Merge branch 'master' into JDK-8350330

This commit is contained in:
rwestrel 2026-01-27 16:37:10 +01:00
commit 44832b53d5
420 changed files with 13980 additions and 9059 deletions

View File

@ -69,22 +69,18 @@ AC_DEFUN([FLAGS_SETUP_DEBUG_SYMBOLS],
# Debug prefix mapping if supported by compiler
DEBUG_PREFIX_CFLAGS=
UTIL_ARG_WITH(NAME: native-debug-symbols-level, TYPE: string,
DEFAULT: "",
RESULT: DEBUG_SYMBOLS_LEVEL,
UTIL_ARG_WITH(NAME: native-debug-symbols-level, TYPE: literal,
DEFAULT: [auto], VALID_VALUES: [auto 1 2 3],
CHECK_AVAILABLE: [
if test x$TOOLCHAIN_TYPE = xmicrosoft; then
AVAILABLE=false
fi
],
DESC: [set the native debug symbol level (GCC and Clang only)],
DEFAULT_DESC: [toolchain default])
AC_SUBST(DEBUG_SYMBOLS_LEVEL)
if test "x${TOOLCHAIN_TYPE}" = xgcc || \
test "x${TOOLCHAIN_TYPE}" = xclang; then
DEBUG_SYMBOLS_LEVEL_FLAGS="-g"
if test "x${DEBUG_SYMBOLS_LEVEL}" != "x"; then
DEBUG_SYMBOLS_LEVEL_FLAGS="-g${DEBUG_SYMBOLS_LEVEL}"
FLAGS_COMPILER_CHECK_ARGUMENTS(ARGUMENT: [${DEBUG_SYMBOLS_LEVEL_FLAGS}],
IF_FALSE: AC_MSG_ERROR("Debug info level ${DEBUG_SYMBOLS_LEVEL} is not supported"))
fi
fi
DEFAULT_DESC: [toolchain default],
IF_AUTO: [
RESULT=""
])
# Debug symbols
if test "x$TOOLCHAIN_TYPE" = xgcc; then
@ -111,8 +107,8 @@ AC_DEFUN([FLAGS_SETUP_DEBUG_SYMBOLS],
fi
# Debug info level should follow the debug format to be effective.
CFLAGS_DEBUG_SYMBOLS="-gdwarf-4 ${DEBUG_SYMBOLS_LEVEL_FLAGS}"
ASFLAGS_DEBUG_SYMBOLS="${DEBUG_SYMBOLS_LEVEL_FLAGS}"
CFLAGS_DEBUG_SYMBOLS="-gdwarf-4 -g${NATIVE_DEBUG_SYMBOLS_LEVEL}"
ASFLAGS_DEBUG_SYMBOLS="-g${NATIVE_DEBUG_SYMBOLS_LEVEL}"
elif test "x$TOOLCHAIN_TYPE" = xclang; then
if test "x$ALLOW_ABSOLUTE_PATHS_IN_OUTPUT" = "xfalse"; then
# Check if compiler supports -fdebug-prefix-map. If so, use that to make
@ -132,8 +128,8 @@ AC_DEFUN([FLAGS_SETUP_DEBUG_SYMBOLS],
IF_FALSE: [GDWARF_FLAGS=""])
# Debug info level should follow the debug format to be effective.
CFLAGS_DEBUG_SYMBOLS="${GDWARF_FLAGS} ${DEBUG_SYMBOLS_LEVEL_FLAGS}"
ASFLAGS_DEBUG_SYMBOLS="${DEBUG_SYMBOLS_LEVEL_FLAGS}"
CFLAGS_DEBUG_SYMBOLS="${GDWARF_FLAGS} -g${NATIVE_DEBUG_SYMBOLS_LEVEL}"
ASFLAGS_DEBUG_SYMBOLS="-g${NATIVE_DEBUG_SYMBOLS_LEVEL}"
elif test "x$TOOLCHAIN_TYPE" = xmicrosoft; then
CFLAGS_DEBUG_SYMBOLS="-Z7"
fi

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2016, 2026, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -61,7 +61,8 @@ $(eval $(call SetupJdkLibrary, BUILD_GTEST_LIBGTEST, \
INCLUDE_FILES := gtest-all.cc gmock-all.cc, \
DISABLED_WARNINGS_gcc := format-nonliteral maybe-uninitialized undef \
unused-result zero-as-null-pointer-constant, \
DISABLED_WARNINGS_clang := format-nonliteral undef unused-result, \
DISABLED_WARNINGS_clang := format-nonliteral undef unused-result \
zero-as-null-pointer-constant, \
DISABLED_WARNINGS_microsoft := 4530, \
DEFAULT_CFLAGS := false, \
CFLAGS := $(JVM_CFLAGS) \

View File

@ -31,13 +31,14 @@ include LibCommon.gmk
## Build libjaas
################################################################################
$(eval $(call SetupJdkLibrary, BUILD_LIBJAAS, \
NAME := jaas, \
OPTIMIZATION := LOW, \
EXTRA_HEADER_DIRS := java.base:libjava, \
LIBS_windows := advapi32.lib mpr.lib netapi32.lib user32.lib, \
))
TARGETS += $(BUILD_LIBJAAS)
ifeq ($(call isTargetOs, windows), true)
$(eval $(call SetupJdkLibrary, BUILD_LIBJAAS, \
NAME := jaas, \
OPTIMIZATION := LOW, \
EXTRA_HEADER_DIRS := java.base:libjava, \
LIBS_windows := advapi32.lib mpr.lib netapi32.lib user32.lib, \
))
TARGETS += $(BUILD_LIBJAAS)
endif
################################################################################

View File

@ -5782,6 +5782,9 @@ address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
// return false;
bind(A_IS_NOT_NULL);
ldrw(cnt1, Address(a1, length_offset));
ldrw(tmp5, Address(a2, length_offset));
cmp(cnt1, tmp5);
br(NE, DONE); // If lengths differ, return false
// Increase loop counter by diff between base- and actual start-offset.
addw(cnt1, cnt1, extra_length);
lea(a1, Address(a1, start_offset));
@ -5848,6 +5851,9 @@ address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
cbz(a1, DONE);
ldrw(cnt1, Address(a1, length_offset));
cbz(a2, DONE);
ldrw(tmp5, Address(a2, length_offset));
cmp(cnt1, tmp5);
br(NE, DONE); // If lengths differ, return false
// Increase loop counter by diff between base- and actual start-offset.
addw(cnt1, cnt1, extra_length);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
* Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
@ -722,22 +722,20 @@ void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
// Class initialization barrier for static methods
entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
if (VM_Version::supports_fast_class_init_checks()) {
Label L_skip_barrier;
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
{ // Bypass the barrier for non-static methods
__ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset()));
__ andsw(zr, rscratch1, JVM_ACC_STATIC);
__ br(Assembler::EQ, L_skip_barrier); // non-static
}
// Bypass the barrier for non-static methods
__ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset()));
__ andsw(zr, rscratch1, JVM_ACC_STATIC);
__ br(Assembler::EQ, L_skip_barrier); // non-static
__ load_method_holder(rscratch2, rmethod);
__ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
__ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
__ load_method_holder(rscratch2, rmethod);
__ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
__ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
}
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->c2i_entry_barrier(masm);
@ -1508,7 +1506,8 @@ nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
// SVC, HVC, or SMC. Make it a NOP.
__ nop();
if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
if (method->needs_clinit_barrier()) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
__ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass*
__ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -2290,7 +2290,8 @@ void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
__ subs(zr, temp, (int) code); // have we resolved this bytecode?
// Class initialization barrier for static methods
if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
if (bytecode() == Bytecodes::_invokestatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
__ br(Assembler::NE, L_clinit_barrier_slow);
__ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
__ load_method_holder(temp, temp);
@ -2340,8 +2341,8 @@ void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
__ subs(zr, temp, (int) code); // have we resolved this bytecode?
// Class initialization barrier for static fields
if (VM_Version::supports_fast_class_init_checks() &&
(bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
if (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register field_holder = temp;
__ br(Assembler::NE, L_clinit_barrier_slow);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2008, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2008, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -356,10 +356,10 @@ frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
assert(is_interpreted_frame(), "Not an interpreted frame");
// These are reasonable sanity checks
if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
if (fp() == nullptr || (intptr_t(fp()) & (wordSize-1)) != 0) {
return false;
}
if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
if (sp() == nullptr || (intptr_t(sp()) & (wordSize-1)) != 0) {
return false;
}
if (fp() + interpreter_frame_initial_sp_offset < sp()) {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2008, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2008, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -172,7 +172,7 @@ void NativeMovConstReg::set_data(intptr_t x, address pc) {
address addr = oop_addr != nullptr ? (address)oop_addr : (address)metadata_addr;
if(pc == 0) {
if (pc == nullptr) {
offset = addr - instruction_address() - 8;
} else {
offset = addr - pc - 8;
@ -228,7 +228,7 @@ void NativeMovConstReg::set_data(intptr_t x, address pc) {
void NativeMovConstReg::set_pc_relative_offset(address addr, address pc) {
int offset;
if (pc == 0) {
if (pc == nullptr) {
offset = addr - instruction_address() - 8;
} else {
offset = addr - pc - 8;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2008, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2008, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -371,7 +371,7 @@ class NativeMovConstReg: public NativeInstruction {
public:
intptr_t data() const;
void set_data(intptr_t x, address pc = 0);
void set_data(intptr_t x, address pc = nullptr);
bool is_pc_relative() {
return !is_movw();
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2025 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -1237,26 +1237,24 @@ void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
// Class initialization barrier for static methods
entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
if (VM_Version::supports_fast_class_init_checks()) {
Label L_skip_barrier;
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
{ // Bypass the barrier for non-static methods
__ lhz(R0, in_bytes(Method::access_flags_offset()), R19_method);
__ andi_(R0, R0, JVM_ACC_STATIC);
__ beq(CR0, L_skip_barrier); // non-static
}
// Bypass the barrier for non-static methods
__ lhz(R0, in_bytes(Method::access_flags_offset()), R19_method);
__ andi_(R0, R0, JVM_ACC_STATIC);
__ beq(CR0, L_skip_barrier); // non-static
Register klass = R11_scratch1;
__ load_method_holder(klass, R19_method);
__ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
Register klass = R11_scratch1;
__ load_method_holder(klass, R19_method);
__ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
__ mtctr(klass);
__ bctr();
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
__ mtctr(klass);
__ bctr();
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
}
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->c2i_entry_barrier(masm, /* tmp register*/ ic_klass, /* tmp register*/ receiver_klass, /* tmp register*/ code);
@ -2210,7 +2208,8 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
// --------------------------------------------------------------------------
vep_start_pc = (intptr_t)__ pc();
if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
if (method->needs_clinit_barrier()) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
Register klass = r_temp_1;
// Notify OOP recorder (don't need the relocation)

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2025 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -2199,7 +2199,8 @@ void TemplateTable::resolve_cache_and_index_for_method(int byte_no, Register Rca
__ isync(); // Order load wrt. succeeding loads.
// Class initialization barrier for static methods
if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
if (bytecode() == Bytecodes::_invokestatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register method = Rscratch;
const Register klass = Rscratch;
@ -2244,8 +2245,8 @@ void TemplateTable::resolve_cache_and_index_for_field(int byte_no, Register Rcac
__ isync(); // Order load wrt. succeeding loads.
// Class initialization barrier for static fields
if (VM_Version::supports_fast_class_init_checks() &&
(bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
if (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register field_holder = R4_ARG2;
// InterpreterRuntime::resolve_get_put sets field_holder and finally release-stores put_code.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
* Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
@ -213,7 +213,7 @@ void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
// Is vector's size (in bytes) bigger than a size saved by default?
// riscv does not ovlerlay the floating-point registers on vector registers like aarch64.
bool SharedRuntime::is_wide_vector(int size) {
return UseRVV;
return UseRVV && size > 0;
}
// ---------------------------------------------------------------------------
@ -637,22 +637,20 @@ void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
// Class initialization barrier for static methods
entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
if (VM_Version::supports_fast_class_init_checks()) {
Label L_skip_barrier;
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
{ // Bypass the barrier for non-static methods
__ load_unsigned_short(t0, Address(xmethod, Method::access_flags_offset()));
__ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC));
__ beqz(t1, L_skip_barrier); // non-static
}
// Bypass the barrier for non-static methods
__ load_unsigned_short(t0, Address(xmethod, Method::access_flags_offset()));
__ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC));
__ beqz(t1, L_skip_barrier); // non-static
__ load_method_holder(t1, xmethod);
__ clinit_barrier(t1, t0, &L_skip_barrier);
__ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
__ load_method_holder(t1, xmethod);
__ clinit_barrier(t1, t0, &L_skip_barrier);
__ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
}
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->c2i_entry_barrier(masm);
@ -1443,7 +1441,8 @@ nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
__ nop(); // 4 bytes
}
if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
if (method->needs_clinit_barrier()) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
__ mov_metadata(t1, method->method_holder()); // InstanceKlass*
__ clinit_barrier(t1, t0, &L_skip_barrier);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
@ -2192,7 +2192,8 @@ void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
__ mv(t0, (int) code);
// Class initialization barrier for static methods
if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
if (bytecode() == Bytecodes::_invokestatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
__ bne(temp, t0, L_clinit_barrier_slow); // have we resolved this bytecode?
__ ld(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
__ load_method_holder(temp, temp);
@ -2243,8 +2244,8 @@ void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
__ mv(t0, (int) code); // have we resolved this bytecode?
// Class initialization barrier for static fields
if (VM_Version::supports_fast_class_init_checks() &&
(bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
if (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register field_holder = temp;
__ bne(temp, t0, L_clinit_barrier_slow);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2024 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -1567,7 +1567,8 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
//---------------------------------------------------------------------
wrapper_VEPStart = __ offset();
if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
if (method->needs_clinit_barrier()) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
Register klass = Z_R1_scratch;
// Notify OOP recorder (don't need the relocation)
@ -2378,24 +2379,22 @@ void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
// Class initialization barrier for static methods
entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
if (VM_Version::supports_fast_class_init_checks()) {
Label L_skip_barrier;
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
{ // Bypass the barrier for non-static methods
__ testbit_ushort(Address(Z_method, Method::access_flags_offset()), JVM_ACC_STATIC_BIT);
__ z_bfalse(L_skip_barrier); // non-static
}
// Bypass the barrier for non-static methods
__ testbit_ushort(Address(Z_method, Method::access_flags_offset()), JVM_ACC_STATIC_BIT);
__ z_bfalse(L_skip_barrier); // non-static
Register klass = Z_R11;
__ load_method_holder(klass, Z_method);
__ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
Register klass = Z_R11;
__ load_method_holder(klass, Z_method);
__ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
__ z_br(klass);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
__ z_br(klass);
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
}
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
return;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2024 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -2377,7 +2377,8 @@ void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
__ z_cli(Address(Rcache, bc_offset), code);
// Class initialization barrier for static methods
if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
if (bytecode() == Bytecodes::_invokestatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register method = Z_R1_scratch;
const Register klass = Z_R1_scratch;
__ z_brne(L_clinit_barrier_slow);
@ -2427,8 +2428,8 @@ void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
__ z_cli(Address(cache, code_offset), code);
// Class initialization barrier for static fields
if (VM_Version::supports_fast_class_init_checks() &&
(bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
if (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register field_holder = index;
__ z_brne(L_clinit_barrier_slow);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -1043,26 +1043,24 @@ void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
// Class initialization barrier for static methods
entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
if (VM_Version::supports_fast_class_init_checks()) {
Label L_skip_barrier;
Register method = rbx;
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
Register method = rbx;
{ // Bypass the barrier for non-static methods
Register flags = rscratch1;
__ load_unsigned_short(flags, Address(method, Method::access_flags_offset()));
__ testl(flags, JVM_ACC_STATIC);
__ jcc(Assembler::zero, L_skip_barrier); // non-static
}
// Bypass the barrier for non-static methods
Register flags = rscratch1;
__ load_unsigned_short(flags, Address(method, Method::access_flags_offset()));
__ testl(flags, JVM_ACC_STATIC);
__ jcc(Assembler::zero, L_skip_barrier); // non-static
Register klass = rscratch1;
__ load_method_holder(klass, method);
__ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/);
Register klass = rscratch1;
__ load_method_holder(klass, method);
__ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/);
__ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
__ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
}
__ bind(L_skip_barrier);
entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->c2i_entry_barrier(masm);
@ -1904,7 +1902,8 @@ nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
int vep_offset = ((intptr_t)__ pc()) - start;
if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
if (method->needs_clinit_barrier()) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
Label L_skip_barrier;
Register klass = r10;
__ mov_metadata(klass, method->method_holder()); // InstanceKlass*
@ -3602,4 +3601,3 @@ RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
}
#endif // INCLUDE_JFR

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -2216,7 +2216,8 @@ void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
__ cmpl(temp, code); // have we resolved this bytecode?
// Class initialization barrier for static methods
if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
if (bytecode() == Bytecodes::_invokestatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register method = temp;
const Register klass = temp;
@ -2264,8 +2265,8 @@ void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
__ cmpl(temp, code); // have we resolved this bytecode?
// Class initialization barrier for static fields
if (VM_Version::supports_fast_class_init_checks() &&
(bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
if (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic) {
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
const Register field_holder = temp;
__ jcc(Assembler::notEqual, L_clinit_barrier_slow);

View File

@ -132,7 +132,7 @@ public:
static const char* tagToStr(uint32_t user_tag) {
switch (user_tag) {
case 0:
return 0;
return nullptr;
X1(MALLOC, malloc);
X1(MALLOC_SMALL, malloc_small);
X1(MALLOC_LARGE, malloc_large);

View File

@ -628,7 +628,7 @@ static void *thread_native_entry(Thread *thread) {
log_info(os, thread)("Thread finished (tid: %zu, pthread id: %zu).",
os::current_thread_id(), (uintx) pthread_self());
return 0;
return nullptr;
}
bool os::create_thread(Thread* thread, ThreadType thr_type,
@ -1420,7 +1420,7 @@ int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *pa
#elif defined(__APPLE__)
for (uint32_t i = 1; i < _dyld_image_count(); i++) {
// Value for top_address is returned as 0 since we don't have any information about module size
if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), nullptr, param)) {
return 1;
}
}

View File

@ -188,7 +188,7 @@ class CachedMetric : public CHeapObj<mtInternal>{
volatile jlong _next_check_counter;
public:
CachedMetric() {
_metric = value_unlimited;
_metric = static_cast<MetricType>(value_unlimited);
_next_check_counter = min_jlong;
}
bool should_check_metric() {

View File

@ -304,12 +304,13 @@ void OSContainer::print_container_metric(outputStream* st, const char* metrics,
constexpr int longest_value = max_length - 11; // Max length - shortest "metric: " string ("cpu_quota: ")
char value_str[longest_value + 1] = {};
os::snprintf_checked(value_str, longest_value, metric_fmt<T>::fmt, value);
st->print("%s: %*s", metrics, max_length - static_cast<int>(strlen(metrics)) - 2, value_str); // -2 for the ": "
if (unit[0] != '\0') {
st->print_cr(" %s", unit);
} else {
st->print_cr("");
}
const int pad_width = max_length - static_cast<int>(strlen(metrics)) - 2; // -2 for the ": "
const char* unit_prefix = unit[0] != '\0' ? " " : "";
char line[128] = {};
os::snprintf_checked(line, sizeof(line), "%s: %*s%s%s", metrics, pad_width, value_str, unit_prefix, unit);
st->print_cr("%s", line);
}
void OSContainer::print_container_helper(outputStream* st, MetricResult& res, const char* metrics) {

View File

@ -4963,9 +4963,14 @@ int os::open(const char *path, int oflag, int mode) {
oflag |= O_CLOEXEC;
int fd = ::open(path, oflag, mode);
if (fd == -1) return -1;
// No further checking is needed if open() returned an error or
// access mode is not read only.
if (fd == -1 || (oflag & O_ACCMODE) != O_RDONLY) {
return fd;
}
//If the open succeeded, the file might still be a directory
// If the open succeeded and is read only, the file might be a directory
// which the JVM doesn't allow to be read.
{
struct stat buf;
int ret = ::fstat(fd, &buf);

View File

@ -112,6 +112,10 @@ static void save_memory_to_file(char* addr, size_t size) {
result = ::close(fd);
if (result == OS_ERR) {
warning("Could not close %s: %s\n", destfile, os::strerror(errno));
} else {
if (!successful_write) {
remove(destfile);
}
}
}
FREE_C_HEAP_ARRAY(char, destfile);
@ -949,6 +953,7 @@ static int create_sharedmem_file(const char* dirname, const char* filename, size
warning("Insufficient space for shared memory file: %s/%s\n", dirname, filename);
}
result = OS_ERR;
remove(filename);
break;
}
}

View File

@ -571,7 +571,12 @@ ArchiveBuilder::FollowMode ArchiveBuilder::get_follow_mode(MetaspaceClosure::Ref
}
if (is_excluded(klass)) {
ResourceMark rm;
log_debug(cds, dynamic)("Skipping class (excluded): %s", klass->external_name());
aot_log_trace(aot)("pointer set to null: class (excluded): %s", klass->external_name());
return set_to_null;
}
if (klass->is_array_klass() && CDSConfig::is_dumping_dynamic_archive()) {
ResourceMark rm;
aot_log_trace(aot)("pointer set to null: array class not supported in dynamic region: %s", klass->external_name());
return set_to_null;
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, Red Hat, Inc. and/or its affiliates.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -209,6 +209,17 @@ void G1Arguments::initialize() {
FLAG_SET_DEFAULT(GCTimeRatio, 24);
}
// Do not interfere with GC-Pressure driven heap resizing unless the user
// explicitly sets otherwise. G1 heap sizing should be free to grow or shrink
// the heap based on GC pressure, rather than being forced to satisfy
// MinHeapFreeRatio or MaxHeapFreeRatio defaults that the user did not set.
if (FLAG_IS_DEFAULT(MinHeapFreeRatio)) {
FLAG_SET_DEFAULT(MinHeapFreeRatio, 0);
}
if (FLAG_IS_DEFAULT(MaxHeapFreeRatio)) {
FLAG_SET_DEFAULT(MaxHeapFreeRatio, 100);
}
// Below, we might need to calculate the pause time interval based on
// the pause target. When we do so we are going to give G1 maximum
// flexibility and allow it to do pauses when it needs to. So, we'll

View File

@ -70,7 +70,11 @@ inline void G1BarrierSet::write_ref_field_pre(T* field) {
template <DecoratorSet decorators, typename T>
inline void G1BarrierSet::write_ref_field_post(T* field) {
volatile CardValue* byte = _card_table->byte_for(field);
// Make sure that the card table reference is read only once. Otherwise the compiler
// might reload that value in the two accesses below, that could cause writes to
// the wrong card table.
CardTable* card_table = AtomicAccess::load(&_card_table);
CardValue* byte = card_table->byte_for(field);
if (*byte == G1CardTable::clean_card_val()) {
*byte = G1CardTable::dirty_card_val();
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2021, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2021, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,7 +26,6 @@
#include "gc/g1/g1BatchedTask.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1GCParPhaseTimesTracker.hpp"
#include "runtime/atomicAccess.hpp"
#include "utilities/growableArray.hpp"
void G1AbstractSubTask::record_work_item(uint worker_id, uint index, size_t count) {
@ -40,7 +39,7 @@ const char* G1AbstractSubTask::name() const {
}
bool G1BatchedTask::try_claim_serial_task(int& task) {
task = AtomicAccess::fetch_then_add(&_num_serial_tasks_done, 1);
task = _num_serial_tasks_done.fetch_then_add(1);
return task < _serial_tasks.length();
}
@ -96,8 +95,8 @@ void G1BatchedTask::work(uint worker_id) {
}
G1BatchedTask::~G1BatchedTask() {
assert(AtomicAccess::load(&_num_serial_tasks_done) >= _serial_tasks.length(),
"Only %d tasks of %d claimed", AtomicAccess::load(&_num_serial_tasks_done), _serial_tasks.length());
assert(_num_serial_tasks_done.load_relaxed() >= _serial_tasks.length(),
"Only %d tasks of %d claimed", _num_serial_tasks_done.load_relaxed(), _serial_tasks.length());
for (G1AbstractSubTask* task : _parallel_tasks) {
delete task;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2021, 2024, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2021, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -28,6 +28,7 @@
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/shared/workerThread.hpp"
#include "memory/allocation.hpp"
#include "runtime/atomic.hpp"
template <typename E, MemTag MT>
class GrowableArrayCHeap;
@ -120,7 +121,7 @@ public:
// 5) ~T()
//
class G1BatchedTask : public WorkerTask {
volatile int _num_serial_tasks_done;
Atomic<int> _num_serial_tasks_done;
G1GCPhaseTimes* _phase_times;
bool try_claim_serial_task(int& task);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2025, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -44,20 +44,20 @@ G1CardTableClaimTable::~G1CardTableClaimTable() {
void G1CardTableClaimTable::initialize(uint max_reserved_regions) {
assert(_card_claims == nullptr, "Must not be initialized twice");
_card_claims = NEW_C_HEAP_ARRAY(uint, max_reserved_regions, mtGC);
_card_claims = NEW_C_HEAP_ARRAY(Atomic<uint>, max_reserved_regions, mtGC);
_max_reserved_regions = max_reserved_regions;
reset_all_to_unclaimed();
}
void G1CardTableClaimTable::reset_all_to_unclaimed() {
for (uint i = 0; i < _max_reserved_regions; i++) {
_card_claims[i] = 0;
_card_claims[i].store_relaxed(0);
}
}
void G1CardTableClaimTable::reset_all_to_claimed() {
for (uint i = 0; i < _max_reserved_regions; i++) {
_card_claims[i] = (uint)G1HeapRegion::CardsPerRegion;
_card_claims[i].store_relaxed((uint)G1HeapRegion::CardsPerRegion);
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2025, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,7 @@
#include "gc/g1/g1CardTable.hpp"
#include "memory/allocation.hpp"
#include "runtime/atomic.hpp"
class G1HeapRegionClosure;
@ -45,7 +46,7 @@ class G1CardTableClaimTable : public CHeapObj<mtGC> {
// Card table iteration claim values for every heap region, from 0 (completely unclaimed)
// to (>=) G1HeapRegion::CardsPerRegion (completely claimed).
uint volatile* _card_claims;
Atomic<uint>* _card_claims;
uint _cards_per_chunk; // For conversion between card index and chunk index.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2025, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,26 +29,25 @@
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1HeapRegion.inline.hpp"
#include "runtime/atomicAccess.hpp"
bool G1CardTableClaimTable::has_unclaimed_cards(uint region) {
assert(region < _max_reserved_regions, "Tried to access invalid region %u", region);
return AtomicAccess::load(&_card_claims[region]) < G1HeapRegion::CardsPerRegion;
return _card_claims[region].load_relaxed() < G1HeapRegion::CardsPerRegion;
}
void G1CardTableClaimTable::reset_to_unclaimed(uint region) {
assert(region < _max_reserved_regions, "Tried to access invalid region %u", region);
AtomicAccess::store(&_card_claims[region], 0u);
_card_claims[region].store_relaxed(0u);
}
uint G1CardTableClaimTable::claim_cards(uint region, uint increment) {
assert(region < _max_reserved_regions, "Tried to access invalid region %u", region);
return AtomicAccess::fetch_then_add(&_card_claims[region], increment, memory_order_relaxed);
return _card_claims[region].fetch_then_add(increment, memory_order_relaxed);
}
uint G1CardTableClaimTable::claim_chunk(uint region) {
assert(region < _max_reserved_regions, "Tried to access invalid region %u", region);
return AtomicAccess::fetch_then_add(&_card_claims[region], cards_per_chunk(), memory_order_relaxed);
return _card_claims[region].fetch_then_add(cards_per_chunk(), memory_order_relaxed);
}
uint G1CardTableClaimTable::claim_all_cards(uint region) {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -28,7 +28,7 @@
#include "gc/g1/g1HeapRegion.hpp"
#include "memory/allocation.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomicAccess.hpp"
#include "runtime/atomic.hpp"
#include "utilities/concurrentHashTable.inline.hpp"
#include "utilities/concurrentHashTableTasks.inline.hpp"
@ -60,7 +60,7 @@ class G1CodeRootSetHashTable : public CHeapObj<mtGC> {
HashTable _table;
HashTableScanTask _table_scanner;
size_t volatile _num_entries;
Atomic<size_t> _num_entries;
bool is_empty() const { return number_of_entries() == 0; }
@ -120,7 +120,7 @@ public:
bool grow_hint = false;
bool inserted = _table.insert(Thread::current(), lookup, method, &grow_hint);
if (inserted) {
AtomicAccess::inc(&_num_entries);
_num_entries.add_then_fetch(1u);
}
if (grow_hint) {
_table.grow(Thread::current());
@ -131,7 +131,7 @@ public:
HashTableLookUp lookup(method);
bool removed = _table.remove(Thread::current(), lookup);
if (removed) {
AtomicAccess::dec(&_num_entries);
_num_entries.sub_then_fetch(1u);
}
return removed;
}
@ -182,7 +182,7 @@ public:
guarantee(succeeded, "unable to clean table");
if (num_deleted != 0) {
size_t current_size = AtomicAccess::sub(&_num_entries, num_deleted);
size_t current_size = _num_entries.sub_then_fetch(num_deleted);
shrink_to_match(current_size);
}
}
@ -226,7 +226,7 @@ public:
size_t mem_size() { return sizeof(*this) + _table.get_mem_size(Thread::current()); }
size_t number_of_entries() const { return AtomicAccess::load(&_num_entries); }
size_t number_of_entries() const { return _num_entries.load_relaxed(); }
};
uintx G1CodeRootSetHashTable::HashTableLookUp::get_hash() const {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -54,6 +54,7 @@
#include "memory/allocation.hpp"
#include "memory/iterator.hpp"
#include "memory/memRegion.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/threadSMR.hpp"
#include "utilities/bitMap.hpp"
@ -124,7 +125,7 @@ class G1JavaThreadsListClaimer : public StackObj {
ThreadsListHandle _list;
uint _claim_step;
volatile uint _cur_claim;
Atomic<uint> _cur_claim;
// Attempts to claim _claim_step JavaThreads, returning an array of claimed
// JavaThread* with count elements. Returns null (and a zero count) if there
@ -1267,7 +1268,6 @@ public:
bool is_marked(oop obj) const;
inline static bool is_obj_filler(const oop obj);
// Determine if an object is dead, given the object and also
// the region to which the object belongs.
inline bool is_obj_dead(const oop obj, const G1HeapRegion* hr) const;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -38,10 +38,10 @@
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/g1RegionPinCache.inline.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/markBitMap.inline.hpp"
#include "gc/shared/taskqueue.inline.hpp"
#include "oops/stackChunkOop.hpp"
#include "runtime/atomicAccess.hpp"
#include "runtime/threadSMR.inline.hpp"
#include "utilities/bitMap.inline.hpp"
@ -53,10 +53,10 @@ inline bool G1STWIsAliveClosure::do_object_b(oop p) {
inline JavaThread* const* G1JavaThreadsListClaimer::claim(uint& count) {
count = 0;
if (AtomicAccess::load(&_cur_claim) >= _list.length()) {
if (_cur_claim.load_relaxed() >= _list.length()) {
return nullptr;
}
uint claim = AtomicAccess::fetch_then_add(&_cur_claim, _claim_step);
uint claim = _cur_claim.fetch_then_add(_claim_step);
if (claim >= _list.length()) {
return nullptr;
}
@ -230,16 +230,11 @@ inline bool G1CollectedHeap::requires_barriers(stackChunkOop obj) const {
return !heap_region_containing(obj)->is_young(); // is_in_young does an unnecessary null check
}
inline bool G1CollectedHeap::is_obj_filler(const oop obj) {
Klass* k = obj->klass_without_asserts();
return k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass();
}
inline bool G1CollectedHeap::is_obj_dead(const oop obj, const G1HeapRegion* hr) const {
assert(!hr->is_free(), "looking up obj " PTR_FORMAT " in Free region %u", p2i(obj), hr->hrm_index());
if (hr->is_in_parsable_area(obj)) {
// This object is in the parsable part of the heap, live unless scrubbed.
return is_obj_filler(obj);
return is_filler_object(obj);
} else {
// From Remark until a region has been concurrently scrubbed, parts of the
// region is not guaranteed to be parsable. Use the bitmap for liveness.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,7 +27,7 @@
#include "gc/g1/g1CollectionSetChooser.hpp"
#include "gc/g1/g1HeapRegionRemSet.inline.hpp"
#include "gc/shared/space.hpp"
#include "runtime/atomicAccess.hpp"
#include "runtime/atomic.hpp"
#include "utilities/quickSort.hpp"
// Determine collection set candidates (from marking): For all regions determine
@ -50,7 +50,7 @@ class G1BuildCandidateRegionsTask : public WorkerTask {
G1HeapRegion** _data;
uint volatile _cur_claim_idx;
Atomic<uint> _cur_claim_idx;
static int compare_region_gc_efficiency(G1HeapRegion** rr1, G1HeapRegion** rr2) {
G1HeapRegion* r1 = *rr1;
@ -105,7 +105,7 @@ class G1BuildCandidateRegionsTask : public WorkerTask {
// Claim a new chunk, returning its bounds [from, to[.
void claim_chunk(uint& from, uint& to) {
uint result = AtomicAccess::add(&_cur_claim_idx, _chunk_size);
uint result = _cur_claim_idx.add_then_fetch(_chunk_size);
assert(_max_size > result - 1,
"Array too small, is %u should be %u with chunk size %u.",
_max_size, result, _chunk_size);
@ -121,14 +121,15 @@ class G1BuildCandidateRegionsTask : public WorkerTask {
}
void sort_by_gc_efficiency() {
if (_cur_claim_idx == 0) {
uint length = _cur_claim_idx.load_relaxed();
if (length == 0) {
return;
}
for (uint i = _cur_claim_idx; i < _max_size; i++) {
for (uint i = length; i < _max_size; i++) {
assert(_data[i] == nullptr, "must be");
}
qsort(_data, _cur_claim_idx, sizeof(_data[0]), (_sort_Fn)compare_region_gc_efficiency);
for (uint i = _cur_claim_idx; i < _max_size; i++) {
qsort(_data, length, sizeof(_data[0]), (_sort_Fn)compare_region_gc_efficiency);
for (uint i = length; i < _max_size; i++) {
assert(_data[i] == nullptr, "must be");
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -51,6 +51,9 @@
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/gcVMOperations.hpp"
#include "gc/shared/partialArraySplitter.inline.hpp"
#include "gc/shared/partialArrayState.hpp"
#include "gc/shared/partialArrayTaskStats.hpp"
#include "gc/shared/referencePolicy.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shared/taskqueue.inline.hpp"
@ -67,7 +70,6 @@
#include "nmt/memTracker.hpp"
#include "oops/access.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomicAccess.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
@ -76,6 +78,7 @@
#include "runtime/prefetch.inline.hpp"
#include "runtime/threads.hpp"
#include "utilities/align.hpp"
#include "utilities/checkedCast.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/powerOfTwo.hpp"
@ -99,7 +102,7 @@ bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
// We move that task's local finger along.
_task->move_finger_to(addr);
_task->scan_task_entry(G1TaskQueueEntry::from_oop(cast_to_oop(addr)));
_task->process_entry(G1TaskQueueEntry(cast_to_oop(addr)), false /* stolen */);
// we only partially drain the local queue and global stack
_task->drain_local_queue(true);
_task->drain_global_stack(true);
@ -148,25 +151,25 @@ bool G1CMMarkStack::initialize() {
}
G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::ChunkAllocator::allocate_new_chunk() {
if (_size >= _max_capacity) {
if (_size.load_relaxed() >= _max_capacity) {
return nullptr;
}
size_t cur_idx = AtomicAccess::fetch_then_add(&_size, 1u);
size_t cur_idx = _size.fetch_then_add(1u);
if (cur_idx >= _max_capacity) {
return nullptr;
}
size_t bucket = get_bucket(cur_idx);
if (AtomicAccess::load_acquire(&_buckets[bucket]) == nullptr) {
if (_buckets[bucket].load_acquire() == nullptr) {
if (!_should_grow) {
// Prefer to restart the CM.
return nullptr;
}
MutexLocker x(G1MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
if (AtomicAccess::load_acquire(&_buckets[bucket]) == nullptr) {
if (_buckets[bucket].load_acquire() == nullptr) {
size_t desired_capacity = bucket_size(bucket) * 2;
if (!try_expand_to(desired_capacity)) {
return nullptr;
@ -175,7 +178,7 @@ G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::ChunkAllocator::allocate_new_
}
size_t bucket_idx = get_bucket_index(cur_idx);
TaskQueueEntryChunk* result = ::new (&_buckets[bucket][bucket_idx]) TaskQueueEntryChunk;
TaskQueueEntryChunk* result = ::new (&_buckets[bucket].load_relaxed()[bucket_idx]) TaskQueueEntryChunk;
result->next = nullptr;
return result;
}
@ -197,10 +200,10 @@ bool G1CMMarkStack::ChunkAllocator::initialize(size_t initial_capacity, size_t m
_max_capacity = max_capacity;
_num_buckets = get_bucket(_max_capacity) + 1;
_buckets = NEW_C_HEAP_ARRAY(TaskQueueEntryChunk*, _num_buckets, mtGC);
_buckets = NEW_C_HEAP_ARRAY(Atomic<TaskQueueEntryChunk*>, _num_buckets, mtGC);
for (size_t i = 0; i < _num_buckets; i++) {
_buckets[i] = nullptr;
_buckets[i].store_relaxed(nullptr);
}
size_t new_capacity = bucket_size(0);
@ -240,9 +243,9 @@ G1CMMarkStack::ChunkAllocator::~ChunkAllocator() {
}
for (size_t i = 0; i < _num_buckets; i++) {
if (_buckets[i] != nullptr) {
MmapArrayAllocator<TaskQueueEntryChunk>::free(_buckets[i], bucket_size(i));
_buckets[i] = nullptr;
if (_buckets[i].load_relaxed() != nullptr) {
MmapArrayAllocator<TaskQueueEntryChunk>::free(_buckets[i].load_relaxed(), bucket_size(i));
_buckets[i].store_relaxed(nullptr);
}
}
@ -259,7 +262,7 @@ bool G1CMMarkStack::ChunkAllocator::reserve(size_t new_capacity) {
// and the new capacity (new_capacity). This step ensures that there are no gaps in the
// array and that the capacity accurately reflects the reserved memory.
for (; i <= highest_bucket; i++) {
if (AtomicAccess::load_acquire(&_buckets[i]) != nullptr) {
if (_buckets[i].load_acquire() != nullptr) {
continue; // Skip over already allocated buckets.
}
@ -279,7 +282,7 @@ bool G1CMMarkStack::ChunkAllocator::reserve(size_t new_capacity) {
return false;
}
_capacity += bucket_capacity;
AtomicAccess::release_store(&_buckets[i], bucket_base);
_buckets[i].release_store(bucket_base);
}
return true;
}
@ -490,6 +493,7 @@ G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
_task_queues(new G1CMTaskQueueSet(_max_num_tasks)),
_terminator(_max_num_tasks, _task_queues),
_partial_array_state_manager(new PartialArrayStateManager(_max_num_tasks)),
_first_overflow_barrier_sync(),
_second_overflow_barrier_sync(),
@ -556,6 +560,10 @@ G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
reset_at_marking_complete();
}
PartialArrayStateManager* G1ConcurrentMark::partial_array_state_manager() const {
return _partial_array_state_manager;
}
void G1ConcurrentMark::reset() {
_has_aborted = false;
@ -650,7 +658,26 @@ void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurr
}
}
#if TASKQUEUE_STATS
void G1ConcurrentMark::print_and_reset_taskqueue_stats() {
_task_queues->print_and_reset_taskqueue_stats("G1ConcurrentMark Oop Queue");
auto get_pa_stats = [&](uint i) {
return _tasks[i]->partial_array_task_stats();
};
PartialArrayTaskStats::log_set(_max_num_tasks, get_pa_stats,
"G1ConcurrentMark Partial Array Task Stats");
for (uint i = 0; i < _max_num_tasks; ++i) {
get_pa_stats(i)->reset();
}
}
#endif
void G1ConcurrentMark::reset_at_marking_complete() {
TASKQUEUE_STATS_ONLY(print_and_reset_taskqueue_stats());
// We set the global marking state to some default values when we're
// not doing marking.
reset_marking_for_restart();
@ -804,11 +831,25 @@ void G1ConcurrentMark::cleanup_for_next_mark() {
clear_bitmap(_concurrent_workers, true);
reset_partial_array_state_manager();
// Repeat the asserts from above.
guarantee(cm_thread()->in_progress(), "invariant");
guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
}
void G1ConcurrentMark::reset_partial_array_state_manager() {
for (uint i = 0; i < _max_num_tasks; ++i) {
_tasks[i]->unregister_partial_array_splitter();
}
partial_array_state_manager()->reset();
for (uint i = 0; i < _max_num_tasks; ++i) {
_tasks[i]->register_partial_array_splitter();
}
}
void G1ConcurrentMark::clear_bitmap(WorkerThreads* workers) {
assert_at_safepoint_on_vm_thread();
// To avoid fragmentation the full collection requesting to clear the bitmap
@ -1789,17 +1830,18 @@ public:
{ }
void operator()(G1TaskQueueEntry task_entry) const {
if (task_entry.is_array_slice()) {
guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
if (task_entry.is_partial_array_state()) {
oop obj = task_entry.to_partial_array_state()->source();
guarantee(_g1h->is_in_reserved(obj), "Partial Array " PTR_FORMAT " must be in heap.", p2i(obj));
return;
}
guarantee(oopDesc::is_oop(task_entry.obj()),
guarantee(oopDesc::is_oop(task_entry.to_oop()),
"Non-oop " PTR_FORMAT ", phase: %s, info: %d",
p2i(task_entry.obj()), _phase, _info);
G1HeapRegion* r = _g1h->heap_region_containing(task_entry.obj());
p2i(task_entry.to_oop()), _phase, _info);
G1HeapRegion* r = _g1h->heap_region_containing(task_entry.to_oop());
guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()),
"obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set",
p2i(task_entry.obj()), _phase, _info, r->hrm_index());
p2i(task_entry.to_oop()), _phase, _info, r->hrm_index());
}
};
@ -2055,6 +2097,17 @@ void G1CMTask::reset(G1CMBitMap* mark_bitmap) {
_mark_stats_cache.reset();
}
void G1CMTask::register_partial_array_splitter() {
::new (&_partial_array_splitter) PartialArraySplitter(_cm->partial_array_state_manager(),
_cm->max_num_tasks(),
ObjArrayMarkingStride);
}
void G1CMTask::unregister_partial_array_splitter() {
_partial_array_splitter.~PartialArraySplitter();
}
bool G1CMTask::should_exit_termination() {
if (!regular_clock_call()) {
return true;
@ -2185,7 +2238,7 @@ bool G1CMTask::get_entries_from_global_stack() {
if (task_entry.is_null()) {
break;
}
assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
assert(task_entry.is_partial_array_state() || oopDesc::is_oop(task_entry.to_oop()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.to_oop()));
bool success = _task_queue->push(task_entry);
// We only call this when the local queue is empty or under a
// given target limit. So, we do not expect this push to fail.
@ -2216,7 +2269,7 @@ void G1CMTask::drain_local_queue(bool partially) {
G1TaskQueueEntry entry;
bool ret = _task_queue->pop_local(entry);
while (ret) {
scan_task_entry(entry);
process_entry(entry, false /* stolen */);
if (_task_queue->size() <= target_size || has_aborted()) {
ret = false;
} else {
@ -2226,6 +2279,37 @@ void G1CMTask::drain_local_queue(bool partially) {
}
}
size_t G1CMTask::start_partial_array_processing(oop obj) {
assert(should_be_sliced(obj), "Must be an array object %d and large %zu", obj->is_objArray(), obj->size());
objArrayOop obj_array = objArrayOop(obj);
size_t array_length = obj_array->length();
size_t initial_chunk_size = _partial_array_splitter.start(_task_queue, obj_array, nullptr, array_length);
// Mark objArray klass metadata
if (_cm_oop_closure->do_metadata()) {
_cm_oop_closure->do_klass(obj_array->klass());
}
process_array_chunk(obj_array, 0, initial_chunk_size);
// Include object header size
return objArrayOopDesc::object_size(checked_cast<int>(initial_chunk_size));
}
size_t G1CMTask::process_partial_array(const G1TaskQueueEntry& task, bool stolen) {
PartialArrayState* state = task.to_partial_array_state();
// Access state before release by claim().
objArrayOop obj = objArrayOop(state->source());
PartialArraySplitter::Claim claim =
_partial_array_splitter.claim(state, _task_queue, stolen);
process_array_chunk(obj, claim._start, claim._end);
return heap_word_size((claim._end - claim._start) * heapOopSize);
}
void G1CMTask::drain_global_stack(bool partially) {
if (has_aborted()) {
return;
@ -2430,7 +2514,7 @@ void G1CMTask::attempt_stealing() {
while (!has_aborted()) {
G1TaskQueueEntry entry;
if (_cm->try_stealing(_worker_id, entry)) {
scan_task_entry(entry);
process_entry(entry, true /* stolen */);
// And since we're towards the end, let's totally drain the
// local queue and global stack.
@ -2759,12 +2843,12 @@ G1CMTask::G1CMTask(uint worker_id,
G1ConcurrentMark* cm,
G1CMTaskQueue* task_queue,
G1RegionMarkStats* mark_stats) :
_objArray_processor(this),
_worker_id(worker_id),
_g1h(G1CollectedHeap::heap()),
_cm(cm),
_mark_bitmap(nullptr),
_task_queue(task_queue),
_partial_array_splitter(_cm->partial_array_state_manager(), _cm->max_num_tasks(), ObjArrayMarkingStride),
_mark_stats_cache(mark_stats, G1RegionMarkStatsCache::RegionMarkStatsCacheSize),
_calls(0),
_time_target_ms(0.0),

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,17 +26,20 @@
#define SHARE_GC_G1_G1CONCURRENTMARK_HPP
#include "gc/g1/g1ConcurrentMarkBitMap.hpp"
#include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
#include "gc/g1/g1HeapRegionSet.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1RegionMarkStatsCache.hpp"
#include "gc/shared/gcCause.hpp"
#include "gc/shared/partialArraySplitter.hpp"
#include "gc/shared/partialArrayState.hpp"
#include "gc/shared/partialArrayTaskStats.hpp"
#include "gc/shared/taskqueue.hpp"
#include "gc/shared/taskTerminator.hpp"
#include "gc/shared/verifyOption.hpp"
#include "gc/shared/workerThread.hpp"
#include "gc/shared/workerUtils.hpp"
#include "memory/allocation.hpp"
#include "runtime/atomic.hpp"
#include "utilities/compilerWarnings.hpp"
#include "utilities/numberSeq.hpp"
@ -53,41 +56,7 @@ class G1RegionToSpaceMapper;
class G1SurvivorRegions;
class ThreadClosure;
// This is a container class for either an oop or a continuation address for
// mark stack entries. Both are pushed onto the mark stack.
class G1TaskQueueEntry {
private:
void* _holder;
static const uintptr_t ArraySliceBit = 1;
G1TaskQueueEntry(oop obj) : _holder(obj) {
assert(_holder != nullptr, "Not allowed to set null task queue element");
}
G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
public:
G1TaskQueueEntry() : _holder(nullptr) { }
// Trivially copyable, for use in GenericTaskQueue.
static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
oop obj() const {
assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
return cast_to_oop(_holder);
}
HeapWord* slice() const {
assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
}
bool is_oop() const { return !is_array_slice(); }
bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
bool is_null() const { return _holder == nullptr; }
};
typedef ScannerTask G1TaskQueueEntry;
typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
@ -172,9 +141,9 @@ private:
size_t _capacity;
size_t _num_buckets;
bool _should_grow;
TaskQueueEntryChunk* volatile* _buckets;
Atomic<TaskQueueEntryChunk*>* _buckets;
char _pad0[DEFAULT_PADDING_SIZE];
volatile size_t _size;
Atomic<size_t> _size;
char _pad4[DEFAULT_PADDING_SIZE - sizeof(size_t)];
size_t bucket_size(size_t bucket) {
@ -212,7 +181,7 @@ private:
bool initialize(size_t initial_capacity, size_t max_capacity);
void reset() {
_size = 0;
_size.store_relaxed(0);
_should_grow = false;
}
@ -411,6 +380,8 @@ class G1ConcurrentMark : public CHeapObj<mtGC> {
G1CMTaskQueueSet* _task_queues; // Task queue set
TaskTerminator _terminator; // For termination
PartialArrayStateManager* _partial_array_state_manager;
// Two sync barriers that are used to synchronize tasks when an
// overflow occurs. The algorithm is the following. All tasks enter
// the first one to ensure that they have all stopped manipulating
@ -488,6 +459,8 @@ class G1ConcurrentMark : public CHeapObj<mtGC> {
// Prints all gathered CM-related statistics
void print_stats();
void print_and_reset_taskqueue_stats();
HeapWord* finger() { return _finger; }
bool concurrent() { return _concurrent; }
uint active_tasks() { return _num_active_tasks; }
@ -556,14 +529,14 @@ public:
// mark_in_bitmap call. Updates various statistics data.
void add_to_liveness(uint worker_id, oop const obj, size_t size);
// Did the last marking find a live object between bottom and TAMS?
bool contains_live_object(uint region) const { return _region_mark_stats[region]._live_words != 0; }
bool contains_live_object(uint region) const { return _region_mark_stats[region].live_words() != 0; }
// Live bytes in the given region as determined by concurrent marking, i.e. the amount of
// live bytes between bottom and TAMS.
size_t live_bytes(uint region) const { return _region_mark_stats[region]._live_words * HeapWordSize; }
size_t live_bytes(uint region) const { return _region_mark_stats[region].live_words() * HeapWordSize; }
// Set live bytes for concurrent marking.
void set_live_bytes(uint region, size_t live_bytes) { _region_mark_stats[region]._live_words = live_bytes / HeapWordSize; }
void set_live_bytes(uint region, size_t live_bytes) { _region_mark_stats[region]._live_words.store_relaxed(live_bytes / HeapWordSize); }
// Approximate number of incoming references found during marking.
size_t incoming_refs(uint region) const { return _region_mark_stats[region]._incoming_refs; }
size_t incoming_refs(uint region) const { return _region_mark_stats[region].incoming_refs(); }
// Update the TAMS for the given region to the current top.
inline void update_top_at_mark_start(G1HeapRegion* r);
@ -582,6 +555,8 @@ public:
uint worker_id_offset() const { return _worker_id_offset; }
uint max_num_tasks() const {return _max_num_tasks; }
// Clear statistics gathered during the concurrent cycle for the given region after
// it has been reclaimed.
void clear_statistics(G1HeapRegion* r);
@ -631,6 +606,8 @@ public:
// Calculates the number of concurrent GC threads to be used in the marking phase.
uint calc_active_marking_workers();
PartialArrayStateManager* partial_array_state_manager() const;
// Resets the global marking data structures, as well as the
// task local ones; should be called during concurrent start.
void reset();
@ -642,6 +619,10 @@ public:
// to be called concurrently to the mutator. It will yield to safepoint requests.
void cleanup_for_next_mark();
// Recycle the memory that has been requested by allocators associated with
// this manager.
void reset_partial_array_state_manager();
// Clear the next marking bitmap during safepoint.
void clear_bitmap(WorkerThreads* workers);
@ -732,14 +713,13 @@ private:
refs_reached_period = 1024,
};
G1CMObjArrayProcessor _objArray_processor;
uint _worker_id;
G1CollectedHeap* _g1h;
G1ConcurrentMark* _cm;
G1CMBitMap* _mark_bitmap;
// the task queue of this task
G1CMTaskQueue* _task_queue;
PartialArraySplitter _partial_array_splitter;
G1RegionMarkStatsCache _mark_stats_cache;
// Number of calls to this task
@ -850,13 +830,24 @@ private:
// mark bitmap scan, and so needs to be pushed onto the mark stack.
bool is_below_finger(oop obj, HeapWord* global_finger) const;
template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry, bool stolen);
static bool should_be_sliced(oop obj);
// Start processing the given objArrayOop by first pushing its continuations and
// then scanning the first chunk including the header.
size_t start_partial_array_processing(oop obj);
// Process the given continuation. Returns the number of words scanned.
size_t process_partial_array(const G1TaskQueueEntry& task, bool stolen);
// Apply the closure to the given range of elements in the objArray.
inline void process_array_chunk(objArrayOop obj, size_t start, size_t end);
public:
// Apply the closure on the given area of the objArray. Return the number of words
// scanned.
inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
// Resets the task; should be called right at the beginning of a marking phase.
void reset(G1CMBitMap* mark_bitmap);
// Register/unregister Partial Array Splitter Allocator with the PartialArrayStateManager.
// This allows us to discard memory arenas used for partial object array states at the end
// of a concurrent mark cycle.
void register_partial_array_splitter();
void unregister_partial_array_splitter();
// Clears all the fields that correspond to a claimed region.
void clear_region_fields();
@ -912,7 +903,7 @@ public:
inline bool deal_with_reference(T* p);
// Scans an object and visits its children.
inline void scan_task_entry(G1TaskQueueEntry task_entry);
inline void process_entry(G1TaskQueueEntry task_entry, bool stolen);
// Pushes an object on the local queue.
inline void push(G1TaskQueueEntry task_entry);
@ -957,6 +948,11 @@ public:
Pair<size_t, size_t> flush_mark_stats_cache();
// Prints statistics associated with this task
void print_stats();
#if TASKQUEUE_STATS
PartialArrayTaskStats* partial_array_task_stats() {
return _partial_array_splitter.stats();
}
#endif
};
// Class that's used to to print out per-region liveness

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,7 +29,6 @@
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentMarkBitMap.inline.hpp"
#include "gc/g1/g1ConcurrentMarkObjArrayProcessor.inline.hpp"
#include "gc/g1/g1HeapRegion.hpp"
#include "gc/g1/g1HeapRegionRemSet.inline.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
@ -39,6 +38,7 @@
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shared/taskqueue.inline.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/checkedCast.hpp"
inline bool G1CMIsAliveClosure::do_object_b(oop obj) {
// Check whether the passed in object is null. During discovery the referent
@ -107,13 +107,15 @@ inline void G1CMMarkStack::iterate(Fn fn) const {
#endif
// It scans an object and visits its children.
inline void G1CMTask::scan_task_entry(G1TaskQueueEntry task_entry) { process_grey_task_entry<true>(task_entry); }
inline void G1CMTask::process_entry(G1TaskQueueEntry task_entry, bool stolen) {
process_grey_task_entry<true>(task_entry, stolen);
}
inline void G1CMTask::push(G1TaskQueueEntry task_entry) {
assert(task_entry.is_array_slice() || _g1h->is_in_reserved(task_entry.obj()), "invariant");
assert(task_entry.is_array_slice() || !_g1h->is_on_master_free_list(
_g1h->heap_region_containing(task_entry.obj())), "invariant");
assert(task_entry.is_array_slice() || _mark_bitmap->is_marked(cast_from_oop<HeapWord*>(task_entry.obj())), "invariant");
assert(task_entry.is_partial_array_state() || _g1h->is_in_reserved(task_entry.to_oop()), "invariant");
assert(task_entry.is_partial_array_state() || !_g1h->is_on_master_free_list(
_g1h->heap_region_containing(task_entry.to_oop())), "invariant");
assert(task_entry.is_partial_array_state() || _mark_bitmap->is_marked(cast_from_oop<HeapWord*>(task_entry.to_oop())), "invariant");
if (!_task_queue->push(task_entry)) {
// The local task queue looks full. We need to push some entries
@ -159,29 +161,34 @@ inline bool G1CMTask::is_below_finger(oop obj, HeapWord* global_finger) const {
}
template<bool scan>
inline void G1CMTask::process_grey_task_entry(G1TaskQueueEntry task_entry) {
assert(scan || (task_entry.is_oop() && task_entry.obj()->is_typeArray()), "Skipping scan of grey non-typeArray");
assert(task_entry.is_array_slice() || _mark_bitmap->is_marked(cast_from_oop<HeapWord*>(task_entry.obj())),
inline void G1CMTask::process_grey_task_entry(G1TaskQueueEntry task_entry, bool stolen) {
assert(scan || (!task_entry.is_partial_array_state() && task_entry.to_oop()->is_typeArray()), "Skipping scan of grey non-typeArray");
assert(task_entry.is_partial_array_state() || _mark_bitmap->is_marked(cast_from_oop<HeapWord*>(task_entry.to_oop())),
"Any stolen object should be a slice or marked");
if (scan) {
if (task_entry.is_array_slice()) {
_words_scanned += _objArray_processor.process_slice(task_entry.slice());
if (task_entry.is_partial_array_state()) {
_words_scanned += process_partial_array(task_entry, stolen);
} else {
oop obj = task_entry.obj();
if (G1CMObjArrayProcessor::should_be_sliced(obj)) {
_words_scanned += _objArray_processor.process_obj(obj);
oop obj = task_entry.to_oop();
if (should_be_sliced(obj)) {
_words_scanned += start_partial_array_processing(obj);
} else {
_words_scanned += obj->oop_iterate_size(_cm_oop_closure);;
_words_scanned += obj->oop_iterate_size(_cm_oop_closure);
}
}
}
check_limits();
}
inline size_t G1CMTask::scan_objArray(objArrayOop obj, MemRegion mr) {
obj->oop_iterate(_cm_oop_closure, mr);
return mr.word_size();
inline bool G1CMTask::should_be_sliced(oop obj) {
return obj->is_objArray() && ((objArrayOop)obj)->length() >= (int)ObjArrayMarkingStride;
}
inline void G1CMTask::process_array_chunk(objArrayOop obj, size_t start, size_t end) {
obj->oop_iterate_elements_range(_cm_oop_closure,
checked_cast<int>(start),
checked_cast<int>(end));
}
inline void G1ConcurrentMark::update_top_at_mark_start(G1HeapRegion* r) {
@ -265,7 +272,7 @@ inline bool G1CMTask::make_reference_grey(oop obj) {
// be pushed on the stack. So, some duplicate work, but no
// correctness problems.
if (is_below_finger(obj, global_finger)) {
G1TaskQueueEntry entry = G1TaskQueueEntry::from_oop(obj);
G1TaskQueueEntry entry(obj);
if (obj->is_typeArray()) {
// Immediately process arrays of primitive types, rather
// than pushing on the mark stack. This keeps us from
@ -277,7 +284,7 @@ inline bool G1CMTask::make_reference_grey(oop obj) {
// by only doing a bookkeeping update and avoiding the
// actual scan of the object - a typeArray contains no
// references, and the metadata is built-in.
process_grey_task_entry<false>(entry);
process_grey_task_entry<false>(entry, false /* stolen */);
} else {
push(entry);
}

View File

@ -1,80 +0,0 @@
/*
* Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentMark.inline.hpp"
#include "gc/g1/g1ConcurrentMarkObjArrayProcessor.inline.hpp"
#include "gc/g1/g1HeapRegion.inline.hpp"
#include "gc/shared/gc_globals.hpp"
#include "memory/memRegion.hpp"
#include "utilities/globalDefinitions.hpp"
void G1CMObjArrayProcessor::push_array_slice(HeapWord* what) {
_task->push(G1TaskQueueEntry::from_slice(what));
}
size_t G1CMObjArrayProcessor::process_array_slice(objArrayOop obj, HeapWord* start_from, size_t remaining) {
size_t words_to_scan = MIN2(remaining, (size_t)ObjArrayMarkingStride);
if (remaining > ObjArrayMarkingStride) {
push_array_slice(start_from + ObjArrayMarkingStride);
}
// Then process current area.
MemRegion mr(start_from, words_to_scan);
return _task->scan_objArray(obj, mr);
}
size_t G1CMObjArrayProcessor::process_obj(oop obj) {
assert(should_be_sliced(obj), "Must be an array object %d and large %zu", obj->is_objArray(), obj->size());
return process_array_slice(objArrayOop(obj), cast_from_oop<HeapWord*>(obj), objArrayOop(obj)->size());
}
size_t G1CMObjArrayProcessor::process_slice(HeapWord* slice) {
// Find the start address of the objArrayOop.
// Shortcut the BOT access if the given address is from a humongous object. The BOT
// slide is fast enough for "smaller" objects in non-humongous regions, but is slower
// than directly using heap region table.
G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1HeapRegion* r = g1h->heap_region_containing(slice);
HeapWord* const start_address = r->is_humongous() ?
r->humongous_start_region()->bottom() :
r->block_start(slice);
assert(cast_to_oop(start_address)->is_objArray(), "Address " PTR_FORMAT " does not refer to an object array ", p2i(start_address));
assert(start_address < slice,
"Object start address " PTR_FORMAT " must be smaller than decoded address " PTR_FORMAT,
p2i(start_address),
p2i(slice));
objArrayOop objArray = objArrayOop(cast_to_oop(start_address));
size_t already_scanned = pointer_delta(slice, start_address);
size_t remaining = objArray->size() - already_scanned;
return process_array_slice(objArray, slice, remaining);
}

View File

@ -1,59 +0,0 @@
/*
* Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_G1CONCURRENTMARKOBJARRAYPROCESSOR_HPP
#define SHARE_GC_G1_G1CONCURRENTMARKOBJARRAYPROCESSOR_HPP
#include "oops/oopsHierarchy.hpp"
class G1CMTask;
// Helper class to mark through large objArrays during marking in an efficient way.
// Instead of pushing large object arrays, we push continuations onto the
// mark stack. These continuations are identified by having their LSB set.
// This allows incremental processing of large objects.
class G1CMObjArrayProcessor {
private:
// Reference to the task for doing the actual work.
G1CMTask* _task;
// Push the continuation at the given address onto the mark stack.
void push_array_slice(HeapWord* addr);
// Process (apply the closure) on the given continuation of the given objArray.
size_t process_array_slice(objArrayOop const obj, HeapWord* start_from, size_t remaining);
public:
static bool should_be_sliced(oop obj);
G1CMObjArrayProcessor(G1CMTask* task) : _task(task) {
}
// Process the given continuation. Returns the number of words scanned.
size_t process_slice(HeapWord* slice);
// Start processing the given objArrayOop by scanning the header and pushing its
// continuation.
size_t process_obj(oop obj);
};
#endif // SHARE_GC_G1_G1CONCURRENTMARKOBJARRAYPROCESSOR_HPP

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2025, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -30,7 +30,6 @@
#include "gc/g1/g1HeapRegionPrinter.hpp"
#include "gc/g1/g1RemSetTrackingPolicy.hpp"
#include "logging/log.hpp"
#include "runtime/atomicAccess.hpp"
#include "runtime/mutexLocker.hpp"
struct G1UpdateRegionLivenessAndSelectForRebuildTask::G1OnRegionClosure : public G1HeapRegionClosure {
@ -154,7 +153,7 @@ void G1UpdateRegionLivenessAndSelectForRebuildTask::work(uint worker_id) {
G1OnRegionClosure on_region_cl(_g1h, _cm, &local_cleanup_list);
_g1h->heap_region_par_iterate_from_worker_offset(&on_region_cl, &_hrclaimer, worker_id);
AtomicAccess::add(&_total_selected_for_rebuild, on_region_cl._num_selected_for_rebuild);
_total_selected_for_rebuild.add_then_fetch(on_region_cl._num_selected_for_rebuild);
// Update the old/humongous region sets
_g1h->remove_from_old_gen_sets(on_region_cl._num_old_regions_removed,

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2025, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,6 +29,7 @@
#include "gc/g1/g1HeapRegionManager.hpp"
#include "gc/g1/g1HeapRegionSet.hpp"
#include "gc/shared/workerThread.hpp"
#include "runtime/atomic.hpp"
class G1CollectedHeap;
class G1ConcurrentMark;
@ -41,7 +42,7 @@ class G1UpdateRegionLivenessAndSelectForRebuildTask : public WorkerTask {
G1ConcurrentMark* _cm;
G1HeapRegionClaimer _hrclaimer;
uint volatile _total_selected_for_rebuild;
Atomic<uint> _total_selected_for_rebuild;
// Reclaimed empty regions
G1FreeRegionList _cleanup_list;
@ -57,7 +58,9 @@ public:
void work(uint worker_id) override;
uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
uint total_selected_for_rebuild() const {
return _total_selected_for_rebuild.load_relaxed();
}
static uint desired_num_workers(uint num_regions);
};

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -116,8 +116,8 @@ G1FullCollector::G1FullCollector(G1CollectedHeap* heap,
_num_workers(calc_active_workers()),
_has_compaction_targets(false),
_has_humongous(false),
_oop_queue_set(_num_workers),
_array_queue_set(_num_workers),
_marking_task_queues(_num_workers),
_partial_array_state_manager(nullptr),
_preserved_marks_set(true),
_serial_compaction_point(this, nullptr),
_humongous_compaction_point(this, nullptr),
@ -140,23 +140,31 @@ G1FullCollector::G1FullCollector(G1CollectedHeap* heap,
_compaction_tops[j] = nullptr;
}
_partial_array_state_manager = new PartialArrayStateManager(_num_workers);
for (uint i = 0; i < _num_workers; i++) {
_markers[i] = new G1FullGCMarker(this, i, _live_stats);
_compaction_points[i] = new G1FullGCCompactionPoint(this, _preserved_marks_set.get(i));
_oop_queue_set.register_queue(i, marker(i)->oop_stack());
_array_queue_set.register_queue(i, marker(i)->objarray_stack());
_marking_task_queues.register_queue(i, marker(i)->task_queue());
}
_serial_compaction_point.set_preserved_stack(_preserved_marks_set.get(0));
_humongous_compaction_point.set_preserved_stack(_preserved_marks_set.get(0));
_region_attr_table.initialize(heap->reserved(), G1HeapRegion::GrainBytes);
}
PartialArrayStateManager* G1FullCollector::partial_array_state_manager() const {
return _partial_array_state_manager;
}
G1FullCollector::~G1FullCollector() {
for (uint i = 0; i < _num_workers; i++) {
delete _markers[i];
delete _compaction_points[i];
}
delete _partial_array_state_manager;
FREE_C_HEAP_ARRAY(G1FullGCMarker*, _markers);
FREE_C_HEAP_ARRAY(G1FullGCCompactionPoint*, _compaction_points);
FREE_C_HEAP_ARRAY(HeapWord*, _compaction_tops);
@ -279,8 +287,8 @@ public:
uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id;
G1FullKeepAliveClosure keep_alive(_collector.marker(index));
BarrierEnqueueDiscoveredFieldClosure enqueue;
G1FollowStackClosure* complete_gc = _collector.marker(index)->stack_closure();
_rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, complete_gc);
G1MarkStackClosure* complete_marking = _collector.marker(index)->stack_closure();
_rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, complete_marking);
}
};
@ -302,7 +310,7 @@ void G1FullCollector::phase1_mark_live_objects() {
const ReferenceProcessorStats& stats = reference_processor()->process_discovered_references(task, _heap->workers(), pt);
scope()->tracer()->report_gc_reference_stats(stats);
pt.print_all_references();
assert(marker(0)->oop_stack()->is_empty(), "Should be no oops on the stack");
assert(marker(0)->task_queue()->is_empty(), "Should be no oops on the stack");
}
{
@ -328,8 +336,7 @@ void G1FullCollector::phase1_mark_live_objects() {
scope()->tracer()->report_object_count_after_gc(&_is_alive, _heap->workers());
}
#if TASKQUEUE_STATS
oop_queue_set()->print_and_reset_taskqueue_stats("Oop Queue");
array_queue_set()->print_and_reset_taskqueue_stats("ObjArrayOop Queue");
marking_task_queues()->print_and_reset_taskqueue_stats("Marking Task Queue");
#endif
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -79,8 +79,8 @@ class G1FullCollector : StackObj {
bool _has_humongous;
G1FullGCMarker** _markers;
G1FullGCCompactionPoint** _compaction_points;
OopQueueSet _oop_queue_set;
ObjArrayTaskQueueSet _array_queue_set;
G1MarkTasksQueueSet _marking_task_queues;
PartialArrayStateManager* _partial_array_state_manager;
PreservedMarksSet _preserved_marks_set;
G1FullGCCompactionPoint _serial_compaction_point;
G1FullGCCompactionPoint _humongous_compaction_point;
@ -113,8 +113,7 @@ public:
uint workers() { return _num_workers; }
G1FullGCMarker* marker(uint id) { return _markers[id]; }
G1FullGCCompactionPoint* compaction_point(uint id) { return _compaction_points[id]; }
OopQueueSet* oop_queue_set() { return &_oop_queue_set; }
ObjArrayTaskQueueSet* array_queue_set() { return &_array_queue_set; }
G1MarkTasksQueueSet* marking_task_queues() { return &_marking_task_queues; }
PreservedMarksSet* preserved_mark_set() { return &_preserved_marks_set; }
G1FullGCCompactionPoint* serial_compaction_point() { return &_serial_compaction_point; }
G1FullGCCompactionPoint* humongous_compaction_point() { return &_humongous_compaction_point; }
@ -122,9 +121,11 @@ public:
ReferenceProcessor* reference_processor();
size_t live_words(uint region_index) const {
assert(region_index < _heap->max_num_regions(), "sanity");
return _live_stats[region_index]._live_words;
return _live_stats[region_index].live_words();
}
PartialArrayStateManager* partial_array_state_manager() const;
void before_marking_update_attribute_table(G1HeapRegion* hr);
inline bool is_compacting(oop obj) const;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -34,7 +34,7 @@
G1FullGCMarkTask::G1FullGCMarkTask(G1FullCollector* collector) :
G1FullGCTask("G1 Parallel Marking Task", collector),
_root_processor(G1CollectedHeap::heap(), collector->workers()),
_terminator(collector->workers(), collector->array_queue_set()) {
_terminator(collector->workers(), collector->marking_task_queues()) {
}
void G1FullGCMarkTask::work(uint worker_id) {
@ -54,10 +54,9 @@ void G1FullGCMarkTask::work(uint worker_id) {
}
// Mark stack is populated, now process and drain it.
marker->complete_marking(collector()->oop_queue_set(), collector()->array_queue_set(), &_terminator);
marker->complete_marking(collector()->marking_task_queues(), &_terminator);
// This is the point where the entire marking should have completed.
assert(marker->oop_stack()->is_empty(), "Marking should have completed");
assert(marker->objarray_stack()->is_empty(), "Array marking should have completed");
assert(marker->task_queue()->is_empty(), "Marking should have completed");
log_task("Marking task", worker_id, start);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,6 +25,8 @@
#include "classfile/classLoaderData.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "gc/g1/g1FullGCMarker.inline.hpp"
#include "gc/shared/partialArraySplitter.inline.hpp"
#include "gc/shared/partialArrayState.hpp"
#include "gc/shared/referenceProcessor.hpp"
#include "gc/shared/taskTerminator.hpp"
#include "gc/shared/verifyOption.hpp"
@ -36,8 +38,8 @@ G1FullGCMarker::G1FullGCMarker(G1FullCollector* collector,
_collector(collector),
_worker_id(worker_id),
_bitmap(collector->mark_bitmap()),
_oop_stack(),
_objarray_stack(),
_task_queue(),
_partial_array_splitter(collector->partial_array_state_manager(), collector->workers(), ObjArrayMarkingStride),
_mark_closure(worker_id, this, ClassLoaderData::_claim_stw_fullgc_mark, G1CollectedHeap::heap()->ref_processor_stw()),
_stack_closure(this),
_cld_closure(mark_closure(), ClassLoaderData::_claim_stw_fullgc_mark),
@ -47,24 +49,36 @@ G1FullGCMarker::G1FullGCMarker(G1FullCollector* collector,
}
G1FullGCMarker::~G1FullGCMarker() {
assert(is_empty(), "Must be empty at this point");
assert(is_task_queue_empty(), "Must be empty at this point");
}
void G1FullGCMarker::complete_marking(OopQueueSet* oop_stacks,
ObjArrayTaskQueueSet* array_stacks,
void G1FullGCMarker::process_partial_array(PartialArrayState* state, bool stolen) {
// Access state before release by claim().
objArrayOop obj_array = objArrayOop(state->source());
PartialArraySplitter::Claim claim =
_partial_array_splitter.claim(state, task_queue(), stolen);
process_array_chunk(obj_array, claim._start, claim._end);
}
void G1FullGCMarker::start_partial_array_processing(objArrayOop obj) {
mark_closure()->do_klass(obj->klass());
// Don't push empty arrays to avoid unnecessary work.
size_t array_length = obj->length();
if (array_length > 0) {
size_t initial_chunk_size = _partial_array_splitter.start(task_queue(), obj, nullptr, array_length);
process_array_chunk(obj, 0, initial_chunk_size);
}
}
void G1FullGCMarker::complete_marking(G1ScannerTasksQueueSet* task_queues,
TaskTerminator* terminator) {
do {
follow_marking_stacks();
ObjArrayTask steal_array;
if (array_stacks->steal(_worker_id, steal_array)) {
follow_array_chunk(objArrayOop(steal_array.obj()), steal_array.index());
} else {
oop steal_oop;
if (oop_stacks->steal(_worker_id, steal_oop)) {
follow_object(steal_oop);
}
process_marking_stacks();
ScannerTask stolen_task;
if (task_queues->steal(_worker_id, stolen_task)) {
dispatch_task(stolen_task, true);
}
} while (!is_empty() || !terminator->offer_termination());
} while (!is_task_queue_empty() || !terminator->offer_termination());
}
void G1FullGCMarker::flush_mark_stats_cache() {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2024, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -28,6 +28,8 @@
#include "gc/g1/g1FullGCOopClosures.hpp"
#include "gc/g1/g1OopClosures.hpp"
#include "gc/g1/g1RegionMarkStatsCache.hpp"
#include "gc/shared/partialArraySplitter.hpp"
#include "gc/shared/partialArrayState.hpp"
#include "gc/shared/stringdedup/stringDedup.hpp"
#include "gc/shared/taskqueue.hpp"
#include "memory/iterator.hpp"
@ -38,16 +40,15 @@
#include "utilities/growableArray.hpp"
#include "utilities/stack.hpp"
typedef OverflowTaskQueue<oop, mtGC> OopQueue;
typedef OverflowTaskQueue<ObjArrayTask, mtGC> ObjArrayTaskQueue;
typedef GenericTaskQueueSet<OopQueue, mtGC> OopQueueSet;
typedef GenericTaskQueueSet<ObjArrayTaskQueue, mtGC> ObjArrayTaskQueueSet;
class G1CMBitMap;
class G1FullCollector;
class TaskTerminator;
typedef OverflowTaskQueue<ScannerTask, mtGC> G1MarkTasksQueue;
typedef GenericTaskQueueSet<G1MarkTasksQueue, mtGC> G1MarkTasksQueueSet;
class G1FullGCMarker : public CHeapObj<mtGC> {
G1FullCollector* _collector;
@ -56,56 +57,50 @@ class G1FullGCMarker : public CHeapObj<mtGC> {
G1CMBitMap* _bitmap;
// Mark stack
OopQueue _oop_stack;
ObjArrayTaskQueue _objarray_stack;
G1MarkTasksQueue _task_queue;
PartialArraySplitter _partial_array_splitter;
// Marking closures
G1MarkAndPushClosure _mark_closure;
G1FollowStackClosure _stack_closure;
G1MarkStackClosure _stack_closure;
CLDToOopClosure _cld_closure;
StringDedup::Requests _string_dedup_requests;
G1RegionMarkStatsCache _mark_stats_cache;
inline bool is_empty();
inline void push_objarray(oop obj, size_t index);
inline bool is_task_queue_empty();
inline bool mark_object(oop obj);
// Marking helpers
inline void follow_object(oop obj);
inline void follow_array(objArrayOop array);
inline void follow_array_chunk(objArrayOop array, int index);
inline void process_array_chunk(objArrayOop obj, size_t start, size_t end);
inline void dispatch_task(const ScannerTask& task, bool stolen);
// Start processing the given objArrayOop by first pushing its continuations and
// then scanning the first chunk.
void start_partial_array_processing(objArrayOop obj);
// Process the given continuation.
void process_partial_array(PartialArrayState* state, bool stolen);
inline void publish_and_drain_oop_tasks();
// Try to publish all contents from the objArray task queue overflow stack to
// the shared objArray stack.
// Returns true and a valid task if there has not been enough space in the shared
// objArray stack, otherwise returns false and the task is invalid.
inline bool publish_or_pop_objarray_tasks(ObjArrayTask& task);
public:
G1FullGCMarker(G1FullCollector* collector,
uint worker_id,
G1RegionMarkStats* mark_stats);
~G1FullGCMarker();
// Stack getters
OopQueue* oop_stack() { return &_oop_stack; }
ObjArrayTaskQueue* objarray_stack() { return &_objarray_stack; }
G1MarkTasksQueue* task_queue() { return &_task_queue; }
// Marking entry points
template <class T> inline void mark_and_push(T* p);
inline void follow_marking_stacks();
void complete_marking(OopQueueSet* oop_stacks,
ObjArrayTaskQueueSet* array_stacks,
inline void process_marking_stacks();
void complete_marking(G1MarkTasksQueueSet* task_queues,
TaskTerminator* terminator);
// Closure getters
CLDToOopClosure* cld_closure() { return &_cld_closure; }
G1MarkAndPushClosure* mark_closure() { return &_mark_closure; }
G1FollowStackClosure* stack_closure() { return &_stack_closure; }
G1MarkStackClosure* stack_closure() { return &_stack_closure; }
// Flush live bytes to regions
void flush_mark_stats_cache();

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2024, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -42,6 +42,7 @@
#include "oops/access.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "utilities/checkedCast.hpp"
#include "utilities/debug.hpp"
inline bool G1FullGCMarker::mark_object(oop obj) {
@ -71,94 +72,55 @@ template <class T> inline void G1FullGCMarker::mark_and_push(T* p) {
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
if (mark_object(obj)) {
_oop_stack.push(obj);
_task_queue.push(ScannerTask(obj));
}
assert(_bitmap->is_marked(obj), "Must be marked");
}
}
inline bool G1FullGCMarker::is_empty() {
return _oop_stack.is_empty() && _objarray_stack.is_empty();
inline bool G1FullGCMarker::is_task_queue_empty() {
return _task_queue.is_empty();
}
inline void G1FullGCMarker::push_objarray(oop obj, size_t index) {
ObjArrayTask task(obj, index);
assert(task.is_valid(), "bad ObjArrayTask");
_objarray_stack.push(task);
inline void G1FullGCMarker::process_array_chunk(objArrayOop obj, size_t start, size_t end) {
obj->oop_iterate_elements_range(mark_closure(),
checked_cast<int>(start),
checked_cast<int>(end));
}
inline void G1FullGCMarker::follow_array(objArrayOop array) {
mark_closure()->do_klass(array->klass());
// Don't push empty arrays to avoid unnecessary work.
if (array->length() > 0) {
push_objarray(array, 0);
}
}
void G1FullGCMarker::follow_array_chunk(objArrayOop array, int index) {
const int len = array->length();
const int beg_index = index;
assert(beg_index < len || len == 0, "index too large");
const int stride = MIN2(len - beg_index, (int) ObjArrayMarkingStride);
const int end_index = beg_index + stride;
// Push the continuation first to allow more efficient work stealing.
if (end_index < len) {
push_objarray(array, end_index);
}
array->oop_iterate_elements_range(mark_closure(), beg_index, end_index);
}
inline void G1FullGCMarker::follow_object(oop obj) {
assert(_bitmap->is_marked(obj), "should be marked");
if (obj->is_objArray()) {
// Handle object arrays explicitly to allow them to
// be split into chunks if needed.
follow_array((objArrayOop)obj);
inline void G1FullGCMarker::dispatch_task(const ScannerTask& task, bool stolen) {
if (task.is_partial_array_state()) {
assert(_bitmap->is_marked(task.to_partial_array_state()->source()), "should be marked");
process_partial_array(task.to_partial_array_state(), stolen);
} else {
obj->oop_iterate(mark_closure());
oop obj = task.to_oop();
assert(_bitmap->is_marked(obj), "should be marked");
if (obj->is_objArray()) {
// Handle object arrays explicitly to allow them to
// be split into chunks if needed.
start_partial_array_processing((objArrayOop)obj);
} else {
obj->oop_iterate(mark_closure());
}
}
}
inline void G1FullGCMarker::publish_and_drain_oop_tasks() {
oop obj;
while (_oop_stack.pop_overflow(obj)) {
if (!_oop_stack.try_push_to_taskqueue(obj)) {
assert(_bitmap->is_marked(obj), "must be marked");
follow_object(obj);
ScannerTask task;
while (_task_queue.pop_overflow(task)) {
if (!_task_queue.try_push_to_taskqueue(task)) {
dispatch_task(task, false);
}
}
while (_oop_stack.pop_local(obj)) {
assert(_bitmap->is_marked(obj), "must be marked");
follow_object(obj);
while (_task_queue.pop_local(task)) {
dispatch_task(task, false);
}
}
inline bool G1FullGCMarker::publish_or_pop_objarray_tasks(ObjArrayTask& task) {
// It is desirable to move as much as possible work from the overflow queue to
// the shared queue as quickly as possible.
while (_objarray_stack.pop_overflow(task)) {
if (!_objarray_stack.try_push_to_taskqueue(task)) {
return true;
}
}
return false;
}
void G1FullGCMarker::follow_marking_stacks() {
void G1FullGCMarker::process_marking_stacks() {
do {
// First, drain regular oop stack.
publish_and_drain_oop_tasks();
// Then process ObjArrays one at a time to avoid marking stack bloat.
ObjArrayTask task;
if (publish_or_pop_objarray_tasks(task) ||
_objarray_stack.pop_local(task)) {
follow_array_chunk(objArrayOop(task.obj()), task.index());
}
} while (!is_empty());
} while (!is_task_queue_empty());
}
#endif // SHARE_GC_G1_G1FULLGCMARKER_INLINE_HPP

View File

@ -35,7 +35,7 @@
G1IsAliveClosure::G1IsAliveClosure(G1FullCollector* collector) :
G1IsAliveClosure(collector, collector->mark_bitmap()) { }
void G1FollowStackClosure::do_void() { _marker->follow_marking_stacks(); }
void G1MarkStackClosure::do_void() { _marker->process_marking_stacks(); }
void G1FullKeepAliveClosure::do_oop(oop* p) { do_oop_work(p); }
void G1FullKeepAliveClosure::do_oop(narrowOop* p) { do_oop_work(p); }

View File

@ -86,11 +86,11 @@ public:
virtual ReferenceIterationMode reference_iteration_mode() { return DO_FIELDS; }
};
class G1FollowStackClosure: public VoidClosure {
class G1MarkStackClosure: public VoidClosure {
G1FullGCMarker* _marker;
public:
G1FollowStackClosure(G1FullGCMarker* marker) : _marker(marker) {}
G1MarkStackClosure(G1FullGCMarker* marker) : _marker(marker) {}
virtual void do_void();
};

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2019, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2019, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -24,7 +24,6 @@
#include "gc/g1/g1ParallelCleaning.hpp"
#include "runtime/atomicAccess.hpp"
#if INCLUDE_JVMCI
#include "jvmci/jvmci.hpp"
#endif
@ -35,11 +34,11 @@ JVMCICleaningTask::JVMCICleaningTask() :
}
bool JVMCICleaningTask::claim_cleaning_task() {
if (AtomicAccess::load(&_cleaning_claimed)) {
if (_cleaning_claimed.load_relaxed()) {
return false;
}
return !AtomicAccess::cmpxchg(&_cleaning_claimed, false, true);
return _cleaning_claimed.compare_set(false, true);
}
void JVMCICleaningTask::work(bool unloading_occurred) {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2019, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2019, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,10 +26,13 @@
#define SHARE_GC_G1_G1PARALLELCLEANING_HPP
#include "gc/shared/parallelCleaning.hpp"
#if INCLUDE_JVMCI
#include "runtime/atomic.hpp"
#endif
#if INCLUDE_JVMCI
class JVMCICleaningTask : public StackObj {
volatile bool _cleaning_claimed;
Atomic<bool> _cleaning_claimed;
public:
JVMCICleaningTask();

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -203,8 +203,8 @@ void G1Policy::update_young_length_bounds(size_t pending_cards, size_t card_rs_l
// allocation.
// That is "fine" - at most this will schedule a GC (hopefully only a little) too
// early or too late.
AtomicAccess::store(&_young_list_desired_length, new_young_list_desired_length);
AtomicAccess::store(&_young_list_target_length, new_young_list_target_length);
_young_list_desired_length.store_relaxed(new_young_list_desired_length);
_young_list_target_length.store_relaxed(new_young_list_target_length);
}
// Calculates desired young gen length. It is calculated from:
@ -943,7 +943,7 @@ void G1Policy::record_young_collection_end(bool concurrent_operation_is_full_mar
phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSToYoungGenCards));
}
record_pause(this_pause, start_time_sec, end_time_sec, allocation_failure);
record_pause(this_pause, start_time_sec, end_time_sec);
if (G1GCPauseTypeHelper::is_last_young_pause(this_pause)) {
assert(!G1GCPauseTypeHelper::is_concurrent_start_pause(this_pause),
@ -1389,16 +1389,13 @@ void G1Policy::update_gc_pause_time_ratios(G1GCPauseType gc_type, double start_t
void G1Policy::record_pause(G1GCPauseType gc_type,
double start,
double end,
bool allocation_failure) {
double end) {
// Manage the MMU tracker. For some reason it ignores Full GCs.
if (gc_type != G1GCPauseType::FullGC) {
_mmu_tracker->add_pause(start, end);
}
if (!allocation_failure) {
update_gc_pause_time_ratios(gc_type, start, end);
}
update_gc_pause_time_ratios(gc_type, start, end);
update_time_to_mixed_tracking(gc_type, start, end);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -35,7 +35,7 @@
#include "gc/g1/g1RemSetTrackingPolicy.hpp"
#include "gc/g1/g1YoungGenSizer.hpp"
#include "gc/shared/gcCause.hpp"
#include "runtime/atomicAccess.hpp"
#include "runtime/atomic.hpp"
#include "utilities/pair.hpp"
#include "utilities/ticks.hpp"
@ -81,12 +81,9 @@ class G1Policy: public CHeapObj<mtGC> {
// Desired young gen length without taking actually available free regions into
// account.
volatile uint _young_list_desired_length;
Atomic<uint> _young_list_desired_length;
// Actual target length given available free memory.
volatile uint _young_list_target_length;
// The max number of regions we can extend the eden by while the GC
// locker is active. This should be >= _young_list_target_length;
volatile uint _young_list_max_length;
Atomic<uint> _young_list_target_length;
// The survivor rate groups below must be initialized after the predictor because they
// indirectly use it through the "this" object passed to their constructor.
@ -275,8 +272,7 @@ private:
// Record the given STW pause with the given start and end times (in s).
void record_pause(G1GCPauseType gc_type,
double start,
double end,
bool allocation_failure = false);
double end);
void update_gc_pause_time_ratios(G1GCPauseType gc_type, double start_sec, double end_sec);
@ -363,8 +359,8 @@ public:
// This must be called at the very beginning of an evacuation pause.
void decide_on_concurrent_start_pause();
uint young_list_desired_length() const { return AtomicAccess::load(&_young_list_desired_length); }
uint young_list_target_length() const { return AtomicAccess::load(&_young_list_target_length); }
uint young_list_desired_length() const { return _young_list_desired_length.load_relaxed(); }
uint young_list_target_length() const { return _young_list_target_length.load_relaxed(); }
bool should_allocate_mutator_region() const;
bool should_expand_on_mutator_allocation() const;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,7 @@
#include "memory/allocation.hpp"
#include "oops/oop.hpp"
#include "runtime/atomic.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/pair.hpp"
@ -40,20 +41,23 @@
// * the number of incoming references found during marking. This is an approximate
// value because we do not mark through all objects.
struct G1RegionMarkStats {
size_t _live_words;
size_t _incoming_refs;
Atomic<size_t> _live_words;
Atomic<size_t> _incoming_refs;
// Clear all members.
void clear() {
_live_words = 0;
_incoming_refs = 0;
_live_words.store_relaxed(0);
_incoming_refs.store_relaxed(0);
}
// Clear all members after a marking overflow. Only needs to clear the number of
// incoming references as all objects will be rescanned, while the live words are
// gathered whenever a thread can mark an object, which is synchronized.
void clear_during_overflow() {
_incoming_refs = 0;
_incoming_refs.store_relaxed(0);
}
size_t live_words() const { return _live_words.load_relaxed(); }
size_t incoming_refs() const { return _incoming_refs.load_relaxed(); }
};
// Per-marking thread cache for the region mark statistics.
@ -112,12 +116,16 @@ public:
void add_live_words(oop obj);
void add_live_words(uint region_idx, size_t live_words) {
G1RegionMarkStatsCacheEntry* const cur = find_for_add(region_idx);
cur->_stats._live_words += live_words;
// This method is only ever called single-threaded, so we do not need atomic
// update here.
cur->_stats._live_words.store_relaxed(cur->_stats.live_words() + live_words);
}
void inc_incoming_refs(uint region_idx) {
G1RegionMarkStatsCacheEntry* const cur = find_for_add(region_idx);
cur->_stats._incoming_refs++;
// This method is only ever called single-threaded, so we do not need atomic
// update here.
cur->_stats._incoming_refs.store_relaxed(cur->_stats.incoming_refs() + 1u);
}
void reset(uint region_idx) {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,8 +27,6 @@
#include "gc/g1/g1RegionMarkStatsCache.hpp"
#include "runtime/atomicAccess.hpp"
inline G1RegionMarkStatsCache::G1RegionMarkStatsCacheEntry* G1RegionMarkStatsCache::find_for_add(uint region_idx) {
uint const cache_idx = hash(region_idx);
@ -46,12 +44,12 @@ inline G1RegionMarkStatsCache::G1RegionMarkStatsCacheEntry* G1RegionMarkStatsCac
inline void G1RegionMarkStatsCache::evict(uint idx) {
G1RegionMarkStatsCacheEntry* cur = &_cache[idx];
if (cur->_stats._live_words != 0) {
AtomicAccess::add(&_target[cur->_region_idx]._live_words, cur->_stats._live_words);
if (cur->_stats.live_words() != 0) {
_target[cur->_region_idx]._live_words.add_then_fetch(cur->_stats.live_words());
}
if (cur->_stats._incoming_refs != 0) {
AtomicAccess::add(&_target[cur->_region_idx]._incoming_refs, cur->_stats._incoming_refs);
if (cur->_stats.incoming_refs() != 0) {
_target[cur->_region_idx]._incoming_refs.add_then_fetch(cur->_stats.incoming_refs());
}
cur->clear();

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2021, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2021, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -58,6 +58,7 @@
#include "gc/shared/workerThread.hpp"
#include "jfr/jfrEvents.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/atomic.hpp"
#include "runtime/threads.hpp"
#include "utilities/ticks.hpp"
@ -459,8 +460,8 @@ class G1PrepareEvacuationTask : public WorkerTask {
G1CollectedHeap* _g1h;
G1HeapRegionClaimer _claimer;
volatile uint _humongous_total;
volatile uint _humongous_candidates;
Atomic<uint> _humongous_total;
Atomic<uint> _humongous_candidates;
G1MonotonicArenaMemoryStats _all_card_set_stats;
@ -481,19 +482,19 @@ public:
}
void add_humongous_candidates(uint candidates) {
AtomicAccess::add(&_humongous_candidates, candidates);
_humongous_candidates.add_then_fetch(candidates);
}
void add_humongous_total(uint total) {
AtomicAccess::add(&_humongous_total, total);
_humongous_total.add_then_fetch(total);
}
uint humongous_candidates() {
return _humongous_candidates;
return _humongous_candidates.load_relaxed();
}
uint humongous_total() {
return _humongous_total;
return _humongous_total.load_relaxed();
}
const G1MonotonicArenaMemoryStats all_card_set_stats() const {
@ -698,7 +699,7 @@ protected:
virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
private:
volatile bool _pinned_regions_recorded;
Atomic<bool> _pinned_regions_recorded;
public:
G1EvacuateRegionsBaseTask(const char* name,
@ -722,7 +723,7 @@ public:
G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
pss->set_ref_discoverer(_g1h->ref_processor_stw());
if (!AtomicAccess::cmpxchg(&_pinned_regions_recorded, false, true)) {
if (_pinned_regions_recorded.compare_set(false, true)) {
record_pinned_regions(pss, worker_id);
}
scan_roots(pss, worker_id);

View File

@ -46,6 +46,7 @@
#include "oops/access.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/prefetch.inline.hpp"
#include "runtime/threads.hpp"
#include "runtime/threadSMR.hpp"
@ -759,7 +760,7 @@ class G1PostEvacuateCollectionSetCleanupTask2::FreeCollectionSetTask : public G1
const size_t* _surviving_young_words;
uint _active_workers;
G1EvacFailureRegions* _evac_failure_regions;
volatile uint _num_retained_regions;
Atomic<uint> _num_retained_regions;
FreeCSetStats* worker_stats(uint worker) {
return &_worker_stats[worker];
@ -794,7 +795,7 @@ public:
virtual ~FreeCollectionSetTask() {
Ticks serial_time = Ticks::now();
bool has_new_retained_regions = AtomicAccess::load(&_num_retained_regions) != 0;
bool has_new_retained_regions = _num_retained_regions.load_relaxed() != 0;
if (has_new_retained_regions) {
G1CollectionSetCandidates* candidates = _g1h->collection_set()->candidates();
candidates->sort_by_efficiency();
@ -829,7 +830,7 @@ public:
// Report per-region type timings.
cl.report_timing();
AtomicAccess::add(&_num_retained_regions, cl.num_retained_regions(), memory_order_relaxed);
_num_retained_regions.add_then_fetch(cl.num_retained_regions(), memory_order_relaxed);
}
};

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2005, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -44,6 +44,7 @@
#include "gc/parallel/psStringDedup.hpp"
#include "gc/parallel/psYoungGen.hpp"
#include "gc/shared/classUnloadingContext.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/fullGCForwarding.inline.hpp"
#include "gc/shared/gcCause.hpp"
#include "gc/shared/gcHeapSummary.hpp"
@ -932,6 +933,17 @@ void PSParallelCompact::summary_phase(bool should_do_max_compaction)
}
}
void PSParallelCompact::report_object_count_after_gc() {
GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer);
// The heap is compacted, all objects are iterable. However there may be
// filler objects in the heap which we should ignore.
class SkipFillerObjectClosure : public BoolObjectClosure {
public:
bool do_object_b(oop obj) override { return !CollectedHeap::is_filler_object(obj); }
} cl;
_gc_tracer.report_object_count_after_gc(&cl, &ParallelScavengeHeap::heap()->workers());
}
bool PSParallelCompact::invoke(bool clear_all_soft_refs, bool should_do_max_compaction) {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(),
@ -1027,6 +1039,8 @@ bool PSParallelCompact::invoke(bool clear_all_soft_refs, bool should_do_max_comp
heap->print_heap_change(pre_gc_values);
report_object_count_after_gc();
// Track memory usage and detect low memory
MemoryService::track_memory_usage();
heap->update_counters();
@ -1274,10 +1288,6 @@ void PSParallelCompact::marking_phase(ParallelOldTracer *gc_tracer) {
}
}
{
GCTraceTime(Debug, gc, phases) tm("Report Object Count", &_gc_timer);
_gc_tracer.report_object_count_after_gc(is_alive_closure(), &ParallelScavengeHeap::heap()->workers());
}
#if TASKQUEUE_STATS
ParCompactionManager::print_and_reset_taskqueue_stats();
#endif
@ -1835,8 +1845,7 @@ void PSParallelCompact::verify_filler_in_dense_prefix() {
oop obj = cast_to_oop(cur_addr);
oopDesc::verify(obj);
if (!mark_bitmap()->is_marked(cur_addr)) {
Klass* k = cast_to_oop(cur_addr)->klass();
assert(k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass(), "inv");
assert(CollectedHeap::is_filler_object(cast_to_oop(cur_addr)), "inv");
}
cur_addr += obj->size();
}

View File

@ -749,6 +749,7 @@ private:
// Move objects to new locations.
static void compact();
static void report_object_count_after_gc();
// Add available regions to the stack and draining tasks to the task queue.
static void prepare_region_draining_tasks(uint parallel_gc_threads);

View File

@ -771,7 +771,7 @@ Node* BarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* mem, Node* toobi
// this will require extensive changes to the loop optimization in order to
// prevent a degradation of the optimization.
// See comment in memnode.hpp, around line 227 in class LoadPNode.
Node* tlab_end = macro->make_load(toobig_false, mem, tlab_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
Node* tlab_end = macro->make_load_raw(toobig_false, mem, tlab_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
// Load the TLAB top.
Node* old_tlab_top = new LoadPNode(toobig_false, mem, tlab_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -309,6 +309,8 @@ protected:
fill_with_object(start, pointer_delta(end, start), zap);
}
inline static bool is_filler_object(oop obj);
virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
static size_t min_dummy_object_size() {
return oopDesc::header_size();

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,7 +27,9 @@
#include "gc/shared/collectedHeap.hpp"
#include "classfile/vmClasses.hpp"
#include "gc/shared/memAllocator.hpp"
#include "memory/universe.hpp"
#include "oops/oop.inline.hpp"
#include "utilities/align.hpp"
@ -50,4 +52,9 @@ inline void CollectedHeap::add_vmthread_cpu_time(jlong time) {
_vmthread_cpu_time += time;
}
inline bool CollectedHeap::is_filler_object(oop obj) {
Klass* k = obj->klass_without_asserts();
return k == Universe::fillerArrayKlass() || k == vmClasses::FillerObject_klass();
}
#endif // SHARE_GC_SHARED_COLLECTEDHEAP_INLINE_HPP

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -641,6 +641,10 @@ public:
return (raw_value() & PartialArrayTag) != 0;
}
bool is_null() const {
return _p == nullptr;
}
oop* to_oop_ptr() const {
return static_cast<oop*>(decode(OopTag));
}

View File

@ -96,8 +96,22 @@ void WorkerThreads::initialize_workers() {
}
}
bool WorkerThreads::allow_inject_creation_failure() const {
if (!is_init_completed()) {
// Never allow creation failures during VM init
return false;
}
if (_created_workers == 0) {
// Never allow creation failures of the first worker, it will cause the VM to exit
return false;
}
return true;
}
WorkerThread* WorkerThreads::create_worker(uint name_suffix) {
if (is_init_completed() && InjectGCWorkerCreationFailure) {
if (InjectGCWorkerCreationFailure && allow_inject_creation_failure()) {
return nullptr;
}

View File

@ -104,6 +104,7 @@ public:
WorkerThreads(const char* name, uint max_workers);
void initialize_workers();
bool allow_inject_creation_failure() const;
uint max_workers() const { return _max_workers; }
uint created_workers() const { return _created_workers; }

View File

@ -68,9 +68,9 @@ ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics(ShenandoahSpaceInfo*
ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
size_t ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
// The logic for cset selection in adaptive is as follows:
@ -124,6 +124,7 @@ void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(Shenand
cur_garbage = new_garbage;
}
}
return 0;
}
void ShenandoahAdaptiveHeuristics::record_cycle_start() {

View File

@ -108,9 +108,9 @@ public:
virtual ~ShenandoahAdaptiveHeuristics();
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) override;
virtual size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) override;
virtual void record_cycle_start() override;
virtual void record_success_concurrent() override;

View File

@ -39,15 +39,16 @@ ShenandoahAggressiveHeuristics::ShenandoahAggressiveHeuristics(ShenandoahSpaceIn
SHENANDOAH_ERGO_ENABLE_FLAG(ShenandoahEvacReserveOverflow);
}
void ShenandoahAggressiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free) {
size_t ShenandoahAggressiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free) {
for (size_t idx = 0; idx < size; idx++) {
ShenandoahHeapRegion* r = data[idx].get_region();
if (r->garbage() > 0) {
cset->add_region(r);
}
}
return 0;
}
bool ShenandoahAggressiveHeuristics::should_start_gc() {

View File

@ -35,9 +35,9 @@ class ShenandoahAggressiveHeuristics : public ShenandoahHeuristics {
public:
ShenandoahAggressiveHeuristics(ShenandoahSpaceInfo* space_info);
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free);
virtual size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free);
virtual bool should_start_gc();

View File

@ -76,9 +76,9 @@ bool ShenandoahCompactHeuristics::should_start_gc() {
return ShenandoahHeuristics::should_start_gc();
}
void ShenandoahCompactHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
size_t ShenandoahCompactHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
// Do not select too large CSet that would overflow the available free space
size_t max_cset = actual_free * 3 / 4;
@ -97,4 +97,5 @@ void ShenandoahCompactHeuristics::choose_collection_set_from_regiondata(Shenando
cset->add_region(r);
}
}
return 0;
}

View File

@ -37,9 +37,9 @@ public:
virtual bool should_start_gc();
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free);
virtual size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free);
virtual const char* name() { return "Compact"; }
virtual bool is_diagnostic() { return false; }

View File

@ -37,7 +37,7 @@ ShenandoahGenerationalHeuristics::ShenandoahGenerationalHeuristics(ShenandoahGen
: ShenandoahAdaptiveHeuristics(generation), _generation(generation) {
}
void ShenandoahGenerationalHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set) {
size_t ShenandoahGenerationalHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set) {
assert(collection_set->is_empty(), "Must be empty");
auto heap = ShenandoahGenerationalHeap::heap();
@ -168,16 +168,12 @@ void ShenandoahGenerationalHeuristics::choose_collection_set(ShenandoahCollectio
byte_size_in_proper_unit(total_garbage), proper_unit_for_byte_size(total_garbage));
size_t immediate_percent = (total_garbage == 0) ? 0 : (immediate_garbage * 100 / total_garbage);
bool doing_promote_in_place = (humongous_regions_promoted + regular_regions_promoted_in_place > 0);
if (doing_promote_in_place || (preselected_candidates > 0) || (immediate_percent <= ShenandoahImmediateThreshold)) {
// Only young collections need to prime the collection set.
if (_generation->is_young()) {
heap->old_generation()->heuristics()->prime_collection_set(collection_set);
}
size_t add_regions_to_old = 0;
if (doing_promote_in_place || (preselected_candidates > 0) || (immediate_percent <= ShenandoahImmediateThreshold)) {
// Call the subclasses to add young-gen regions into the collection set.
choose_collection_set_from_regiondata(collection_set, candidates, cand_idx, immediate_garbage + free);
add_regions_to_old = choose_collection_set_from_regiondata(collection_set, candidates, cand_idx, immediate_garbage + free);
}
if (collection_set->has_old_regions()) {
@ -194,6 +190,7 @@ void ShenandoahGenerationalHeuristics::choose_collection_set(ShenandoahCollectio
regular_regions_promoted_free,
immediate_regions,
immediate_garbage);
return add_regions_to_old;
}
@ -210,13 +207,6 @@ size_t ShenandoahGenerationalHeuristics::add_preselected_regions_to_collection_s
assert(ShenandoahGenerationalHeap::heap()->is_tenurable(r), "Preselected regions must have tenure age");
// Entire region will be promoted, This region does not impact young-gen or old-gen evacuation reserve.
// This region has been pre-selected and its impact on promotion reserve is already accounted for.
// r->used() is r->garbage() + r->get_live_data_bytes()
// Since all live data in this region is being evacuated from young-gen, it is as if this memory
// is garbage insofar as young-gen is concerned. Counting this as garbage reduces the need to
// reclaim highly utilized young-gen regions just for the sake of finding min_garbage to reclaim
// within young-gen memory.
cur_young_garbage += r->garbage();
cset->add_region(r);
}

View File

@ -44,7 +44,7 @@ class ShenandoahGenerationalHeuristics : public ShenandoahAdaptiveHeuristics {
public:
explicit ShenandoahGenerationalHeuristics(ShenandoahGeneration* generation);
void choose_collection_set(ShenandoahCollectionSet* collection_set) override;
size_t choose_collection_set(ShenandoahCollectionSet* collection_set) override;
protected:
ShenandoahGeneration* _generation;

View File

@ -24,6 +24,7 @@
*/
#include "gc/shenandoah/heuristics/shenandoahGlobalHeuristics.hpp"
#include "gc/shenandoah/shenandoahAsserts.hpp"
#include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
#include "gc/shenandoah/shenandoahGenerationalHeap.inline.hpp"
#include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
@ -35,13 +36,14 @@ ShenandoahGlobalHeuristics::ShenandoahGlobalHeuristics(ShenandoahGlobalGeneratio
}
void ShenandoahGlobalHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
size_t ShenandoahGlobalHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
// Better select garbage-first regions
QuickSort::sort<RegionData>(data, (int) size, compare_by_garbage);
choose_global_collection_set(cset, data, size, actual_free, 0 /* cur_young_garbage */);
return 0;
}
@ -49,94 +51,212 @@ void ShenandoahGlobalHeuristics::choose_global_collection_set(ShenandoahCollecti
const ShenandoahHeuristics::RegionData* data,
size_t size, size_t actual_free,
size_t cur_young_garbage) const {
shenandoah_assert_heaplocked_or_safepoint();
auto heap = ShenandoahGenerationalHeap::heap();
auto free_set = heap->free_set();
size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
size_t capacity = heap->soft_max_capacity();
size_t garbage_threshold = region_size_bytes * ShenandoahGarbageThreshold / 100;
size_t ignore_threshold = region_size_bytes * ShenandoahIgnoreGarbageThreshold / 100;
size_t young_evac_reserve = heap->young_generation()->get_evacuation_reserve();
size_t original_young_evac_reserve = young_evac_reserve;
size_t old_evac_reserve = heap->old_generation()->get_evacuation_reserve();
size_t max_young_cset = (size_t) (young_evac_reserve / ShenandoahEvacWaste);
size_t young_cur_cset = 0;
size_t max_old_cset = (size_t) (old_evac_reserve / ShenandoahOldEvacWaste);
size_t old_cur_cset = 0;
size_t old_promo_reserve = heap->old_generation()->get_promoted_reserve();
// Figure out how many unaffiliated young regions are dedicated to mutator and to evacuator. Allow the young
// collector's unaffiliated regions to be transferred to old-gen if old-gen has more easily reclaimed garbage
// than young-gen. At the end of this cycle, any excess regions remaining in old-gen will be transferred back
// to young. Do not transfer the mutator's unaffiliated regions to old-gen. Those must remain available
// to the mutator as it needs to be able to consume this memory during concurrent GC.
size_t unaffiliated_young_regions = heap->young_generation()->free_unaffiliated_regions();
size_t unaffiliated_young_regions = free_set->collector_unaffiliated_regions();
size_t unaffiliated_young_memory = unaffiliated_young_regions * region_size_bytes;
size_t unaffiliated_old_regions = free_set->old_collector_unaffiliated_regions();
size_t unaffiliated_old_memory = unaffiliated_old_regions * region_size_bytes;
if (unaffiliated_young_memory > max_young_cset) {
size_t unaffiliated_mutator_memory = unaffiliated_young_memory - max_young_cset;
unaffiliated_young_memory -= unaffiliated_mutator_memory;
unaffiliated_young_regions = unaffiliated_young_memory / region_size_bytes; // round down
unaffiliated_young_memory = unaffiliated_young_regions * region_size_bytes;
// Figure out how many unaffiliated regions are dedicated to Collector and OldCollector reserves. Let these
// be shuffled between young and old generations in order to expedite evacuation of whichever regions have the
// most garbage, regardless of whether these garbage-first regions reside in young or old generation.
// Excess reserves will be transferred back to the mutator after collection set has been chosen. At the end
// of evacuation, any reserves not consumed by evacuation will also be transferred to the mutator free set.
// Truncate reserves to only target unaffiliated memory
size_t shared_reserve_regions = 0;
if (young_evac_reserve > unaffiliated_young_memory) {
shared_reserve_regions += unaffiliated_young_regions;
} else {
size_t delta_regions = young_evac_reserve / region_size_bytes;
shared_reserve_regions += delta_regions;
}
young_evac_reserve = 0;
size_t total_old_reserve = old_evac_reserve + old_promo_reserve;
if (total_old_reserve > unaffiliated_old_memory) {
// Give all the unaffiliated memory to the shared reserves. Leave the rest for promo reserve.
shared_reserve_regions += unaffiliated_old_regions;
old_promo_reserve = total_old_reserve - unaffiliated_old_memory;
} else {
size_t delta_regions = old_evac_reserve / region_size_bytes;
shared_reserve_regions += delta_regions;
}
old_evac_reserve = 0;
assert(shared_reserve_regions <=
(heap->young_generation()->free_unaffiliated_regions() + heap->old_generation()->free_unaffiliated_regions()),
"simple math");
// We'll affiliate these unaffiliated regions with either old or young, depending on need.
max_young_cset -= unaffiliated_young_memory;
size_t shared_reserves = shared_reserve_regions * region_size_bytes;
size_t committed_from_shared_reserves = 0;
// Keep track of how many regions we plan to transfer from young to old.
size_t regions_transferred_to_old = 0;
size_t promo_bytes = 0;
size_t old_evac_bytes = 0;
size_t young_evac_bytes = 0;
size_t free_target = (capacity * ShenandoahMinFreeThreshold) / 100 + max_young_cset;
size_t consumed_by_promo = 0; // promo_bytes * ShenandoahPromoEvacWaste
size_t consumed_by_old_evac = 0; // old_evac_bytes * ShenandoahOldEvacWaste
size_t consumed_by_young_evac = 0; // young_evac_bytes * ShenandoahEvacWaste
// Of the memory reclaimed by GC, some of this will need to be reserved for the next GC collection. Use the current
// young reserve as an approximation of the future Collector reserve requirement. Try to end with at least
// (capacity * ShenandoahMinFreeThreshold) / 100 bytes available to the mutator.
size_t free_target = (capacity * ShenandoahMinFreeThreshold) / 100 + original_young_evac_reserve;
size_t min_garbage = (free_target > actual_free) ? (free_target - actual_free) : 0;
log_info(gc, ergo)("Adaptive CSet Selection for GLOBAL. Max Young Evacuation: %zu"
"%s, Max Old Evacuation: %zu%s, Max Either Evacuation: %zu%s, Actual Free: %zu%s.",
byte_size_in_proper_unit(max_young_cset), proper_unit_for_byte_size(max_young_cset),
byte_size_in_proper_unit(max_old_cset), proper_unit_for_byte_size(max_old_cset),
byte_size_in_proper_unit(unaffiliated_young_memory), proper_unit_for_byte_size(unaffiliated_young_memory),
byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free));
size_t aged_regions_promoted = 0;
size_t young_regions_evacuated = 0;
size_t old_regions_evacuated = 0;
log_info(gc, ergo)("Adaptive CSet Selection for GLOBAL. Discretionary evacuation budget (for either old or young): %zu%s"
", Actual Free: %zu%s.",
byte_size_in_proper_unit(shared_reserves), proper_unit_for_byte_size(shared_reserves),
byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free));
size_t cur_garbage = cur_young_garbage;
for (size_t idx = 0; idx < size; idx++) {
ShenandoahHeapRegion* r = data[idx].get_region();
assert(!cset->is_preselected(r->index()), "There should be no preselected regions during GLOBAL GC");
bool add_region = false;
if (r->is_old() || heap->is_tenurable(r)) {
size_t new_cset = old_cur_cset + r->get_live_data_bytes();
if ((r->garbage() > garbage_threshold)) {
while ((new_cset > max_old_cset) && (unaffiliated_young_regions > 0)) {
unaffiliated_young_regions--;
regions_transferred_to_old++;
max_old_cset += region_size_bytes / ShenandoahOldEvacWaste;
size_t region_garbage = r->garbage();
size_t new_garbage = cur_garbage + region_garbage;
bool add_regardless = (region_garbage > ignore_threshold) && (new_garbage < min_garbage);
size_t live_bytes = r->get_live_data_bytes();
if (add_regardless || (region_garbage >= garbage_threshold)) {
if (r->is_old()) {
size_t anticipated_consumption = (size_t) (live_bytes * ShenandoahOldEvacWaste);
size_t new_old_consumption = consumed_by_old_evac + anticipated_consumption;
size_t new_old_evac_reserve = old_evac_reserve;
size_t proposed_old_region_expansion = 0;
while ((new_old_consumption > new_old_evac_reserve) && (committed_from_shared_reserves < shared_reserves)) {
committed_from_shared_reserves += region_size_bytes;
proposed_old_region_expansion++;
new_old_evac_reserve += region_size_bytes;
}
}
if ((new_cset <= max_old_cset) && (r->garbage() > garbage_threshold)) {
add_region = true;
old_cur_cset = new_cset;
}
} else {
assert(r->is_young() && !heap->is_tenurable(r), "DeMorgan's law (assuming r->is_affiliated)");
size_t new_cset = young_cur_cset + r->get_live_data_bytes();
size_t region_garbage = r->garbage();
size_t new_garbage = cur_young_garbage + region_garbage;
bool add_regardless = (region_garbage > ignore_threshold) && (new_garbage < min_garbage);
if (add_regardless || (r->garbage() > garbage_threshold)) {
while ((new_cset > max_young_cset) && (unaffiliated_young_regions > 0)) {
unaffiliated_young_regions--;
max_young_cset += region_size_bytes / ShenandoahEvacWaste;
// If this region has free memory and we choose to place it in the collection set, its free memory is no longer
// available to hold promotion results. So we behave as if its free memory is consumed within the promotion reserve.
size_t anticipated_loss_from_promo_reserve = r->free();
size_t new_promo_consumption = consumed_by_promo + anticipated_loss_from_promo_reserve;
size_t new_promo_reserve = old_promo_reserve;
while ((new_promo_consumption > new_promo_reserve) && (committed_from_shared_reserves < shared_reserves)) {
committed_from_shared_reserves += region_size_bytes;
proposed_old_region_expansion++;
new_promo_reserve += region_size_bytes;
}
if ((new_old_consumption <= new_old_evac_reserve) && (new_promo_consumption <= new_promo_reserve)) {
add_region = true;
old_evac_reserve = new_old_evac_reserve;
old_promo_reserve = new_promo_reserve;
old_evac_bytes += live_bytes;
consumed_by_old_evac = new_old_consumption;
consumed_by_promo = new_promo_consumption;
cur_garbage = new_garbage;
old_regions_evacuated++;
} else {
// We failed to sufficiently expand old so unwind proposed expansion
committed_from_shared_reserves -= proposed_old_region_expansion * region_size_bytes;
}
} else if (heap->is_tenurable(r)) {
size_t anticipated_consumption = (size_t) (live_bytes * ShenandoahPromoEvacWaste);
size_t new_promo_consumption = consumed_by_promo + anticipated_consumption;
size_t new_promo_reserve = old_promo_reserve;
size_t proposed_old_region_expansion = 0;
while ((new_promo_consumption > new_promo_reserve) && (committed_from_shared_reserves < shared_reserves)) {
committed_from_shared_reserves += region_size_bytes;
proposed_old_region_expansion++;
new_promo_reserve += region_size_bytes;
}
if (new_promo_consumption <= new_promo_reserve) {
add_region = true;
old_promo_reserve = new_promo_reserve;
promo_bytes += live_bytes;
consumed_by_promo = new_promo_consumption;
cur_garbage = new_garbage;
aged_regions_promoted++;
} else {
// We failed to sufficiently expand old so unwind proposed expansion
committed_from_shared_reserves -= proposed_old_region_expansion * region_size_bytes;
}
} else {
assert(r->is_young() && !heap->is_tenurable(r), "DeMorgan's law (assuming r->is_affiliated)");
size_t anticipated_consumption = (size_t) (live_bytes * ShenandoahEvacWaste);
size_t new_young_evac_consumption = consumed_by_young_evac + anticipated_consumption;
size_t new_young_evac_reserve = young_evac_reserve;
size_t proposed_young_region_expansion = 0;
while ((new_young_evac_consumption > new_young_evac_reserve) && (committed_from_shared_reserves < shared_reserves)) {
committed_from_shared_reserves += region_size_bytes;
proposed_young_region_expansion++;
new_young_evac_reserve += region_size_bytes;
}
if (new_young_evac_consumption <= new_young_evac_reserve) {
add_region = true;
young_evac_reserve = new_young_evac_reserve;
young_evac_bytes += live_bytes;
consumed_by_young_evac = new_young_evac_consumption;
cur_garbage = new_garbage;
young_regions_evacuated++;
} else {
// We failed to sufficiently expand old so unwind proposed expansion
committed_from_shared_reserves -= proposed_young_region_expansion * region_size_bytes;
}
}
if ((new_cset <= max_young_cset) && (add_regardless || (region_garbage > garbage_threshold))) {
add_region = true;
young_cur_cset = new_cset;
cur_young_garbage = new_garbage;
}
}
if (add_region) {
cset->add_region(r);
}
}
if (regions_transferred_to_old > 0) {
assert(young_evac_reserve > regions_transferred_to_old * region_size_bytes, "young reserve cannot be negative");
heap->young_generation()->set_evacuation_reserve(young_evac_reserve - regions_transferred_to_old * region_size_bytes);
heap->old_generation()->set_evacuation_reserve(old_evac_reserve + regions_transferred_to_old * region_size_bytes);
if (committed_from_shared_reserves < shared_reserves) {
// Give all the rest to promotion
old_promo_reserve += (shared_reserves - committed_from_shared_reserves);
// dead code: committed_from_shared_reserves = shared_reserves;
}
// Consider the effects of round-off:
// 1. We know that the sum over each evacuation mutiplied by Evacuation Waste is <= total evacuation reserve
// 2. However, the reserve for each individual evacuation may be rounded down. In the worst case, we will be over budget
// by the number of regions evacuated, since each region's reserve might be under-estimated by at most 1
// 3. Likewise, if we take the sum of bytes evacuated and multiply this by the Evacuation Waste and then round down
// to nearest integer, the calculated reserve will underestimate the true reserve needs by at most 1.
// 4. This explains the adjustments to subtotals in the assert statements below.
assert(young_evac_bytes * ShenandoahEvacWaste <= young_evac_reserve + young_regions_evacuated,
"budget: %zu <= %zu", (size_t) (young_evac_bytes * ShenandoahEvacWaste), young_evac_reserve);
assert(old_evac_bytes * ShenandoahOldEvacWaste <= old_evac_reserve + old_regions_evacuated,
"budget: %zu <= %zu", (size_t) (old_evac_bytes * ShenandoahOldEvacWaste), old_evac_reserve);
assert(promo_bytes * ShenandoahPromoEvacWaste <= old_promo_reserve + aged_regions_promoted,
"budget: %zu <= %zu", (size_t) (promo_bytes * ShenandoahPromoEvacWaste), old_promo_reserve);
assert(young_evac_reserve + old_evac_reserve + old_promo_reserve <=
heap->young_generation()->get_evacuation_reserve() + heap->old_generation()->get_evacuation_reserve() +
heap->old_generation()->get_promoted_reserve(), "Exceeded budget");
if (heap->young_generation()->get_evacuation_reserve() < young_evac_reserve) {
size_t delta_bytes = young_evac_reserve - heap->young_generation()->get_evacuation_reserve();
size_t delta_regions = delta_bytes / region_size_bytes;
size_t regions_to_transfer = MIN2(unaffiliated_old_regions, delta_regions);
log_info(gc)("Global GC moves %zu unaffiliated regions from old collector to young collector reserves", regions_to_transfer);
ssize_t negated_regions = -regions_to_transfer;
heap->free_set()->move_unaffiliated_regions_from_collector_to_old_collector(negated_regions);
} else if (heap->young_generation()->get_evacuation_reserve() > young_evac_reserve) {
size_t delta_bytes = heap->young_generation()->get_evacuation_reserve() - young_evac_reserve;
size_t delta_regions = delta_bytes / region_size_bytes;
size_t regions_to_transfer = MIN2(unaffiliated_young_regions, delta_regions);
log_info(gc)("Global GC moves %zu unaffiliated regions from young collector to old collector reserves", regions_to_transfer);
heap->free_set()->move_unaffiliated_regions_from_collector_to_old_collector(regions_to_transfer);
}
heap->young_generation()->set_evacuation_reserve(young_evac_reserve);
heap->old_generation()->set_evacuation_reserve(old_evac_reserve);
heap->old_generation()->set_promoted_reserve(old_promo_reserve);
}

View File

@ -39,9 +39,9 @@ class ShenandoahGlobalHeuristics : public ShenandoahGenerationalHeuristics {
public:
ShenandoahGlobalHeuristics(ShenandoahGlobalGeneration* generation);
void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) override;
size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) override;
private:
void choose_global_collection_set(ShenandoahCollectionSet* cset,

View File

@ -72,7 +72,7 @@ ShenandoahHeuristics::~ShenandoahHeuristics() {
FREE_C_HEAP_ARRAY(RegionGarbage, _region_data);
}
void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set) {
size_t ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set) {
ShenandoahHeap* heap = ShenandoahHeap::heap();
assert(collection_set->is_empty(), "Must be empty");
@ -153,8 +153,8 @@ void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collec
if (immediate_percent <= ShenandoahImmediateThreshold) {
choose_collection_set_from_regiondata(collection_set, candidates, cand_idx, immediate_garbage + free);
}
collection_set->summarize(total_garbage, immediate_garbage, immediate_regions);
return 0;
}
void ShenandoahHeuristics::record_cycle_start() {

View File

@ -129,6 +129,13 @@ protected:
#endif
}
inline void update_livedata(size_t live) {
_region_union._live_data = live;
#ifdef ASSERT
_union_tag = is_live_data;
#endif
}
inline ShenandoahHeapRegion* get_region() const {
assert(_union_tag != is_uninitialized, "Cannot fetch region from uninitialized RegionData");
return _region;
@ -176,9 +183,12 @@ protected:
static int compare_by_garbage(RegionData a, RegionData b);
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
RegionData* data, size_t data_size,
size_t free) = 0;
// This is a helper function to choose_collection_set(), returning the number of regions that need to be transferred to
// the old reserve from the young reserve in order to effectively evacuate the chosen collection set. In non-generational
// mode, the return value is 0.
virtual size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
RegionData* data, size_t data_size,
size_t free) = 0;
void adjust_penalty(intx step);
@ -226,7 +236,9 @@ public:
virtual void record_requested_gc();
virtual void choose_collection_set(ShenandoahCollectionSet* collection_set);
// Choose the collection set, returning the number of regions that need to be transferred to the old reserve from the young
// reserve in order to effectively evacuate the chosen collection set. In non-generational mode, the return value is 0.
virtual size_t choose_collection_set(ShenandoahCollectionSet* collection_set);
virtual bool can_unload_classes();

View File

@ -26,9 +26,11 @@
#include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
#include "gc/shenandoah/shenandoahCollectionSet.hpp"
#include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
#include "gc/shenandoah/shenandoahFreeSet.hpp"
#include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
#include "gc/shenandoah/shenandoahOldGeneration.hpp"
#include "gc/shenandoah/shenandoahYoungGeneration.hpp"
#include "logging/log.hpp"
#include "utilities/quickSort.hpp"
@ -77,18 +79,31 @@ ShenandoahOldHeuristics::ShenandoahOldHeuristics(ShenandoahOldGeneration* genera
}
bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* collection_set) {
if (unprocessed_old_collection_candidates() == 0) {
return false;
}
_mixed_evac_cset = collection_set;
_included_old_regions = 0;
_evacuated_old_bytes = 0;
_collected_old_bytes = 0;
if (_old_generation->is_preparing_for_mark()) {
// We have unprocessed old collection candidates, but the heuristic has given up on evacuating them.
// This is most likely because they were _all_ pinned at the time of the last mixed evacuation (and
// this in turn is most likely because there are just one or two candidate regions remaining).
log_info(gc, ergo)("Remaining " UINT32_FORMAT " old regions are being coalesced and filled", unprocessed_old_collection_candidates());
log_info(gc, ergo)("Remaining " UINT32_FORMAT
" old regions are being coalesced and filled", unprocessed_old_collection_candidates());
return false;
}
// Between consecutive mixed-evacuation cycles, the live data within each candidate region may change due to
// promotions and old-gen evacuations. Re-sort the candidate regions in order to first evacuate regions that have
// the smallest amount of live data. These are easiest to evacuate with least effort. Doing these first allows
// us to more quickly replenish free memory with empty regions.
for (uint i = _next_old_collection_candidate; i < _last_old_collection_candidate; i++) {
ShenandoahHeapRegion* r = _region_data[i].get_region();
_region_data[i].update_livedata(r->get_mixed_candidate_live_data_bytes());
}
QuickSort::sort<RegionData>(_region_data + _next_old_collection_candidate, unprocessed_old_collection_candidates(),
compare_by_live);
_first_pinned_candidate = NOT_FOUND;
uint included_old_regions = 0;
@ -100,150 +115,44 @@ bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* coll
// of memory that can still be evacuated. We address this by reducing the evacuation budget by the amount
// of live memory in that region and by the amount of unallocated memory in that region if the evacuation
// budget is constrained by availability of free memory.
const size_t old_evacuation_reserve = _old_generation->get_evacuation_reserve();
const size_t old_evacuation_budget = (size_t) ((double) old_evacuation_reserve / ShenandoahOldEvacWaste);
size_t unfragmented_available = _old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes();
size_t fragmented_available;
size_t excess_fragmented_available;
_old_evacuation_reserve = _old_generation->get_evacuation_reserve();
_old_evacuation_budget = (size_t) ((double) _old_evacuation_reserve / ShenandoahOldEvacWaste);
if (unfragmented_available > old_evacuation_budget) {
unfragmented_available = old_evacuation_budget;
fragmented_available = 0;
excess_fragmented_available = 0;
// fragmented_available is the amount of memory within partially consumed old regions that may be required to
// hold the results of old evacuations. If all of the memory required by the old evacuation reserve is available
// in unfragmented regions (unaffiliated old regions), then fragmented_available is zero because we do not need
// to evacuate into the existing partially consumed old regions.
// if fragmented_available is non-zero, excess_fragmented_old_budget represents the amount of fragmented memory
// that is available within old, but is not required to hold the resuilts of old evacuation. As old-gen regions
// are added into the collection set, their free memory is subtracted from excess_fragmented_old_budget until the
// excess is exhausted. For old-gen regions subsequently added to the collection set, their free memory is
// subtracted from fragmented_available and from the old_evacuation_budget (since the budget decreases when this
// fragmented_available memory decreases). After fragmented_available has been exhausted, any further old regions
// selected for the cset do not further decrease the old_evacuation_budget because all further evacuation is targeted
// to unfragmented regions.
size_t unaffiliated_available = _old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes();
if (unaffiliated_available > _old_evacuation_reserve) {
_unspent_unfragmented_old_budget = _old_evacuation_budget;
_unspent_fragmented_old_budget = 0;
_excess_fragmented_old_budget = 0;
} else {
assert(_old_generation->available() >= old_evacuation_budget, "Cannot budget more than is available");
fragmented_available = _old_generation->available() - unfragmented_available;
assert(fragmented_available + unfragmented_available >= old_evacuation_budget, "Budgets do not add up");
if (fragmented_available + unfragmented_available > old_evacuation_budget) {
excess_fragmented_available = (fragmented_available + unfragmented_available) - old_evacuation_budget;
fragmented_available -= excess_fragmented_available;
assert(_old_generation->available() >= _old_evacuation_reserve, "Cannot reserve more than is available");
size_t affiliated_available = _old_generation->available() - unaffiliated_available;
assert(affiliated_available + unaffiliated_available >= _old_evacuation_reserve, "Budgets do not add up");
if (affiliated_available + unaffiliated_available > _old_evacuation_reserve) {
_excess_fragmented_old_budget = (affiliated_available + unaffiliated_available) - _old_evacuation_reserve;
affiliated_available -= _excess_fragmented_old_budget;
}
_unspent_fragmented_old_budget = (size_t) ((double) affiliated_available / ShenandoahOldEvacWaste);
_unspent_unfragmented_old_budget = (size_t) ((double) unaffiliated_available / ShenandoahOldEvacWaste);
}
size_t remaining_old_evacuation_budget = old_evacuation_budget;
log_debug(gc)("Choose old regions for mixed collection: old evacuation budget: %zu%s, candidates: %u",
byte_size_in_proper_unit(old_evacuation_budget), proper_unit_for_byte_size(old_evacuation_budget),
log_debug(gc)("Choose old regions for mixed collection: old evacuation budget: " PROPERFMT ", candidates: %u",
PROPERFMTARGS(_old_evacuation_budget),
unprocessed_old_collection_candidates());
size_t lost_evacuation_capacity = 0;
// The number of old-gen regions that were selected as candidates for collection at the end of the most recent old-gen
// concurrent marking phase and have not yet been collected is represented by unprocessed_old_collection_candidates().
// Candidate regions are ordered according to increasing amount of live data. If there is not sufficient room to
// evacuate region N, then there is no need to even consider evacuating region N+1.
while (unprocessed_old_collection_candidates() > 0) {
// Old collection candidates are sorted in order of decreasing garbage contained therein.
ShenandoahHeapRegion* r = next_old_collection_candidate();
if (r == nullptr) {
break;
}
assert(r->is_regular(), "There should be no humongous regions in the set of mixed-evac candidates");
// If region r is evacuated to fragmented memory (to free memory within a partially used region), then we need
// to decrease the capacity of the fragmented memory by the scaled loss.
const size_t live_data_for_evacuation = r->get_live_data_bytes();
size_t lost_available = r->free();
if ((lost_available > 0) && (excess_fragmented_available > 0)) {
if (lost_available < excess_fragmented_available) {
excess_fragmented_available -= lost_available;
lost_evacuation_capacity -= lost_available;
lost_available = 0;
} else {
lost_available -= excess_fragmented_available;
lost_evacuation_capacity -= excess_fragmented_available;
excess_fragmented_available = 0;
}
}
size_t scaled_loss = (size_t) ((double) lost_available / ShenandoahOldEvacWaste);
if ((lost_available > 0) && (fragmented_available > 0)) {
if (scaled_loss + live_data_for_evacuation < fragmented_available) {
fragmented_available -= scaled_loss;
scaled_loss = 0;
} else {
// We will have to allocate this region's evacuation memory from unfragmented memory, so don't bother
// to decrement scaled_loss
}
}
if (scaled_loss > 0) {
// We were not able to account for the lost free memory within fragmented memory, so we need to take this
// allocation out of unfragmented memory. Unfragmented memory does not need to account for loss of free.
if (live_data_for_evacuation > unfragmented_available) {
// There is no room to evacuate this region or any that come after it in within the candidates array.
log_debug(gc, cset)("Not enough unfragmented memory (%zu) to hold evacuees (%zu) from region: (%zu)",
unfragmented_available, live_data_for_evacuation, r->index());
break;
} else {
unfragmented_available -= live_data_for_evacuation;
}
} else {
// Since scaled_loss == 0, we have accounted for the loss of free memory, so we can allocate from either
// fragmented or unfragmented available memory. Use up the fragmented memory budget first.
size_t evacuation_need = live_data_for_evacuation;
if (evacuation_need > fragmented_available) {
evacuation_need -= fragmented_available;
fragmented_available = 0;
} else {
fragmented_available -= evacuation_need;
evacuation_need = 0;
}
if (evacuation_need > unfragmented_available) {
// There is no room to evacuate this region or any that come after it in within the candidates array.
log_debug(gc, cset)("Not enough unfragmented memory (%zu) to hold evacuees (%zu) from region: (%zu)",
unfragmented_available, live_data_for_evacuation, r->index());
break;
} else {
unfragmented_available -= evacuation_need;
// dead code: evacuation_need == 0;
}
}
collection_set->add_region(r);
included_old_regions++;
evacuated_old_bytes += live_data_for_evacuation;
collected_old_bytes += r->garbage();
consume_old_collection_candidate();
}
if (_first_pinned_candidate != NOT_FOUND) {
// Need to deal with pinned regions
slide_pinned_regions_to_front();
}
decrease_unprocessed_old_collection_candidates_live_memory(evacuated_old_bytes);
if (included_old_regions > 0) {
log_info(gc, ergo)("Old-gen piggyback evac (" UINT32_FORMAT " regions, evacuating " PROPERFMT ", reclaiming: " PROPERFMT ")",
included_old_regions, PROPERFMTARGS(evacuated_old_bytes), PROPERFMTARGS(collected_old_bytes));
}
if (unprocessed_old_collection_candidates() == 0) {
// We have added the last of our collection candidates to a mixed collection.
// Any triggers that occurred during mixed evacuations may no longer be valid. They can retrigger if appropriate.
clear_triggers();
_old_generation->complete_mixed_evacuations();
} else if (included_old_regions == 0) {
// We have candidates, but none were included for evacuation - are they all pinned?
// or did we just not have enough room for any of them in this collection set?
// We don't want a region with a stuck pin to prevent subsequent old collections, so
// if they are all pinned we transition to a state that will allow us to make these uncollected
// (pinned) regions parsable.
if (all_candidates_are_pinned()) {
log_info(gc, ergo)("All candidate regions " UINT32_FORMAT " are pinned", unprocessed_old_collection_candidates());
_old_generation->abandon_mixed_evacuations();
} else {
log_info(gc, ergo)("No regions selected for mixed collection. "
"Old evacuation budget: " PROPERFMT ", Remaining evacuation budget: " PROPERFMT
", Lost capacity: " PROPERFMT
", Next candidate: " UINT32_FORMAT ", Last candidate: " UINT32_FORMAT,
PROPERFMTARGS(old_evacuation_reserve),
PROPERFMTARGS(remaining_old_evacuation_budget),
PROPERFMTARGS(lost_evacuation_capacity),
_next_old_collection_candidate, _last_old_collection_candidate);
}
}
return (included_old_regions > 0);
return add_old_regions_to_cset();
}
bool ShenandoahOldHeuristics::all_candidates_are_pinned() {
@ -317,6 +226,187 @@ void ShenandoahOldHeuristics::slide_pinned_regions_to_front() {
_next_old_collection_candidate = write_index + 1;
}
bool ShenandoahOldHeuristics::add_old_regions_to_cset() {
if (unprocessed_old_collection_candidates() == 0) {
return false;
}
_first_pinned_candidate = NOT_FOUND;
// The number of old-gen regions that were selected as candidates for collection at the end of the most recent old-gen
// concurrent marking phase and have not yet been collected is represented by unprocessed_old_collection_candidates().
// Candidate regions are ordered according to increasing amount of live data. If there is not sufficient room to
// evacuate region N, then there is no need to even consider evacuating region N+1.
while (unprocessed_old_collection_candidates() > 0) {
// Old collection candidates are sorted in order of decreasing garbage contained therein.
ShenandoahHeapRegion* r = next_old_collection_candidate();
if (r == nullptr) {
break;
}
assert(r->is_regular(), "There should be no humongous regions in the set of mixed-evac candidates");
// If region r is evacuated to fragmented memory (to free memory within a partially used region), then we need
// to decrease the capacity of the fragmented memory by the scaled loss.
const size_t live_data_for_evacuation = r->get_live_data_bytes();
size_t lost_available = r->free();
ssize_t fragmented_delta = 0;
ssize_t unfragmented_delta = 0;
ssize_t excess_delta = 0;
// We must decrease our mixed-evacuation budgets proportional to the lost available memory. This memory that is no
// longer available was likely "promised" to promotions, so we must decrease our mixed evacuations now.
// (e.g. if we loose 14 bytes of available old memory, we must decrease the evacuation budget by 10 bytes.)
size_t scaled_loss = (size_t) (((double) lost_available) / ShenandoahOldEvacWaste);
if (lost_available > 0) {
// We need to subtract lost_available from our working evacuation budgets
if (scaled_loss < _excess_fragmented_old_budget) {
excess_delta -= scaled_loss;
_excess_fragmented_old_budget -= scaled_loss;
} else {
excess_delta -= _excess_fragmented_old_budget;
_excess_fragmented_old_budget = 0;
}
if (scaled_loss < _unspent_fragmented_old_budget) {
_unspent_fragmented_old_budget -= scaled_loss;
fragmented_delta = -scaled_loss;
scaled_loss = 0;
} else {
scaled_loss -= _unspent_fragmented_old_budget;
fragmented_delta = -_unspent_fragmented_old_budget;
_unspent_fragmented_old_budget = 0;
}
if (scaled_loss < _unspent_unfragmented_old_budget) {
_unspent_unfragmented_old_budget -= scaled_loss;
unfragmented_delta = -scaled_loss;
scaled_loss = 0;
} else {
scaled_loss -= _unspent_unfragmented_old_budget;
fragmented_delta = -_unspent_unfragmented_old_budget;
_unspent_unfragmented_old_budget = 0;
}
}
// Allocate replica from unfragmented memory if that exists
size_t evacuation_need = live_data_for_evacuation;
if (evacuation_need < _unspent_unfragmented_old_budget) {
_unspent_unfragmented_old_budget -= evacuation_need;
} else {
if (_unspent_unfragmented_old_budget > 0) {
evacuation_need -= _unspent_unfragmented_old_budget;
unfragmented_delta -= _unspent_unfragmented_old_budget;
_unspent_unfragmented_old_budget = 0;
}
// Take the remaining allocation out of fragmented available
if (_unspent_fragmented_old_budget > evacuation_need) {
_unspent_fragmented_old_budget -= evacuation_need;
} else {
// We cannot add this region into the collection set. We're done. Undo the adjustments to available.
_unspent_fragmented_old_budget -= fragmented_delta;
_unspent_unfragmented_old_budget -= unfragmented_delta;
_excess_fragmented_old_budget -= excess_delta;
break;
}
}
_mixed_evac_cset->add_region(r);
_included_old_regions++;
_evacuated_old_bytes += live_data_for_evacuation;
_collected_old_bytes += r->garbage();
consume_old_collection_candidate();
}
return true;
}
bool ShenandoahOldHeuristics::finalize_mixed_evacs() {
if (_first_pinned_candidate != NOT_FOUND) {
// Need to deal with pinned regions
slide_pinned_regions_to_front();
}
decrease_unprocessed_old_collection_candidates_live_memory(_evacuated_old_bytes);
if (_included_old_regions > 0) {
log_info(gc)("Old-gen mixed evac (%zu regions, evacuating %zu%s, reclaiming: %zu%s)",
_included_old_regions,
byte_size_in_proper_unit(_evacuated_old_bytes), proper_unit_for_byte_size(_evacuated_old_bytes),
byte_size_in_proper_unit(_collected_old_bytes), proper_unit_for_byte_size(_collected_old_bytes));
}
if (unprocessed_old_collection_candidates() == 0) {
// We have added the last of our collection candidates to a mixed collection.
// Any triggers that occurred during mixed evacuations may no longer be valid. They can retrigger if appropriate.
clear_triggers();
_old_generation->complete_mixed_evacuations();
} else if (_included_old_regions == 0) {
// We have candidates, but none were included for evacuation - are they all pinned?
// or did we just not have enough room for any of them in this collection set?
// We don't want a region with a stuck pin to prevent subsequent old collections, so
// if they are all pinned we transition to a state that will allow us to make these uncollected
// (pinned) regions parsable.
if (all_candidates_are_pinned()) {
log_info(gc)("All candidate regions " UINT32_FORMAT " are pinned", unprocessed_old_collection_candidates());
_old_generation->abandon_mixed_evacuations();
} else {
log_info(gc)("No regions selected for mixed collection. "
"Old evacuation budget: " PROPERFMT ", Next candidate: " UINT32_FORMAT ", Last candidate: " UINT32_FORMAT,
PROPERFMTARGS(_old_evacuation_reserve),
_next_old_collection_candidate, _last_old_collection_candidate);
}
}
return (_included_old_regions > 0);
}
bool ShenandoahOldHeuristics::top_off_collection_set(size_t &add_regions_to_old) {
if (unprocessed_old_collection_candidates() == 0) {
add_regions_to_old = 0;
return false;
} else {
ShenandoahYoungGeneration* young_generation = _heap->young_generation();
size_t young_unaffiliated_regions = young_generation->free_unaffiliated_regions();
size_t max_young_cset = young_generation->get_evacuation_reserve();
// We have budgeted to assure the live_bytes_in_tenurable_regions() get evacuated into old generation. Young reserves
// only for untenurable region evacuations.
size_t planned_young_evac = _mixed_evac_cset->get_live_bytes_in_untenurable_regions();
size_t consumed_from_young_cset = (size_t) (planned_young_evac * ShenandoahEvacWaste);
size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
size_t regions_required_for_collector_reserve = (consumed_from_young_cset + region_size_bytes - 1) / region_size_bytes;
assert(consumed_from_young_cset <= max_young_cset, "sanity");
assert(max_young_cset <= young_unaffiliated_regions * region_size_bytes, "sanity");
size_t regions_for_old_expansion;
if (consumed_from_young_cset < max_young_cset) {
size_t excess_young_reserves = max_young_cset - consumed_from_young_cset;
// We can only transfer empty regions from young to old. Furthermore, we must be careful to assure that the young
// Collector reserve that remains after transfer is comprised entirely of empty (unaffiliated) regions.
size_t consumed_unaffiliated_regions = (consumed_from_young_cset + region_size_bytes - 1) / region_size_bytes;
size_t available_unaffiliated_regions = ((young_unaffiliated_regions > consumed_unaffiliated_regions)?
young_unaffiliated_regions - consumed_unaffiliated_regions: 0);
regions_for_old_expansion = MIN2(available_unaffiliated_regions, excess_young_reserves / region_size_bytes);
} else {
regions_for_old_expansion = 0;
}
if (regions_for_old_expansion > 0) {
log_info(gc)("Augmenting old-gen evacuation budget from unexpended young-generation reserve by %zu regions",
regions_for_old_expansion);
add_regions_to_old = regions_for_old_expansion;
size_t budget_supplement = region_size_bytes * regions_for_old_expansion;
size_t supplement_without_waste = (size_t) (((double) budget_supplement) / ShenandoahOldEvacWaste);
_old_evacuation_budget += supplement_without_waste;
_unspent_unfragmented_old_budget += supplement_without_waste;
_old_generation->augment_evacuation_reserve(budget_supplement);
young_generation->set_evacuation_reserve(max_young_cset - budget_supplement);
return add_old_regions_to_cset();
} else {
add_regions_to_old = 0;
return false;
}
}
}
void ShenandoahOldHeuristics::prepare_for_old_collections() {
ShenandoahHeap* heap = ShenandoahHeap::heap();
@ -325,7 +415,6 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() {
size_t immediate_garbage = 0;
size_t immediate_regions = 0;
size_t live_data = 0;
RegionData* candidates = _region_data;
for (size_t i = 0; i < num_regions; i++) {
ShenandoahHeapRegion* region = heap->get_region(i);
@ -344,10 +433,10 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() {
// else, regions that were promoted in place had 0 old live data at mark start
if (region->is_regular() || region->is_regular_pinned()) {
// Only place regular or pinned regions with live data into the candidate set.
// Pinned regions cannot be evacuated, but we are not actually choosing candidates
// for the collection set here. That happens later during the next young GC cycle,
// by which time, the pinned region may no longer be pinned.
// Only place regular or pinned regions with live data into the candidate set.
// Pinned regions cannot be evacuated, but we are not actually choosing candidates
// for the collection set here. That happens later during the next young GC cycle,
// by which time, the pinned region may no longer be pinned.
if (!region->has_live()) {
assert(!region->is_pinned(), "Pinned region should have live (pinned) objects.");
region->make_trash_immediate();
@ -414,6 +503,8 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() {
ShenandoahHeapRegion* r = candidates[i].get_region();
size_t region_garbage = r->garbage();
size_t region_free = r->free();
r->capture_mixed_candidate_garbage();
candidates_garbage += region_garbage;
unfragmented += region_free;
}
@ -456,6 +547,8 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() {
r->index(), ShenandoahHeapRegion::region_state_to_string(r->state()));
const size_t region_garbage = r->garbage();
const size_t region_free = r->free();
r->capture_mixed_candidate_garbage();
candidates_garbage += region_garbage;
unfragmented += region_free;
defrag_count++;
@ -546,6 +639,7 @@ unsigned int ShenandoahOldHeuristics::get_coalesce_and_fill_candidates(Shenandoa
void ShenandoahOldHeuristics::abandon_collection_candidates() {
_last_old_collection_candidate = 0;
_next_old_collection_candidate = 0;
_live_bytes_in_unprocessed_candidates = 0;
_last_old_region = 0;
}
@ -790,8 +884,9 @@ bool ShenandoahOldHeuristics::is_experimental() {
return true;
}
void ShenandoahOldHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
ShenandoahHeuristics::RegionData* data,
size_t data_size, size_t free) {
size_t ShenandoahOldHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
ShenandoahHeuristics::RegionData* data,
size_t data_size, size_t free) {
ShouldNotReachHere();
return 0;
}

View File

@ -102,6 +102,30 @@ private:
size_t _fragmentation_first_old_region;
size_t _fragmentation_last_old_region;
// State variables involved in construction of a mixed-evacuation collection set. These variables are initialized
// when client code invokes prime_collection_set(). They are consulted, and sometimes modified, when client code
// calls top_off_collection_set() to possibly expand the number of old-gen regions in a mixed evacuation cset, and by
// finalize_mixed_evacs(), which prepares the way for mixed evacuations to begin.
ShenandoahCollectionSet* _mixed_evac_cset;
size_t _evacuated_old_bytes;
size_t _collected_old_bytes;
size_t _included_old_regions;
size_t _old_evacuation_reserve;
size_t _old_evacuation_budget;
// This represents the amount of memory that can be evacuated from old into initially empty regions during a mixed evacuation.
// This is the total amount of unfragmented free memory in old divided by ShenandoahOldEvacWaste.
size_t _unspent_unfragmented_old_budget;
// This represents the amount of memory that can be evacuated from old into initially non-empty regions during a mixed
// evacuation. This is the total amount of initially fragmented free memory in old divided by ShenandoahOldEvacWaste.
size_t _unspent_fragmented_old_budget;
// If there is more available memory in old than is required by the intended mixed evacuation, the amount of excess
// memory is represented by _excess_fragmented_old. To convert this value into a promotion budget, multiply by
// ShenandoahOldEvacWaste and divide by ShenandoahPromoWaste.
size_t _excess_fragmented_old_budget;
// The value of command-line argument ShenandoahOldGarbageThreshold represents the percent of garbage that must
// be present within an old-generation region before that region is considered a good candidate for inclusion in
// the collection set under normal circumstances. For our purposes, normal circustances are when the memory consumed
@ -131,7 +155,15 @@ private:
void set_trigger_if_old_is_overgrown();
protected:
void choose_collection_set_from_regiondata(ShenandoahCollectionSet* set, RegionData* data, size_t data_size, size_t free) override;
size_t
choose_collection_set_from_regiondata(ShenandoahCollectionSet* set, RegionData* data, size_t data_size, size_t free) override;
// This internal helper routine adds as many mixed evacuation candidate regions as fit within the old-gen evacuation budget
// to the collection set. This may be called twice to prepare for any given mixed evacuation cycle, the first time with
// a conservative old evacuation budget, and the second time with a larger more aggressive old evacuation budget. Returns
// true iff we need to finalize mixed evacs. (If no regions are added to the collection set, there is no need to finalize
// mixed evacuations.)
bool add_old_regions_to_cset();
public:
explicit ShenandoahOldHeuristics(ShenandoahOldGeneration* generation, ShenandoahGenerationalHeap* gen_heap);
@ -139,8 +171,22 @@ public:
// Prepare for evacuation of old-gen regions by capturing the mark results of a recently completed concurrent mark pass.
void prepare_for_old_collections();
// Return true iff the collection set is primed with at least one old-gen region.
bool prime_collection_set(ShenandoahCollectionSet* set);
// Initialize instance variables to support the preparation of a mixed-evacuation collection set. Adds as many
// old candidate regions into the collection set as can fit within the iniital conservative old evacuation budget.
// Returns true iff we need to finalize mixed evacs.
bool prime_collection_set(ShenandoahCollectionSet* collection_set);
// If young evacuation did not consume all of its available evacuation reserve, add as many additional mixed-
// evacuation candidate regions into the collection set as will fit within this excess repurposed reserved.
// Returns true iff we need to finalize mixed evacs. Upon return, the var parameter regions_to_xfer holds the
// number of regions to transfer from young to old.
bool top_off_collection_set(size_t &add_regions_to_old);
// Having added all eligible mixed-evacuation candidates to the collection set, this function updates the total count
// of how much old-gen memory remains to be evacuated and adjusts the representation of old-gen regions that remain to
// be evacuated, giving special attention to regions that are currently pinned. It outputs relevant log messages and
// returns true iff the collection set holds at least one unpinned mixed evacuation candidate.
bool finalize_mixed_evacs();
// How many old-collection candidates have not yet been processed?
uint unprocessed_old_collection_candidates() const;

View File

@ -50,9 +50,9 @@ bool ShenandoahPassiveHeuristics::should_degenerate_cycle() {
return ShenandoahDegeneratedGC;
}
void ShenandoahPassiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
size_t ShenandoahPassiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
assert(ShenandoahDegeneratedGC, "This path is only taken for Degenerated GC");
// Do not select too large CSet that would overflow the available free space.
@ -76,4 +76,5 @@ void ShenandoahPassiveHeuristics::choose_collection_set_from_regiondata(Shenando
cset->add_region(r);
}
}
return 0;
}

View File

@ -46,9 +46,9 @@ public:
virtual bool should_degenerate_cycle();
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
RegionData* data, size_t data_size,
size_t free);
virtual size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
RegionData* data, size_t data_size,
size_t free);
virtual const char* name() { return "Passive"; }
virtual bool is_diagnostic() { return true; }

View File

@ -59,9 +59,9 @@ bool ShenandoahStaticHeuristics::should_start_gc() {
return ShenandoahHeuristics::should_start_gc();
}
void ShenandoahStaticHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free) {
size_t ShenandoahStaticHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free) {
size_t threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
for (size_t idx = 0; idx < size; idx++) {
@ -70,4 +70,5 @@ void ShenandoahStaticHeuristics::choose_collection_set_from_regiondata(Shenandoa
cset->add_region(r);
}
}
return 0;
}

View File

@ -40,9 +40,9 @@ public:
virtual bool should_start_gc();
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free);
virtual size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t free);
virtual const char* name() { return "Static"; }
virtual bool is_diagnostic() { return false; }

View File

@ -33,11 +33,11 @@
#include "utilities/quickSort.hpp"
ShenandoahYoungHeuristics::ShenandoahYoungHeuristics(ShenandoahYoungGeneration* generation)
: ShenandoahGenerationalHeuristics(generation) {
: ShenandoahGenerationalHeuristics(generation) {
}
void ShenandoahYoungHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
size_t ShenandoahYoungHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
// See comments in ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata():
@ -48,6 +48,8 @@ void ShenandoahYoungHeuristics::choose_collection_set_from_regiondata(Shenandoah
// array before younger regions that typically contain more garbage. This is one reason why,
// for example, we continue examining regions even after rejecting a region that has
// more live data than we can evacuate.
ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
bool need_to_finalize_mixed = heap->old_generation()->heuristics()->prime_collection_set(cset);
// Better select garbage-first regions
QuickSort::sort<RegionData>(data, (int) size, compare_by_garbage);
@ -55,6 +57,17 @@ void ShenandoahYoungHeuristics::choose_collection_set_from_regiondata(Shenandoah
size_t cur_young_garbage = add_preselected_regions_to_collection_set(cset, data, size);
choose_young_collection_set(cset, data, size, actual_free, cur_young_garbage);
// Especially when young-gen trigger is expedited in order to finish mixed evacuations, there may not be
// enough consolidated garbage to make effective use of young-gen evacuation reserve. If there is still
// young-gen reserve available following selection of the young-gen collection set, see if we can use
// this memory to expand the old-gen evacuation collection set.
size_t add_regions_to_old;
need_to_finalize_mixed |= heap->old_generation()->heuristics()->top_off_collection_set(add_regions_to_old);
if (need_to_finalize_mixed) {
heap->old_generation()->heuristics()->finalize_mixed_evacs();
}
return add_regions_to_old;
}
void ShenandoahYoungHeuristics::choose_young_collection_set(ShenandoahCollectionSet* cset,

View File

@ -38,9 +38,9 @@ public:
explicit ShenandoahYoungHeuristics(ShenandoahYoungGeneration* generation);
void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) override;
size_t choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) override;
bool should_start_gc() override;

View File

@ -50,6 +50,8 @@ ShenandoahCollectionSet::ShenandoahCollectionSet(ShenandoahHeap* heap, ReservedS
_region_count(0),
_old_garbage(0),
_preselected_regions(nullptr),
_young_available_bytes_collected(0),
_old_available_bytes_collected(0),
_current_index(0) {
// The collection set map is reserved to cover the entire heap *and* zero addresses.
@ -104,6 +106,7 @@ void ShenandoahCollectionSet::add_region(ShenandoahHeapRegion* r) {
}
} else if (r->is_old()) {
_old_bytes_to_evacuate += live;
_old_available_bytes_collected += free;
_old_garbage += garbage;
}
@ -140,6 +143,7 @@ void ShenandoahCollectionSet::clear() {
_old_bytes_to_evacuate = 0;
_young_available_bytes_collected = 0;
_old_available_bytes_collected = 0;
_has_old_regions = false;
}

View File

@ -75,6 +75,10 @@ private:
// should be subtracted from what's available.
size_t _young_available_bytes_collected;
// When a region having memory available to be allocated is added to the collection set, the region's available memory
// should be subtracted from what's available.
size_t _old_available_bytes_collected;
shenandoah_padding(0);
volatile size_t _current_index;
shenandoah_padding(1);
@ -121,6 +125,9 @@ public:
// Returns the amount of free bytes in young regions in the collection set.
size_t get_young_available_bytes_collected() const { return _young_available_bytes_collected; }
// Returns the amount of free bytes in old regions in the collection set.
size_t get_old_available_bytes_collected() const { return _old_available_bytes_collected; }
// Returns the amount of garbage in old regions in the collection set.
inline size_t get_old_garbage() const;

View File

@ -204,9 +204,8 @@ bool ShenandoahConcurrentGC::collect(GCCause::Cause cause) {
return false;
}
entry_concurrent_update_refs_prepare(heap);
// Perform update-refs phase.
entry_concurrent_update_refs_prepare(heap);
if (ShenandoahVerify) {
vmop_entry_init_update_refs();
}
@ -227,6 +226,7 @@ bool ShenandoahConcurrentGC::collect(GCCause::Cause cause) {
// Update references freed up collection set, kick the cleanup to reclaim the space.
entry_cleanup_complete();
} else {
_abbreviated = true;
if (!entry_final_roots()) {
assert(_degen_point != _degenerated_unset, "Need to know where to start degenerated cycle");
return false;
@ -235,7 +235,6 @@ bool ShenandoahConcurrentGC::collect(GCCause::Cause cause) {
if (VerifyAfterGC) {
vmop_entry_verify_final_roots();
}
_abbreviated = true;
}
// We defer generation resizing actions until after cset regions have been recycled. We do this even following an
@ -282,7 +281,6 @@ bool ShenandoahConcurrentGC::complete_abbreviated_cycle() {
return true;
}
void ShenandoahConcurrentGC::vmop_entry_init_mark() {
ShenandoahHeap* const heap = ShenandoahHeap::heap();
TraceCollectorStats tcs(heap->monitoring_support()->stw_collection_counters());
@ -536,6 +534,12 @@ void ShenandoahConcurrentGC::entry_cleanup_early() {
// This phase does not use workers, no need for setup
heap->try_inject_alloc_failure();
op_cleanup_early();
if (!heap->is_evacuation_in_progress()) {
// This is an abbreviated cycle. Rebuild the freeset in order to establish reserves for the next GC cycle. Doing
// the rebuild ASAP also expedites availability of immediate trash, reducing the likelihood that we will degenerate
// during promote-in-place processing.
heap->rebuild_free_set(true /*concurrent*/);
}
}
void ShenandoahConcurrentGC::entry_evacuate() {

View File

@ -326,7 +326,7 @@ void ShenandoahRegionPartitions::initialize_old_collector() {
}
void ShenandoahRegionPartitions::make_all_regions_unavailable() {
shenandoah_assert_heaplocked();
shenandoah_assert_heaplocked_or_safepoint();
for (size_t partition_id = 0; partition_id < IntNumPartitions; partition_id++) {
_membership[partition_id].clear_all();
_leftmosts[partition_id] = _max;
@ -439,6 +439,13 @@ void ShenandoahRegionPartitions::set_capacity_of(ShenandoahFreeSetPartitionId wh
_available[int(which_partition)] = value - _used[int(which_partition)];
}
void ShenandoahRegionPartitions::set_used_by(ShenandoahFreeSetPartitionId which_partition, size_t value) {
shenandoah_assert_heaplocked();
assert (which_partition < NumPartitions, "selected free set must be valid");
_used[int(which_partition)] = value;
_available[int(which_partition)] = _capacity[int(which_partition)] - value;
}
void ShenandoahRegionPartitions::increase_capacity(ShenandoahFreeSetPartitionId which_partition, size_t bytes) {
shenandoah_assert_heaplocked();
@ -900,7 +907,7 @@ idx_t ShenandoahRegionPartitions::rightmost_empty(ShenandoahFreeSetPartitionId w
#ifdef ASSERT
void ShenandoahRegionPartitions::assert_bounds(bool validate_totals) {
void ShenandoahRegionPartitions::assert_bounds() {
size_t capacities[UIntNumPartitions];
size_t used[UIntNumPartitions];
@ -936,7 +943,7 @@ void ShenandoahRegionPartitions::assert_bounds(bool validate_totals) {
switch (partition) {
case ShenandoahFreeSetPartitionId::NotFree:
{
assert(!validate_totals || (capacity != _region_size_bytes), "Should not be retired if empty");
assert(capacity != _region_size_bytes, "Should not be retired if empty");
ShenandoahHeapRegion* r = ShenandoahHeap::heap()->get_region(i);
if (r->is_humongous()) {
if (r->is_old()) {
@ -976,12 +983,12 @@ void ShenandoahRegionPartitions::assert_bounds(bool validate_totals) {
case ShenandoahFreeSetPartitionId::Collector:
case ShenandoahFreeSetPartitionId::OldCollector:
{
ShenandoahHeapRegion* r = ShenandoahHeap::heap()->get_region(i);
assert(capacity > 0, "free regions must have allocation capacity");
bool is_empty = (capacity == _region_size_bytes);
regions[int(partition)]++;
used[int(partition)] += _region_size_bytes - capacity;
capacities[int(partition)] += _region_size_bytes;
if (i < leftmosts[int(partition)]) {
leftmosts[int(partition)] = i;
}
@ -1020,20 +1027,20 @@ void ShenandoahRegionPartitions::assert_bounds(bool validate_totals) {
idx_t beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
idx_t end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Mutator),
"Mutator free regions before the leftmost: %zd, bound %zd",
"Mutator free region before the leftmost: %zd, bound %zd",
beg_off, leftmost(ShenandoahFreeSetPartitionId::Mutator));
assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Mutator),
"Mutator free regions past the rightmost: %zd, bound %zd",
"Mutator free region past the rightmost: %zd, bound %zd",
end_off, rightmost(ShenandoahFreeSetPartitionId::Mutator));
beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
assert (beg_off >= leftmost_empty(ShenandoahFreeSetPartitionId::Mutator),
"Mutator free empty regions before the leftmost: %zd, bound %zd",
beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Mutator));
assert (end_off <= rightmost_empty(ShenandoahFreeSetPartitionId::Mutator),
"Mutator free empty regions past the rightmost: %zd, bound %zd",
end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Mutator));
assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
"free empty region (%zd) before the leftmost bound %zd",
beg_off, _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)]);
assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
"free empty region (%zd) past the rightmost bound %zd",
end_off, _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)]);
// Performance invariants. Failing these would not break the free partition, but performance would suffer.
assert (leftmost(ShenandoahFreeSetPartitionId::Collector) <= _max, "leftmost in bounds: %zd < %zd",
@ -1053,20 +1060,20 @@ void ShenandoahRegionPartitions::assert_bounds(bool validate_totals) {
beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Collector),
"Collector free regions before the leftmost: %zd, bound %zd",
"Collector free region before the leftmost: %zd, bound %zd",
beg_off, leftmost(ShenandoahFreeSetPartitionId::Collector));
assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Collector),
"Collector free regions past the rightmost: %zd, bound %zd",
"Collector free region past the rightmost: %zd, bound %zd",
end_off, rightmost(ShenandoahFreeSetPartitionId::Collector));
beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector free empty regions before the leftmost: %zd, bound %zd",
beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Collector));
"Collector free empty region before the leftmost: %zd, bound %zd",
beg_off, _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)]);
assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector free empty regions past the rightmost: %zd, bound %zd",
end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Collector));
"Collector free empty region past the rightmost: %zd, bound %zd",
end_off, _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)]);
// Performance invariants. Failing these would not break the free partition, but performance would suffer.
assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) <= _max, "OldCollector leftmost in bounds: %zd < %zd",
@ -1083,106 +1090,109 @@ void ShenandoahRegionPartitions::assert_bounds(bool validate_totals) {
ShenandoahFreeSetPartitionId::OldCollector),
"OldCollector rightmost region should be free: %zd", rightmost(ShenandoahFreeSetPartitionId::OldCollector));
// Concurrent recycling of trash recycles a region (changing its state from is_trash to is_empty without the heap lock),
// If OldCollector partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
// Likewise for empty region partitions.
beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
end_off = rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::OldCollector),
"OldCollector free regions before the leftmost: %zd, bound %zd",
assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::OldCollector), "free regions before the leftmost: %zd, bound %zd",
beg_off, leftmost(ShenandoahFreeSetPartitionId::OldCollector));
assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::OldCollector),
"OldCollector free regions past the rightmost: %zd, bound %zd",
assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::OldCollector), "free regions past the rightmost: %zd, bound %zd",
end_off, rightmost(ShenandoahFreeSetPartitionId::OldCollector));
beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
"OldCollector free empty regions before the leftmost: %zd, bound %zd",
beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
"free empty region (%zd) before the leftmost bound %zd, region %s trash",
beg_off, _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
((beg_off >= _max)? "out of bounds is not":
(ShenandoahHeap::heap()->get_region(_leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)])->is_trash()?
"is": "is not")));
assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
"OldCollector free empty regions past the rightmost: %zd, bound %zd",
end_off, rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
"free empty region (%zd) past the rightmost bound %zd, region %s trash",
end_off, _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
((end_off < 0)? "out of bounds is not" :
(ShenandoahHeap::heap()->get_region(_rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)])->is_trash()?
"is": "is not")));
if (validate_totals) {
// young_retired_regions need to be added to either Mutator or Collector partitions, 100% used.
// Give enough of young_retired_regions, young_retired_capacity, young_retired_user
// to the Mutator partition to top it off so that it matches the running totals.
//
// Give any remnants to the Collector partition. After topping off the Collector partition, its values
// should also match running totals.
// young_retired_regions need to be added to either Mutator or Collector partitions, 100% used.
// Give enough of young_retired_regions, young_retired_capacity, young_retired_user
// to the Mutator partition to top it off so that it matches the running totals.
//
// Give any remnants to the Collector partition. After topping off the Collector partition, its values
// should also match running totals.
assert(young_retired_regions * _region_size_bytes == young_retired_capacity, "sanity");
assert(young_retired_capacity == young_retired_used, "sanity");
assert(young_retired_regions * _region_size_bytes == young_retired_capacity, "sanity");
assert(young_retired_capacity == young_retired_used, "sanity");
assert(capacities[int(ShenandoahFreeSetPartitionId::OldCollector)]
== _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old collector capacities must match (%zu != %zu)",
capacities[int(ShenandoahFreeSetPartitionId::OldCollector)],
_capacity[int(ShenandoahFreeSetPartitionId::OldCollector)]);
assert(used[int(ShenandoahFreeSetPartitionId::OldCollector)]
== _used[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old collector used must match");
assert(regions[int(ShenandoahFreeSetPartitionId::OldCollector)]
== _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] / _region_size_bytes, "Old collector regions must match");
assert(_capacity[int(ShenandoahFreeSetPartitionId::OldCollector)]
>= _used[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old Collector capacity must be >= used");
assert(_available[int(ShenandoahFreeSetPartitionId::OldCollector)] ==
(_capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] - _used[int(ShenandoahFreeSetPartitionId::OldCollector)]),
"Old Collector available must equal capacity minus used");
assert(_humongous_waste[int(ShenandoahFreeSetPartitionId::OldCollector)] ==
humongous_waste[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old Collector humongous waste must match");
assert(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] >= capacities[int(ShenandoahFreeSetPartitionId::Mutator)],
"Capacity total must be >= counted tally");
size_t mutator_capacity_shortfall =
_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] - capacities[int(ShenandoahFreeSetPartitionId::Mutator)];
assert(mutator_capacity_shortfall <= young_retired_capacity, "sanity");
capacities[int(ShenandoahFreeSetPartitionId::Mutator)] += mutator_capacity_shortfall;
young_retired_capacity -= mutator_capacity_shortfall;
capacities[int(ShenandoahFreeSetPartitionId::Collector)] += young_retired_capacity;
assert(capacities[int(ShenandoahFreeSetPartitionId::OldCollector)]
== _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old collector capacities must match");
assert(used[int(ShenandoahFreeSetPartitionId::OldCollector)]
== _used[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old collector used must match");
assert(regions[int(ShenandoahFreeSetPartitionId::OldCollector)]
== _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] / _region_size_bytes, "Old collector regions must match");
assert(_capacity[int(ShenandoahFreeSetPartitionId::OldCollector)]
>= _used[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old Collector capacity must be >= used");
assert(_available[int(ShenandoahFreeSetPartitionId::OldCollector)] ==
(_capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] - _used[int(ShenandoahFreeSetPartitionId::OldCollector)]),
"Old Collector available must equal capacity minus used");
assert(_humongous_waste[int(ShenandoahFreeSetPartitionId::OldCollector)] ==
humongous_waste[int(ShenandoahFreeSetPartitionId::OldCollector)], "Old Collector humongous waste must match");
assert(_used[int(ShenandoahFreeSetPartitionId::Mutator)] >= used[int(ShenandoahFreeSetPartitionId::Mutator)],
"Used total must be >= counted tally");
size_t mutator_used_shortfall =
_used[int(ShenandoahFreeSetPartitionId::Mutator)] - used[int(ShenandoahFreeSetPartitionId::Mutator)];
assert(mutator_used_shortfall <= young_retired_used, "sanity");
used[int(ShenandoahFreeSetPartitionId::Mutator)] += mutator_used_shortfall;
young_retired_used -= mutator_used_shortfall;
used[int(ShenandoahFreeSetPartitionId::Collector)] += young_retired_used;
assert(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] >= capacities[int(ShenandoahFreeSetPartitionId::Mutator)],
"Capacity total must be >= counted tally");
size_t mutator_capacity_shortfall =
_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] - capacities[int(ShenandoahFreeSetPartitionId::Mutator)];
assert(mutator_capacity_shortfall <= young_retired_capacity, "sanity");
capacities[int(ShenandoahFreeSetPartitionId::Mutator)] += mutator_capacity_shortfall;
young_retired_capacity -= mutator_capacity_shortfall;
capacities[int(ShenandoahFreeSetPartitionId::Collector)] += young_retired_capacity;
assert(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] / _region_size_bytes
>= regions[int(ShenandoahFreeSetPartitionId::Mutator)], "Region total must be >= counted tally");
size_t mutator_regions_shortfall = (_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] / _region_size_bytes
- regions[int(ShenandoahFreeSetPartitionId::Mutator)]);
assert(mutator_regions_shortfall <= young_retired_regions, "sanity");
regions[int(ShenandoahFreeSetPartitionId::Mutator)] += mutator_regions_shortfall;
young_retired_regions -= mutator_regions_shortfall;
regions[int(ShenandoahFreeSetPartitionId::Collector)] += young_retired_regions;
assert(capacities[int(ShenandoahFreeSetPartitionId::Collector)] == _capacity[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector capacities must match");
assert(used[int(ShenandoahFreeSetPartitionId::Collector)] == _used[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector used must match");
assert(regions[int(ShenandoahFreeSetPartitionId::Collector)]
== _capacity[int(ShenandoahFreeSetPartitionId::Collector)] / _region_size_bytes, "Collector regions must match");
assert(_capacity[int(ShenandoahFreeSetPartitionId::Collector)] >= _used[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector Capacity must be >= used");
assert(_available[int(ShenandoahFreeSetPartitionId::Collector)] ==
(_capacity[int(ShenandoahFreeSetPartitionId::Collector)] - _used[int(ShenandoahFreeSetPartitionId::Collector)]),
"Collector Available must equal capacity minus used");
assert(_used[int(ShenandoahFreeSetPartitionId::Mutator)] >= used[int(ShenandoahFreeSetPartitionId::Mutator)],
"Used total must be >= counted tally");
size_t mutator_used_shortfall =
_used[int(ShenandoahFreeSetPartitionId::Mutator)] - used[int(ShenandoahFreeSetPartitionId::Mutator)];
assert(mutator_used_shortfall <= young_retired_used, "sanity");
used[int(ShenandoahFreeSetPartitionId::Mutator)] += mutator_used_shortfall;
young_retired_used -= mutator_used_shortfall;
used[int(ShenandoahFreeSetPartitionId::Collector)] += young_retired_used;
assert(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] / _region_size_bytes
>= regions[int(ShenandoahFreeSetPartitionId::Mutator)], "Region total must be >= counted tally");
size_t mutator_regions_shortfall = (_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] / _region_size_bytes
- regions[int(ShenandoahFreeSetPartitionId::Mutator)]);
assert(mutator_regions_shortfall <= young_retired_regions, "sanity");
regions[int(ShenandoahFreeSetPartitionId::Mutator)] += mutator_regions_shortfall;
young_retired_regions -= mutator_regions_shortfall;
regions[int(ShenandoahFreeSetPartitionId::Collector)] += young_retired_regions;
assert(capacities[int(ShenandoahFreeSetPartitionId::Collector)] == _capacity[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector capacities must match");
assert(used[int(ShenandoahFreeSetPartitionId::Collector)] == _used[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector used must match");
assert(regions[int(ShenandoahFreeSetPartitionId::Collector)]
== _capacity[int(ShenandoahFreeSetPartitionId::Collector)] / _region_size_bytes, "Collector regions must match");
assert(_capacity[int(ShenandoahFreeSetPartitionId::Collector)] >= _used[int(ShenandoahFreeSetPartitionId::Collector)],
"Collector Capacity must be >= used");
assert(_available[int(ShenandoahFreeSetPartitionId::Collector)] ==
(_capacity[int(ShenandoahFreeSetPartitionId::Collector)] - _used[int(ShenandoahFreeSetPartitionId::Collector)]),
"Collector Available must equal capacity minus used");
assert(capacities[int(ShenandoahFreeSetPartitionId::Mutator)] == _capacity[int(ShenandoahFreeSetPartitionId::Mutator)],
"Mutator capacities must match");
assert(used[int(ShenandoahFreeSetPartitionId::Mutator)] == _used[int(ShenandoahFreeSetPartitionId::Mutator)],
"Mutator used must match");
assert(regions[int(ShenandoahFreeSetPartitionId::Mutator)]
== _capacity[int(ShenandoahFreeSetPartitionId::Mutator)] / _region_size_bytes, "Mutator regions must match");
assert(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] >= _used[int(ShenandoahFreeSetPartitionId::Mutator)],
"Mutator capacity must be >= used");
assert(_available[int(ShenandoahFreeSetPartitionId::Mutator)] ==
(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] - _used[int(ShenandoahFreeSetPartitionId::Mutator)]),
"Mutator available must equal capacity minus used");
assert(_humongous_waste[int(ShenandoahFreeSetPartitionId::Mutator)] == young_humongous_waste,
"Mutator humongous waste must match");
}
assert(capacities[int(ShenandoahFreeSetPartitionId::Mutator)] == _capacity[int(ShenandoahFreeSetPartitionId::Mutator)],
"Mutator capacities must match");
assert(used[int(ShenandoahFreeSetPartitionId::Mutator)] == _used[int(ShenandoahFreeSetPartitionId::Mutator)],
"Mutator used must match");
assert(regions[int(ShenandoahFreeSetPartitionId::Mutator)]
== _capacity[int(ShenandoahFreeSetPartitionId::Mutator)] / _region_size_bytes, "Mutator regions must match");
assert(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] >= _used[int(ShenandoahFreeSetPartitionId::Mutator)],
"Mutator capacity must be >= used");
assert(_available[int(ShenandoahFreeSetPartitionId::Mutator)] ==
(_capacity[int(ShenandoahFreeSetPartitionId::Mutator)] - _used[int(ShenandoahFreeSetPartitionId::Mutator)]),
"Mutator available must equal capacity minus used");
assert(_humongous_waste[int(ShenandoahFreeSetPartitionId::Mutator)] == young_humongous_waste,
"Mutator humongous waste must match");
}
#endif
@ -1206,6 +1216,36 @@ ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
clear_internal();
}
void ShenandoahFreeSet::move_unaffiliated_regions_from_collector_to_old_collector(ssize_t count) {
shenandoah_assert_heaplocked();
size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
size_t old_capacity = _partitions.get_capacity(ShenandoahFreeSetPartitionId::OldCollector);
size_t collector_capacity = _partitions.get_capacity(ShenandoahFreeSetPartitionId::Collector);
if (count > 0) {
size_t ucount = count;
size_t bytes_moved = ucount * region_size_bytes;
assert(collector_capacity >= bytes_moved, "Cannot transfer");
assert(_partitions.get_empty_region_counts(ShenandoahFreeSetPartitionId::Collector) >= ucount,
"Cannot transfer %zu of %zu", ucount, _partitions.get_empty_region_counts(ShenandoahFreeSetPartitionId::Collector));
_partitions.decrease_empty_region_counts(ShenandoahFreeSetPartitionId::Collector, ucount);
_partitions.set_capacity_of(ShenandoahFreeSetPartitionId::Collector, collector_capacity - bytes_moved);
_partitions.set_capacity_of(ShenandoahFreeSetPartitionId::OldCollector, old_capacity + bytes_moved);
_partitions.increase_empty_region_counts(ShenandoahFreeSetPartitionId::OldCollector, ucount);
} else if (count < 0) {
size_t ucount = -count;
size_t bytes_moved = ucount * region_size_bytes;
assert(old_capacity >= bytes_moved, "Cannot transfer");
assert(_partitions.get_empty_region_counts(ShenandoahFreeSetPartitionId::OldCollector) >= ucount,
"Cannot transfer %zu of %zu", ucount, _partitions.get_empty_region_counts(ShenandoahFreeSetPartitionId::OldCollector));
_partitions.decrease_empty_region_counts(ShenandoahFreeSetPartitionId::OldCollector, ucount);
_partitions.set_capacity_of(ShenandoahFreeSetPartitionId::OldCollector, old_capacity - bytes_moved);
_partitions.set_capacity_of(ShenandoahFreeSetPartitionId::Collector, collector_capacity + bytes_moved);
_partitions.increase_empty_region_counts(ShenandoahFreeSetPartitionId::Collector, ucount);
}
// else, do nothing
}
// was pip_pad_bytes
void ShenandoahFreeSet::add_promoted_in_place_region_to_old_collector(ShenandoahHeapRegion* region) {
shenandoah_assert_heaplocked();
@ -1261,7 +1301,7 @@ void ShenandoahFreeSet::add_promoted_in_place_region_to_old_collector(Shenandoah
/* CollectorSizeChanged */ true, /* OldCollectorSizeChanged */ true,
/* AffiliatedChangesAreYoungNeutral */ false, /* AffiliatedChangesAreGlobalNeutral */ true,
/* UnaffiliatedChangesAreYoungNeutral */ true>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
}
template<typename Iter>
@ -1496,9 +1536,12 @@ HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, Shenandoah
return nullptr;
}
HeapWord* result = nullptr;
// We must call try_recycle_under_lock() even if !r->is_trash(). The reason is that if r is being recycled at this
// moment by a GC worker thread, it may appear to be not trash even though it has not yet been fully recycled. If
// we proceed without waiting for the worker to finish recycling the region, the worker thread may overwrite the
// region's affiliation with FREE after we set the region's affiliation to req.afiliation() below
r->try_recycle_under_lock();
in_new_region = r->is_empty();
if (in_new_region) {
log_debug(gc, free)("Using new region (%zu) for %s (" PTR_FORMAT ").",
r->index(), req.type_string(), p2i(&req));
@ -1668,7 +1711,7 @@ HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, Shenandoah
default:
assert(false, "won't happen");
}
_partitions.assert_bounds(true);
_partitions.assert_bounds();
return result;
}
@ -1799,6 +1842,7 @@ HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req, bo
increase_bytes_allocated(waste_bytes);
}
}
_partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, total_used);
increase_bytes_allocated(total_used);
req.set_actual_size(words_size);
@ -1819,14 +1863,16 @@ HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req, bo
/* CollectorSizeChanged */ false, /* OldCollectorSizeChanged */ false,
/* AffiliatedChangesAreYoungNeutral */ false, /* AffiliatedChangesAreGlobalNeutral */ false,
/* UnaffiliatedChangesAreYoungNeutral */ false>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
return _heap->get_region(beg)->bottom();
}
class ShenandoahRecycleTrashedRegionClosure final : public ShenandoahHeapRegionClosure {
public:
void heap_region_do(ShenandoahHeapRegion* r) {
r->try_recycle();
if (r->is_trash()) {
r->try_recycle();
}
}
bool is_thread_safe() {
@ -1861,7 +1907,7 @@ bool ShenandoahFreeSet::transfer_one_region_from_mutator_to_old_collector(size_t
/* CollectorSizeChanged */ false, /* OldCollectorSizeChanged */ true,
/* AffiliatedChangesAreYoungNeutral */ true, /* AffiliatedChangesAreGlobalNeutral */ true,
/* UnaffiliatedChangesAreYoungNeutral */ false>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
return true;
} else {
return false;
@ -1914,7 +1960,7 @@ bool ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) {
/* CollectorSizeChanged */ false, /* OldCollectorSizeChanged */ true,
/* AffiliatedChangesAreYoungNeutral */ true, /* AffiliatedChangesAreGlobalNeutral */ true,
/* UnaffiliatedChangesAreYoungNeutral */ false>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
// 4. Do not adjust capacities for generations, we just swapped the regions that have already
// been accounted for. However, we should adjust the evacuation reserves as those may have changed.
shenandoah_assert_heaplocked();
@ -1945,7 +1991,7 @@ void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
/* CollectorSizeChanged */ true, /* OldCollectorSizeChanged */ false,
/* AffiliatedChangesAreYoungNeutral */ true, /* AffiliatedChangesAreGlobalNeutral */ true,
/* UnaffiliatedChangesAreYoungNeutral */ true>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
// We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
// to recycle trash before attempting to allocate anything in the region.
}
@ -2025,16 +2071,23 @@ void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_trashed_r
for (size_t idx = 0; idx < num_regions; idx++) {
ShenandoahHeapRegion* region = _heap->get_region(idx);
if (region->is_trash()) {
// Trashed regions represent immediate garbage identified by final mark and regions that had been in the collection
// partition but have not yet been "cleaned up" following update refs.
// Trashed regions represent regions that had been in the collection set (or may have been identified as immediate garbage)
// but have not yet been "cleaned up". The cset regions are not "trashed" until we have finished update refs.
if (region->is_old()) {
// We're going to place this region into the Mutator set. We increment old_trashed_regions because this count represents
// regions that the old generation is entitled to without any transfer from young. We do not place this region into
// the OldCollector partition at this time. Instead, we let reserve_regions() decide whether to place this region
// into the OldCollector partition. Deferring the decision allows reserve_regions() to more effectively pack the
// OldCollector regions into high-address memory. We do not adjust capacities of old and young generations at this
// time. At the end of finish_rebuild(), the capacities are adjusted based on the results of reserve_regions().
old_trashed_regions++;
} else {
assert(region->is_young(), "Trashed region should be old or young");
young_trashed_regions++;
}
} else if (region->is_old()) {
// count both humongous and regular regions, but don't count trash (cset) regions.
// We count humongous and regular regions as "old regions". We do not count trashed regions that are old. Those
// are counted (above) as old_trashed_regions.
old_region_count++;
if (first_old_region > idx) {
first_old_region = idx;
@ -2048,7 +2101,7 @@ void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_trashed_r
size_t ac = alloc_capacity(region);
if (ac >= PLAB::min_size() * HeapWordSize) {
if (region->is_trash() || !region->is_old()) {
// Both young and old collected regions (trashed) are placed into the Mutator set
// Both young and old (possibly immediately) collected regions (trashed) are placed into the Mutator set
_partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::Mutator);
if (idx < mutator_leftmost) {
mutator_leftmost = idx;
@ -2111,10 +2164,19 @@ void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_trashed_r
assert(_partitions.membership(idx) == ShenandoahFreeSetPartitionId::NotFree, "Region should have been retired");
size_t humongous_waste_bytes = 0;
if (region->is_humongous_start()) {
oop obj = cast_to_oop(region->bottom());
size_t byte_size = obj->size() * HeapWordSize;
size_t region_span = ShenandoahHeapRegion::required_regions(byte_size);
humongous_waste_bytes = region_span * ShenandoahHeapRegion::region_size_bytes() - byte_size;
// Since rebuild does not necessarily happen at a safepoint, a newly allocated humongous object may not have been
// fully initialized. Therefore, we cannot safely consult its header.
ShenandoahHeapRegion* last_of_humongous_continuation = region;
size_t next_idx;
for (next_idx = idx + 1; next_idx < num_regions; next_idx++) {
ShenandoahHeapRegion* humongous_cont_candidate = _heap->get_region(next_idx);
if (!humongous_cont_candidate->is_humongous_continuation()) {
break;
}
last_of_humongous_continuation = humongous_cont_candidate;
}
// For humongous regions, used() is established while holding the global heap lock so it is reliable here
humongous_waste_bytes = ShenandoahHeapRegion::region_size_bytes() - last_of_humongous_continuation->used();
}
if (region->is_old()) {
old_collector_used += region_size_bytes;
@ -2183,7 +2245,7 @@ void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_trashed_r
/* CollectorSizeChanged */ true, /* OldCollectorSizeChanged */ true,
/* AffiliatedChangesAreYoungNeutral */ false, /* AffiliatedChangesAreGlobalNeutral */ false,
/* UnaffiliatedChangesAreYoungNeutral */ false>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
#ifdef ASSERT
if (_heap->mode()->is_generational()) {
assert(young_affiliated_regions() == _heap->young_generation()->get_affiliated_region_count(), "sanity");
@ -2221,7 +2283,7 @@ void ShenandoahFreeSet::transfer_humongous_regions_from_mutator_to_old_collector
/* CollectorSizeChanged */ false, /* OldCollectorSizeChanged */ true,
/* AffiliatedChangesAreYoungNeutral */ false, /* AffiliatedChangesAreGlobalNeutral */ true,
/* UnaffiliatedChangesAreYoungNeutral */ true>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
// global_used is unaffected by this transfer
// No need to adjust ranges because humongous regions are not allocatable
@ -2303,7 +2365,7 @@ void ShenandoahFreeSet::transfer_empty_regions_from_to(ShenandoahFreeSetPartitio
/* UnaffiliatedChangesAreYoungNeutral */ true>();
}
}
_partitions.assert_bounds(true);
_partitions.assert_bounds();
}
// Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred
@ -2370,7 +2432,7 @@ size_t ShenandoahFreeSet::transfer_empty_regions_from_collector_set_to_mutator_s
/* AffiliatedChangesAreYoungNeutral */ true, /* AffiliatedChangesAreGlobalNeutral */ true,
/* UnaffiliatedChangesAreYoungNeutral */ true>();
}
_partitions.assert_bounds(true);
_partitions.assert_bounds();
return transferred_regions;
}
@ -2445,7 +2507,7 @@ transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPa
/* AffiliatedChangesAreYoungNeutral */ true, /* AffiliatedChangesAreGlobalNeutral */ true,
/* UnaffiliatedChangesAreYoungNeutral */ true>();
}
_partitions.assert_bounds(true);
_partitions.assert_bounds();
return transferred_regions;
}
@ -2507,14 +2569,13 @@ void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_trashed_regions, size_t
first_old_region, last_old_region, old_region_count);
}
void ShenandoahFreeSet::finish_rebuild(size_t young_trashed_regions, size_t old_trashed_regions, size_t old_region_count,
bool have_evacuation_reserves) {
void ShenandoahFreeSet::finish_rebuild(size_t young_cset_regions, size_t old_cset_regions, size_t old_region_count) {
shenandoah_assert_heaplocked();
size_t young_reserve(0), old_reserve(0);
if (_heap->mode()->is_generational()) {
compute_young_and_old_reserves(young_trashed_regions, old_trashed_regions, have_evacuation_reserves,
young_reserve, old_reserve);
compute_young_and_old_reserves(young_cset_regions, old_cset_regions, young_reserve, old_reserve);
} else {
young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve;
old_reserve = 0;
@ -2531,8 +2592,41 @@ void ShenandoahFreeSet::finish_rebuild(size_t young_trashed_regions, size_t old_
// Release the rebuild lock now. What remains in this function is read-only
rebuild_lock()->unlock();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
log_status();
if (_heap->mode()->is_generational()) {
// Clear the region balance until it is adjusted in preparation for a subsequent GC cycle.
_heap->old_generation()->set_region_balance(0);
}
}
// Reduce old reserve (when there are insufficient resources to satisfy the original request).
void ShenandoahFreeSet::reduce_old_reserve(size_t adjusted_old_reserve, size_t requested_old_reserve) {
ShenandoahOldGeneration* const old_generation = _heap->old_generation();
size_t requested_promoted_reserve = old_generation->get_promoted_reserve();
size_t requested_old_evac_reserve = old_generation->get_evacuation_reserve();
assert(adjusted_old_reserve < requested_old_reserve, "Only allow reduction");
assert(requested_promoted_reserve + requested_old_evac_reserve >= adjusted_old_reserve, "Sanity");
size_t delta = requested_old_reserve - adjusted_old_reserve;
if (requested_promoted_reserve >= delta) {
requested_promoted_reserve -= delta;
old_generation->set_promoted_reserve(requested_promoted_reserve);
} else {
delta -= requested_promoted_reserve;
requested_promoted_reserve = 0;
requested_old_evac_reserve -= delta;
old_generation->set_promoted_reserve(requested_promoted_reserve);
old_generation->set_evacuation_reserve(requested_old_evac_reserve);
}
}
// Reduce young reserve (when there are insufficient resources to satisfy the original request).
void ShenandoahFreeSet::reduce_young_reserve(size_t adjusted_young_reserve, size_t requested_young_reserve) {
ShenandoahYoungGeneration* const young_generation = _heap->young_generation();
assert(adjusted_young_reserve < requested_young_reserve, "Only allow reduction");
young_generation->set_evacuation_reserve(adjusted_young_reserve);
}
/**
@ -2549,7 +2643,6 @@ void ShenandoahFreeSet::finish_rebuild(size_t young_trashed_regions, size_t old_
* this value should computed by ShenandoahGenerationalHeap::compute_old_generation_balance().
*/
void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_trashed_regions, size_t old_trashed_regions,
bool have_evacuation_reserves,
size_t& young_reserve_result, size_t& old_reserve_result) const {
shenandoah_assert_generational();
shenandoah_assert_heaplocked();
@ -2566,6 +2659,15 @@ void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_trashed_regi
old_available += old_trashed_regions * region_size_bytes;
young_unaffiliated_regions += young_trashed_regions;
assert(young_capacity >= young_generation->used(),
"Young capacity (%zu) must exceed used (%zu)", young_capacity, young_generation->used());
size_t young_available = young_capacity - young_generation->used();
young_available += young_trashed_regions * region_size_bytes;
assert(young_available >= young_unaffiliated_regions * region_size_bytes, "sanity");
assert(old_available >= old_unaffiliated_regions * region_size_bytes, "sanity");
// Consult old-region balance to make adjustments to current generation capacities and availability.
// The generation region transfers take place after we rebuild. old_region_balance represents number of regions
// to transfer from old to young.
@ -2585,6 +2687,7 @@ void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_trashed_regi
ssize_t xfer_bytes = old_region_balance * checked_cast<ssize_t>(region_size_bytes);
old_available -= xfer_bytes;
old_unaffiliated_regions -= old_region_balance;
young_available += xfer_bytes;
young_capacity += xfer_bytes;
young_unaffiliated_regions += old_region_balance;
}
@ -2593,41 +2696,22 @@ void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_trashed_regi
// promotions and evacuations. The partition between which old memory is reserved for evacuation and
// which is reserved for promotion is enforced using thread-local variables that prescribe intentions for
// each PLAB's available memory.
if (have_evacuation_reserves) {
// We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass.
const size_t promoted_reserve = old_generation->get_promoted_reserve();
const size_t old_evac_reserve = old_generation->get_evacuation_reserve();
young_reserve_result = young_generation->get_evacuation_reserve();
old_reserve_result = promoted_reserve + old_evac_reserve;
if (old_reserve_result > old_available) {
// Try to transfer memory from young to old.
size_t old_deficit = old_reserve_result - old_available;
size_t old_region_deficit = (old_deficit + region_size_bytes - 1) / region_size_bytes;
if (young_unaffiliated_regions < old_region_deficit) {
old_region_deficit = young_unaffiliated_regions;
}
young_unaffiliated_regions -= old_region_deficit;
old_unaffiliated_regions += old_region_deficit;
old_region_balance -= old_region_deficit;
old_generation->set_region_balance(old_region_balance);
}
} else {
// We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults)
young_reserve_result = (young_capacity * ShenandoahEvacReserve) / 100;
// The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions.
// Affiliated old-gen regions are already in the OldCollector free set. Add in the relevant number of
// unaffiliated regions.
old_reserve_result = old_available;
}
const size_t promoted_reserve = old_generation->get_promoted_reserve();
const size_t old_evac_reserve = old_generation->get_evacuation_reserve();
young_reserve_result = young_generation->get_evacuation_reserve();
old_reserve_result = promoted_reserve + old_evac_reserve;
assert(old_reserve_result + young_reserve_result <= old_available + young_available,
"Cannot reserve (%zu + %zu + %zu) more than is available: %zu + %zu",
promoted_reserve, old_evac_reserve, young_reserve_result, old_available, young_available);
// Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector
// free set. Because of this, old_available may not have enough memory to represent the intended reserve. Adjust
// the reserve downward to account for this possibility. This loss is part of the reason why the original budget
// was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers.
if (old_reserve_result >
_partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes) {
_partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes) {
old_reserve_result =
_partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes;
_partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes;
}
if (young_reserve_result > young_unaffiliated_regions * region_size_bytes) {
@ -2791,19 +2875,17 @@ void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old
ShenandoahFreeSetPartitionId p = _partitions.membership(idx);
size_t ac = alloc_capacity(r);
assert(ac != region_size_bytes, "Empty regions should be in Mutator partion at entry to reserve_regions");
if (p == ShenandoahFreeSetPartitionId::Collector) {
if (ac != region_size_bytes) {
young_used_regions++;
young_used_bytes = region_size_bytes - ac;
}
// else, unaffiliated region has no used
} else if (p == ShenandoahFreeSetPartitionId::OldCollector) {
if (ac != region_size_bytes) {
old_used_regions++;
old_used_bytes = region_size_bytes - ac;
}
// else, unaffiliated region has no used
} else if (p == ShenandoahFreeSetPartitionId::NotFree) {
assert(p != ShenandoahFreeSetPartitionId::Collector, "Collector regions must be converted from Mutator regions");
if (p == ShenandoahFreeSetPartitionId::OldCollector) {
assert(!r->is_empty(), "Empty regions should be in Mutator partition at entry to reserve_regions");
old_used_regions++;
old_used_bytes = region_size_bytes - ac;
// This region is within the range for OldCollector partition, as established by find_regions_with_alloc_capacity()
assert((_partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector) <= idx) &&
(_partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector) >= idx),
"find_regions_with_alloc_capacity() should have established this is in range");
} else {
assert(p == ShenandoahFreeSetPartitionId::NotFree, "sanity");
// This region has been retired
if (r->is_old()) {
old_used_regions++;
@ -2813,21 +2895,6 @@ void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old
young_used_regions++;
young_used_bytes += region_size_bytes - ac;
}
} else {
assert(p == ShenandoahFreeSetPartitionId::OldCollector, "Not mutator and not NotFree, so must be OldCollector");
assert(!r->is_empty(), "Empty regions should be in Mutator partition at entry to reserve_regions");
if (idx < old_collector_low_idx) {
old_collector_low_idx = idx;
}
if (idx > old_collector_high_idx) {
old_collector_high_idx = idx;
}
if (idx < old_collector_empty_low_idx) {
old_collector_empty_low_idx = idx;
}
if (idx > old_collector_empty_high_idx) {
old_collector_empty_high_idx = idx;
}
}
}
}
@ -2856,14 +2923,14 @@ void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old
_partitions.increase_used(ShenandoahFreeSetPartitionId::OldCollector, used_to_old_collector);
}
_partitions.expand_interval_if_range_modifies_either_boundary(ShenandoahFreeSetPartitionId::Collector,
collector_low_idx, collector_high_idx,
collector_empty_low_idx, collector_empty_high_idx);
_partitions.establish_interval(ShenandoahFreeSetPartitionId::Mutator,
mutator_low_idx, mutator_high_idx, mutator_empty_low_idx, mutator_empty_high_idx);
_partitions.establish_interval(ShenandoahFreeSetPartitionId::Collector,
collector_low_idx, collector_high_idx, collector_empty_low_idx, collector_empty_high_idx);
_partitions.expand_interval_if_range_modifies_either_boundary(ShenandoahFreeSetPartitionId::OldCollector,
old_collector_low_idx, old_collector_high_idx,
old_collector_empty_low_idx, old_collector_empty_high_idx);
_partitions.establish_interval(ShenandoahFreeSetPartitionId::Mutator,
mutator_low_idx, mutator_high_idx, mutator_empty_low_idx, mutator_empty_high_idx);
recompute_total_used</* UsedByMutatorChanged */ true,
/* UsedByCollectorChanged */ true, /* UsedByOldCollectorChanged */ true>();
@ -2872,17 +2939,22 @@ void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old
/* CollectorSizeChanged */ true, /* OldCollectorSizeChanged */ true,
/* AffiliatedChangesAreYoungNeutral */ false, /* AffiliatedChangesAreGlobalNeutral */ false,
/* UnaffiliatedChangesAreYoungNeutral */ false>();
_partitions.assert_bounds(true);
_partitions.assert_bounds();
if (LogTarget(Info, gc, free)::is_enabled()) {
size_t old_reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector);
if (old_reserve < to_reserve_old) {
log_info(gc, free)("Wanted " PROPERFMT " for old reserve, but only reserved: " PROPERFMT,
PROPERFMTARGS(to_reserve_old), PROPERFMTARGS(old_reserve));
assert(_heap->mode()->is_generational(), "to_old_reserve > 0 implies generational mode");
reduce_old_reserve(old_reserve, to_reserve_old);
}
size_t reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector);
if (reserve < to_reserve) {
if (_heap->mode()->is_generational()) {
reduce_young_reserve(reserve, to_reserve);
}
log_info(gc, free)("Wanted " PROPERFMT " for young reserve, but only reserved: " PROPERFMT,
PROPERFMTARGS(to_reserve), PROPERFMTARGS(reserve));
PROPERFMTARGS(to_reserve), PROPERFMTARGS(reserve));
}
}
}

View File

@ -224,6 +224,10 @@ public:
void transfer_used_capacity_from_to(ShenandoahFreeSetPartitionId from_partition, ShenandoahFreeSetPartitionId to_partition,
size_t regions);
// For recycled region r in the OldCollector partition but possibly not within the interval for empty OldCollector regions,
// expand the empty interval to include this region.
inline void adjust_interval_for_recycled_old_region_under_lock(ShenandoahHeapRegion* r);
const char* partition_membership_name(idx_t idx) const;
// Return the index of the next available region >= start_index, or maximum_regions if not found.
@ -373,12 +377,7 @@ public:
inline void set_capacity_of(ShenandoahFreeSetPartitionId which_partition, size_t value);
inline void set_used_by(ShenandoahFreeSetPartitionId which_partition, size_t value) {
shenandoah_assert_heaplocked();
assert (which_partition < NumPartitions, "selected free set must be valid");
_used[int(which_partition)] = value;
_available[int(which_partition)] = _capacity[int(which_partition)] - value;
}
inline void set_used_by(ShenandoahFreeSetPartitionId which_partition, size_t value);
inline size_t count(ShenandoahFreeSetPartitionId which_partition) const { return _region_counts[int(which_partition)]; }
@ -402,7 +401,7 @@ public:
// idx >= leftmost &&
// idx <= rightmost
// }
void assert_bounds(bool validate_totals) NOT_DEBUG_RETURN;
void assert_bounds() NOT_DEBUG_RETURN;
};
// Publicly, ShenandoahFreeSet represents memory that is available to mutator threads. The public capacity(), used(),
@ -634,7 +633,11 @@ private:
void establish_old_collector_alloc_bias();
size_t get_usable_free_words(size_t free_bytes) const;
void reduce_young_reserve(size_t adjusted_young_reserve, size_t requested_young_reserve);
void reduce_old_reserve(size_t adjusted_old_reserve, size_t requested_old_reserve);
void log_freeset_stats(ShenandoahFreeSetPartitionId partition_id, LogStream& ls);
// log status, assuming lock has already been acquired by the caller.
void log_status();
@ -685,35 +688,46 @@ public:
return _total_global_used;
}
size_t global_unaffiliated_regions() {
// A negative argument results in moving from old_collector to collector
void move_unaffiliated_regions_from_collector_to_old_collector(ssize_t regions);
inline size_t global_unaffiliated_regions() {
return _global_unaffiliated_regions;
}
size_t young_unaffiliated_regions() {
inline size_t young_unaffiliated_regions() {
return _young_unaffiliated_regions;
}
size_t old_unaffiliated_regions() {
inline size_t collector_unaffiliated_regions() {
return _partitions.get_empty_region_counts(ShenandoahFreeSetPartitionId::Collector);
}
inline size_t old_collector_unaffiliated_regions() {
return _partitions.get_empty_region_counts(ShenandoahFreeSetPartitionId::OldCollector);
}
size_t young_affiliated_regions() {
inline size_t old_unaffiliated_regions() {
return _partitions.get_empty_region_counts(ShenandoahFreeSetPartitionId::OldCollector);
}
inline size_t young_affiliated_regions() {
return _young_affiliated_regions;
}
size_t old_affiliated_regions() {
inline size_t old_affiliated_regions() {
return _old_affiliated_regions;
}
size_t global_affiliated_regions() {
inline size_t global_affiliated_regions() {
return _global_affiliated_regions;
}
size_t total_young_regions() {
inline size_t total_young_regions() {
return _total_young_regions;
}
size_t total_old_regions() {
inline size_t total_old_regions() {
return _partitions.get_capacity(ShenandoahFreeSetPartitionId::OldCollector) / ShenandoahHeapRegion::region_size_bytes();
}
@ -725,36 +739,27 @@ public:
// Examine the existing free set representation, capturing the current state into var arguments:
//
// young_cset_regions is the number of regions currently in the young cset if we are starting to evacuate, or zero
// old_cset_regions is the number of regions currently in the old cset if we are starting a mixed evacuation, or zero
// young_trashed_regions is the number of trashed regions (immediate garbage at final mark, cset regions after update refs)
// old_trashed_regions is the number of trashed regions
// (immediate garbage at final old mark, cset regions after update refs for mixed evac)
// first_old_region is the index of the first region that is part of the OldCollector set
// last_old_region is the index of the last region that is part of the OldCollector set
// old_region_count is the number of regions in the OldCollector set that have memory available to be allocated
void prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions,
void prepare_to_rebuild(size_t &young_trashed_regions, size_t &old_trashed_regions,
size_t &first_old_region, size_t &last_old_region, size_t &old_region_count);
// At the end of final mark, but before we begin evacuating, heuristics calculate how much memory is required to
// hold the results of evacuating to young-gen and to old-gen, and have_evacuation_reserves should be true.
// These quantities, stored as reserves for their respective generations, are consulted prior to rebuilding
// the free set (ShenandoahFreeSet) in preparation for evacuation. When the free set is rebuilt, we make sure
// to reserve sufficient memory in the collector and old_collector sets to hold evacuations.
// hold the results of evacuating to young-gen and to old-gen. These quantities, stored in reserves for their
// respective generations, are consulted prior to rebuilding the free set (ShenandoahFreeSet) in preparation for
// evacuation. When the free set is rebuilt, we make sure to reserve sufficient memory in the collector and
// old_collector sets to hold evacuations. Likewise, at the end of update refs, we rebuild the free set in order
// to set aside reserves to be consumed during the next GC cycle.
//
// We also rebuild the free set at the end of GC, as we prepare to idle GC until the next trigger. In this case,
// have_evacuation_reserves is false because we don't yet know how much memory will need to be evacuated in the
// next GC cycle. When have_evacuation_reserves is false, the free set rebuild operation reserves for the collector
// and old_collector sets based on alternative mechanisms, such as ShenandoahEvacReserve, ShenandoahOldEvacReserve, and
// ShenandoahOldCompactionReserve. In a future planned enhancement, the reserve for old_collector set when the
// evacuation reserves are unknown, is based in part on anticipated promotion as determined by analysis of live data
// found during the previous GC pass which is one less than the current tenure age.
//
// young_cset_regions is the number of regions currently in the young cset if we are starting to evacuate, or zero
// old_cset_regions is the number of regions currently in the old cset if we are starting a mixed evacuation, or zero
// young_trashed_regions is the number of trashed regions (immediate garbage at final mark, cset regions after update refs)
// old_trashed_regions is the number of trashed regions
// (immediate garbage at final old mark, cset regions after update refs for mixed evac)
// num_old_regions is the number of old-gen regions that have available memory for further allocations (excluding old cset)
// have_evacuation_reserves is true iff the desired values of young-gen and old-gen evacuation reserves and old-gen
// promotion reserve have been precomputed (and can be obtained by invoking
// <generation>->get_evacuation_reserve() or old_gen->get_promoted_reserve()
void finish_rebuild(size_t young_cset_regions, size_t old_cset_regions, size_t num_old_regions,
bool have_evacuation_reserves = false);
void finish_rebuild(size_t young_trashed_regions, size_t old_trashed_regions, size_t num_old_regions);
// When a region is promoted in place, we add the region's available memory if it is greater than plab_min_size()
// into the old collector partition by invoking this method.
@ -806,9 +811,18 @@ public:
return _partitions.available_in_locked_for_rebuild(ShenandoahFreeSetPartitionId::Mutator);
}
// Use this version of available() if the heap lock is held.
inline size_t available_locked() const {
return _partitions.available_in(ShenandoahFreeSetPartitionId::Mutator);
}
inline size_t total_humongous_waste() const { return _total_humongous_waste; }
inline size_t humongous_waste_in_mutator() const { return _partitions.humongous_waste(ShenandoahFreeSetPartitionId::Mutator); }
inline size_t humongous_waste_in_old() const { return _partitions.humongous_waste(ShenandoahFreeSetPartitionId::OldCollector); }
inline size_t humongous_waste_in_mutator() const {
return _partitions.humongous_waste(ShenandoahFreeSetPartitionId::Mutator);
}
inline size_t humongous_waste_in_old() const {
return _partitions.humongous_waste(ShenandoahFreeSetPartitionId::OldCollector);
}
void decrease_humongous_waste_for_regular_bypass(ShenandoahHeapRegion* r, size_t waste);
@ -874,7 +888,7 @@ public:
// Reserve space for evacuations, with regions reserved for old evacuations placed to the right
// of regions reserved of young evacuations.
void compute_young_and_old_reserves(size_t young_cset_regions, size_t old_cset_regions, bool have_evacuation_reserves,
void compute_young_and_old_reserves(size_t young_cset_regions, size_t old_cset_regions,
size_t &young_reserve_result, size_t &old_reserve_result) const;
};

View File

@ -522,6 +522,7 @@ public:
void heap_region_do(ShenandoahHeapRegion* r) override {
if (r->is_trash()) {
r->try_recycle_under_lock();
// No need to adjust_interval_for_recycled_old_region. That will be taken care of during freeset rebuild.
}
if (r->is_cset()) {
// Leave affiliation unchanged
@ -966,6 +967,7 @@ public:
if (r->is_trash()) {
live = 0;
r->try_recycle_under_lock();
// No need to adjust_interval_for_recycled_old_region. That will be taken care of during freeset rebuild.
} else {
if (r->is_old()) {
ShenandoahGenerationalFullGC::account_for_region(r, _old_regions, _old_usage, _old_humongous_waste);
@ -1113,16 +1115,16 @@ void ShenandoahFullGC::phase5_epilog() {
ShenandoahPostCompactClosure post_compact;
heap->heap_region_iterate(&post_compact);
heap->collection_set()->clear();
size_t young_cset_regions, old_cset_regions, first_old, last_old, num_old;
ShenandoahFreeSet* free_set = heap->free_set();
{
free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
ShenandoahFreeSet* free_set = heap->free_set();
size_t young_trashed_regions, old_trashed_regions, first_old, last_old, num_old;
free_set->prepare_to_rebuild(young_trashed_regions, old_trashed_regions, first_old, last_old, num_old);
// We also do not expand old generation size following Full GC because we have scrambled age populations and
// no longer have objects separated by age into distinct regions.
if (heap->mode()->is_generational()) {
ShenandoahGenerationalFullGC::compute_balances();
}
free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
free_set->finish_rebuild(young_trashed_regions, old_trashed_regions, num_old);
}
// Set mark incomplete because the marking bitmaps have been reset except pinned regions.
_generation->set_mark_incomplete();

View File

@ -250,6 +250,7 @@ void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap
ShenandoahOldGeneration* const old_generation = heap->old_generation();
ShenandoahYoungGeneration* const young_generation = heap->young_generation();
const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
// During initialization and phase changes, it is more likely that fewer objects die young and old-gen
// memory is not yet full (or is in the process of being replaced). During these times especially, it
@ -263,15 +264,15 @@ void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap
// First priority is to reclaim the easy garbage out of young-gen.
// maximum_young_evacuation_reserve is upper bound on memory to be evacuated out of young
const size_t maximum_young_evacuation_reserve = (young_generation->max_capacity() * ShenandoahEvacReserve) / 100;
size_t young_evacuation_reserve = MIN2(maximum_young_evacuation_reserve, young_generation->available_with_reserve());
// maximum_young_evacuation_reserve is upper bound on memory to be evacuated into young Collector Reserve. This is
// bounded at the end of previous GC cycle, based on available memory and balancing of evacuation to old and young.
size_t maximum_young_evacuation_reserve = young_generation->get_evacuation_reserve();
// maximum_old_evacuation_reserve is an upper bound on memory evacuated from old and evacuated to old (promoted),
// clamped by the old generation space available.
//
// Here's the algebra.
// Let SOEP = ShenandoahOldEvacRatioPercent,
// Let SOEP = ShenandoahOldEvacPercent,
// OE = old evac,
// YE = young evac, and
// TE = total evac = OE + YE
@ -283,12 +284,14 @@ void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap
// => OE = YE*SOEP/(100-SOEP)
// We have to be careful in the event that SOEP is set to 100 by the user.
assert(ShenandoahOldEvacRatioPercent <= 100, "Error");
assert(ShenandoahOldEvacPercent <= 100, "Error");
const size_t old_available = old_generation->available();
const size_t maximum_old_evacuation_reserve = (ShenandoahOldEvacRatioPercent == 100) ?
old_available : MIN2((maximum_young_evacuation_reserve * ShenandoahOldEvacRatioPercent) / (100 - ShenandoahOldEvacRatioPercent),
const size_t maximum_old_evacuation_reserve = (ShenandoahOldEvacPercent == 100) ?
old_available : MIN2((maximum_young_evacuation_reserve * ShenandoahOldEvacPercent) / (100 - ShenandoahOldEvacPercent),
old_available);
// In some cases, maximum_old_reserve < old_available (when limited by ShenandoahOldEvacPercent)
// This limit affects mixed evacuations, but does not affect promotions.
// Second priority is to reclaim garbage out of old-gen if there are old-gen collection candidates. Third priority
// is to promote as much as we have room to promote. However, if old-gen memory is in short supply, this means young
@ -305,10 +308,8 @@ void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap
// evacuation and update-refs, we give emphasis to reclaiming garbage first, wherever that garbage is found.
// Global GC will adjust generation sizes to accommodate the collection set it chooses.
// Set old_promo_reserve to enforce that no regions are preselected for promotion. Such regions typically
// have relatively high memory utilization. We still call select_aged_regions() because this will prepare for
// promotions in place, if relevant.
old_promo_reserve = 0;
// Use remnant of old_available to hold promotions.
old_promo_reserve = old_available - maximum_old_evacuation_reserve;
// Dedicate all available old memory to old_evacuation reserve. This may be small, because old-gen is only
// expanded based on an existing mixed evacuation workload at the end of the previous GC cycle. We'll expand
@ -319,43 +320,48 @@ void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap
// mixed evacuation, reserve all of this memory for compaction of old-gen and do not promote. Prioritize compaction
// over promotion in order to defragment OLD so that it will be better prepared to efficiently receive promoted memory.
old_evacuation_reserve = maximum_old_evacuation_reserve;
old_promo_reserve = 0;
old_promo_reserve = old_available - maximum_old_evacuation_reserve;
} else {
// Make all old-evacuation memory for promotion, but if we can't use it all for promotion, we'll allow some evacuation.
old_evacuation_reserve = 0;
old_evacuation_reserve = old_available - maximum_old_evacuation_reserve;
old_promo_reserve = maximum_old_evacuation_reserve;
}
assert(old_evacuation_reserve <= old_available, "Error");
// We see too many old-evacuation failures if we force ourselves to evacuate into regions that are not initially empty.
// So we limit the old-evacuation reserve to unfragmented memory. Even so, old-evacuation is free to fill in nooks and
// crannies within existing partially used regions and it generally tries to do so.
const size_t old_free_unfragmented = old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes();
const size_t old_free_unfragmented = old_generation->free_unaffiliated_regions() * region_size_bytes;
if (old_evacuation_reserve > old_free_unfragmented) {
const size_t delta = old_evacuation_reserve - old_free_unfragmented;
old_evacuation_reserve -= delta;
// Let promo consume fragments of old-gen memory if not global
if (!is_global()) {
old_promo_reserve += delta;
}
// Let promo consume fragments of old-gen memory
old_promo_reserve += delta;
}
// Preselect regions for promotion by evacuation (obtaining the live data to seed promoted_reserve),
// and identify regions that will promote in place. These use the tenuring threshold.
const size_t consumed_by_advance_promotion = select_aged_regions(old_promo_reserve);
assert(consumed_by_advance_promotion <= maximum_old_evacuation_reserve, "Cannot promote more than available old-gen memory");
// If is_global(), we let garbage-first heuristic determine cset membership. Otherwise, we give priority
// to tenurable regions by preselecting regions for promotion by evacuation (obtaining the live data to seed promoted_reserve).
// This also identifies regions that will be promoted in place. These use the tenuring threshold.
const size_t consumed_by_advance_promotion = select_aged_regions(is_global()? 0: old_promo_reserve);
assert(consumed_by_advance_promotion <= old_promo_reserve, "Do not promote more than budgeted");
// The young evacuation reserve can be no larger than young_unaffiliated. Planning to evacuate into partially consumed
// young regions is doomed to failure if any of those partially consumed regions is selected for the collection set.
size_t young_unaffiliated = young_generation->free_unaffiliated_regions() * region_size_bytes;
// If any regions have been selected for promotion in place, this has the effect of decreasing available within mutator
// and collector partitions, due to padding of remnant memory within each promoted in place region. This will affect
// young_evacuation_reserve but not old_evacuation_reserve or consumed_by_advance_promotion. So recompute.
young_evacuation_reserve = MIN2(young_evacuation_reserve, young_generation->available_with_reserve());
size_t young_evacuation_reserve = MIN2(maximum_young_evacuation_reserve, young_unaffiliated);
// Note that unused old_promo_reserve might not be entirely consumed_by_advance_promotion. Do not transfer this
// to old_evacuation_reserve because this memory is likely very fragmented, and we do not want to increase the likelihood
// of old evacuation failure.
// of old evacuation failure. Leave this memory in the promoted reserve as it may be targeted by opportunistic
// promotions (found during evacuation of young regions).
young_generation->set_evacuation_reserve(young_evacuation_reserve);
old_generation->set_evacuation_reserve(old_evacuation_reserve);
old_generation->set_promoted_reserve(consumed_by_advance_promotion);
old_generation->set_promoted_reserve(old_promo_reserve);
// There is no need to expand OLD because all memory used here was set aside at end of previous GC, except in the
// case of a GLOBAL gc. During choose_collection_set() of GLOBAL, old will be expanded on demand.
@ -363,8 +369,8 @@ void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap
// Having chosen the collection set, adjust the budgets for generational mode based on its composition. Note
// that young_generation->available() now knows about recently discovered immediate garbage.
//
void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap, ShenandoahCollectionSet* const collection_set) {
void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap,
ShenandoahCollectionSet* const collection_set, size_t add_regions_to_old) {
shenandoah_assert_generational();
// We may find that old_evacuation_reserve and/or loaned_for_young_evacuation are not fully consumed, in which case we may
// be able to increase regions_available_to_loan
@ -398,7 +404,8 @@ void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap,
// Leave old_evac_reserve as previously configured
} else if (old_evacuated_committed < old_evacuation_reserve) {
// This happens if the old-gen collection consumes less than full budget.
log_debug(gc, cset)("Shrinking old evac reserve to match old_evac_commited: " PROPERFMT, PROPERFMTARGS(old_evacuated_committed));
log_debug(gc, cset)("Shrinking old evac reserve to match old_evac_commited: " PROPERFMT,
PROPERFMTARGS(old_evacuated_committed));
old_evacuation_reserve = old_evacuated_committed;
old_generation->set_evacuation_reserve(old_evacuation_reserve);
}
@ -409,11 +416,17 @@ void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap,
size_t young_evacuated = collection_set->get_live_bytes_in_untenurable_regions();
size_t young_evacuated_reserve_used = (size_t) (ShenandoahEvacWaste * double(young_evacuated));
size_t total_young_available = young_generation->available_with_reserve();
assert(young_evacuated_reserve_used <= total_young_available, "Cannot evacuate more than is available in young");
size_t total_young_available = young_generation->available_with_reserve() - add_regions_to_old * region_size_bytes;;
assert(young_evacuated_reserve_used <= total_young_available, "Cannot evacuate (%zu) more than is available in young (%zu)",
young_evacuated_reserve_used, total_young_available);
young_generation->set_evacuation_reserve(young_evacuated_reserve_used);
size_t old_available = old_generation->available();
// We have not yet rebuilt the free set. Some of the memory that is thought to be avaiable within old may no
// longer be available if that memory had been free within regions that were selected for the collection set.
// Make the necessary adjustments to old_available.
size_t old_available =
old_generation->available() + add_regions_to_old * region_size_bytes - collection_set->get_old_available_bytes_collected();
// Now that we've established the collection set, we know how much memory is really required by old-gen for evacuation
// and promotion reserves. Try shrinking OLD now in case that gives us a bit more runway for mutator allocations during
// evac and update phases.
@ -422,21 +435,27 @@ void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap,
if (old_available < old_consumed) {
// This can happen due to round-off errors when adding the results of truncated integer arithmetic.
// We've already truncated old_evacuated_committed. Truncate young_advance_promoted_reserve_used here.
assert(young_advance_promoted_reserve_used <= (33 * (old_available - old_evacuated_committed)) / 32,
"Round-off errors should be less than 3.125%%, committed: %zu, reserved: %zu",
young_advance_promoted_reserve_used, old_available - old_evacuated_committed);
young_advance_promoted_reserve_used = old_available - old_evacuated_committed;
if (old_available > old_evacuated_committed) {
young_advance_promoted_reserve_used = old_available - old_evacuated_committed;
} else {
young_advance_promoted_reserve_used = 0;
old_evacuated_committed = old_available;
}
// TODO: reserve for full promotion reserve, not just for advance (preselected) promotion
old_consumed = old_evacuated_committed + young_advance_promoted_reserve_used;
}
assert(old_available >= old_consumed, "Cannot consume (%zu) more than is available (%zu)",
old_consumed, old_available);
size_t excess_old = old_available - old_consumed;
size_t unaffiliated_old_regions = old_generation->free_unaffiliated_regions();
size_t unaffiliated_old_regions = old_generation->free_unaffiliated_regions() + add_regions_to_old;
size_t unaffiliated_old = unaffiliated_old_regions * region_size_bytes;
assert(old_available >= unaffiliated_old,
"Unaffiliated old (%zu is %zu * %zu) is a subset of old available (%zu)",
unaffiliated_old, unaffiliated_old_regions, region_size_bytes, old_available);
assert(unaffiliated_old >= old_evacuated_committed, "Do not evacuate (%zu) more than unaffiliated old (%zu)",
old_evacuated_committed, unaffiliated_old);
// Make sure old_evac_committed is unaffiliated
if (old_evacuated_committed > 0) {
@ -454,20 +473,22 @@ void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap,
}
// If we find that OLD has excess regions, give them back to YOUNG now to reduce likelihood we run out of allocation
// runway during evacuation and update-refs.
size_t regions_to_xfer = 0;
// runway during evacuation and update-refs. We may make further adjustments to balance.
ssize_t add_regions_to_young = 0;
if (excess_old > unaffiliated_old) {
// we can give back unaffiliated_old (all of unaffiliated is excess)
if (unaffiliated_old_regions > 0) {
regions_to_xfer = unaffiliated_old_regions;
add_regions_to_young = unaffiliated_old_regions;
}
} else if (unaffiliated_old_regions > 0) {
// excess_old < unaffiliated old: we can give back MIN(excess_old/region_size_bytes, unaffiliated_old_regions)
size_t excess_regions = excess_old / region_size_bytes;
regions_to_xfer = MIN2(excess_regions, unaffiliated_old_regions);
add_regions_to_young = MIN2(excess_regions, unaffiliated_old_regions);
}
if (regions_to_xfer > 0) {
excess_old -= regions_to_xfer * region_size_bytes;
if (add_regions_to_young > 0) {
assert(excess_old >= add_regions_to_young * region_size_bytes, "Cannot xfer more than excess old");
excess_old -= add_regions_to_young * region_size_bytes;
log_debug(gc, ergo)("Before start of evacuation, total_promotion reserve is young_advance_promoted_reserve: %zu "
"plus excess: old: %zu", young_advance_promoted_reserve_used, excess_old);
}
@ -475,6 +496,7 @@ void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap,
// Add in the excess_old memory to hold unanticipated promotions, if any. If there are more unanticipated
// promotions than fit in reserved memory, they will be deferred until a future GC pass.
size_t total_promotion_reserve = young_advance_promoted_reserve_used + excess_old;
old_generation->set_promoted_reserve(total_promotion_reserve);
old_generation->reset_promoted_expended();
}
@ -782,17 +804,13 @@ void ShenandoahGeneration::prepare_regions_and_collection_set(bool concurrent) {
ShenandoahCollectionSetPreselector preselector(collection_set, heap->num_regions());
// Find the amount that will be promoted, regions that will be promoted in
// place, and preselect older regions that will be promoted by evacuation.
// place, and preselected older regions that will be promoted by evacuation.
compute_evacuation_budgets(heap);
// Choose the collection set, including the regions preselected above for
// promotion into the old generation.
_heuristics->choose_collection_set(collection_set);
if (!collection_set->is_empty()) {
// only make use of evacuation budgets when we are evacuating
adjust_evacuation_budgets(heap, collection_set);
}
// Choose the collection set, including the regions preselected above for promotion into the old generation.
size_t add_regions_to_old = _heuristics->choose_collection_set(collection_set);
// Even if collection_set->is_empty(), we want to adjust budgets, making reserves available to mutator.
adjust_evacuation_budgets(heap, collection_set, add_regions_to_old);
if (is_global()) {
// We have just chosen a collection set for a global cycle. The mark bitmap covering old regions is complete, so
// the remembered set scan can use that to avoid walking into garbage. When the next old mark begins, we will
@ -816,17 +834,16 @@ void ShenandoahGeneration::prepare_regions_and_collection_set(bool concurrent) {
ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
ShenandoahHeapLocker locker(heap->lock());
// We are preparing for evacuation. At this time, we ignore cset region tallies.
size_t young_cset_regions, old_cset_regions, first_old, last_old, num_old;
_free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
// We are preparing for evacuation.
size_t young_trashed_regions, old_trashed_regions, first_old, last_old, num_old;
_free_set->prepare_to_rebuild(young_trashed_regions, old_trashed_regions, first_old, last_old, num_old);
if (heap->mode()->is_generational()) {
ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
gen_heap->compute_old_generation_balance(young_cset_regions, old_cset_regions);
size_t allocation_runway =
gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_trashed_regions);
gen_heap->compute_old_generation_balance(allocation_runway, old_trashed_regions, young_trashed_regions);
}
// Free set construction uses reserve quantities, because they are known to be valid here
_free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old, true);
_free_set->finish_rebuild(young_trashed_regions, old_trashed_regions, num_old);
}
}

View File

@ -63,9 +63,10 @@ private:
// Compute evacuation budgets prior to choosing collection set.
void compute_evacuation_budgets(ShenandoahHeap* heap);
// Adjust evacuation budgets after choosing collection set.
// Adjust evacuation budgets after choosing collection set. The argument regions_to_xfer represents regions to be
// transfered to old based on decisions made in top_off_collection_set()
void adjust_evacuation_budgets(ShenandoahHeap* heap,
ShenandoahCollectionSet* collection_set);
ShenandoahCollectionSet* collection_set, size_t regions_to_xfer);
// Preselect for possible inclusion into the collection set exactly the most
// garbage-dense regions, including those that satisfy criteria 1 & 2 below,
@ -144,6 +145,22 @@ private:
virtual void prepare_gc();
// Called during final mark, chooses collection set, rebuilds free set.
// Upon return from prepare_regions_and_collection_set(), certain parameters have been established to govern the
// evacuation efforts that are about to begin. In particular:
//
// old_generation->get_promoted_reserve() represents the amount of memory within old-gen's available memory that has
// been set aside to hold objects promoted from young-gen memory. This represents an estimated percentage
// of the live young-gen memory within the collection set. If there is more data ready to be promoted than
// can fit within this reserve, the promotion of some objects will be deferred until a subsequent evacuation
// pass.
//
// old_generation->get_evacuation_reserve() represents the amount of memory within old-gen's available memory that has been
// set aside to hold objects evacuated from the old-gen collection set.
//
// young_generation->get_evacuation_reserve() represents the amount of memory within young-gen's available memory that has
// been set aside to hold objects evacuated from the young-gen collection set. Conservatively, this value
// equals the entire amount of live young-gen memory within the collection set, even though some of this memory
// will likely be promoted.
virtual void prepare_regions_and_collection_set(bool concurrent);
// Cancel marking (used by Full collect and when cancelling cycle).

View File

@ -55,9 +55,6 @@ void ShenandoahGenerationalFullGC::prepare() {
// Since we may arrive here from degenerated GC failure of either young or old, establish generation as GLOBAL.
heap->set_active_generation(heap->global_generation());
// No need for old_gen->increase_used() as this was done when plabs were allocated.
heap->reset_generation_reserves();
// Full GC supersedes any marking or coalescing in old generation.
heap->old_generation()->cancel_gc();
}
@ -156,8 +153,11 @@ void ShenandoahGenerationalFullGC::compute_balances() {
// In case this Full GC resulted from degeneration, clear the tally on anticipated promotion.
heap->old_generation()->set_promotion_potential(0);
// Invoke this in case we are able to transfer memory from OLD to YOUNG.
heap->compute_old_generation_balance(0, 0);
// Invoke this in case we are able to transfer memory from OLD to YOUNG
size_t allocation_runway =
heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(0L);
heap->compute_old_generation_balance(allocation_runway, 0, 0);
}
ShenandoahPrepareForGenerationalCompactionObjectClosure::ShenandoahPrepareForGenerationalCompactionObjectClosure(PreservedMarks* preserved_marks,

View File

@ -299,9 +299,9 @@ oop ShenandoahGenerationalHeap::try_evacuate_object(oop p, Thread* thread, uint
alloc_from_lab = false;
}
// else, we leave copy equal to nullptr, signaling a promotion failure below if appropriate.
// We choose not to promote objects smaller than PLAB::min_size() by way of shared allocations, as this is too
// We choose not to promote objects smaller than size_threshold by way of shared allocations as this is too
// costly. Instead, we'll simply "evacuate" to young-gen memory (using a GCLAB) and will promote in a future
// evacuation pass. This condition is denoted by: is_promotion && has_plab && (size <= PLAB::min_size())
// evacuation pass. This condition is denoted by: is_promotion && has_plab && (size <= size_threshhold).
}
#ifdef ASSERT
}
@ -576,19 +576,18 @@ void ShenandoahGenerationalHeap::retire_plab(PLAB* plab) {
// Make sure old-generation is large enough, but no larger than is necessary, to hold mixed evacuations
// and promotions, if we anticipate either. Any deficit is provided by the young generation, subject to
// xfer_limit, and any surplus is transferred to the young generation.
//
// xfer_limit is the maximum we're able to transfer from young to old based on either:
// 1. an assumption that we will be able to replenish memory "borrowed" from young at the end of collection, or
// 2. there is sufficient excess in the allocation runway during GC idle cycles
void ShenandoahGenerationalHeap::compute_old_generation_balance(size_t old_xfer_limit, size_t old_cset_regions) {
// mutator_xfer_limit, and any surplus is transferred to the young generation. mutator_xfer_limit is
// the maximum we're able to transfer from young to old. This is called at the end of GC, as we prepare
// for the idle span that precedes the next GC.
void ShenandoahGenerationalHeap::compute_old_generation_balance(size_t mutator_xfer_limit,
size_t old_trashed_regions, size_t young_trashed_regions) {
shenandoah_assert_heaplocked();
// We can limit the old reserve to the size of anticipated promotions:
// max_old_reserve is an upper bound on memory evacuated from old and promoted to old,
// clamped by the old generation space available.
//
// Here's the algebra.
// Let SOEP = ShenandoahOldEvacRatioPercent,
// Let SOEP = ShenandoahOldEvacPercent,
// OE = old evac,
// YE = young evac, and
// TE = total evac = OE + YE
@ -600,81 +599,171 @@ void ShenandoahGenerationalHeap::compute_old_generation_balance(size_t old_xfer_
// => OE = YE*SOEP/(100-SOEP)
// We have to be careful in the event that SOEP is set to 100 by the user.
assert(ShenandoahOldEvacRatioPercent <= 100, "Error");
const size_t old_available = old_generation()->available();
// The free set will reserve this amount of memory to hold young evacuations
const size_t young_reserve = (young_generation()->max_capacity() * ShenandoahEvacReserve) / 100;
// In the case that ShenandoahOldEvacRatioPercent equals 100, max_old_reserve is limited only by xfer_limit.
const double bound_on_old_reserve = old_available + old_xfer_limit + young_reserve;
const double max_old_reserve = ((ShenandoahOldEvacRatioPercent == 100)? bound_on_old_reserve:
MIN2(double(young_reserve * ShenandoahOldEvacRatioPercent)
/ double(100 - ShenandoahOldEvacRatioPercent), bound_on_old_reserve));
assert(ShenandoahOldEvacPercent <= 100, "Error");
const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
ShenandoahOldGeneration* old_gen = old_generation();
size_t old_capacity = old_gen->max_capacity();
size_t old_usage = old_gen->used(); // includes humongous waste
size_t old_available = ((old_capacity >= old_usage)? old_capacity - old_usage: 0) + old_trashed_regions * region_size_bytes;
ShenandoahYoungGeneration* young_gen = young_generation();
size_t young_capacity = young_gen->max_capacity();
size_t young_usage = young_gen->used(); // includes humongous waste
size_t young_available = ((young_capacity >= young_usage)? young_capacity - young_usage: 0);
size_t freeset_available = free_set()->available_locked();
if (young_available > freeset_available) {
young_available = freeset_available;
}
young_available += young_trashed_regions * region_size_bytes;
// The free set will reserve this amount of memory to hold young evacuations (initialized to the ideal reserve)
size_t young_reserve = (young_generation()->max_capacity() * ShenandoahEvacReserve) / 100;
// If ShenandoahOldEvacPercent equals 100, max_old_reserve is limited only by mutator_xfer_limit and young_reserve
const size_t bound_on_old_reserve = ((old_available + mutator_xfer_limit + young_reserve) * ShenandoahOldEvacPercent) / 100;
size_t proposed_max_old = ((ShenandoahOldEvacPercent == 100)?
bound_on_old_reserve:
MIN2((young_reserve * ShenandoahOldEvacPercent) / (100 - ShenandoahOldEvacPercent),
bound_on_old_reserve));
if (young_reserve > young_available) {
young_reserve = young_available;
}
// Decide how much old space we should reserve for a mixed collection
double reserve_for_mixed = 0;
if (old_generation()->has_unprocessed_collection_candidates()) {
size_t reserve_for_mixed = 0;
const size_t old_fragmented_available =
old_available - (old_generation()->free_unaffiliated_regions() + old_trashed_regions) * region_size_bytes;
if (old_fragmented_available > proposed_max_old) {
// After we've promoted regions in place, there may be an abundance of old-fragmented available memory,
// even more than the desired percentage for old reserve. We cannot transfer these fragmented regions back
// to young. Instead we make the best of the situation by using this fragmented memory for both promotions
// and evacuations.
proposed_max_old = old_fragmented_available;
}
size_t reserve_for_promo = old_fragmented_available;
const size_t max_old_reserve = proposed_max_old;
const size_t mixed_candidate_live_memory = old_generation()->unprocessed_collection_candidates_live_memory();
const bool doing_mixed = (mixed_candidate_live_memory > 0);
if (doing_mixed) {
// We want this much memory to be unfragmented in order to reliably evacuate old. This is conservative because we
// may not evacuate the entirety of unprocessed candidates in a single mixed evacuation.
const double max_evac_need =
(double(old_generation()->unprocessed_collection_candidates_live_memory()) * ShenandoahOldEvacWaste);
const size_t max_evac_need = (size_t) (mixed_candidate_live_memory * ShenandoahOldEvacWaste);
assert(old_available >= old_generation()->free_unaffiliated_regions() * region_size_bytes,
"Unaffiliated available must be less than total available");
const double old_fragmented_available =
double(old_available - old_generation()->free_unaffiliated_regions() * region_size_bytes);
reserve_for_mixed = max_evac_need + old_fragmented_available;
if (reserve_for_mixed > max_old_reserve) {
reserve_for_mixed = max_old_reserve;
// We prefer to evacuate all of mixed into unfragmented memory, and will expand old in order to do so, unless
// we already have too much fragmented available memory in old.
reserve_for_mixed = max_evac_need;
if (reserve_for_mixed + reserve_for_promo > max_old_reserve) {
// In this case, we'll allow old-evac to target some of the fragmented old memory.
size_t excess_reserves = (reserve_for_mixed + reserve_for_promo) - max_old_reserve;
if (reserve_for_promo > excess_reserves) {
reserve_for_promo -= excess_reserves;
} else {
excess_reserves -= reserve_for_promo;
reserve_for_promo = 0;
reserve_for_mixed -= excess_reserves;
}
}
}
// Decide how much space we should reserve for promotions from young
size_t reserve_for_promo = 0;
// Decide how much additional space we should reserve for promotions from young. We give priority to mixed evacations
// over promotions.
const size_t promo_load = old_generation()->get_promotion_potential();
const bool doing_promotions = promo_load > 0;
if (doing_promotions) {
// We're promoting and have a bound on the maximum amount that can be promoted
assert(max_old_reserve >= reserve_for_mixed, "Sanity");
const size_t available_for_promotions = max_old_reserve - reserve_for_mixed;
reserve_for_promo = MIN2((size_t)(promo_load * ShenandoahPromoEvacWaste), available_for_promotions);
// We've already set aside all of the fragmented available memory within old-gen to represent old objects
// to be promoted from young generation. promo_load represents the memory that we anticipate to be promoted
// from regions that have reached tenure age. In the ideal, we will always use fragmented old-gen memory
// to hold individually promoted objects and will use unfragmented old-gen memory to represent the old-gen
// evacuation workloa.
// We're promoting and have an estimate of memory to be promoted from aged regions
assert(max_old_reserve >= (reserve_for_mixed + reserve_for_promo), "Sanity");
const size_t available_for_additional_promotions = max_old_reserve - (reserve_for_mixed + reserve_for_promo);
size_t promo_need = (size_t)(promo_load * ShenandoahPromoEvacWaste);
if (promo_need > reserve_for_promo) {
reserve_for_promo += MIN2(promo_need - reserve_for_promo, available_for_additional_promotions);
}
// We've already reserved all the memory required for the promo_load, and possibly more. The excess
// can be consumed by objects promoted from regions that have not yet reached tenure age.
}
// This is the total old we want to ideally reserve
const size_t old_reserve = reserve_for_mixed + reserve_for_promo;
assert(old_reserve <= max_old_reserve, "cannot reserve more than max for old evacuations");
// This is the total old we want to reserve (initialized to the ideal reserve)
size_t old_reserve = reserve_for_mixed + reserve_for_promo;
// We now check if the old generation is running a surplus or a deficit.
const size_t max_old_available = old_generation()->available() + old_cset_regions * region_size_bytes;
if (max_old_available >= old_reserve) {
// We are running a surplus, so the old region surplus can go to young
const size_t old_surplus = (max_old_available - old_reserve) / region_size_bytes;
const size_t unaffiliated_old_regions = old_generation()->free_unaffiliated_regions() + old_cset_regions;
const size_t old_region_surplus = MIN2(old_surplus, unaffiliated_old_regions);
old_generation()->set_region_balance(checked_cast<ssize_t>(old_region_surplus));
} else {
// We are running a deficit which we'd like to fill from young.
// Ignore that this will directly impact young_generation()->max_capacity(),
// indirectly impacting young_reserve and old_reserve. These computations are conservative.
// Note that deficit is rounded up by one region.
const size_t old_need = (old_reserve - max_old_available + region_size_bytes - 1) / region_size_bytes;
const size_t max_old_region_xfer = old_xfer_limit / region_size_bytes;
size_t old_region_deficit = 0;
size_t old_region_surplus = 0;
// Round down the regions we can transfer from young to old. If we're running short
// on young-gen memory, we restrict the xfer. Old-gen collection activities will be
// curtailed if the budget is restricted.
const size_t old_region_deficit = MIN2(old_need, max_old_region_xfer);
size_t mutator_region_xfer_limit = mutator_xfer_limit / region_size_bytes;
// align the mutator_xfer_limit on region size
mutator_xfer_limit = mutator_region_xfer_limit * region_size_bytes;
if (old_available >= old_reserve) {
// We are running a surplus, so the old region surplus can go to young
const size_t old_surplus = old_available - old_reserve;
old_region_surplus = old_surplus / region_size_bytes;
const size_t unaffiliated_old_regions = old_generation()->free_unaffiliated_regions() + old_trashed_regions;
old_region_surplus = MIN2(old_region_surplus, unaffiliated_old_regions);
old_generation()->set_region_balance(checked_cast<ssize_t>(old_region_surplus));
} else if (old_available + mutator_xfer_limit >= old_reserve) {
// Mutator's xfer limit is sufficient to satisfy our need: transfer all memory from there
size_t old_deficit = old_reserve - old_available;
old_region_deficit = (old_deficit + region_size_bytes - 1) / region_size_bytes;
old_generation()->set_region_balance(0 - checked_cast<ssize_t>(old_region_deficit));
} else {
// We'll try to xfer from both mutator excess and from young collector reserve
size_t available_reserves = old_available + young_reserve + mutator_xfer_limit;
size_t old_entitlement = (available_reserves * ShenandoahOldEvacPercent) / 100;
// Round old_entitlement down to nearest multiple of regions to be transferred to old
size_t entitled_xfer = old_entitlement - old_available;
entitled_xfer = region_size_bytes * (entitled_xfer / region_size_bytes);
size_t unaffiliated_young_regions = young_generation()->free_unaffiliated_regions();
size_t unaffiliated_young_memory = unaffiliated_young_regions * region_size_bytes;
if (entitled_xfer > unaffiliated_young_memory) {
entitled_xfer = unaffiliated_young_memory;
}
old_entitlement = old_available + entitled_xfer;
if (old_entitlement < old_reserve) {
// There's not enough memory to satisfy our desire. Scale back our old-gen intentions.
size_t budget_overrun = old_reserve - old_entitlement;;
if (reserve_for_promo > budget_overrun) {
reserve_for_promo -= budget_overrun;
old_reserve -= budget_overrun;
} else {
budget_overrun -= reserve_for_promo;
reserve_for_promo = 0;
reserve_for_mixed = (reserve_for_mixed > budget_overrun)? reserve_for_mixed - budget_overrun: 0;
old_reserve = reserve_for_promo + reserve_for_mixed;
}
}
// Because of adjustments above, old_reserve may be smaller now than it was when we tested the branch
// condition above: "(old_available + mutator_xfer_limit >= old_reserve)
// Therefore, we do NOT know that: mutator_xfer_limit < old_reserve - old_available
size_t old_deficit = old_reserve - old_available;
old_region_deficit = (old_deficit + region_size_bytes - 1) / region_size_bytes;
// Shrink young_reserve to account for loan to old reserve
const size_t reserve_xfer_regions = old_region_deficit - mutator_region_xfer_limit;
young_reserve -= reserve_xfer_regions * region_size_bytes;
old_generation()->set_region_balance(0 - checked_cast<ssize_t>(old_region_deficit));
}
}
void ShenandoahGenerationalHeap::reset_generation_reserves() {
ShenandoahHeapLocker locker(lock());
young_generation()->set_evacuation_reserve(0);
old_generation()->set_evacuation_reserve(0);
old_generation()->set_promoted_reserve(0);
assert(old_region_deficit == 0 || old_region_surplus == 0, "Only surplus or deficit, never both");
assert(young_reserve + reserve_for_mixed + reserve_for_promo <= old_available + young_available,
"Cannot reserve more memory than is available: %zu + %zu + %zu <= %zu + %zu",
young_reserve, reserve_for_mixed, reserve_for_promo, old_available, young_available);
// deficit/surplus adjustments to generation sizes will precede rebuild
young_generation()->set_evacuation_reserve(young_reserve);
old_generation()->set_evacuation_reserve(reserve_for_mixed);
old_generation()->set_promoted_reserve(reserve_for_promo);
}
void ShenandoahGenerationalHeap::coalesce_and_fill_old_regions(bool concurrent) {
@ -1015,10 +1104,6 @@ void ShenandoahGenerationalHeap::final_update_refs_update_region_states() {
void ShenandoahGenerationalHeap::complete_degenerated_cycle() {
shenandoah_assert_heaplocked_or_safepoint();
// In case degeneration interrupted concurrent evacuation or update references, we need to clean up
// transient state. Otherwise, these actions have no effect.
reset_generation_reserves();
if (!old_generation()->is_parsable()) {
ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_coalesce_and_fill);
coalesce_and_fill_old_regions(false);
@ -1036,7 +1121,6 @@ void ShenandoahGenerationalHeap::complete_concurrent_cycle() {
// throw off the heuristics.
entry_global_coalesce_and_fill();
}
reset_generation_reserves();
}
void ShenandoahGenerationalHeap::entry_global_coalesce_and_fill() {

View File

@ -136,7 +136,7 @@ public:
void reset_generation_reserves();
// Computes the optimal size for the old generation, represented as a surplus or deficit of old regions
void compute_old_generation_balance(size_t old_xfer_limit, size_t old_cset_regions);
void compute_old_generation_balance(size_t old_xfer_limit, size_t old_trashed_regions, size_t young_trashed_regions);
// Balances generations, coalesces and fills old regions if necessary
void complete_degenerated_cycle();

View File

@ -425,20 +425,29 @@ jint ShenandoahHeap::initialize() {
_affiliations[i] = ShenandoahAffiliation::FREE;
}
if (mode()->is_generational()) {
size_t young_reserve = (soft_max_capacity() * ShenandoahEvacReserve) / 100;
young_generation()->set_evacuation_reserve(young_reserve);
old_generation()->set_evacuation_reserve((size_t) 0);
old_generation()->set_promoted_reserve((size_t) 0);
}
_free_set = new ShenandoahFreeSet(this, _num_regions);
post_initialize_heuristics();
// We are initializing free set. We ignore cset region tallies.
size_t young_cset_regions, old_cset_regions, first_old, last_old, num_old;
_free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
size_t young_trashed_regions, old_trashed_regions, first_old, last_old, num_old;
_free_set->prepare_to_rebuild(young_trashed_regions, old_trashed_regions, first_old, last_old, num_old);
if (mode()->is_generational()) {
ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
// We cannot call
// gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions)
// until after the heap is fully initialized. So we make up a safe value here.
size_t allocation_runway = InitialHeapSize / 2;
gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
gen_heap->compute_old_generation_balance(allocation_runway, old_trashed_regions, young_trashed_regions);
}
_free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
_free_set->finish_rebuild(young_trashed_regions, old_trashed_regions, num_old);
}
if (AlwaysPreTouch) {
@ -2521,13 +2530,10 @@ void ShenandoahHeap::final_update_refs_update_region_states() {
parallel_heap_region_iterate(&cl);
}
void ShenandoahHeap::rebuild_free_set(bool concurrent) {
ShenandoahGCPhase phase(concurrent ?
ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
void ShenandoahHeap::rebuild_free_set_within_phase() {
ShenandoahHeapLocker locker(lock());
size_t young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count;
_free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
size_t young_trashed_regions, old_trashed_regions, first_old_region, last_old_region, old_region_count;
_free_set->prepare_to_rebuild(young_trashed_regions, old_trashed_regions, first_old_region, last_old_region, old_region_count);
// If there are no old regions, first_old_region will be greater than last_old_region
assert((first_old_region > last_old_region) ||
((last_old_region + 1 - first_old_region >= old_region_count) &&
@ -2546,19 +2552,11 @@ void ShenandoahHeap::rebuild_free_set(bool concurrent) {
// available for transfer to old. Note that transfer of humongous regions does not impact available.
ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
size_t allocation_runway =
gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
// Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available
// memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular
// regions in place when many of these regular regions have an abundant amount of available memory within them.
// Fragmentation will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
//
// We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
// within partially consumed regions of memory.
gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_trashed_regions);
gen_heap->compute_old_generation_balance(allocation_runway, old_trashed_regions, young_trashed_regions);
}
// Rebuild free set based on adjusted generation sizes.
_free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count);
_free_set->finish_rebuild(young_trashed_regions, old_trashed_regions, old_region_count);
if (mode()->is_generational()) {
ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
@ -2567,6 +2565,13 @@ void ShenandoahHeap::rebuild_free_set(bool concurrent) {
}
}
void ShenandoahHeap::rebuild_free_set(bool concurrent) {
ShenandoahGCPhase phase(concurrent ?
ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
rebuild_free_set_within_phase();
}
bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
size_t slice = r->index() / _bitmap_regions_per_slice;

View File

@ -481,7 +481,9 @@ private:
void rendezvous_threads(const char* name);
void recycle_trash();
public:
// The following two functions rebuild the free set at the end of GC, in preparation for an idle phase.
void rebuild_free_set(bool concurrent);
void rebuild_free_set_within_phase();
void notify_gc_progress();
void notify_gc_no_progress();
size_t get_gc_no_progress_count() const;

View File

@ -75,6 +75,7 @@ ShenandoahHeapRegion::ShenandoahHeapRegion(HeapWord* start, size_t index, bool c
_plab_allocs(0),
_live_data(0),
_critical_pins(0),
_mixed_candidate_garbage_words(0),
_update_watermark(start),
_age(0),
#ifdef SHENANDOAH_CENSUS_NOISE
@ -565,6 +566,7 @@ void ShenandoahHeapRegion::recycle_internal() {
assert(_recycling.is_set() && is_trash(), "Wrong state");
ShenandoahHeap* heap = ShenandoahHeap::heap();
_mixed_candidate_garbage_words = 0;
set_top(bottom());
clear_live_data();
reset_alloc_metadata();
@ -593,6 +595,8 @@ void ShenandoahHeapRegion::try_recycle_under_lock() {
_recycling.unset();
} else {
// Ensure recycling is unset before returning to mutator to continue memory allocation.
// Otherwise, the mutator might see region as fully recycled and might change its affiliation only to have
// the racing GC worker thread overwrite its affiliation to FREE.
while (_recycling.is_set()) {
if (os::is_MP()) {
SpinPause();
@ -603,6 +607,8 @@ void ShenandoahHeapRegion::try_recycle_under_lock() {
}
}
// Note that return from try_recycle() does not mean the region has been recycled. It only means that
// some GC worker thread has taken responsibility to recycle the region, eventually.
void ShenandoahHeapRegion::try_recycle() {
shenandoah_assert_not_heaplocked();
if (is_trash() && _recycling.try_set()) {

Some files were not shown because too many files have changed in this diff Show More