1_STRDEDUP_BYTES_FORMAT_NS"->"G1_STRDEDUP_BYTES_FORMAT_NS"("G1_STRDEDUP_BYTES_FORMAT_NS"), avg "
G1_STRDEDUP_PERCENT_FORMAT_NS", "G1_STRDEDUP_TIME_FORMAT"]",
G1_STRDEDUP_BYTES_PARAM(last_stat._new_bytes),
G1_STRDEDUP_BYTES_PARAM(last_stat._new_bytes - last_stat._deduped_bytes),
G1_STRDEDUP_BYTES_PARAM(last_stat._deduped_bytes),
total_deduped_bytes_percent,
last_stat._exec_elapsed);
}
void G1StringDedupStat::print_statistics(outputStream* st, const G1StringDedupStat& stat, bool total) {
double young_percent = 0.0;
double old_percent = 0.0;
double skipped_percent = 0.0;
double hashed_percent = 0.0;
double known_percent = 0.0;
double new_percent = 0.0;
double deduped_percent = 0.0;
double deduped_bytes_percent = 0.0;
double deduped_young_percent = 0.0;
double deduped_young_bytes_percent = 0.0;
double deduped_old_percent = 0.0;
double deduped_old_bytes_percent = 0.0;
if (stat._inspected > 0) {
// Avoid division by zero
skipped_percent = (double)stat._skipped / (double)stat._inspected * 100.0;
hashed_percent = (double)stat._hashed / (double)stat._inspected * 100.0;
known_percent = (double)stat._known / (double)stat._inspected * 100.0;
new_percent = (double)stat._new / (double)stat._inspected * 100.0;
}
if (stat._new > 0) {
// Avoid division by zero
deduped_percent = (double)stat._deduped / (double)stat._new * 100.0;
}
if (stat._deduped > 0) {
// Avoid division by zero
deduped_young_percent = (double)stat._deduped_young / (double)stat._deduped * 100.0;
deduped_old_percent = (double)stat._deduped_old / (double)stat._deduped * 100.0;
}
if (stat._new_bytes > 0) {
// Avoid division by zero
deduped_bytes_percent = (double)stat._deduped_bytes / (double)stat._new_bytes * 100.0;
}
if (stat._deduped_bytes > 0) {
// Avoid division by zero
deduped_young_bytes_percent = (double)stat._deduped_young_bytes / (double)stat._deduped_bytes * 100.0;
deduped_old_bytes_percent = (double)stat._deduped_old_bytes / (double)stat._deduped_bytes * 100.0;
}
if (total) {
st->print_cr(
" [Total Exec: "UINTX_FORMAT"/"G1_STRDEDUP_TIME_FORMAT", Idle: "UINTX_FORMAT"/"G1_STRDEDUP_TIME_FORMAT", Blocked: "UINTX_FORMAT"/"G1_STRDEDUP_TIME_FORMAT"]",
stat._exec, stat._exec_elapsed, stat._idle, stat._idle_elapsed, stat._block, stat._block_elapsed);
} else {
st->print_cr(
" [Last Exec: "G1_STRDEDUP_TIME_FORMAT", Idle: "G1_STRDEDUP_TIME_FORMAT", Blocked: "UINTX_FORMAT"/"G1_STRDEDUP_TIME_FORMAT"]",
stat._exec_elapsed, stat._idle_elapsed, stat._block, stat._block_elapsed);
}
st->print_cr(
" [Inspected: "G1_STRDEDUP_OBJECTS_FORMAT"]\n"
" [Skipped: "G1_STRDEDUP_OBJECTS_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT")]\n"
" [Hashed: "G1_STRDEDUP_OBJECTS_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT")]\n"
" [Known: "G1_STRDEDUP_OBJECTS_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT")]\n"
" [New: "G1_STRDEDUP_OBJECTS_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT") "G1_STRDEDUP_BYTES_FORMAT"]\n"
" [Deduplicated: "G1_STRDEDUP_OBJECTS_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT") "G1_STRDEDUP_BYTES_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT")]\n"
" [Young: "G1_STRDEDUP_OBJECTS_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT") "G1_STRDEDUP_BYTES_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT")]\n"
" [Old: "G1_STRDEDUP_OBJECTS_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT") "G1_STRDEDUP_BYTES_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT")]",
stat._inspected,
stat._skipped, skipped_percent,
stat._hashed, hashed_percent,
stat._known, known_percent,
stat._new, new_percent, G1_STRDEDUP_BYTES_PARAM(stat._new_bytes),
stat._deduped, deduped_percent, G1_STRDEDUP_BYTES_PARAM(stat._deduped_bytes), deduped_bytes_percent,
stat._deduped_young, deduped_young_percent, G1_STRDEDUP_BYTES_PARAM(stat._deduped_young_bytes), deduped_young_bytes_percent,
stat._deduped_old, deduped_old_percent, G1_STRDEDUP_BYTES_PARAM(stat._deduped_old_bytes), deduped_old_bytes_percent);
}

View File

@ -0,0 +1,142 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPSTAT_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPSTAT_HPP
#include "memory/allocation.hpp"
#include "runtime/os.hpp"
// Macros for GC log output formating
#define G1_STRDEDUP_OBJECTS_FORMAT UINTX_FORMAT_W(12)
#define G1_STRDEDUP_TIME_FORMAT "%1.7lf secs"
#define G1_STRDEDUP_PERCENT_FORMAT "%5.1lf%%"
#define G1_STRDEDUP_PERCENT_FORMAT_NS "%.1lf%%"
#define G1_STRDEDUP_BYTES_FORMAT "%8.1lf%s"
#define G1_STRDEDUP_BYTES_FORMAT_NS "%.1lf%s"
#define G1_STRDEDUP_BYTES_PARAM(bytes) byte_size_in_proper_unit((double)(bytes)), proper_unit_for_byte_size((bytes))
//
// Statistics gathered by the deduplication thread.
//
class G1StringDedupStat : public StackObj {
private:
// Counters
uintx _inspected;
uintx _skipped;
uintx _hashed;
uintx _known;
uintx _new;
uintx _new_bytes;
uintx _deduped;
uintx _deduped_bytes;
uintx _deduped_young;
uintx _deduped_young_bytes;
uintx _deduped_old;
uintx _deduped_old_bytes;
uintx _idle;
uintx _exec;
uintx _block;
// Time spent by the deduplication thread in different phases
double _start;
double _idle_elapsed;
double _exec_elapsed;
double _block_elapsed;
public:
G1StringDedupStat();
void inc_inspected() {
_inspected++;
}
void inc_skipped() {
_skipped++;
}
void inc_hashed() {
_hashed++;
}
void inc_known() {
_known++;
}
void inc_new(uintx bytes) {
_new++;
_new_bytes += bytes;
}
void inc_deduped_young(uintx bytes) {
_deduped++;
_deduped_bytes += bytes;
_deduped_young++;
_deduped_young_bytes += bytes;
}
void inc_deduped_old(uintx bytes) {
_deduped++;
_deduped_bytes += bytes;
_deduped_old++;
_deduped_old_bytes += bytes;
}
void mark_idle() {
_start = os::elapsedTime();
_idle++;
}
void mark_exec() {
double now = os::elapsedTime();
_idle_elapsed = now - _start;
_start = now;
_exec++;
}
void mark_block() {
double now = os::elapsedTime();
_exec_elapsed += now - _start;
_start = now;
_block++;
}
void mark_unblock() {
double now = os::elapsedTime();
_block_elapsed += now - _start;
_start = now;
}
void mark_done() {
double now = os::elapsedTime();
_exec_elapsed += now - _start;
}
void add(const G1StringDedupStat& stat);
static void print_summary(outputStream* st, const G1StringDedupStat& last_stat, const G1StringDedupStat& total_stat);
static void print_statistics(outputStream* st, const G1StringDedupStat& stat, bool total);
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPSTAT_HPP

View File

@ -0,0 +1,569 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/altHashing.hpp"
#include "classfile/javaClasses.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/g1StringDedupTable.hpp"
#include "memory/gcLocker.hpp"
#include "memory/padded.inline.hpp"
#include "oops/typeArrayOop.hpp"
#include "runtime/mutexLocker.hpp"
//
// Freelist in the deduplication table entry cache. Links table
// entries together using their _next fields.
//
class G1StringDedupEntryFreeList : public CHeapObj<mtGC> {
private:
G1StringDedupEntry* _list;
size_t _length;
public:
G1StringDedupEntryFreeList() :
_list(NULL),
_length(0) {
}
void add(G1StringDedupEntry* entry) {
entry->set_next(_list);
_list = entry;
_length++;
}
G1StringDedupEntry* remove() {
G1StringDedupEntry* entry = _list;
if (entry != NULL) {
_list = entry->next();
_length--;
}
return entry;
}
size_t length() {
return _length;
}
};
//
// Cache of deduplication table entries. This cache provides fast allocation and
// reuse of table entries to lower the pressure on the underlying allocator.
// But more importantly, it provides fast/deferred freeing of table entries. This
// is important because freeing of table entries is done during stop-the-world
// phases and it is not uncommon for large number of entries to be freed at once.
// Tables entries that are freed during these phases are placed onto a freelist in
// the cache. The deduplication thread, which executes in a concurrent phase, will
// later reuse or free the underlying memory for these entries.
//
// The cache allows for single-threaded allocations and multi-threaded frees.
// Allocations are synchronized by StringDedupTable_lock as part of a table
// modification.
//
class G1StringDedupEntryCache : public CHeapObj<mtGC> {
private:
// One freelist per GC worker to allow lock less freeing of
// entries while doing a parallel scan of the table. Using
// PaddedEnd to avoid false sharing.
PaddedEnd<G1StringDedupEntryFreeList>* _lists;
size_t _nlists;
public:
G1StringDedupEntryCache();
~G1StringDedupEntryCache();
// Get a table entry from the cache freelist, or allocate a new
// entry if the cache is empty.
G1StringDedupEntry* alloc();
// Insert a table entry into the cache freelist.
void free(G1StringDedupEntry* entry, uint worker_id);
// Returns current number of entries in the cache.
size_t size();
// If the cache has grown above the given max size, trim it down
// and deallocate the memory occupied by trimmed of entries.
void trim(size_t max_size);
};
G1StringDedupEntryCache::G1StringDedupEntryCache() {
_nlists = MAX2(ParallelGCThreads, (size_t)1);
_lists = PaddedArray<G1StringDedupEntryFreeList, mtGC>::create_unfreeable((uint)_nlists);
}
G1StringDedupEntryCache::~G1StringDedupEntryCache() {
ShouldNotReachHere();
}
G1StringDedupEntry* G1StringDedupEntryCache::alloc() {
for (size_t i = 0; i < _nlists; i++) {
G1StringDedupEntry* entry = _lists[i].remove();
if (entry != NULL) {
return entry;
}
}
return new G1StringDedupEntry();
}
void G1StringDedupEntryCache::free(G1StringDedupEntry* entry, uint worker_id) {
assert(entry->obj() != NULL, "Double free");
assert(worker_id < _nlists, "Invalid worker id");
entry->set_obj(NULL);
entry->set_hash(0);
_lists[worker_id].add(entry);
}
size_t G1StringDedupEntryCache::size() {
size_t size = 0;
for (size_t i = 0; i < _nlists; i++) {
size += _lists[i].length();
}
return size;
}
void G1StringDedupEntryCache::trim(size_t max_size) {
size_t cache_size = 0;
for (size_t i = 0; i < _nlists; i++) {
G1StringDedupEntryFreeList* list = &_lists[i];
cache_size += list->length();
while (cache_size > max_size) {
G1StringDedupEntry* entry = list->remove();
assert(entry != NULL, "Should not be null");
cache_size--;
delete entry;
}
}
}
G1StringDedupTable* G1StringDedupTable::_table = NULL;
G1StringDedupEntryCache* G1StringDedupTable::_entry_cache = NULL;
const size_t G1StringDedupTable::_min_size = (1 << 10); // 1024
const size_t G1StringDedupTable::_max_size = (1 << 24); // 16777216
const double G1StringDedupTable::_grow_load_factor = 2.0; // Grow table at 200% load
const double G1StringDedupTable::_shrink_load_factor = _grow_load_factor / 3.0; // Shrink table at 67% load
const double G1StringDedupTable::_max_cache_factor = 0.1; // Cache a maximum of 10% of the table size
const uintx G1StringDedupTable::_rehash_multiple = 60; // Hash bucket has 60 times more collisions than expected
const uintx G1StringDedupTable::_rehash_threshold = (uintx)(_rehash_multiple * _grow_load_factor);
uintx G1StringDedupTable::_entries_added = 0;
uintx G1StringDedupTable::_entries_removed = 0;
uintx G1StringDedupTable::_resize_count = 0;
uintx G1StringDedupTable::_rehash_count = 0;
G1StringDedupTable::G1StringDedupTable(size_t size, jint hash_seed) :
_size(size),
_entries(0),
_grow_threshold((uintx)(size * _grow_load_factor)),
_shrink_threshold((uintx)(size * _shrink_load_factor)),
_rehash_needed(false),
_hash_seed(hash_seed) {
assert(is_power_of_2(size), "Table size must be a power of 2");
_buckets = NEW_C_HEAP_ARRAY(G1StringDedupEntry*, _size, mtGC);
memset(_buckets, 0, _size * sizeof(G1StringDedupEntry*));
}
G1StringDedupTable::~G1StringDedupTable() {
FREE_C_HEAP_ARRAY(G1StringDedupEntry*, _buckets, mtGC);
}
void G1StringDedupTable::create() {
assert(_table == NULL, "One string deduplication table allowed");
_entry_cache = new G1StringDedupEntryCache();
_table = new G1StringDedupTable(_min_size);
}
void G1StringDedupTable::add(typeArrayOop value, unsigned int hash, G1StringDedupEntry** list) {
G1StringDedupEntry* entry = _entry_cache->alloc();
entry->set_obj(value);
entry->set_hash(hash);
entry->set_next(*list);
*list = entry;
_entries++;
}
void G1StringDedupTable::remove(G1StringDedupEntry** pentry, uint worker_id) {
G1StringDedupEntry* entry = *pentry;
*pentry = entry->next();
_entry_cache->free(entry, worker_id);
}
void G1StringDedupTable::transfer(G1StringDedupEntry** pentry, G1StringDedupTable* dest) {
G1StringDedupEntry* entry = *pentry;
*pentry = entry->next();
unsigned int hash = entry->hash();
size_t index = dest->hash_to_index(hash);
G1StringDedupEntry** list = dest->bucket(index);
entry->set_next(*list);
*list = entry;
}
bool G1StringDedupTable::equals(typeArrayOop value1, typeArrayOop value2) {
return (value1 == value2 ||
(value1->length() == value2->length() &&
(!memcmp(value1->base(T_CHAR),
value2->base(T_CHAR),
value1->length() * sizeof(jchar)))));
}
typeArrayOop G1StringDedupTable::lookup(typeArrayOop value, unsigned int hash,
G1StringDedupEntry** list, uintx &count) {
for (G1StringDedupEntry* entry = *list; entry != NULL; entry = entry->next()) {
if (entry->hash() == hash) {
typeArrayOop existing_value = entry->obj();
if (equals(value, existing_value)) {
// Match found
return existing_value;
}
}
count++;
}
// Not found
return NULL;
}
typeArrayOop G1StringDedupTable::lookup_or_add_inner(typeArrayOop value, unsigned int hash) {
size_t index = hash_to_index(hash);
G1StringDedupEntry** list = bucket(index);
uintx count = 0;
// Lookup in list
typeArrayOop existing_value = lookup(value, hash, list, count);
// Check if rehash is needed
if (count > _rehash_threshold) {
_rehash_needed = true;
}
if (existing_value == NULL) {
// Not found, add new entry
add(value, hash, list);
// Update statistics
_entries_added++;
}
return existing_value;
}
unsigned int G1StringDedupTable::hash_code(typeArrayOop value) {
unsigned int hash;
int length = value->length();
const jchar* data = (jchar*)value->base(T_CHAR);
if (use_java_hash()) {
hash = java_lang_String::hash_code(data, length);
} else {
hash = AltHashing::murmur3_32(_table->_hash_seed, data, length);
}
return hash;
}
void G1StringDedupTable::deduplicate(oop java_string, G1StringDedupStat& stat) {
assert(java_lang_String::is_instance(java_string), "Must be a string");
No_Safepoint_Verifier nsv;
stat.inc_inspected();
typeArrayOop value = java_lang_String::value(java_string);
if (value == NULL) {
// String has no value
stat.inc_skipped();
return;
}
unsigned int hash = 0;
if (use_java_hash()) {
// Get hash code from cache
hash = java_lang_String::hash(java_string);
}
if (hash == 0) {
// Compute hash
hash = hash_code(value);
stat.inc_hashed();
}
if (use_java_hash() && hash != 0) {
// Store hash code in cache
java_lang_String::set_hash(java_string, hash);
}
typeArrayOop existing_value = lookup_or_add(value, hash);
if (existing_value == value) {
// Same value, already known
stat.inc_known();
return;
}
// Get size of value array
uintx size_in_bytes = value->size() * HeapWordSize;
stat.inc_new(size_in_bytes);
if (existing_value != NULL) {
// Enqueue the reference to make sure it is kept alive. Concurrent mark might
// otherwise declare it dead if there are no other strong references to this object.
G1SATBCardTableModRefBS::enqueue(existing_value);
// Existing value found, deduplicate string
java_lang_String::set_value(java_string, existing_value);
if (G1CollectedHeap::heap()->is_in_young(value)) {
stat.inc_deduped_young(size_in_bytes);
} else {
stat.inc_deduped_old(size_in_bytes);
}
}
}
G1StringDedupTable* G1StringDedupTable::prepare_resize() {
size_t size = _table->_size;
// Check if the hashtable needs to be resized
if (_table->_entries > _table->_grow_threshold) {
// Grow table, double the size
size *= 2;
if (size > _max_size) {
// Too big, don't resize
return NULL;
}
} else if (_table->_entries < _table->_shrink_threshold) {
// Shrink table, half the size
size /= 2;
if (size < _min_size) {
// Too small, don't resize
return NULL;
}
} else if (StringDeduplicationResizeALot) {
// Force grow
size *= 2;
if (size > _max_size) {
// Too big, force shrink instead
size /= 4;
}
} else {
// Resize not needed
return NULL;
}
// Update statistics
_resize_count++;
// Allocate the new table. The new table will be populated by workers
// calling unlink_or_oops_do() and finally installed by finish_resize().
return new G1StringDedupTable(size, _table->_hash_seed);
}
void G1StringDedupTable::finish_resize(G1StringDedupTable* resized_table) {
assert(resized_table != NULL, "Invalid table");
resized_table->_entries = _table->_entries;
// Free old table
delete _table;
// Install new table
_table = resized_table;
}
void G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, uint worker_id) {
// The table is divided into partitions to allow lock-less parallel processing by
// multiple worker threads. A worker thread first claims a partition, which ensures
// exclusive access to that part of the table, then continues to process it. To allow
// shrinking of the table in parallel we also need to make sure that the same worker
// thread processes all partitions where entries will hash to the same destination
// partition. Since the table size is always a power of two and we always shrink by
// dividing the table in half, we know that for a given partition there is only one
// other partition whoes entries will hash to the same destination partition. That
// other partition is always the sibling partition in the second half of the table.
// For example, if the table is divided into 8 partitions, the sibling of partition 0
// is partition 4, the sibling of partition 1 is partition 5, etc.
size_t table_half = _table->_size / 2;
// Let each partition be one page worth of buckets
size_t partition_size = MIN2(table_half, os::vm_page_size() / sizeof(G1StringDedupEntry*));
assert(table_half % partition_size == 0, "Invalid partition size");
// Number of entries removed during the scan
uintx removed = 0;
for (;;) {
// Grab next partition to scan
size_t partition_begin = cl->claim_table_partition(partition_size);
size_t partition_end = partition_begin + partition_size;
if (partition_begin >= table_half) {
// End of table
break;
}
// Scan the partition followed by the sibling partition in the second half of the table
removed += unlink_or_oops_do(cl, partition_begin, partition_end, worker_id);
removed += unlink_or_oops_do(cl, table_half + partition_begin, table_half + partition_end, worker_id);
}
// Delayed update avoid contention on the table lock
if (removed > 0) {
MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag);
_table->_entries -= removed;
_entries_removed += removed;
}
}
uintx G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl,
size_t partition_begin,
size_t partition_end,
uint worker_id) {
uintx removed = 0;
for (size_t bucket = partition_begin; bucket < partition_end; bucket++) {
G1StringDedupEntry** entry = _table->bucket(bucket);
while (*entry != NULL) {
oop* p = (oop*)(*entry)->obj_addr();
if (cl->is_alive(*p)) {
cl->keep_alive(p);
if (cl->is_resizing()) {
// We are resizing the table, transfer entry to the new table
_table->transfer(entry, cl->resized_table());
} else {
if (cl->is_rehashing()) {
// We are rehashing the table, rehash the entry but keep it
// in the table. We can't transfer entries into the new table
// at this point since we don't have exclusive access to all
// destination partitions. finish_rehash() will do a single
// threaded transfer of all entries.
typeArrayOop value = (typeArrayOop)*p;
unsigned int hash = hash_code(value);
(*entry)->set_hash(hash);
}
// Move to next entry
entry = (*entry)->next_addr();
}
} else {
// Not alive, remove entry from table
_table->remove(entry, worker_id);
removed++;
}
}
}
return removed;
}
G1StringDedupTable* G1StringDedupTable::prepare_rehash() {
if (!_table->_rehash_needed && !StringDeduplicationRehashALot) {
// Rehash not needed
return NULL;
}
// Update statistics
_rehash_count++;
// Compute new hash seed
_table->_hash_seed = AltHashing::compute_seed();
// Allocate the new table, same size and hash seed
return new G1StringDedupTable(_table->_size, _table->_hash_seed);
}
void G1StringDedupTable::finish_rehash(G1StringDedupTable* rehashed_table) {
assert(rehashed_table != NULL, "Invalid table");
// Move all newly rehashed entries into the correct buckets in the new table
for (size_t bucket = 0; bucket < _table->_size; bucket++) {
G1StringDedupEntry** entry = _table->bucket(bucket);
while (*entry != NULL) {
_table->transfer(entry, rehashed_table);
}
}
rehashed_table->_entries = _table->_entries;
// Free old table
delete _table;
// Install new table
_table = rehashed_table;
}
void G1StringDedupTable::verify() {
for (size_t bucket = 0; bucket < _table->_size; bucket++) {
// Verify entries
G1StringDedupEntry** entry = _table->bucket(bucket);
while (*entry != NULL) {
typeArrayOop value = (*entry)->obj();
guarantee(value != NULL, "Object must not be NULL");
guarantee(Universe::heap()->is_in_reserved(value), "Object must be on the heap");
guarantee(!value->is_forwarded(), "Object must not be forwarded");
guarantee(value->is_typeArray(), "Object must be a typeArrayOop");
unsigned int hash = hash_code(value);
guarantee((*entry)->hash() == hash, "Table entry has inorrect hash");
guarantee(_table->hash_to_index(hash) == bucket, "Table entry has incorrect index");
entry = (*entry)->next_addr();
}
// Verify that we do not have entries with identical oops or identical arrays.
// We only need to compare entries in the same bucket. If the same oop or an
// identical array has been inserted more than once into different/incorrect
// buckets the verification step above will catch that.
G1StringDedupEntry** entry1 = _table->bucket(bucket);
while (*entry1 != NULL) {
typeArrayOop value1 = (*entry1)->obj();
G1StringDedupEntry** entry2 = (*entry1)->next_addr();
while (*entry2 != NULL) {
typeArrayOop value2 = (*entry2)->obj();
guarantee(!equals(value1, value2), "Table entries must not have identical arrays");
entry2 = (*entry2)->next_addr();
}
entry1 = (*entry1)->next_addr();
}
}
}
void G1StringDedupTable::trim_entry_cache() {
MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag);
size_t max_cache_size = (size_t)(_table->_size * _max_cache_factor);
_entry_cache->trim(max_cache_size);
}
void G1StringDedupTable::print_statistics(outputStream* st) {
st->print_cr(
" [Table]\n"
" [Memory Usage: "G1_STRDEDUP_BYTES_FORMAT_NS"]\n"
" [Size: "SIZE_FORMAT", Min: "SIZE_FORMAT", Max: "SIZE_FORMAT"]\n"
" [Entries: "UINTX_FORMAT", Load: "G1_STRDEDUP_PERCENT_FORMAT_NS", Cached: " UINTX_FORMAT ", Added: "UINTX_FORMAT", Removed: "UINTX_FORMAT"]\n"
" [Resize Count: "UINTX_FORMAT", Shrink Threshold: "UINTX_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT_NS"), Grow Threshold: "UINTX_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT_NS")]\n"
" [Rehash Count: "UINTX_FORMAT", Rehash Threshold: "UINTX_FORMAT", Hash Seed: 0x%x]\n"
" [Age Threshold: "UINTX_FORMAT"]",
G1_STRDEDUP_BYTES_PARAM(_table->_size * sizeof(G1StringDedupEntry*) + (_table->_entries + _entry_cache->size()) * sizeof(G1StringDedupEntry)),
_table->_size, _min_size, _max_size,
_table->_entries, (double)_table->_entries / (double)_table->_size * 100.0, _entry_cache->size(), _entries_added, _entries_removed,
_resize_count, _table->_shrink_threshold, _shrink_load_factor * 100.0, _table->_grow_threshold, _grow_load_factor * 100.0,
_rehash_count, _rehash_threshold, _table->_hash_seed,
StringDeduplicationAgeThreshold);
}

View File

@ -0,0 +1,230 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPTABLE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPTABLE_HPP
#include "gc_implementation/g1/g1StringDedupStat.hpp"
#include "runtime/mutexLocker.hpp"
class G1StringDedupEntryCache;
//
// Table entry in the deduplication hashtable. Points weakly to the
// character array. Can be chained in a linked list in case of hash
// collisions or when placed in a freelist in the entry cache.
//
class G1StringDedupEntry : public CHeapObj<mtGC> {
private:
G1StringDedupEntry* _next;
unsigned int _hash;
typeArrayOop _obj;
public:
G1StringDedupEntry() :
_next(NULL),
_hash(0),
_obj(NULL) {
}
G1StringDedupEntry* next() {
return _next;
}
G1StringDedupEntry** next_addr() {
return &_next;
}
void set_next(G1StringDedupEntry* next) {
_next = next;
}
unsigned int hash() {
return _hash;
}
void set_hash(unsigned int hash) {
_hash = hash;
}
typeArrayOop obj() {
return _obj;
}
typeArrayOop* obj_addr() {
return &_obj;
}
void set_obj(typeArrayOop obj) {
_obj = obj;
}
};
//
// The deduplication hashtable keeps track of all unique character arrays used
// by String objects. Each table entry weakly points to an character array, allowing
// otherwise unreachable character arrays to be declared dead and pruned from the
// table.
//
// The table is dynamically resized to accommodate the current number of table entries.
// The table has hash buckets with chains for hash collision. If the average chain
// length goes above or below given thresholds the table grows or shrinks accordingly.
//
// The table is also dynamically rehashed (using a new hash seed) if it becomes severely
// unbalanced, i.e., a hash chain is significantly longer than average.
//
// All access to the table is protected by the StringDedupTable_lock, except under
// safepoints in which case GC workers are allowed to access a table partitions they
// have claimed without first acquiring the lock. Note however, that this applies only
// the table partition (i.e. a range of elements in _buckets), not other parts of the
// table such as the _entries field, statistics counters, etc.
//
class G1StringDedupTable : public CHeapObj<mtGC> {
private:
// The currently active hashtable instance. Only modified when
// the table is resizes or rehashed.
static G1StringDedupTable* _table;
// Cache for reuse and fast alloc/free of table entries.
static G1StringDedupEntryCache* _entry_cache;
G1StringDedupEntry** _buckets;
size_t _size;
uintx _entries;
uintx _shrink_threshold;
uintx _grow_threshold;
bool _rehash_needed;
// The hash seed also dictates which hash function to use. A
// zero hash seed means we will use the Java compatible hash
// function (which doesn't use a seed), and a non-zero hash
// seed means we use the murmur3 hash function.
jint _hash_seed;
// Constants governing table resize/rehash/cache.
static const size_t _min_size;
static const size_t _max_size;
static const double _grow_load_factor;
static const double _shrink_load_factor;
static const uintx _rehash_multiple;
static const uintx _rehash_threshold;
static const double _max_cache_factor;
// Table statistics, only used for logging.
static uintx _entries_added;
static uintx _entries_removed;
static uintx _resize_count;
static uintx _rehash_count;
G1StringDedupTable(size_t size, jint hash_seed = 0);
~G1StringDedupTable();
// Returns the hash bucket at the given index.
G1StringDedupEntry** bucket(size_t index) {
return _buckets + index;
}
// Returns the hash bucket index for the given hash code.
size_t hash_to_index(unsigned int hash) {
return (size_t)hash & (_size - 1);
}
// Adds a new table entry to the given hash bucket.
void add(typeArrayOop value, unsigned int hash, G1StringDedupEntry** list);
// Removes the given table entry from the table.
void remove(G1StringDedupEntry** pentry, uint worker_id);
// Transfers a table entry from the current table to the destination table.
void transfer(G1StringDedupEntry** pentry, G1StringDedupTable* dest);
// Returns an existing character array in the given hash bucket, or NULL
// if no matching character array exists.
typeArrayOop lookup(typeArrayOop value, unsigned int hash,
G1StringDedupEntry** list, uintx &count);
// Returns an existing character array in the table, or inserts a new
// table entry if no matching character array exists.
typeArrayOop lookup_or_add_inner(typeArrayOop value, unsigned int hash);
// Thread safe lookup or add of table entry
static typeArrayOop lookup_or_add(typeArrayOop value, unsigned int hash) {
// Protect the table from concurrent access. Also note that this lock
// acts as a fence for _table, which could have been replaced by a new
// instance if the table was resized or rehashed.
MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag);
return _table->lookup_or_add_inner(value, hash);
}
// Returns true if the hashtable is currently using a Java compatible
// hash function.
static bool use_java_hash() {
return _table->_hash_seed == 0;
}
static bool equals(typeArrayOop value1, typeArrayOop value2);
// Computes the hash code for the given character array, using the
// currently active hash function and hash seed.
static unsigned int hash_code(typeArrayOop value);
static uintx unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl,
size_t partition_begin,
size_t partition_end,
uint worker_id);
public:
static void create();
// Deduplicates the given String object, or adds its backing
// character array to the deduplication hashtable.
static void deduplicate(oop java_string, G1StringDedupStat& stat);
// If a table resize is needed, returns a newly allocated empty
// hashtable of the proper size.
static G1StringDedupTable* prepare_resize();
// Installs a newly resized table as the currently active table
// and deletes the previously active table.
static void finish_resize(G1StringDedupTable* resized_table);
// If a table rehash is needed, returns a newly allocated empty
// hashtable and updates the hash seed.
static G1StringDedupTable* prepare_rehash();
// Transfers rehashed entries from the currently active table into
// the new table. Installs the new table as the currently active table
// and deletes the previously active table.
static void finish_rehash(G1StringDedupTable* rehashed_table);
// If the table entry cache has grown too large, trim it down according to policy
static void trim_entry_cache();
static void unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, uint worker_id);
static void print_statistics(outputStream* st);
static void verify();
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPTABLE_HPP

View File

@ -0,0 +1,124 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1Log.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
#include "gc_implementation/g1/g1StringDedupTable.hpp"
#include "gc_implementation/g1/g1StringDedupThread.hpp"
#include "gc_implementation/g1/g1StringDedupQueue.hpp"
G1StringDedupThread* G1StringDedupThread::_thread = NULL;
G1StringDedupThread::G1StringDedupThread() :
ConcurrentGCThread() {
set_name("String Deduplication Thread");
create_and_start();
}
G1StringDedupThread::~G1StringDedupThread() {
ShouldNotReachHere();
}
void G1StringDedupThread::create() {
assert(G1StringDedup::is_enabled(), "String deduplication not enabled");
assert(_thread == NULL, "One string deduplication thread allowed");
_thread = new G1StringDedupThread();
}
G1StringDedupThread* G1StringDedupThread::thread() {
assert(G1StringDedup::is_enabled(), "String deduplication not enabled");
assert(_thread != NULL, "String deduplication thread not created");
return _thread;
}
void G1StringDedupThread::print_on(outputStream* st) const {
st->print("\"%s\" ", name());
Thread::print_on(st);
st->cr();
}
void G1StringDedupThread::run() {
G1StringDedupStat total_stat;
initialize_in_thread();
wait_for_universe_init();
// Main loop
for (;;) {
G1StringDedupStat stat;
stat.mark_idle();
// Wait for the queue to become non-empty
G1StringDedupQueue::wait();
// Include this thread in safepoints
stsJoin();
stat.mark_exec();
// Process the queue
for (;;) {
oop java_string = G1StringDedupQueue::pop();
if (java_string == NULL) {
break;
}
G1StringDedupTable::deduplicate(java_string, stat);
// Safepoint this thread if needed
if (stsShouldYield()) {
stat.mark_block();
stsYield(NULL);
stat.mark_unblock();
}
}
G1StringDedupTable::trim_entry_cache();
stat.mark_done();
// Print statistics
total_stat.add(stat);
print(gclog_or_tty, stat, total_stat);
// Exclude this thread from safepoints
stsLeave();
}
ShouldNotReachHere();
}
void G1StringDedupThread::print(outputStream* st, const G1StringDedupStat& last_stat, const G1StringDedupStat& total_stat) {
if (G1Log::fine() || PrintStringDeduplicationStatistics) {
G1StringDedupStat::print_summary(st, last_stat, total_stat);
if (PrintStringDeduplicationStatistics) {
G1StringDedupStat::print_statistics(st, last_stat, false);
G1StringDedupStat::print_statistics(st, total_stat, true);
G1StringDedupTable::print_statistics(st);
G1StringDedupQueue::print_statistics(st);
}
}
}

View File

@ -0,0 +1,56 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPTHREAD_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPTHREAD_HPP
#include "gc_implementation/g1/g1StringDedupStat.hpp"
#include "gc_implementation/shared/concurrentGCThread.hpp"
//
// The deduplication thread is where the actual deduplication occurs. It waits for
// deduplication candidates to appear on the deduplication queue, removes them from
// the queue and tries to deduplicate them. It uses the deduplication hashtable to
// find identical, already existing, character arrays on the heap. The thread runs
// concurrently with the Java application but participates in safepoints to allow
// the GC to adjust and unlink oops from the deduplication queue and table.
//
class G1StringDedupThread: public ConcurrentGCThread {
private:
static G1StringDedupThread* _thread;
G1StringDedupThread();
~G1StringDedupThread();
void print(outputStream* st, const G1StringDedupStat& last_stat, const G1StringDedupStat& total_stat);
public:
static void create();
static G1StringDedupThread* thread();
virtual void run();
virtual void print_on(outputStream* st) const;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1STRINGDEDUPTHREAD_HPP

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -285,6 +285,10 @@
product(uintx, G1MixedGCCountTarget, 8, \
"The target number of mixed GCs after a marking cycle.") \
\
experimental(uintx, G1CodeRootsChunkCacheKeepPercent, 10, \
"The amount of code root chunks that should be kept at most " \
"as percentage of already allocated.") \
\
experimental(uintx, G1OldCSetRegionThresholdPercent, 10, \
"An upper bound for the number of old CSet regions expressed " \
"as a percentage of the heap size.") \

View File

@ -43,8 +43,6 @@ class G1ParCopyClosure;
class G1ParScanClosure;
class G1ParPushHeapRSClosure;
typedef G1ParCopyClosure<G1BarrierEvac, false> G1ParScanHeapEvacClosure;
class FilterIntoCSClosure;
class FilterOutOfRegionClosure;
class G1CMOopClosure;
@ -61,7 +59,6 @@ class G1UpdateRSOrPushRefOopClosure;
#endif
#define FURTHER_SPECIALIZED_OOP_OOP_ITERATE_CLOSURES(f) \
f(G1ParScanHeapEvacClosure,_nv) \
f(G1ParScanClosure,_nv) \
f(G1ParPushHeapRSClosure,_nv) \
f(FilterIntoCSClosure,_nv) \

Some files were not shown because too many files have changed in this diff Show More