/* * Copyright (c) 2019, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include #include #include #include "cgroupV1Subsystem_linux.hpp" #include "logging/log.hpp" #include "memory/allocation.hpp" #include "runtime/globals.hpp" #include "runtime/os.hpp" #include "utilities/globalDefinitions.hpp" #include "os_linux.hpp" /* * Set directory to subsystem specific files based * on the contents of the mountinfo and cgroup files. */ void CgroupV1Controller::set_subsystem_path(char *cgroup_path) { stringStream ss; if (_root != nullptr && cgroup_path != nullptr) { if (strcmp(_root, "/") == 0) { ss.print_raw(_mount_point); if (strcmp(cgroup_path,"/") != 0) { ss.print_raw(cgroup_path); } _path = os::strdup(ss.base()); } else { if (strcmp(_root, cgroup_path) == 0) { ss.print_raw(_mount_point); _path = os::strdup(ss.base()); } else { char *p = strstr(cgroup_path, _root); if (p != nullptr && p == _root) { if (strlen(cgroup_path) > strlen(_root)) { ss.print_raw(_mount_point); const char* cg_path_sub = cgroup_path + strlen(_root); ss.print_raw(cg_path_sub); _path = os::strdup(ss.base()); } } } } } } /* uses_mem_hierarchy * * Return whether or not hierarchical cgroup accounting is being * done. * * return: * A number > 0 if true, or * OSCONTAINER_ERROR for not supported */ jlong CgroupV1MemoryController::uses_mem_hierarchy() { GET_CONTAINER_INFO(jlong, this, "/memory.use_hierarchy", "Use Hierarchy is: ", JLONG_FORMAT, JLONG_FORMAT, use_hierarchy); return use_hierarchy; } void CgroupV1MemoryController::set_subsystem_path(char *cgroup_path) { CgroupV1Controller::set_subsystem_path(cgroup_path); jlong hierarchy = uses_mem_hierarchy(); if (hierarchy > 0) { set_hierarchical(true); } } jlong CgroupV1Subsystem::read_memory_limit_in_bytes() { GET_CONTAINER_INFO(julong, _memory->controller(), "/memory.limit_in_bytes", "Memory Limit is: ", JULONG_FORMAT, JULONG_FORMAT, memlimit); if (memlimit >= os::Linux::physical_memory()) { log_trace(os, container)("Non-Hierarchical Memory Limit is: Unlimited"); CgroupV1MemoryController* mem_controller = reinterpret_cast(_memory->controller()); if (mem_controller->is_hierarchical()) { GET_CONTAINER_INFO_LINE(julong, _memory->controller(), "/memory.stat", "hierarchical_memory_limit", "Hierarchical Memory Limit is: " JULONG_FORMAT, JULONG_FORMAT, hier_memlimit) if (hier_memlimit >= os::Linux::physical_memory()) { log_trace(os, container)("Hierarchical Memory Limit is: Unlimited"); } else { return (jlong)hier_memlimit; } } return (jlong)-1; } else { return (jlong)memlimit; } } jlong CgroupV1Subsystem::memory_and_swap_limit_in_bytes() { julong host_total_memsw; GET_CONTAINER_INFO(julong, _memory->controller(), "/memory.memsw.limit_in_bytes", "Memory and Swap Limit is: ", JULONG_FORMAT, JULONG_FORMAT, memswlimit); host_total_memsw = os::Linux::host_swap() + os::Linux::physical_memory(); if (memswlimit >= host_total_memsw) { log_trace(os, container)("Non-Hierarchical Memory and Swap Limit is: Unlimited"); CgroupV1MemoryController* mem_controller = reinterpret_cast(_memory->controller()); if (mem_controller->is_hierarchical()) { const char* matchline = "hierarchical_memsw_limit"; GET_CONTAINER_INFO_LINE(julong, _memory->controller(), "/memory.stat", matchline, "Hierarchical Memory and Swap Limit is : " JULONG_FORMAT, JULONG_FORMAT, hier_memswlimit) if (hier_memswlimit >= host_total_memsw) { log_trace(os, container)("Hierarchical Memory and Swap Limit is: Unlimited"); } else { jlong swappiness = read_mem_swappiness(); if (swappiness == 0) { const char* matchmemline = "hierarchical_memory_limit"; GET_CONTAINER_INFO_LINE(julong, _memory->controller(), "/memory.stat", matchmemline, "Hierarchical Memory Limit is : " JULONG_FORMAT, JULONG_FORMAT, hier_memlimit) log_trace(os, container)("Memory and Swap Limit has been reset to " JULONG_FORMAT " because swappiness is 0", hier_memlimit); return (jlong)hier_memlimit; } return (jlong)hier_memswlimit; } } return (jlong)-1; } else { jlong swappiness = read_mem_swappiness(); if (swappiness == 0) { jlong memlimit = read_memory_limit_in_bytes(); log_trace(os, container)("Memory and Swap Limit has been reset to " JULONG_FORMAT " because swappiness is 0", memlimit); return memlimit; } return (jlong)memswlimit; } } jlong CgroupV1Subsystem::read_mem_swappiness() { GET_CONTAINER_INFO(julong, _memory->controller(), "/memory.swappiness", "Swappiness is: ", JULONG_FORMAT, JULONG_FORMAT, swappiness); return swappiness; } jlong CgroupV1Subsystem::memory_soft_limit_in_bytes() { GET_CONTAINER_INFO(julong, _memory->controller(), "/memory.soft_limit_in_bytes", "Memory Soft Limit is: ", JULONG_FORMAT, JULONG_FORMAT, memsoftlimit); if (memsoftlimit >= os::Linux::physical_memory()) { log_trace(os, container)("Memory Soft Limit is: Unlimited"); return (jlong)-1; } else { return (jlong)memsoftlimit; } } /* memory_usage_in_bytes * * Return the amount of used memory for this process. * * return: * memory usage in bytes or * -1 for unlimited * OSCONTAINER_ERROR for not supported */ jlong CgroupV1Subsystem::memory_usage_in_bytes() { GET_CONTAINER_INFO(jlong, _memory->controller(), "/memory.usage_in_bytes", "Memory Usage is: ", JLONG_FORMAT, JLONG_FORMAT, memusage); return memusage; } /* memory_max_usage_in_bytes * * Return the maximum amount of used memory for this process. * * return: * max memory usage in bytes or * OSCONTAINER_ERROR for not supported */ jlong CgroupV1Subsystem::memory_max_usage_in_bytes() { GET_CONTAINER_INFO(jlong, _memory->controller(), "/memory.max_usage_in_bytes", "Maximum Memory Usage is: ", JLONG_FORMAT, JLONG_FORMAT, memmaxusage); return memmaxusage; } jlong CgroupV1Subsystem::kernel_memory_usage_in_bytes() { GET_CONTAINER_INFO(jlong, _memory->controller(), "/memory.kmem.usage_in_bytes", "Kernel Memory Usage is: ", JLONG_FORMAT, JLONG_FORMAT, kmem_usage); return kmem_usage; } jlong CgroupV1Subsystem::kernel_memory_limit_in_bytes() { GET_CONTAINER_INFO(julong, _memory->controller(), "/memory.kmem.limit_in_bytes", "Kernel Memory Limit is: ", JULONG_FORMAT, JULONG_FORMAT, kmem_limit); if (kmem_limit >= os::Linux::physical_memory()) { return (jlong)-1; } return (jlong)kmem_limit; } jlong CgroupV1Subsystem::kernel_memory_max_usage_in_bytes() { GET_CONTAINER_INFO(jlong, _memory->controller(), "/memory.kmem.max_usage_in_bytes", "Maximum Kernel Memory Usage is: ", JLONG_FORMAT, JLONG_FORMAT, kmem_max_usage); return kmem_max_usage; } void CgroupV1Subsystem::print_version_specific_info(outputStream* st) { jlong kmem_usage = kernel_memory_usage_in_bytes(); jlong kmem_limit = kernel_memory_limit_in_bytes(); jlong kmem_max_usage = kernel_memory_max_usage_in_bytes(); OSContainer::print_container_helper(st, kmem_usage, "kernel_memory_usage_in_bytes"); OSContainer::print_container_helper(st, kmem_limit, "kernel_memory_max_usage_in_bytes"); OSContainer::print_container_helper(st, kmem_max_usage, "kernel_memory_limit_in_bytes"); } char * CgroupV1Subsystem::cpu_cpuset_cpus() { GET_CONTAINER_INFO_CPTR(cptr, _cpuset, "/cpuset.cpus", "cpuset.cpus is: %s", "%1023s", cpus, 1024); return os::strdup(cpus); } char * CgroupV1Subsystem::cpu_cpuset_memory_nodes() { GET_CONTAINER_INFO_CPTR(cptr, _cpuset, "/cpuset.mems", "cpuset.mems is: %s", "%1023s", mems, 1024); return os::strdup(mems); } /* cpu_quota * * Return the number of microseconds per period * process is guaranteed to run. * * return: * quota time in microseconds * -1 for no quota * OSCONTAINER_ERROR for not supported */ int CgroupV1Subsystem::cpu_quota() { GET_CONTAINER_INFO(int, _cpu->controller(), "/cpu.cfs_quota_us", "CPU Quota is: ", "%d", "%d", quota); return quota; } int CgroupV1Subsystem::cpu_period() { GET_CONTAINER_INFO(int, _cpu->controller(), "/cpu.cfs_period_us", "CPU Period is: ", "%d", "%d", period); return period; } /* cpu_shares * * Return the amount of cpu shares available to the process * * return: * Share number (typically a number relative to 1024) * (2048 typically expresses 2 CPUs worth of processing) * -1 for no share setup * OSCONTAINER_ERROR for not supported */ int CgroupV1Subsystem::cpu_shares() { GET_CONTAINER_INFO(int, _cpu->controller(), "/cpu.shares", "CPU Shares is: ", "%d", "%d", shares); // Convert 1024 to no shares setup if (shares == 1024) return -1; return shares; } char* CgroupV1Subsystem::pids_max_val() { GET_CONTAINER_INFO_CPTR(cptr, _pids, "/pids.max", "Maximum number of tasks is: %s", "%1023s", pidsmax, 1024); return os::strdup(pidsmax); } /* pids_max * * Return the maximum number of tasks available to the process * * return: * maximum number of tasks * -1 for unlimited * OSCONTAINER_ERROR for not supported */ jlong CgroupV1Subsystem::pids_max() { if (_pids == nullptr) return OSCONTAINER_ERROR; char * pidsmax_str = pids_max_val(); return limit_from_str(pidsmax_str); } /* pids_current * * The number of tasks currently in the cgroup (and its descendants) of the process * * return: * current number of tasks * OSCONTAINER_ERROR for not supported */ jlong CgroupV1Subsystem::pids_current() { if (_pids == nullptr) return OSCONTAINER_ERROR; GET_CONTAINER_INFO(jlong, _pids, "/pids.current", "Current number of tasks is: ", JLONG_FORMAT, JLONG_FORMAT, pids_current); return pids_current; }