/* * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "cds/archiveBuilder.hpp" #include "cds/archiveUtils.inline.hpp" #include "classfile/classLoader.hpp" #include "classfile/javaClasses.inline.hpp" #include "classfile/stringTable.hpp" #include "classfile/vmClasses.hpp" #include "classfile/vmSymbols.hpp" #include "code/aotCodeCache.hpp" #include "code/codeCache.hpp" #include "code/compiledIC.hpp" #include "code/nmethod.inline.hpp" #include "code/scopeDesc.hpp" #include "code/vtableStubs.hpp" #include "compiler/abstractCompiler.hpp" #include "compiler/compileBroker.hpp" #include "compiler/disassembler.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/collectedHeap.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "jfr/jfrEvents.hpp" #include "jvm.h" #include "logging/log.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "metaprogramming/primitiveConversions.hpp" #include "oops/klass.hpp" #include "oops/method.inline.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/forte.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "prims/methodHandles.hpp" #include "prims/nativeLookup.hpp" #include "runtime/arguments.hpp" #include "runtime/atomicAccess.hpp" #include "runtime/basicLock.inline.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/init.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/jniHandles.inline.hpp" #include "runtime/perfData.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stackWatermarkSet.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.inline.hpp" #include "runtime/timerTrace.hpp" #include "runtime/vframe.inline.hpp" #include "runtime/vframeArray.hpp" #include "runtime/vm_version.hpp" #include "utilities/copy.hpp" #include "utilities/dtrace.hpp" #include "utilities/events.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/hashTable.hpp" #include "utilities/macros.hpp" #include "utilities/xmlstream.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif #if INCLUDE_JFR #include "jfr/jfr.inline.hpp" #endif // Shared runtime stub routines reside in their own unique blob with a // single entry point #define SHARED_STUB_FIELD_DEFINE(name, type) \ type* SharedRuntime::BLOB_FIELD_NAME(name); SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) #undef SHARED_STUB_FIELD_DEFINE nmethod* SharedRuntime::_cont_doYield_stub; #if 0 // TODO tweak global stub name generation to match this #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", const char *SharedRuntime::_stub_names[] = { SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) }; #endif //----------------------------generate_stubs----------------------------------- void SharedRuntime::generate_initial_stubs() { // Build this early so it's available for the interpreter. _throw_StackOverflowError_blob = generate_throw_exception(StubId::shared_throw_StackOverflowError_id, CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); } void SharedRuntime::generate_stubs() { _wrong_method_blob = generate_resolve_blob(StubId::shared_wrong_method_id, CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); _wrong_method_abstract_blob = generate_resolve_blob(StubId::shared_wrong_method_abstract_id, CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); _ic_miss_blob = generate_resolve_blob(StubId::shared_ic_miss_id, CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); _resolve_opt_virtual_call_blob = generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); _resolve_virtual_call_blob = generate_resolve_blob(StubId::shared_resolve_virtual_call_id, CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); _resolve_static_call_blob = generate_resolve_blob(StubId::shared_resolve_static_call_id, CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); _throw_delayed_StackOverflowError_blob = generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); _throw_AbstractMethodError_blob = generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); _throw_IncompatibleClassChangeError_blob = generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); _throw_NullPointerException_at_call_blob = generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); #if COMPILER2_OR_JVMCI // Vectors are generated only by C2 and JVMCI. bool support_wide = is_wide_vector(MaxVectorSize); if (support_wide) { _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); } #endif // COMPILER2_OR_JVMCI _polling_page_safepoint_handler_blob = generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); _polling_page_return_handler_blob = generate_handler_blob(StubId::shared_polling_page_return_handler_id, CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); generate_deopt_blob(); } void SharedRuntime::init_adapter_library() { AdapterHandlerLibrary::initialize(); } #if INCLUDE_JFR //------------------------------generate jfr runtime stubs ------ void SharedRuntime::generate_jfr_stubs() { ResourceMark rm; const char* timer_msg = "SharedRuntime generate_jfr_stubs"; TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); _jfr_return_lease_blob = generate_jfr_return_lease(); } #endif // INCLUDE_JFR #include // Implementation of SharedRuntime #ifndef PRODUCT // For statistics uint SharedRuntime::_ic_miss_ctr = 0; uint SharedRuntime::_wrong_method_ctr = 0; uint SharedRuntime::_resolve_static_ctr = 0; uint SharedRuntime::_resolve_virtual_ctr = 0; uint SharedRuntime::_resolve_opt_virtual_ctr = 0; uint SharedRuntime::_implicit_null_throws = 0; uint SharedRuntime::_implicit_div0_throws = 0; int64_t SharedRuntime::_nof_normal_calls = 0; int64_t SharedRuntime::_nof_inlined_calls = 0; int64_t SharedRuntime::_nof_megamorphic_calls = 0; int64_t SharedRuntime::_nof_static_calls = 0; int64_t SharedRuntime::_nof_inlined_static_calls = 0; int64_t SharedRuntime::_nof_interface_calls = 0; int64_t SharedRuntime::_nof_inlined_interface_calls = 0; uint SharedRuntime::_new_instance_ctr=0; uint SharedRuntime::_new_array_ctr=0; uint SharedRuntime::_multi2_ctr=0; uint SharedRuntime::_multi3_ctr=0; uint SharedRuntime::_multi4_ctr=0; uint SharedRuntime::_multi5_ctr=0; uint SharedRuntime::_mon_enter_stub_ctr=0; uint SharedRuntime::_mon_exit_stub_ctr=0; uint SharedRuntime::_mon_enter_ctr=0; uint SharedRuntime::_mon_exit_ctr=0; uint SharedRuntime::_partial_subtype_ctr=0; uint SharedRuntime::_jbyte_array_copy_ctr=0; uint SharedRuntime::_jshort_array_copy_ctr=0; uint SharedRuntime::_jint_array_copy_ctr=0; uint SharedRuntime::_jlong_array_copy_ctr=0; uint SharedRuntime::_oop_array_copy_ctr=0; uint SharedRuntime::_checkcast_array_copy_ctr=0; uint SharedRuntime::_unsafe_array_copy_ctr=0; uint SharedRuntime::_generic_array_copy_ctr=0; uint SharedRuntime::_slow_array_copy_ctr=0; uint SharedRuntime::_find_handler_ctr=0; uint SharedRuntime::_rethrow_ctr=0; uint SharedRuntime::_unsafe_set_memory_ctr=0; int SharedRuntime::_ICmiss_index = 0; int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; void SharedRuntime::trace_ic_miss(address at) { for (int i = 0; i < _ICmiss_index; i++) { if (_ICmiss_at[i] == at) { _ICmiss_count[i]++; return; } } int index = _ICmiss_index++; if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; _ICmiss_at[index] = at; _ICmiss_count[index] = 1; } void SharedRuntime::print_ic_miss_histogram() { if (ICMissHistogram) { tty->print_cr("IC Miss Histogram:"); int tot_misses = 0; for (int i = 0; i < _ICmiss_index; i++) { tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); tot_misses += _ICmiss_count[i]; } tty->print_cr("Total IC misses: %7d", tot_misses); } } #ifdef COMPILER2 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for) void SharedRuntime::debug_print_value(jboolean x) { tty->print_cr("boolean %d", x); } void SharedRuntime::debug_print_value(jbyte x) { tty->print_cr("byte %d", x); } void SharedRuntime::debug_print_value(jshort x) { tty->print_cr("short %d", x); } void SharedRuntime::debug_print_value(jchar x) { tty->print_cr("char %c %d", isprint(x) ? x : ' ', x); } void SharedRuntime::debug_print_value(jint x) { tty->print_cr("int %d", x); } void SharedRuntime::debug_print_value(jlong x) { tty->print_cr("long " JLONG_FORMAT, x); } void SharedRuntime::debug_print_value(jfloat x) { tty->print_cr("float %f", x); } void SharedRuntime::debug_print_value(jdouble x) { tty->print_cr("double %lf", x); } void SharedRuntime::debug_print_value(oopDesc* x) { x->print(); } #endif // COMPILER2 #endif // PRODUCT JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) return x * y; JRT_END JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) if (x == min_jlong && y == CONST64(-1)) { return x; } else { return x / y; } JRT_END JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) if (x == min_jlong && y == CONST64(-1)) { return 0; } else { return x % y; } JRT_END #ifdef _WIN64 const juint float_sign_mask = 0x7FFFFFFF; const juint float_infinity = 0x7F800000; const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); const julong double_infinity = CONST64(0x7FF0000000000000); #endif #if !defined(X86) JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) #ifdef _WIN64 // 64-bit Windows on amd64 returns the wrong values for // infinity operands. juint xbits = PrimitiveConversions::cast(x); juint ybits = PrimitiveConversions::cast(y); // x Mod Infinity == x unless x is infinity if (((xbits & float_sign_mask) != float_infinity) && ((ybits & float_sign_mask) == float_infinity) ) { return x; } return ((jfloat)fmod_winx64((double)x, (double)y)); #else return ((jfloat)fmod((double)x,(double)y)); #endif JRT_END JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) #ifdef _WIN64 julong xbits = PrimitiveConversions::cast(x); julong ybits = PrimitiveConversions::cast(y); // x Mod Infinity == x unless x is infinity if (((xbits & double_sign_mask) != double_infinity) && ((ybits & double_sign_mask) == double_infinity) ) { return x; } return ((jdouble)fmod_winx64((double)x, (double)y)); #else return ((jdouble)fmod((double)x,(double)y)); #endif JRT_END #endif // !X86 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) return (jfloat)x; JRT_END #ifdef __SOFTFP__ JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) return x + y; JRT_END JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) return x - y; JRT_END JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) return x * y; JRT_END JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) return x / y; JRT_END JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) return x + y; JRT_END JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) return x - y; JRT_END JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) return x * y; JRT_END JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) return x / y; JRT_END JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) return (jdouble)x; JRT_END JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) return (jdouble)x; JRT_END JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) return x>y ? 1 : (x==y ? 0 : -1); /* xy or is_nan */ JRT_END JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) return x>y ? 1 : (x==y ? 0 : -1); /* xy or is_nan */ JRT_END // Functions to return the opposite of the aeabi functions for nan. JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END // Intrinsics make gcc generate code for these. float SharedRuntime::fneg(float f) { return -f; } double SharedRuntime::dneg(double f) { return -f; } #endif // __SOFTFP__ #if defined(__SOFTFP__) || defined(E500V2) // Intrinsics make gcc generate code for these. double SharedRuntime::dabs(double f) { return (f <= (double)0.0) ? (double)0.0 - f : f; } #endif #if defined(__SOFTFP__) double SharedRuntime::dsqrt(double f) { return sqrt(f); } #endif JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) if (g_isnan(x)) return 0; if (x >= (jfloat) max_jint) return max_jint; if (x <= (jfloat) min_jint) return min_jint; return (jint) x; JRT_END JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) if (g_isnan(x)) return 0; if (x >= (jfloat) max_jlong) return max_jlong; if (x <= (jfloat) min_jlong) return min_jlong; return (jlong) x; JRT_END JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) if (g_isnan(x)) return 0; if (x >= (jdouble) max_jint) return max_jint; if (x <= (jdouble) min_jint) return min_jint; return (jint) x; JRT_END JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) if (g_isnan(x)) return 0; if (x >= (jdouble) max_jlong) return max_jlong; if (x <= (jdouble) min_jlong) return min_jlong; return (jlong) x; JRT_END JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) return (jfloat)x; JRT_END JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) return (jfloat)x; JRT_END JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) return (jdouble)x; JRT_END // Exception handling across interpreter/compiler boundaries // // exception_handler_for_return_address(...) returns the continuation address. // The continuation address is the entry point of the exception handler of the // previous frame depending on the return address. address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { // Note: This is called when we have unwound the frame of the callee that did // throw an exception. So far, no check has been performed by the StackWatermarkSet. // Notably, the stack is not walkable at this point, and hence the check must // be deferred until later. Specifically, any of the handlers returned here in // this function, will get dispatched to, and call deferred checks to // StackWatermarkSet::after_unwind at a point where the stack is walkable. assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); #if INCLUDE_JVMCI // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear // and other exception handler continuations do not read it current->set_exception_pc(nullptr); #endif // INCLUDE_JVMCI if (Continuation::is_return_barrier_entry(return_address)) { return StubRoutines::cont_returnBarrierExc(); } // The fastest case first CodeBlob* blob = CodeCache::find_blob(return_address); nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; if (nm != nullptr) { // native nmethods don't have exception handlers assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); if (nm->is_deopt_pc(return_address)) { // If we come here because of a stack overflow, the stack may be // unguarded. Reguard the stack otherwise if we return to the // deopt blob and the stack bang causes a stack overflow we // crash. StackOverflow* overflow_state = current->stack_overflow_state(); bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); if (overflow_state->reserved_stack_activation() != current->stack_base()) { overflow_state->set_reserved_stack_activation(current->stack_base()); } assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); // The deferred StackWatermarkSet::after_unwind check will be performed in // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) return SharedRuntime::deopt_blob()->unpack_with_exception(); } else { // The deferred StackWatermarkSet::after_unwind check will be performed in // * OptoRuntime::handle_exception_C_helper for C2 code // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code return nm->exception_begin(); } } // Entry code if (StubRoutines::returns_to_call_stub(return_address)) { // The deferred StackWatermarkSet::after_unwind check will be performed in // JavaCallWrapper::~JavaCallWrapper assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); return StubRoutines::catch_exception_entry(); } if (blob != nullptr && blob->is_upcall_stub()) { return StubRoutines::upcall_stub_exception_handler(); } // Interpreted code if (Interpreter::contains(return_address)) { // The deferred StackWatermarkSet::after_unwind check will be performed in // InterpreterRuntime::exception_handler_for_exception return Interpreter::rethrow_exception_entry(); } guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); #ifndef PRODUCT { ResourceMark rm; tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); os::print_location(tty, (intptr_t)return_address); tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); tty->print_cr("b) other problem"); } #endif // PRODUCT ShouldNotReachHere(); return nullptr; } JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) return raw_exception_handler_for_return_address(current, return_address); JRT_END address SharedRuntime::get_poll_stub(address pc) { address stub; // Look up the code blob CodeBlob *cb = CodeCache::find_blob(pc); // Should be an nmethod guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); // Look up the relocation information assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); #ifdef ASSERT if (!((NativeInstruction*)pc)->is_safepoint_poll()) { tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); Disassembler::decode(cb); fatal("Only polling locations are used for safepoint"); } #endif bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); if (at_poll_return) { assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, "polling page return stub not created yet"); stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); } else if (has_wide_vectors) { assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, "polling page vectors safepoint stub not created yet"); stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); } else { assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, "polling page safepoint stub not created yet"); stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); } log_debug(safepoint)("... found polling page %s exception at pc = " INTPTR_FORMAT ", stub =" INTPTR_FORMAT, at_poll_return ? "return" : "loop", (intptr_t)pc, (intptr_t)stub); return stub; } void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { if (JvmtiExport::can_post_on_exceptions()) { vframeStream vfst(current, true); methodHandle method = methodHandle(current, vfst.method()); address bcp = method()->bcp_from(vfst.bci()); JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); } #if INCLUDE_JVMCI if (EnableJVMCI) { vframeStream vfst(current, true); methodHandle method = methodHandle(current, vfst.method()); int bci = vfst.bci(); MethodData* trap_mdo = method->method_data(); if (trap_mdo != nullptr) { // Set exception_seen if the exceptional bytecode is an invoke Bytecode_invoke call = Bytecode_invoke_check(method, bci); if (call.is_valid()) { ResourceMark rm(current); // Lock to read ProfileData, and ensure lock is not broken by a safepoint MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); if (pdata != nullptr && pdata->is_BitData()) { BitData* bit_data = (BitData*) pdata; bit_data->set_exception_seen(); } } } } #endif Exceptions::_throw(current, __FILE__, __LINE__, h_exception); } void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { Handle h_exception = Exceptions::new_exception(current, name, message); throw_and_post_jvmti_exception(current, h_exception); } #if INCLUDE_JVMTI JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) assert(hide == JNI_FALSE, "must be VTMS transition finish"); jobject vthread = JNIHandles::make_local(const_cast(vt)); JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); JNIHandles::destroy_local(vthread); JRT_END JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) assert(hide == JNI_TRUE, "must be VTMS transition start"); jobject vthread = JNIHandles::make_local(const_cast(vt)); JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); JNIHandles::destroy_local(vthread); JRT_END JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) jobject vthread = JNIHandles::make_local(const_cast(vt)); JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); JNIHandles::destroy_local(vthread); JRT_END JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) jobject vthread = JNIHandles::make_local(const_cast(vt)); JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); JNIHandles::destroy_local(vthread); JRT_END #endif // INCLUDE_JVMTI // The interpreter code to call this tracing function is only // called/generated when UL is on for redefine, class and has the right level // and tags. Since obsolete methods are never compiled, we don't have // to modify the compilers to generate calls to this function. // JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( JavaThread* thread, Method* method)) if (method->is_obsolete()) { // We are calling an obsolete method, but this is not necessarily // an error. Our method could have been redefined just after we // fetched the Method* from the constant pool. ResourceMark rm; log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); } return 0; JRT_END // ret_pc points into caller; we are returning caller's exception handler // for given exception // Note that the implementation of this method assumes it's only called when an exception has actually occured address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { assert(nm != nullptr, "must exist"); ResourceMark rm; #if INCLUDE_JVMCI if (nm->is_compiled_by_jvmci()) { // lookup exception handler for this pc int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); ExceptionHandlerTable table(nm); HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); if (t != nullptr) { return nm->code_begin() + t->pco(); } else { return Deoptimization::deoptimize_for_missing_exception_handler(nm); } } #endif // INCLUDE_JVMCI ScopeDesc* sd = nm->scope_desc_at(ret_pc); // determine handler bci, if any EXCEPTION_MARK; int handler_bci = -1; int scope_depth = 0; if (!force_unwind) { int bci = sd->bci(); bool recursive_exception = false; do { bool skip_scope_increment = false; // exception handler lookup Klass* ek = exception->klass(); methodHandle mh(THREAD, sd->method()); handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); if (HAS_PENDING_EXCEPTION) { recursive_exception = true; // We threw an exception while trying to find the exception handler. // Transfer the new exception to the exception handle which will // be set into thread local storage, and do another lookup for an // exception handler for this exception, this time starting at the // BCI of the exception handler which caused the exception to be // thrown (bugs 4307310 and 4546590). Set "exception" reference // argument to ensure that the correct exception is thrown (4870175). recursive_exception_occurred = true; exception = Handle(THREAD, PENDING_EXCEPTION); CLEAR_PENDING_EXCEPTION; if (handler_bci >= 0) { bci = handler_bci; handler_bci = -1; skip_scope_increment = true; } } else { recursive_exception = false; } if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { sd = sd->sender(); if (sd != nullptr) { bci = sd->bci(); } ++scope_depth; } } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); } // found handling method => lookup exception handler int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); ExceptionHandlerTable table(nm); HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { // Allow abbreviated catch tables. The idea is to allow a method // to materialize its exceptions without committing to the exact // routing of exceptions. In particular this is needed for adding // a synthetic handler to unlock monitors when inlining // synchronized methods since the unlock path isn't represented in // the bytecodes. t = table.entry_for(catch_pco, -1, 0); } #ifdef COMPILER1 if (t == nullptr && nm->is_compiled_by_c1()) { assert(nm->unwind_handler_begin() != nullptr, ""); return nm->unwind_handler_begin(); } #endif if (t == nullptr) { ttyLocker ttyl; tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); tty->print_cr(" Exception:"); exception->print(); tty->cr(); tty->print_cr(" Compiled exception table :"); table.print(); nm->print(); nm->print_code(); guarantee(false, "missing exception handler"); return nullptr; } if (handler_bci != -1) { // did we find a handler in this method? sd->method()->set_exception_handler_entered(handler_bci); // profile } return nm->code_begin() + t->pco(); } JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) // These errors occur only at call sites throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); JRT_END JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) // These errors occur only at call sites throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); JRT_END JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); JRT_END JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); JRT_END JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) // This entry point is effectively only used for NullPointerExceptions which occur at inline // cache sites (when the callee activation is not yet set up) so we are at a call site throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); JRT_END JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) throw_StackOverflowError_common(current, false); JRT_END JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) throw_StackOverflowError_common(current, true); JRT_END void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { // We avoid using the normal exception construction in this case because // it performs an upcall to Java, and we're already out of stack space. JavaThread* THREAD = current; // For exception macros. InstanceKlass* k = vmClasses::StackOverflowError_klass(); oop exception_oop = k->allocate_instance(CHECK); if (delayed) { java_lang_Throwable::set_message(exception_oop, Universe::delayed_stack_overflow_error_message()); } Handle exception (current, exception_oop); if (StackTraceInThrowable) { java_lang_Throwable::fill_in_stack_trace(exception); } // Remove the ScopedValue bindings in case we got a // StackOverflowError while we were trying to remove ScopedValue // bindings. current->clear_scopedValueBindings(); // Increment counter for hs_err file reporting AtomicAccess::inc(&Exceptions::_stack_overflow_errors); throw_and_post_jvmti_exception(current, exception); } address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, address pc, ImplicitExceptionKind exception_kind) { address target_pc = nullptr; if (Interpreter::contains(pc)) { switch (exception_kind) { case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); default: ShouldNotReachHere(); } } else { switch (exception_kind) { case STACK_OVERFLOW: { // Stack overflow only occurs upon frame setup; the callee is // going to be unwound. Dispatch to a shared runtime stub // which will cause the StackOverflowError to be fabricated // and processed. // Stack overflow should never occur during deoptimization: // the compiled method bangs the stack by as much as the // interpreter would need in case of a deoptimization. The // deoptimization blob and uncommon trap blob bang the stack // in a debug VM to verify the correctness of the compiled // method stack banging. assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); return SharedRuntime::throw_StackOverflowError_entry(); } case IMPLICIT_NULL: { if (VtableStubs::contains(pc)) { // We haven't yet entered the callee frame. Fabricate an // exception and begin dispatching it in the caller. Since // the caller was at a call site, it's safe to destroy all // caller-saved registers, as these entry points do. VtableStub* vt_stub = VtableStubs::stub_containing(pc); // If vt_stub is null, then return null to signal handler to report the SEGV error. if (vt_stub == nullptr) return nullptr; if (vt_stub->is_abstract_method_error(pc)) { assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); // Instead of throwing the abstract method error here directly, we re-resolve // and will throw the AbstractMethodError during resolve. As a result, we'll // get a more detailed error message. return SharedRuntime::get_handle_wrong_method_stub(); } else { Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); // Assert that the signal comes from the expected location in stub code. assert(vt_stub->is_null_pointer_exception(pc), "obtained signal from unexpected location in stub code"); return SharedRuntime::throw_NullPointerException_at_call_entry(); } } else { CodeBlob* cb = CodeCache::find_blob(pc); // If code blob is null, then return null to signal handler to report the SEGV error. if (cb == nullptr) return nullptr; // Exception happened in CodeCache. Must be either: // 1. Inline-cache check in C2I handler blob, // 2. Inline-cache check in nmethod, or // 3. Implicit null exception in nmethod if (!cb->is_nmethod()) { bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); if (!is_in_blob) { // Allow normal crash reporting to handle this return nullptr; } Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); // There is no handler here, so we will simply unwind. return SharedRuntime::throw_NullPointerException_at_call_entry(); } // Otherwise, it's a compiled method. Consult its exception handlers. nmethod* nm = cb->as_nmethod(); if (nm->inlinecache_check_contains(pc)) { // exception happened inside inline-cache check code // => the nmethod is not yet active (i.e., the frame // is not set up yet) => use return address pushed by // caller => don't push another return address Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); return SharedRuntime::throw_NullPointerException_at_call_entry(); } if (nm->method()->is_method_handle_intrinsic()) { // exception happened inside MH dispatch code, similar to a vtable stub Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); return SharedRuntime::throw_NullPointerException_at_call_entry(); } #ifndef PRODUCT _implicit_null_throws++; #endif target_pc = nm->continuation_for_implicit_null_exception(pc); // If there's an unexpected fault, target_pc might be null, // in which case we want to fall through into the normal // error handling code. } break; // fall through } case IMPLICIT_DIVIDE_BY_ZERO: { nmethod* nm = CodeCache::find_nmethod(pc); guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); #ifndef PRODUCT _implicit_div0_throws++; #endif target_pc = nm->continuation_for_implicit_div0_exception(pc); // If there's an unexpected fault, target_pc might be null, // in which case we want to fall through into the normal // error handling code. break; // fall through } default: ShouldNotReachHere(); } assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); if (exception_kind == IMPLICIT_NULL) { #ifndef PRODUCT // for AbortVMOnException flag Exceptions::debug_check_abort("java.lang.NullPointerException"); #endif //PRODUCT Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); } else { #ifndef PRODUCT // for AbortVMOnException flag Exceptions::debug_check_abort("java.lang.ArithmeticException"); #endif //PRODUCT Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); } return target_pc; } ShouldNotReachHere(); return nullptr; } /** * Throws an java/lang/UnsatisfiedLinkError. The address of this method is * installed in the native function entry of all native Java methods before * they get linked to their actual native methods. * * \note * This method actually never gets called! The reason is because * the interpreter's native entries call NativeLookup::lookup() which * throws the exception when the lookup fails. The exception is then * caught and forwarded on the return from NativeLookup::lookup() call * before the call to the native function. This might change in the future. */ JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) { // We return a bad value here to make sure that the exception is // forwarded before we look at the return value. THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); } JNI_END address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); } JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) #if INCLUDE_JVMCI if (!obj->klass()->has_finalizer()) { return; } #endif // INCLUDE_JVMCI assert(oopDesc::is_oop(obj), "must be a valid oop"); assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); InstanceKlass::register_finalizer(instanceOop(obj), CHECK); JRT_END jlong SharedRuntime::get_java_tid(JavaThread* thread) { assert(thread != nullptr, "No thread"); if (thread == nullptr) { return 0; } guarantee(Thread::current() != thread || thread->is_oop_safe(), "current cannot touch oops after its GC barrier is detached."); oop obj = thread->threadObj(); return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); } /** * This function ought to be a void function, but cannot be because * it gets turned into a tail-call on sparc, which runs into dtrace bug * 6254741. Once that is fixed we can remove the dummy return value. */ int SharedRuntime::dtrace_object_alloc(oopDesc* o) { return dtrace_object_alloc(JavaThread::current(), o, o->size()); } int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { return dtrace_object_alloc(thread, o, o->size()); } int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { assert(DTraceAllocProbes, "wrong call"); Klass* klass = o->klass(); Symbol* name = klass->name(); HOTSPOT_OBJECT_ALLOC( get_java_tid(thread), (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); return 0; } JRT_LEAF(int, SharedRuntime::dtrace_method_entry( JavaThread* current, Method* method)) assert(current == JavaThread::current(), "pre-condition"); assert(DTraceMethodProbes, "wrong call"); Symbol* kname = method->klass_name(); Symbol* name = method->name(); Symbol* sig = method->signature(); HOTSPOT_METHOD_ENTRY( get_java_tid(current), (char *) kname->bytes(), kname->utf8_length(), (char *) name->bytes(), name->utf8_length(), (char *) sig->bytes(), sig->utf8_length()); return 0; JRT_END JRT_LEAF(int, SharedRuntime::dtrace_method_exit( JavaThread* current, Method* method)) assert(current == JavaThread::current(), "pre-condition"); assert(DTraceMethodProbes, "wrong call"); Symbol* kname = method->klass_name(); Symbol* name = method->name(); Symbol* sig = method->signature(); HOTSPOT_METHOD_RETURN( get_java_tid(current), (char *) kname->bytes(), kname->utf8_length(), (char *) name->bytes(), name->utf8_length(), (char *) sig->bytes(), sig->utf8_length()); return 0; JRT_END // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) // for a call current in progress, i.e., arguments has been pushed on stack // put callee has not been invoked yet. Used by: resolve virtual/static, // vtable updates, etc. Caller frame must be compiled. Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { JavaThread* current = THREAD; ResourceMark rm(current); // last java frame on stack (which includes native call frames) vframeStream vfst(current, true); // Do not skip and javaCalls return find_callee_info_helper(vfst, bc, callinfo, THREAD); } Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { nmethod* caller = vfst.nm(); address pc = vfst.frame_pc(); { // Get call instruction under lock because another thread may be busy patching it. CompiledICLocker ic_locker(caller); return caller->attached_method_before_pc(pc); } return nullptr; } // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode // for a call current in progress, i.e., arguments has been pushed on stack // but callee has not been invoked yet. Caller frame must be compiled. Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { Handle receiver; Handle nullHandle; // create a handy null handle for exception returns JavaThread* current = THREAD; assert(!vfst.at_end(), "Java frame must exist"); // Find caller and bci from vframe methodHandle caller(current, vfst.method()); int bci = vfst.bci(); if (caller->is_continuation_enter_intrinsic()) { bc = Bytecodes::_invokestatic; LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); return receiver; } Bytecode_invoke bytecode(caller, bci); int bytecode_index = bytecode.index(); bc = bytecode.invoke_code(); methodHandle attached_method(current, extract_attached_method(vfst)); if (attached_method.not_null()) { Method* callee = bytecode.static_target(CHECK_NH); vmIntrinsics::ID id = callee->intrinsic_id(); // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, // it attaches statically resolved method to the call site. if (MethodHandles::is_signature_polymorphic(id) && MethodHandles::is_signature_polymorphic_intrinsic(id)) { bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); // Adjust invocation mode according to the attached method. switch (bc) { case Bytecodes::_invokevirtual: if (attached_method->method_holder()->is_interface()) { bc = Bytecodes::_invokeinterface; } break; case Bytecodes::_invokeinterface: if (!attached_method->method_holder()->is_interface()) { bc = Bytecodes::_invokevirtual; } break; case Bytecodes::_invokehandle: if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { bc = attached_method->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual; } break; default: break; } } } assert(bc != Bytecodes::_illegal, "not initialized"); bool has_receiver = bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle; // Find receiver for non-static call if (has_receiver) { // This register map must be update since we need to find the receiver for // compiled frames. The receiver might be in a register. RegisterMap reg_map2(current, RegisterMap::UpdateMap::include, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame stubFrame = current->last_frame(); // Caller-frame is a compiled frame frame callerFrame = stubFrame.sender(®_map2); if (attached_method.is_null()) { Method* callee = bytecode.static_target(CHECK_NH); if (callee == nullptr) { THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); } } // Retrieve from a compiled argument list receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); assert(oopDesc::is_oop_or_null(receiver()), ""); if (receiver.is_null()) { THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); } } // Resolve method if (attached_method.not_null()) { // Parameterized by attached method. LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); } else { // Parameterized by bytecode. constantPoolHandle constants(current, caller->constants()); LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); } #ifdef ASSERT // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls if (has_receiver) { assert(receiver.not_null(), "should have thrown exception"); Klass* receiver_klass = receiver->klass(); Klass* rk = nullptr; if (attached_method.not_null()) { // In case there's resolved method attached, use its holder during the check. rk = attached_method->method_holder(); } else { // Klass is already loaded. constantPoolHandle constants(current, caller->constants()); rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); } Klass* static_receiver_klass = rk; assert(receiver_klass->is_subtype_of(static_receiver_klass), "actual receiver must be subclass of static receiver klass"); if (receiver_klass->is_instance_klass()) { if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { tty->print_cr("ERROR: Klass not yet initialized!!"); receiver_klass->print(); } assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); } } #endif return receiver; } methodHandle SharedRuntime::find_callee_method(TRAPS) { JavaThread* current = THREAD; ResourceMark rm(current); // We need first to check if any Java activations (compiled, interpreted) // exist on the stack since last JavaCall. If not, we need // to get the target method from the JavaCall wrapper. vframeStream vfst(current, true); // Do not skip any javaCalls methodHandle callee_method; if (vfst.at_end()) { // No Java frames were found on stack since we did the JavaCall. // Hence the stack can only contain an entry_frame. We need to // find the target method from the stub frame. RegisterMap reg_map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame fr = current->last_frame(); assert(fr.is_runtime_frame(), "must be a runtimeStub"); fr = fr.sender(®_map); assert(fr.is_entry_frame(), "must be"); // fr is now pointing to the entry frame. callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); } else { Bytecodes::Code bc; CallInfo callinfo; find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); callee_method = methodHandle(current, callinfo.selected_method()); } assert(callee_method()->is_method(), "must be"); return callee_method; } // Resolves a call. methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { JavaThread* current = THREAD; ResourceMark rm(current); RegisterMap cbl_map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame caller_frame = current->last_frame().sender(&cbl_map); CodeBlob* caller_cb = caller_frame.cb(); guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); nmethod* caller_nm = caller_cb->as_nmethod(); // determine call info & receiver // note: a) receiver is null for static calls // b) an exception is thrown if receiver is null for non-static calls CallInfo call_info; Bytecodes::Code invoke_code = Bytecodes::_illegal; Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); NoSafepointVerifier nsv; methodHandle callee_method(current, call_info.selected_method()); assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || (!is_virtual && invoke_code == Bytecodes::_invokespecial) || (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); assert(!caller_nm->is_unloading(), "It should not be unloading"); #ifndef PRODUCT // tracing/debugging/statistics uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : (is_virtual) ? (&_resolve_virtual_ctr) : (&_resolve_static_ctr); AtomicAccess::inc(addr); if (TraceCallFixup) { ResourceMark rm(current); tty->print("resolving %s%s (%s) call to", (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", Bytecodes::name(invoke_code)); callee_method->print_short_name(tty); tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, p2i(caller_frame.pc()), p2i(callee_method->code())); } #endif if (invoke_code == Bytecodes::_invokestatic) { assert(callee_method->method_holder()->is_initialized() || callee_method->method_holder()->is_reentrant_initialization(current), "invalid class initialization state for invoke_static"); if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { // In order to keep class initialization check, do not patch call // site for static call when the class is not fully initialized. // Proper check is enforced by call site re-resolution on every invocation. // // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), // explicit class initialization check is put in nmethod entry (VEP). assert(callee_method->method_holder()->is_linked(), "must be"); return callee_method; } } // JSR 292 key invariant: // If the resolved method is a MethodHandle invoke target, the call // site must be a MethodHandle call site, because the lambda form might tail-call // leaving the stack in a state unknown to either caller or callee // Compute entry points. The computation of the entry points is independent of // patching the call. // Make sure the callee nmethod does not get deoptimized and removed before // we are done patching the code. CompiledICLocker ml(caller_nm); if (is_virtual && !is_optimized) { CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); inline_cache->update(&call_info, receiver->klass()); } else { // Callsite is a direct call - set it to the destination method CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); callsite->set(callee_method); } return callee_method; } // Inline caches exist only in compiled code JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) #ifdef ASSERT RegisterMap reg_map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame stub_frame = current->last_frame(); assert(stub_frame.is_runtime_frame(), "sanity check"); frame caller_frame = stub_frame.sender(®_map); assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); #endif /* ASSERT */ methodHandle callee_method; JRT_BLOCK callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); // Return Method* through TLS current->set_vm_result_metadata(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints return get_resolved_entry(current, callee_method); JRT_END // Handle call site that has been made non-entrant JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) // 6243940 We might end up in here if the callee is deoptimized // as we race to call it. We don't want to take a safepoint if // the caller was interpreted because the caller frame will look // interpreted to the stack walkers and arguments are now // "compiled" so it is much better to make this transition // invisible to the stack walking code. The i2c path will // place the callee method in the callee_target. It is stashed // there because if we try and find the callee by normal means a // safepoint is possible and have trouble gc'ing the compiled args. RegisterMap reg_map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame stub_frame = current->last_frame(); assert(stub_frame.is_runtime_frame(), "sanity check"); frame caller_frame = stub_frame.sender(®_map); if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() || caller_frame.is_upcall_stub_frame()) { Method* callee = current->callee_target(); guarantee(callee != nullptr && callee->is_method(), "bad handshake"); current->set_vm_result_metadata(callee); current->set_callee_target(nullptr); if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { // Bypass class initialization checks in c2i when caller is in native. // JNI calls to static methods don't have class initialization checks. // Fast class initialization checks are present in c2i adapters and call into // SharedRuntime::handle_wrong_method() on the slow path. // // JVM upcalls may land here as well, but there's a proper check present in // LinkResolver::resolve_static_call (called from JavaCalls::call_static), // so bypassing it in c2i adapter is benign. return callee->get_c2i_no_clinit_check_entry(); } else { return callee->get_c2i_entry(); } } // Must be compiled to compiled path which is safe to stackwalk methodHandle callee_method; JRT_BLOCK // Force resolving of caller (if we called from compiled frame) callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); current->set_vm_result_metadata(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints return get_resolved_entry(current, callee_method); JRT_END // Handle abstract method call JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) // Verbose error message for AbstractMethodError. // Get the called method from the invoke bytecode. vframeStream vfst(current, true); assert(!vfst.at_end(), "Java frame must exist"); methodHandle caller(current, vfst.method()); Bytecode_invoke invoke(caller, vfst.bci()); DEBUG_ONLY( invoke.verify(); ) // Find the compiled caller frame. RegisterMap reg_map(current, RegisterMap::UpdateMap::include, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame stubFrame = current->last_frame(); assert(stubFrame.is_runtime_frame(), "must be"); frame callerFrame = stubFrame.sender(®_map); assert(callerFrame.is_compiled_frame(), "must be"); // Install exception and return forward entry. address res = SharedRuntime::throw_AbstractMethodError_entry(); JRT_BLOCK methodHandle callee(current, invoke.static_target(current)); if (!callee.is_null()) { oop recv = callerFrame.retrieve_receiver(®_map); Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; res = StubRoutines::forward_exception_entry(); LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); } JRT_BLOCK_END return res; JRT_END // return verified_code_entry if interp_only_mode is not set for the current thread; // otherwise return c2i entry. address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { // In interp_only_mode we need to go to the interpreted entry // The c2i won't patch in this mode -- see fixup_callers_callsite return callee_method->get_c2i_entry(); } assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); return callee_method->verified_code_entry(); } // resolve a static call and patch code JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) methodHandle callee_method; bool enter_special = false; JRT_BLOCK callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); current->set_vm_result_metadata(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints return get_resolved_entry(current, callee_method); JRT_END // resolve virtual call and update inline cache to monomorphic JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) methodHandle callee_method; JRT_BLOCK callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); current->set_vm_result_metadata(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints return get_resolved_entry(current, callee_method); JRT_END // Resolve a virtual call that can be statically bound (e.g., always // monomorphic, so it has no inline cache). Patch code to resolved target. JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) methodHandle callee_method; JRT_BLOCK callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); current->set_vm_result_metadata(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints return get_resolved_entry(current, callee_method); JRT_END methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { JavaThread* current = THREAD; ResourceMark rm(current); CallInfo call_info; Bytecodes::Code bc; // receiver is null for static calls. An exception is thrown for null // receivers for non-static calls Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); methodHandle callee_method(current, call_info.selected_method()); #ifndef PRODUCT AtomicAccess::inc(&_ic_miss_ctr); // Statistics & Tracing if (TraceCallFixup) { ResourceMark rm(current); tty->print("IC miss (%s) call to", Bytecodes::name(bc)); callee_method->print_short_name(tty); tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); } if (ICMissHistogram) { MutexLocker m(VMStatistic_lock); RegisterMap reg_map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame f = current->last_frame().real_sender(®_map);// skip runtime stub // produce statistics under the lock trace_ic_miss(f.pc()); } #endif // install an event collector so that when a vtable stub is created the // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The // event can't be posted when the stub is created as locks are held // - instead the event will be deferred until the event collector goes // out of scope. JvmtiDynamicCodeEventCollector event_collector; // Update inline cache to megamorphic. Skip update if we are called from interpreted. RegisterMap reg_map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame caller_frame = current->last_frame().sender(®_map); CodeBlob* cb = caller_frame.cb(); nmethod* caller_nm = cb->as_nmethod(); CompiledICLocker ml(caller_nm); CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); inline_cache->update(&call_info, receiver()->klass()); return callee_method; } // // Resets a call-site in compiled code so it will get resolved again. // This routines handles both virtual call sites, optimized virtual call // sites, and static call sites. Typically used to change a call sites // destination from compiled to interpreted. // methodHandle SharedRuntime::reresolve_call_site(TRAPS) { JavaThread* current = THREAD; ResourceMark rm(current); RegisterMap reg_map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame stub_frame = current->last_frame(); assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); frame caller = stub_frame.sender(®_map); // Do nothing if the frame isn't a live compiled frame. // nmethod could be deoptimized by the time we get here // so no update to the caller is needed. if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { address pc = caller.pc(); nmethod* caller_nm = CodeCache::find_nmethod(pc); assert(caller_nm != nullptr, "did not find caller nmethod"); // Default call_addr is the location of the "basic" call. // Determine the address of the call we a reresolving. With // Inline Caches we will always find a recognizable call. // With Inline Caches disabled we may or may not find a // recognizable call. We will always find a call for static // calls and for optimized virtual calls. For vanilla virtual // calls it depends on the state of the UseInlineCaches switch. // // With Inline Caches disabled we can get here for a virtual call // for two reasons: // 1 - calling an abstract method. The vtable for abstract methods // will run us thru handle_wrong_method and we will eventually // end up in the interpreter to throw the ame. // 2 - a racing deoptimization. We could be doing a vanilla vtable // call and between the time we fetch the entry address and // we jump to it the target gets deoptimized. Similar to 1 // we will wind up in the interprter (thru a c2i with c2). // CompiledICLocker ml(caller_nm); address call_addr = caller_nm->call_instruction_address(pc); if (call_addr != nullptr) { // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 // bytes back in the instruction stream so we must also check for reloc info. RelocIterator iter(caller_nm, call_addr, call_addr+1); bool ret = iter.next(); // Get item if (ret) { switch (iter.type()) { case relocInfo::static_call_type: case relocInfo::opt_virtual_call_type: { CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); cdc->set_to_clean(); break; } case relocInfo::virtual_call_type: { // compiled, dispatched call (which used to call an interpreted method) CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); inline_cache->set_to_clean(); break; } default: break; } } } } methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); #ifndef PRODUCT AtomicAccess::inc(&_wrong_method_ctr); if (TraceCallFixup) { ResourceMark rm(current); tty->print("handle_wrong_method reresolving call to"); callee_method->print_short_name(tty); tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); } #endif return callee_method; } address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { // The faulting unsafe accesses should be changed to throw the error // synchronously instead. Meanwhile the faulting instruction will be // skipped over (effectively turning it into a no-op) and an // asynchronous exception will be raised which the thread will // handle at a later point. If the instruction is a load it will // return garbage. // Request an async exception. thread->set_pending_unsafe_access_error(); // Return address of next instruction to execute. return next_pc; } #ifdef ASSERT void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, const BasicType* sig_bt, const VMRegPair* regs) { ResourceMark rm; const int total_args_passed = method->size_of_parameters(); const VMRegPair* regs_with_member_name = regs; VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); const int member_arg_pos = total_args_passed - 1; assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); for (int i = 0; i < member_arg_pos; i++) { VMReg a = regs_with_member_name[i].first(); VMReg b = regs_without_member_name[i].first(); assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); } assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); } #endif // --------------------------------------------------------------------------- // We are calling the interpreter via a c2i. Normally this would mean that // we were called by a compiled method. However we could have lost a race // where we went int -> i2c -> c2i and so the caller could in fact be // interpreted. If the caller is compiled we attempt to patch the caller // so he no longer calls into the interpreter. JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); // It's possible that deoptimization can occur at a call site which hasn't // been resolved yet, in which case this function will be called from // an nmethod that has been patched for deopt and we can ignore the // request for a fixup. // Also it is possible that we lost a race in that from_compiled_entry // is now back to the i2c in that case we don't need to patch and if // we did we'd leap into space because the callsite needs to use // "to interpreter" stub in order to load up the Method*. Don't // ask me how I know this... // Result from nmethod::is_unloading is not stable across safepoints. NoSafepointVerifier nsv; nmethod* callee = method->code(); if (callee == nullptr) { return; } // write lock needed because we might patch call site by set_to_clean() // and is_unloading() can modify nmethod's state MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); CodeBlob* cb = CodeCache::find_blob(caller_pc); if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { return; } // The check above makes sure this is an nmethod. nmethod* caller = cb->as_nmethod(); // Get the return PC for the passed caller PC. address return_pc = caller_pc + frame::pc_return_offset; if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { return; } // Expect to find a native call there (unless it was no-inline cache vtable dispatch) CompiledICLocker ic_locker(caller); ResourceMark rm; // If we got here through a static call or opt_virtual call, then we know where the // call address would be; let's peek at it address callsite_addr = (address)nativeCall_before(return_pc); RelocIterator iter(caller, callsite_addr, callsite_addr + 1); if (!iter.next()) { // No reloc entry found; not a static or optimized virtual call return; } relocInfo::relocType type = iter.reloc()->type(); if (type != relocInfo::static_call_type && type != relocInfo::opt_virtual_call_type) { return; } CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); callsite->set_to_clean(); JRT_END // same as JVM_Arraycopy, but called directly from compiled code JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, oopDesc* dest, jint dest_pos, jint length, JavaThread* current)) { #ifndef PRODUCT _slow_array_copy_ctr++; #endif // Check if we have null pointers if (src == nullptr || dest == nullptr) { THROW(vmSymbols::java_lang_NullPointerException()); } // Do the copy. The casts to arrayOop are necessary to the copy_array API, // even though the copy_array API also performs dynamic checks to ensure // that src and dest are truly arrays (and are conformable). // The copy_array mechanism is awkward and could be removed, but // the compilers don't call this function except as a last resort, // so it probably doesn't matter. src->klass()->copy_array((arrayOopDesc*)src, src_pos, (arrayOopDesc*)dest, dest_pos, length, current); } JRT_END // The caller of generate_class_cast_message() (or one of its callers) // must use a ResourceMark in order to correctly free the result. char* SharedRuntime::generate_class_cast_message( JavaThread* thread, Klass* caster_klass) { // Get target class name from the checkcast instruction vframeStream vfst(thread, true); assert(!vfst.at_end(), "Java frame must exist"); Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); constantPoolHandle cpool(thread, vfst.method()->constants()); Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); Symbol* target_klass_name = nullptr; if (target_klass == nullptr) { // This klass should be resolved, but just in case, get the name in the klass slot. target_klass_name = cpool->klass_name_at(cc.index()); } return generate_class_cast_message(caster_klass, target_klass, target_klass_name); } // The caller of generate_class_cast_message() (or one of its callers) // must use a ResourceMark in order to correctly free the result. char* SharedRuntime::generate_class_cast_message( Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { const char* caster_name = caster_klass->external_name(); assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : target_klass->external_name(); size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; const char* caster_klass_description = ""; const char* target_klass_description = ""; const char* klass_separator = ""; if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); } else { caster_klass_description = caster_klass->class_in_module_of_loader(); target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; klass_separator = (target_klass != nullptr) ? "; " : ""; } // add 3 for parenthesis and preceding space msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); if (message == nullptr) { // Shouldn't happen, but don't cause even more problems if it does message = const_cast(caster_klass->external_name()); } else { jio_snprintf(message, msglen, "class %s cannot be cast to class %s (%s%s%s)", caster_name, target_name, caster_klass_description, klass_separator, target_klass_description ); } return message; } JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); JRT_END void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { if (!SafepointSynchronize::is_synchronizing()) { // Only try quick_enter() if we're not trying to reach a safepoint // so that the calling thread reaches the safepoint more quickly. if (ObjectSynchronizer::quick_enter(obj, lock, current)) { return; } } // NO_ASYNC required because an async exception on the state transition destructor // would leave you with the lock held and it would never be released. // The normal monitorenter NullPointerException is thrown without acquiring a lock // and the model is that an exception implies the method failed. JRT_BLOCK_NO_ASYNC Handle h_obj(THREAD, obj); ObjectSynchronizer::enter(h_obj, lock, current); assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); JRT_BLOCK_END } // Handles the uncommon case in locking, i.e., contention or an inflated lock. JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) SharedRuntime::monitor_enter_helper(obj, lock, current); JRT_END void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { assert(JavaThread::current() == current, "invariant"); // Exit must be non-blocking, and therefore no exceptions can be thrown. ExceptionMark em(current); // Check if C2_MacroAssembler::fast_unlock() or // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated // monitor before going slow path. Since there is no safepoint // polling when calling into the VM, we can be sure that the monitor // hasn't been deallocated. ObjectMonitor* m = current->unlocked_inflated_monitor(); if (m != nullptr) { assert(!m->has_owner(current), "must be"); current->clear_unlocked_inflated_monitor(); // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). if (!m->try_enter(current, /*check_for_recursion*/ false)) { // Some other thread acquired the lock (or the monitor was // deflated). Either way we are done. return; } } // The object could become unlocked through a JNI call, which we have no other checks for. // Give a fatal message if CheckJNICalls. Otherwise we ignore it. if (obj->is_unlocked()) { if (CheckJNICalls) { fatal("Object has been unlocked by JNI"); } return; } ObjectSynchronizer::exit(obj, lock, current); } // Handles the uncommon cases of monitor unlocking in compiled code JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) assert(current == JavaThread::current(), "pre-condition"); SharedRuntime::monitor_exit_helper(obj, lock, current); JRT_END #ifndef PRODUCT void SharedRuntime::print_statistics() { ttyLocker ttyl; if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); SharedRuntime::print_ic_miss_histogram(); // Dump the JRT_ENTRY counters if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); tty->print_cr("%5u wrong method", _wrong_method_ctr); tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); AdapterHandlerLibrary::print_statistics(); if (xtty != nullptr) xtty->tail("statistics"); } inline double percent(int64_t x, int64_t y) { return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); } class MethodArityHistogram { public: enum { MAX_ARITY = 256 }; private: static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words static uint64_t _total_compiled_calls; static uint64_t _max_compiled_calls_per_method; static int _max_arity; // max. arity seen static int _max_size; // max. arg size seen static void add_method_to_histogram(nmethod* nm) { Method* method = (nm == nullptr) ? nullptr : nm->method(); if (method != nullptr) { ArgumentCount args(method->signature()); int arity = args.size() + (method->is_static() ? 0 : 1); int argsize = method->size_of_parameters(); arity = MIN2(arity, MAX_ARITY-1); argsize = MIN2(argsize, MAX_ARITY-1); uint64_t count = (uint64_t)method->compiled_invocation_count(); _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; _total_compiled_calls += count; _arity_histogram[arity] += count; _size_histogram[argsize] += count; _max_arity = MAX2(_max_arity, arity); _max_size = MAX2(_max_size, argsize); } } void print_histogram_helper(int n, uint64_t* histo, const char* name) { const int N = MIN2(9, n); double sum = 0; double weighted_sum = 0; for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } if (sum >= 1) { // prevent divide by zero or divide overflow double rest = sum; double percent = sum / 100; for (int i = 0; i <= N; i++) { rest -= (double)histo[i]; tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); } tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); } else { tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); } } void print_histogram() { tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); print_histogram_helper(_max_arity, _arity_histogram, "arity"); tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); print_histogram_helper(_max_size, _size_histogram, "size"); tty->cr(); } public: MethodArityHistogram() { // Take the Compile_lock to protect against changes in the CodeBlob structures MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); // Take the CodeCache_lock to protect against changes in the CodeHeap structure MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); _max_arity = _max_size = 0; _total_compiled_calls = 0; _max_compiled_calls_per_method = 0; for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; CodeCache::nmethods_do(add_method_to_histogram); print_histogram(); } }; uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; uint64_t MethodArityHistogram::_total_compiled_calls; uint64_t MethodArityHistogram::_max_compiled_calls_per_method; int MethodArityHistogram::_max_arity; int MethodArityHistogram::_max_size; void SharedRuntime::print_call_statistics(uint64_t comp_total) { tty->print_cr("Calls from compiled code:"); int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; int64_t mono_i = _nof_interface_calls; tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); tty->cr(); tty->print_cr("Note 1: counter updates are not MT-safe."); tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); tty->print_cr(" %% in nested categories are relative to their category"); tty->print_cr(" (and thus add up to more than 100%% with inlining)"); tty->cr(); MethodArityHistogram h; } #endif #ifndef PRODUCT static int _lookups; // number of calls to lookup static int _equals; // number of buckets checked with matching hash static int _archived_hits; // number of successful lookups in archived table static int _runtime_hits; // number of successful lookups in runtime table #endif // A simple wrapper class around the calling convention information // that allows sharing of adapters for the same calling convention. class AdapterFingerPrint : public MetaspaceObj { private: enum { _basic_type_bits = 4, _basic_type_mask = right_n_bits(_basic_type_bits), _basic_types_per_int = BitsPerInt / _basic_type_bits, }; // TO DO: Consider integrating this with a more global scheme for compressing signatures. // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. int _length; static int data_offset() { return sizeof(AdapterFingerPrint); } int* data_pointer() { return (int*)((address)this + data_offset()); } // Private construtor. Use allocate() to get an instance. AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { int* data = data_pointer(); // Pack the BasicTypes with 8 per int assert(len == length(total_args_passed), "sanity"); _length = len; int sig_index = 0; for (int index = 0; index < _length; index++) { int value = 0; for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { int bt = adapter_encoding(sig_bt[sig_index++]); assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); value = (value << _basic_type_bits) | bt; } data[index] = value; } } // Call deallocate instead ~AdapterFingerPrint() { ShouldNotCallThis(); } static int length(int total_args) { return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; } static int compute_size_in_words(int len) { return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); } // Remap BasicTypes that are handled equivalently by the adapters. // These are correct for the current system but someday it might be // necessary to make this mapping platform dependent. static int adapter_encoding(BasicType in) { switch (in) { case T_BOOLEAN: case T_BYTE: case T_SHORT: case T_CHAR: // There are all promoted to T_INT in the calling convention return T_INT; case T_OBJECT: case T_ARRAY: // In other words, we assume that any register good enough for // an int or long is good enough for a managed pointer. #ifdef _LP64 return T_LONG; #else return T_INT; #endif case T_INT: case T_LONG: case T_FLOAT: case T_DOUBLE: case T_VOID: return in; default: ShouldNotReachHere(); return T_CONFLICT; } } void* operator new(size_t size, size_t fp_size) throw() { assert(fp_size >= size, "sanity check"); void* p = AllocateHeap(fp_size, mtCode); memset(p, 0, fp_size); return p; } template void iterate_args(Function function) { for (int i = 0; i < length(); i++) { unsigned val = (unsigned)value(i); // args are packed so that first/lower arguments are in the highest // bits of each int value, so iterate from highest to the lowest for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { unsigned v = (val >> j) & _basic_type_mask; if (v == 0) { continue; } function(v); } } } public: static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { int len = length(total_args_passed); int size_in_bytes = BytesPerWord * compute_size_in_words(len); AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); return afp; } static void deallocate(AdapterFingerPrint* fp) { FreeHeap(fp); } int value(int index) { int* data = data_pointer(); return data[index]; } int length() { return _length; } unsigned int compute_hash() { int hash = 0; for (int i = 0; i < length(); i++) { int v = value(i); //Add arithmetic operation to the hash, like +3 to improve hashing hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; } return (unsigned int)hash; } const char* as_string() { stringStream st; st.print("0x"); for (int i = 0; i < length(); i++) { st.print("%x", value(i)); } return st.as_string(); } const char* as_basic_args_string() { stringStream st; bool long_prev = false; iterate_args([&] (int arg) { if (long_prev) { long_prev = false; if (arg == T_VOID) { st.print("J"); } else { st.print("L"); } } switch (arg) { case T_INT: st.print("I"); break; case T_LONG: long_prev = true; break; case T_FLOAT: st.print("F"); break; case T_DOUBLE: st.print("D"); break; case T_VOID: break; default: ShouldNotReachHere(); } }); if (long_prev) { st.print("L"); } return st.as_string(); } BasicType* as_basic_type(int& nargs) { nargs = 0; GrowableArray btarray; bool long_prev = false; iterate_args([&] (int arg) { if (long_prev) { long_prev = false; if (arg == T_VOID) { btarray.append(T_LONG); } else { btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter } } switch (arg) { case T_INT: // fallthrough case T_FLOAT: // fallthrough case T_DOUBLE: case T_VOID: btarray.append((BasicType)arg); break; case T_LONG: long_prev = true; break; default: ShouldNotReachHere(); } }); if (long_prev) { btarray.append(T_OBJECT); } nargs = btarray.length(); BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); int index = 0; GrowableArrayIterator iter = btarray.begin(); while (iter != btarray.end()) { sig_bt[index++] = *iter; ++iter; } assert(index == btarray.length(), "sanity check"); #ifdef ASSERT { AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); assert(this->equals(compare_fp), "sanity check"); AdapterFingerPrint::deallocate(compare_fp); } #endif return sig_bt; } bool equals(AdapterFingerPrint* other) { if (other->_length != _length) { return false; } else { for (int i = 0; i < _length; i++) { if (value(i) != other->value(i)) { return false; } } } return true; } // methods required by virtue of being a MetaspaceObj void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } int size() const { return compute_size_in_words(_length); } MetaspaceObj::Type type() const { return AdapterFingerPrintType; } static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { NOT_PRODUCT(_equals++); return fp1->equals(fp2); } static unsigned int compute_hash(AdapterFingerPrint* const& fp) { return fp->compute_hash(); } }; #if INCLUDE_CDS static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { return AdapterFingerPrint::equals(entry->fingerprint(), fp); } class ArchivedAdapterTable : public OffsetCompactHashtable< AdapterFingerPrint*, AdapterHandlerEntry*, adapter_fp_equals_compact_hashtable_entry> {}; #endif // INCLUDE_CDS // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries using AdapterHandlerTable = HashTable; static AdapterHandlerTable* _adapter_handler_table; static GrowableArray* _adapter_handler_list = nullptr; // Find a entry with the same fingerprint if it exists AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { NOT_PRODUCT(_lookups++); assert_lock_strong(AdapterHandlerLibrary_lock); AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); AdapterHandlerEntry* entry = nullptr; #if INCLUDE_CDS // if we are building the archive then the archived adapter table is // not valid and we need to use the ones added to the runtime table if (AOTCodeCache::is_using_adapter()) { // Search archived table first. It is read-only table so can be searched without lock entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); #ifndef PRODUCT if (entry != nullptr) { _archived_hits++; } #endif } #endif // INCLUDE_CDS if (entry == nullptr) { assert_lock_strong(AdapterHandlerLibrary_lock); AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); if (entry_p != nullptr) { entry = *entry_p; assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); #ifndef PRODUCT _runtime_hits++; #endif } } AdapterFingerPrint::deallocate(fp); return entry; } #ifndef PRODUCT static void print_table_statistics() { auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { return sizeof(*key) + sizeof(*a); }; TableStatistics ts = _adapter_handler_table->statistics_calculate(size); ts.print(tty, "AdapterHandlerTable"); tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); int total_hits = _archived_hits + _runtime_hits; tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", _lookups, _equals, total_hits, _archived_hits, _runtime_hits); } #endif // --------------------------------------------------------------------------- // Implementation of AdapterHandlerLibrary AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; #if INCLUDE_CDS ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; #endif // INCLUDE_CDS static const int AdapterHandlerLibrary_size = 16*K; BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; volatile uint AdapterHandlerLibrary::_id_counter = 0; BufferBlob* AdapterHandlerLibrary::buffer_blob() { assert(_buffer != nullptr, "should be initialized"); return _buffer; } static void post_adapter_creation(const AdapterHandlerEntry* entry) { if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { AdapterBlob* adapter_blob = entry->adapter_blob(); char blob_id[256]; jio_snprintf(blob_id, sizeof(blob_id), "%s(%s)", adapter_blob->name(), entry->fingerprint()->as_string()); if (Forte::is_enabled()) { Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); } if (JvmtiExport::should_post_dynamic_code_generated()) { JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); } } } void AdapterHandlerLibrary::initialize() { { ResourceMark rm; _adapter_handler_table = new (mtCode) AdapterHandlerTable(); _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); } #if INCLUDE_CDS // Link adapters in AOT Cache to their code in AOT Code Cache if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { link_aot_adapters(); lookup_simple_adapters(); return; } #endif // INCLUDE_CDS ResourceMark rm; { MutexLocker mu(AdapterHandlerLibrary_lock); _no_arg_handler = create_adapter(0, nullptr); BasicType obj_args[] = { T_OBJECT }; _obj_arg_handler = create_adapter(1, obj_args); BasicType int_args[] = { T_INT }; _int_arg_handler = create_adapter(1, int_args); BasicType obj_int_args[] = { T_OBJECT, T_INT }; _obj_int_arg_handler = create_adapter(2, obj_int_args); BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; _obj_obj_arg_handler = create_adapter(2, obj_obj_args); // we should always get an entry back but we don't have any // associated blob on Zero assert(_no_arg_handler != nullptr && _obj_arg_handler != nullptr && _int_arg_handler != nullptr && _obj_int_arg_handler != nullptr && _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); } // Outside of the lock #ifndef ZERO // no blobs to register when we are on Zero post_adapter_creation(_no_arg_handler); post_adapter_creation(_obj_arg_handler); post_adapter_creation(_int_arg_handler); post_adapter_creation(_obj_int_arg_handler); post_adapter_creation(_obj_obj_arg_handler); #endif // ZERO } AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1); assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods"); return AdapterHandlerEntry::allocate(id, fingerprint); } AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { int total_args_passed = method->size_of_parameters(); // All args on stack if (total_args_passed == 0) { return _no_arg_handler; } else if (total_args_passed == 1) { if (!method->is_static()) { return _obj_arg_handler; } switch (method->signature()->char_at(1)) { case JVM_SIGNATURE_CLASS: case JVM_SIGNATURE_ARRAY: return _obj_arg_handler; case JVM_SIGNATURE_INT: case JVM_SIGNATURE_BOOLEAN: case JVM_SIGNATURE_CHAR: case JVM_SIGNATURE_BYTE: case JVM_SIGNATURE_SHORT: return _int_arg_handler; } } else if (total_args_passed == 2 && !method->is_static()) { switch (method->signature()->char_at(1)) { case JVM_SIGNATURE_CLASS: case JVM_SIGNATURE_ARRAY: return _obj_obj_arg_handler; case JVM_SIGNATURE_INT: case JVM_SIGNATURE_BOOLEAN: case JVM_SIGNATURE_CHAR: case JVM_SIGNATURE_BYTE: case JVM_SIGNATURE_SHORT: return _obj_int_arg_handler; } } return nullptr; } class AdapterSignatureIterator : public SignatureIterator { private: BasicType stack_sig_bt[16]; BasicType* sig_bt; int index; public: AdapterSignatureIterator(Symbol* signature, fingerprint_t fingerprint, bool is_static, int total_args_passed) : SignatureIterator(signature, fingerprint), index(0) { sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); if (!is_static) { // Pass in receiver first sig_bt[index++] = T_OBJECT; } do_parameters_on(this); } BasicType* basic_types() { return sig_bt; } #ifdef ASSERT int slots() { return index; } #endif private: friend class SignatureIterator; // so do_parameters_on can call do_type void do_type(BasicType type) { sig_bt[index++] = type; if (type == T_LONG || type == T_DOUBLE) { sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots } } }; const char* AdapterHandlerEntry::_entry_names[] = { "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" }; #ifdef ASSERT void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { // we can only check for the same code if there is any #ifndef ZERO AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true); assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison"); assert(comparison_entry->compare_code(cached_entry), "code must match"); // Release the one just created AdapterHandlerEntry::deallocate(comparison_entry); # endif // ZERO } #endif /* ASSERT*/ AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { assert(!method->is_abstract(), "abstract methods do not have adapters"); // Use customized signature handler. Need to lock around updates to // the _adapter_handler_table (it is not safe for concurrent readers // and a single writer: this could be fixed if it becomes a // problem). // Fast-path for trivial adapters AdapterHandlerEntry* entry = get_simple_adapter(method); if (entry != nullptr) { return entry; } ResourceMark rm; bool new_entry = false; // Fill in the signature array, for the calling-convention call. int total_args_passed = method->size_of_parameters(); // All args on stack AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), method->is_static(), total_args_passed); assert(si.slots() == total_args_passed, ""); BasicType* sig_bt = si.basic_types(); { MutexLocker mu(AdapterHandlerLibrary_lock); // Lookup method signature's fingerprint entry = lookup(total_args_passed, sig_bt); if (entry != nullptr) { #ifndef ZERO assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); #endif #ifdef ASSERT if (!entry->in_aot_cache() && VerifyAdapterSharing) { verify_adapter_sharing(total_args_passed, sig_bt, entry); } #endif } else { entry = create_adapter(total_args_passed, sig_bt); if (entry != nullptr) { new_entry = true; } } } // Outside of the lock if (new_entry) { post_adapter_creation(entry); } return entry; } void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { ResourceMark rm; const char* name = AdapterHandlerLibrary::name(handler); const uint32_t id = AdapterHandlerLibrary::id(handler); CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); if (blob != nullptr) { handler->set_adapter_blob(blob->as_adapter_blob()); } } #ifndef PRODUCT void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) { ttyLocker ttyl; ResourceMark rm; int insts_size; // on Zero the blob may be null handler->print_adapter_on(tty); AdapterBlob* adapter_blob = handler->adapter_blob(); if (adapter_blob == nullptr) { return; } insts_size = adapter_blob->code_size(); st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", handler->fingerprint()->as_basic_args_string(), handler->fingerprint()->as_string(), insts_size); st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); if (Verbose || PrintStubCode) { address first_pc = adapter_blob->content_begin(); if (first_pc != nullptr) { Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); st->cr(); } } } #endif // PRODUCT void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT], int entry_offset[AdapterBlob::ENTRY_COUNT]) { entry_offset[AdapterBlob::I2C] = 0; entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C]; entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C]; if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) { entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1; } else { entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C]; } } bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler, int total_args_passed, BasicType* sig_bt, bool is_transient) { if (log_is_enabled(Info, perf, class, link)) { ClassLoader::perf_method_adapters_count()->inc(); } #ifndef ZERO BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache CodeBuffer buffer(buf); short buffer_locs[20]; buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, sizeof(buffer_locs)/sizeof(relocInfo)); MacroAssembler masm(&buffer); VMRegPair stack_regs[16]; VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); address entry_address[AdapterBlob::ENTRY_COUNT]; SharedRuntime::generate_i2c2i_adapters(&masm, total_args_passed, comp_args_on_stack, sig_bt, regs, entry_address); // On zero there is no code to save and no need to create a blob and // or relocate the handler. int entry_offset[AdapterBlob::ENTRY_COUNT]; address_to_offset(entry_address, entry_offset); #ifdef ASSERT if (VerifyAdapterSharing) { handler->save_code(buf->code_begin(), buffer.insts_size()); if (is_transient) { return true; } } #endif AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset); if (adapter_blob == nullptr) { // CodeCache is full, disable compilation // Ought to log this but compile log is only per compile thread // and we're some non descript Java thread. return false; } handler->set_adapter_blob(adapter_blob); if (!is_transient && AOTCodeCache::is_dumping_adapter()) { // try to save generated code const char* name = AdapterHandlerLibrary::name(handler); const uint32_t id = AdapterHandlerLibrary::id(handler); bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); } #endif // ZERO #ifndef PRODUCT // debugging support if (PrintAdapterHandlers || PrintStubCode) { print_adapter_handler_info(tty, handler); } #endif return true; } AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed, BasicType* sig_bt, bool is_transient) { AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) { AdapterHandlerEntry::deallocate(handler); return nullptr; } if (!is_transient) { assert_lock_strong(AdapterHandlerLibrary_lock); _adapter_handler_table->put(fp, handler); } return handler; } #if INCLUDE_CDS void AdapterHandlerEntry::remove_unshareable_info() { #ifdef ASSERT _saved_code = nullptr; _saved_code_length = 0; #endif // ASSERT _adapter_blob = nullptr; _linked = false; } class CopyAdapterTableToArchive : StackObj { private: CompactHashtableWriter* _writer; ArchiveBuilder* _builder; public: CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), _builder(ArchiveBuilder::current()) {} bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { LogStreamHandle(Trace, aot) lsh; if (ArchiveBuilder::current()->has_been_archived((address)entry)) { assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); assert(buffered_fp != nullptr,"sanity check"); AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); assert(buffered_entry != nullptr,"sanity check"); uint hash = fp->compute_hash(); u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); _writer->add(hash, delta); if (lsh.is_enabled()) { address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); } } else { if (lsh.is_enabled()) { log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); } } return true; } }; void AdapterHandlerLibrary::dump_aot_adapter_table() { CompactHashtableStats stats; CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); CopyAdapterTableToArchive copy(&writer); _adapter_handler_table->iterate(©); writer.dump(&_aot_adapter_handler_table, "archived adapter table"); } void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { _aot_adapter_handler_table.serialize_header(soc); } void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { #ifdef ASSERT if (TestAOTAdapterLinkFailure) { return; } #endif lookup_aot_cache(handler); #ifndef PRODUCT // debugging support if (PrintAdapterHandlers || PrintStubCode) { print_adapter_handler_info(tty, handler); } #endif } // This method is used during production run to link archived adapters (stored in AOT Cache) // to their code in AOT Code Cache void AdapterHandlerEntry::link() { ResourceMark rm; assert(_fingerprint != nullptr, "_fingerprint must not be null"); bool generate_code = false; // Generate code only if AOTCodeCache is not available, or // caching adapters is disabled, or we fail to link // the AdapterHandlerEntry to its code in the AOTCodeCache if (AOTCodeCache::is_using_adapter()) { AdapterHandlerLibrary::link_aot_adapter_handler(this); // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null if (_adapter_blob == nullptr) { log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); generate_code = true; } } else { generate_code = true; } if (generate_code) { int nargs; BasicType* bt = _fingerprint->as_basic_type(nargs); if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) { // Don't throw exceptions during VM initialization because java.lang.* classes // might not have been initialized, causing problems when constructing the // Java exception object. vm_exit_during_initialization("Out of space in CodeCache for adapters"); } } if (_adapter_blob != nullptr) { post_adapter_creation(this); } assert(_linked, "AdapterHandlerEntry must now be linked"); } void AdapterHandlerLibrary::link_aot_adapters() { uint max_id = 0; assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); /* It is possible that some adapters generated in assembly phase are not stored in the cache. * That implies adapter ids of the adapters in the cache may not be contiguous. * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may * result in collision of adapter ids between AOT stored handlers and runtime generated handlers. * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers. */ _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) { assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); entry->link(); max_id = MAX2(max_id, entry->id()); }); // Set adapter id to the maximum id found in the AOTCache assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage"); _id_counter = max_id; } // This method is called during production run to lookup simple adapters // in the archived adapter handler table void AdapterHandlerLibrary::lookup_simple_adapters() { assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); MutexLocker mu(AdapterHandlerLibrary_lock); _no_arg_handler = lookup(0, nullptr); BasicType obj_args[] = { T_OBJECT }; _obj_arg_handler = lookup(1, obj_args); BasicType int_args[] = { T_INT }; _int_arg_handler = lookup(1, int_args); BasicType obj_int_args[] = { T_OBJECT, T_INT }; _obj_int_arg_handler = lookup(2, obj_int_args); BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; _obj_obj_arg_handler = lookup(2, obj_obj_args); assert(_no_arg_handler != nullptr && _obj_arg_handler != nullptr && _int_arg_handler != nullptr && _obj_int_arg_handler != nullptr && _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); assert(_no_arg_handler->is_linked() && _obj_arg_handler->is_linked() && _int_arg_handler->is_linked() && _obj_int_arg_handler->is_linked() && _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); } #endif // INCLUDE_CDS void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { LogStreamHandle(Trace, aot) lsh; if (lsh.is_enabled()) { lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); lsh.cr(); } it->push(&_fingerprint); } AdapterHandlerEntry::~AdapterHandlerEntry() { if (_fingerprint != nullptr) { AdapterFingerPrint::deallocate(_fingerprint); _fingerprint = nullptr; } #ifdef ASSERT FREE_C_HEAP_ARRAY(unsigned char, _saved_code); #endif FreeHeap(this); } #ifdef ASSERT // Capture the code before relocation so that it can be compared // against other versions. If the code is captured after relocation // then relative instructions won't be equivalent. void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); _saved_code_length = length; memcpy(_saved_code, buffer, length); } bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); if (other->_saved_code_length != _saved_code_length) { return false; } return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; } #endif /** * Create a native wrapper for this native method. The wrapper converts the * Java-compiled calling convention to the native convention, handles * arguments, and transitions to native. On return from the native we transition * back to java blocking if a safepoint is in progress. */ void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { ResourceMark rm; nmethod* nm = nullptr; // Check if memory should be freed before allocation CodeCache::gc_on_allocation(); assert(method->is_native(), "must be native"); assert(method->is_special_native_intrinsic() || method->has_native_function(), "must have something valid to call!"); { // Perform the work while holding the lock, but perform any printing outside the lock MutexLocker mu(AdapterHandlerLibrary_lock); // See if somebody beat us to it if (method->code() != nullptr) { return; } const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); assert(compile_id > 0, "Must generate native wrapper"); ResourceMark rm; BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache if (buf != nullptr) { CodeBuffer buffer(buf); if (method->is_continuation_enter_intrinsic()) { buffer.initialize_stubs_size(192); } struct { double data[20]; } locs_buf; struct { double data[20]; } stubs_locs_buf; buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); #if defined(AARCH64) || defined(PPC64) // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be // in the constant pool to ensure ordering between the barrier and oops // accesses. For native_wrappers we need a constant. // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled // static java call that is resolved in the runtime. if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); } #endif buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); MacroAssembler _masm(&buffer); // Fill in the signature array, for the calling-convention call. const int total_args_passed = method->size_of_parameters(); VMRegPair stack_regs[16]; VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), method->is_static(), total_args_passed); BasicType* sig_bt = si.basic_types(); assert(si.slots() == total_args_passed, ""); BasicType ret_type = si.return_type(); // Now get the compiled-Java arguments layout. SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); // Generate the compiled-to-native wrapper code nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); if (nm != nullptr) { { MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); if (nm->make_in_use()) { method->set_code(method, nm); } } DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); if (directive->PrintAssemblyOption) { nm->print_code(); } DirectivesStack::release(directive); } } } // Unlock AdapterHandlerLibrary_lock // Install the generated code. if (nm != nullptr) { const char *msg = method->is_static() ? "(static)" : ""; CompileTask::print_ul(nm, msg); if (PrintCompilation) { ttyLocker ttyl; CompileTask::print(tty, nm, msg); } nm->post_compiled_method_load_event(); } } // ------------------------------------------------------------------------- // Java-Java calling convention // (what you use when Java calls Java) //------------------------------name_for_receiver---------------------------------- // For a given signature, return the VMReg for parameter 0. VMReg SharedRuntime::name_for_receiver() { VMRegPair regs; BasicType sig_bt = T_OBJECT; (void) java_calling_convention(&sig_bt, ®s, 1); // Return argument 0 register. In the LP64 build pointers // take 2 registers, but the VM wants only the 'main' name. return regs.first(); } VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { // This method is returning a data structure allocating as a // ResourceObject, so do not put any ResourceMarks in here. BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); int cnt = 0; if (has_receiver) { sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature } for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { BasicType type = ss.type(); sig_bt[cnt++] = type; if (is_double_word_type(type)) sig_bt[cnt++] = T_VOID; } if (has_appendix) { sig_bt[cnt++] = T_OBJECT; } assert(cnt < 256, "grow table size"); int comp_args_on_stack; comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); // the calling convention doesn't count out_preserve_stack_slots so // we must add that in to get "true" stack offsets. if (comp_args_on_stack) { for (int i = 0; i < cnt; i++) { VMReg reg1 = regs[i].first(); if (reg1->is_stack()) { // Yuck reg1 = reg1->bias(out_preserve_stack_slots()); } VMReg reg2 = regs[i].second(); if (reg2->is_stack()) { // Yuck reg2 = reg2->bias(out_preserve_stack_slots()); } regs[i].set_pair(reg2, reg1); } } // results *arg_size = cnt; return regs; } // OSR Migration Code // // This code is used convert interpreter frames into compiled frames. It is // called from very start of a compiled OSR nmethod. A temp array is // allocated to hold the interesting bits of the interpreter frame. All // active locks are inflated to allow them to move. The displaced headers and // active interpreter locals are copied into the temp buffer. Then we return // back to the compiled code. The compiled code then pops the current // interpreter frame off the stack and pushes a new compiled frame. Then it // copies the interpreter locals and displaced headers where it wants. // Finally it calls back to free the temp buffer. // // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) assert(current == JavaThread::current(), "pre-condition"); JFR_ONLY(Jfr::check_and_process_sample_request(current);) // During OSR migration, we unwind the interpreted frame and replace it with a compiled // frame. The stack watermark code below ensures that the interpreted frame is processed // before it gets unwound. This is helpful as the size of the compiled frame could be // larger than the interpreted frame, which could result in the new frame not being // processed correctly. StackWatermarkSet::before_unwind(current); // // This code is dependent on the memory layout of the interpreter local // array and the monitors. On all of our platforms the layout is identical // so this code is shared. If some platform lays the their arrays out // differently then this code could move to platform specific code or // the code here could be modified to copy items one at a time using // frame accessor methods and be platform independent. frame fr = current->last_frame(); assert(fr.is_interpreted_frame(), ""); assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); // Figure out how many monitors are active. int active_monitor_count = 0; for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); kptr < fr.interpreter_frame_monitor_begin(); kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { if (kptr->obj() != nullptr) active_monitor_count++; } // QQQ we could place number of active monitors in the array so that compiled code // could double check it. Method* moop = fr.interpreter_frame_method(); int max_locals = moop->max_locals(); // Allocate temp buffer, 1 word per local & 2 per active monitor int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); // Copy the locals. Order is preserved so that loading of longs works. // Since there's no GC I can copy the oops blindly. assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), (HeapWord*)&buf[0], max_locals); // Inflate locks. Copy the displaced headers. Be careful, there can be holes. int i = max_locals; for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); kptr2 < fr.interpreter_frame_monitor_begin(); kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array BasicLock *lock = kptr2->lock(); if (UseObjectMonitorTable) { buf[i] = (intptr_t)lock->object_monitor_cache(); } #ifdef ASSERT else { buf[i] = badDispHeaderOSR; } #endif i++; buf[i++] = cast_from_oop(kptr2->obj()); } } assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); RegisterMap map(current, RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::include, RegisterMap::WalkContinuation::skip); frame sender = fr.sender(&map); if (sender.is_interpreted_frame()) { current->push_cont_fastpath(sender.sp()); } return buf; JRT_END JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) FREE_C_HEAP_ARRAY(intptr_t, buf); JRT_END bool AdapterHandlerLibrary::contains(const CodeBlob* b) { bool found = false; #if INCLUDE_CDS if (AOTCodeCache::is_using_adapter()) { auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); }; _aot_adapter_handler_table.iterate(findblob_archived_table); } #endif // INCLUDE_CDS if (!found) { auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); }; assert_locked_or_safepoint(AdapterHandlerLibrary_lock); _adapter_handler_table->iterate(findblob_runtime_table); } return found; } const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) { return handler->fingerprint()->as_basic_args_string(); } uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) { return handler->id(); } void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { bool found = false; #if INCLUDE_CDS if (AOTCodeCache::is_using_adapter()) { auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { if (b == CodeCache::find_blob(handler->get_i2c_entry())) { found = true; st->print("Adapter for signature: "); handler->print_adapter_on(st); return true; } else { return false; // keep looking } }; _aot_adapter_handler_table.iterate(findblob_archived_table); } #endif // INCLUDE_CDS if (!found) { auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { if (b == CodeCache::find_blob(a->get_i2c_entry())) { found = true; st->print("Adapter for signature: "); a->print_adapter_on(st); return true; } else { return false; // keep looking } }; assert_locked_or_safepoint(AdapterHandlerLibrary_lock); _adapter_handler_table->iterate(findblob_runtime_table); } assert(found, "Should have found handler"); } void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); if (adapter_blob() != nullptr) { st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); if (get_c2i_no_clinit_check_entry() != nullptr) { st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); } } st->cr(); } #ifndef PRODUCT void AdapterHandlerLibrary::print_statistics() { print_table_statistics(); } #endif /* PRODUCT */ JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) assert(current == JavaThread::current(), "pre-condition"); StackOverflow* overflow_state = current->stack_overflow_state(); overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); overflow_state->set_reserved_stack_activation(current->stack_base()); JRT_END frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { ResourceMark rm(current); frame activation; nmethod* nm = nullptr; int count = 1; assert(fr.is_java_frame(), "Must start on Java frame"); RegisterMap map(JavaThread::current(), RegisterMap::UpdateMap::skip, RegisterMap::ProcessFrames::skip, RegisterMap::WalkContinuation::skip); // don't walk continuations for (; !fr.is_first_frame(); fr = fr.sender(&map)) { if (!fr.is_java_frame()) { continue; } Method* method = nullptr; bool found = false; if (fr.is_interpreted_frame()) { method = fr.interpreter_frame_method(); if (method != nullptr && method->has_reserved_stack_access()) { found = true; } } else { CodeBlob* cb = fr.cb(); if (cb != nullptr && cb->is_nmethod()) { nm = cb->as_nmethod(); method = nm->method(); for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { method = sd->method(); if (method != nullptr && method->has_reserved_stack_access()) { found = true; } } } } if (found) { activation = fr; warning("Potentially dangerous stack overflow in " "ReservedStackAccess annotated method %s [%d]", method->name_and_sig_as_C_string(), count++); EventReservedStackActivation event; if (event.should_commit()) { event.set_method(method); event.commit(); } } } return activation; } void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { // After any safepoint, just before going back to compiled code, // we inform the GC that we will be doing initializing writes to // this object in the future without emitting card-marks, so // GC may take any compensating steps. oop new_obj = current->vm_result_oop(); if (new_obj == nullptr) return; BarrierSet *bs = BarrierSet::barrier_set(); bs->on_slowpath_allocation_exit(current, new_obj); }