/* * Copyright (c) 2020, 2026, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "cds/aotArtifactFinder.hpp" #include "cds/aotClassLinker.hpp" #include "cds/aotLogging.hpp" #include "cds/aotMapLogger.hpp" #include "cds/aotMetaspace.hpp" #include "cds/archiveBuilder.hpp" #include "cds/archiveUtils.hpp" #include "cds/cdsConfig.hpp" #include "cds/cppVtables.hpp" #include "cds/dumpAllocStats.hpp" #include "cds/dynamicArchive.hpp" #include "cds/heapShared.hpp" #include "cds/regeneratedClasses.hpp" #include "classfile/classLoader.hpp" #include "classfile/classLoaderDataShared.hpp" #include "classfile/javaClasses.hpp" #include "classfile/symbolTable.hpp" #include "classfile/systemDictionaryShared.hpp" #include "classfile/vmClasses.hpp" #include "code/aotCodeCache.hpp" #include "interpreter/abstractInterpreter.hpp" #include "jvm.h" #include "logging/log.hpp" #include "memory/allStatic.hpp" #include "memory/memoryReserver.hpp" #include "memory/memRegion.hpp" #include "memory/resourceArea.hpp" #include "oops/compressedKlass.inline.hpp" #include "oops/instanceKlass.hpp" #include "oops/methodCounters.hpp" #include "oops/methodData.hpp" #include "oops/objArrayKlass.hpp" #include "oops/objArrayOop.inline.hpp" #include "oops/oopHandle.inline.hpp" #include "oops/trainingData.hpp" #include "runtime/arguments.hpp" #include "runtime/globals_extension.hpp" #include "runtime/javaThread.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/align.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/formatBuffer.hpp" ArchiveBuilder* ArchiveBuilder::_current = nullptr; ArchiveBuilder::OtherROAllocMark::~OtherROAllocMark() { char* newtop = ArchiveBuilder::current()->_ro_region.top(); ArchiveBuilder::alloc_stats()->record_other_type(int(newtop - _oldtop), true); } ArchiveBuilder::SourceObjList::SourceObjList() : _ptrmap(16 * K, mtClassShared) { _total_bytes = 0; _objs = new (mtClassShared) GrowableArray(128 * K, mtClassShared); } ArchiveBuilder::SourceObjList::~SourceObjList() { delete _objs; } void ArchiveBuilder::SourceObjList::append(SourceObjInfo* src_info) { // Save this source object for copying src_info->set_id(_objs->length()); _objs->append(src_info); // Prepare for marking the pointers in this source object assert(is_aligned(_total_bytes, sizeof(address)), "must be"); src_info->set_ptrmap_start(_total_bytes / sizeof(address)); _total_bytes = align_up(_total_bytes + (uintx)src_info->size_in_bytes(), sizeof(address)); src_info->set_ptrmap_end(_total_bytes / sizeof(address)); BitMap::idx_t bitmap_size_needed = BitMap::idx_t(src_info->ptrmap_end()); if (_ptrmap.size() <= bitmap_size_needed) { _ptrmap.resize((bitmap_size_needed + 1) * 2); } } void ArchiveBuilder::SourceObjList::remember_embedded_pointer(SourceObjInfo* src_info, MetaspaceClosure::Ref* ref) { // src_obj contains a pointer. Remember the location of this pointer in _ptrmap, // so that we can copy/relocate it later. src_info->set_has_embedded_pointer(); address src_obj = src_info->source_addr(); address* field_addr = ref->addr(); assert(src_info->ptrmap_start() < _total_bytes, "sanity"); assert(src_info->ptrmap_end() <= _total_bytes, "sanity"); assert(*field_addr != nullptr, "should have checked"); intx field_offset_in_bytes = ((address)field_addr) - src_obj; DEBUG_ONLY(int src_obj_size = src_info->size_in_bytes();) assert(field_offset_in_bytes >= 0, "must be"); assert(field_offset_in_bytes + intx(sizeof(intptr_t)) <= intx(src_obj_size), "must be"); assert(is_aligned(field_offset_in_bytes, sizeof(address)), "must be"); BitMap::idx_t idx = BitMap::idx_t(src_info->ptrmap_start() + (uintx)(field_offset_in_bytes / sizeof(address))); _ptrmap.set_bit(BitMap::idx_t(idx)); } class RelocateEmbeddedPointers : public BitMapClosure { ArchiveBuilder* _builder; address _buffered_obj; BitMap::idx_t _start_idx; public: RelocateEmbeddedPointers(ArchiveBuilder* builder, address buffered_obj, BitMap::idx_t start_idx) : _builder(builder), _buffered_obj(buffered_obj), _start_idx(start_idx) {} bool do_bit(BitMap::idx_t bit_offset) { size_t field_offset = size_t(bit_offset - _start_idx) * sizeof(address); address* ptr_loc = (address*)(_buffered_obj + field_offset); address old_p_with_tags = *ptr_loc; assert(old_p_with_tags != nullptr, "null ptrs shouldn't have been marked"); address old_p = MetaspaceClosure::strip_tags(old_p_with_tags); uintx tags = MetaspaceClosure::decode_tags(old_p_with_tags); address new_p = _builder->get_buffered_addr(old_p); bool nulled; if (new_p == nullptr) { // old_p had a FollowMode of set_to_null nulled = true; } else { new_p = MetaspaceClosure::add_tags(new_p, tags); nulled = false; } log_trace(aot)("Ref: [" PTR_FORMAT "] -> " PTR_FORMAT " => " PTR_FORMAT " %zu", p2i(ptr_loc), p2i(old_p) + tags, p2i(new_p), tags); ArchivePtrMarker::set_and_mark_pointer(ptr_loc, new_p); ArchiveBuilder::current()->count_relocated_pointer(tags != 0, nulled); return true; // keep iterating the bitmap } }; void ArchiveBuilder::SourceObjList::relocate(int i, ArchiveBuilder* builder) { SourceObjInfo* src_info = objs()->at(i); assert(src_info->should_copy(), "must be"); BitMap::idx_t start = BitMap::idx_t(src_info->ptrmap_start()); // inclusive BitMap::idx_t end = BitMap::idx_t(src_info->ptrmap_end()); // exclusive RelocateEmbeddedPointers relocator(builder, src_info->buffered_addr(), start); _ptrmap.iterate(&relocator, start, end); } ArchiveBuilder::ArchiveBuilder() : _current_dump_region(nullptr), _buffer_bottom(nullptr), _requested_static_archive_bottom(nullptr), _requested_static_archive_top(nullptr), _requested_dynamic_archive_bottom(nullptr), _requested_dynamic_archive_top(nullptr), _mapped_static_archive_bottom(nullptr), _mapped_static_archive_top(nullptr), _buffer_to_requested_delta(0), _pz_region("pz", MAX_SHARED_DELTA), // protection zone -- used only during dumping; does NOT exist in cds archive. _rw_region("rw", MAX_SHARED_DELTA), _ro_region("ro", MAX_SHARED_DELTA), _ac_region("ac", MAX_SHARED_DELTA), _ptrmap(mtClassShared), _rw_ptrmap(mtClassShared), _ro_ptrmap(mtClassShared), _rw_src_objs(), _ro_src_objs(), _src_obj_table(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE), _buffered_to_src_table(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE), _total_heap_region_size(0) { _klasses = new (mtClassShared) GrowableArray(4 * K, mtClassShared); _symbols = new (mtClassShared) GrowableArray(256 * K, mtClassShared); _entropy_seed = 0x12345678; _relocated_ptr_info._num_ptrs = 0; _relocated_ptr_info._num_tagged_ptrs = 0; _relocated_ptr_info._num_nulled_ptrs = 0; assert(_current == nullptr, "must be"); _current = this; } ArchiveBuilder::~ArchiveBuilder() { assert(_current == this, "must be"); _current = nullptr; for (int i = 0; i < _symbols->length(); i++) { _symbols->at(i)->decrement_refcount(); } delete _klasses; delete _symbols; if (_shared_rs.is_reserved()) { MemoryReserver::release(_shared_rs); } AOTArtifactFinder::dispose(); } // Returns a deterministic sequence of pseudo random numbers. The main purpose is NOT // for randomness but to get good entropy for the identity_hash() of archived Symbols, // while keeping the contents of static CDS archives deterministic to ensure // reproducibility of JDK builds. int ArchiveBuilder::entropy() { assert(SafepointSynchronize::is_at_safepoint(), "needed to ensure deterministic sequence"); _entropy_seed = os::next_random(_entropy_seed); return static_cast(_entropy_seed); } class GatherKlassesAndSymbols : public UniqueMetaspaceClosure { ArchiveBuilder* _builder; public: GatherKlassesAndSymbols(ArchiveBuilder* builder) : _builder(builder) {} virtual bool do_unique_ref(Ref* ref, bool read_only) { return _builder->gather_klass_and_symbol(ref, read_only); } }; bool ArchiveBuilder::gather_klass_and_symbol(MetaspaceClosure::Ref* ref, bool read_only) { if (ref->obj() == nullptr) { return false; } if (get_follow_mode(ref) != make_a_copy) { return false; } if (ref->type() == MetaspaceClosureType::ClassType) { Klass* klass = (Klass*)ref->obj(); assert(klass->is_klass(), "must be"); if (!is_excluded(klass)) { _klasses->append(klass); if (klass->is_hidden()) { assert(klass->is_instance_klass(), "must be"); } } } else if (ref->type() == MetaspaceClosureType::SymbolType) { // Make sure the symbol won't be GC'ed while we are dumping the archive. Symbol* sym = (Symbol*)ref->obj(); sym->increment_refcount(); _symbols->append(sym); } return true; // recurse } void ArchiveBuilder::gather_klasses_and_symbols() { ResourceMark rm; AOTArtifactFinder::initialize(); AOTArtifactFinder::find_artifacts(); aot_log_info(aot)("Gathering classes and symbols ... "); GatherKlassesAndSymbols doit(this); iterate_roots(&doit); doit.finish(); if (CDSConfig::is_dumping_static_archive()) { // To ensure deterministic contents in the static archive, we need to ensure that // we iterate the MetaspaceObjs in a deterministic order. It doesn't matter where // the MetaspaceObjs are located originally, as they are copied sequentially into // the archive during the iteration. // // The only issue here is that the symbol table and the system directories may be // randomly ordered, so we copy the symbols and klasses into two arrays and sort // them deterministically. // // During -Xshare:dump, the order of Symbol creation is strictly determined by // the SharedClassListFile (class loading is done in a single thread and the JIT // is disabled). Also, Symbols are allocated in monotonically increasing addresses // (see Symbol::operator new(size_t, int)). So if we iterate the Symbols by // ascending address order, we ensure that all Symbols are copied into deterministic // locations in the archive. // // TODO: in the future, if we want to produce deterministic contents in the // dynamic archive, we might need to sort the symbols alphabetically (also see // DynamicArchiveBuilder::sort_methods()). aot_log_info(aot)("Sorting symbols ... "); _symbols->sort(compare_symbols_by_address); sort_klasses(); } AOTClassLinker::add_candidates(); } int ArchiveBuilder::compare_symbols_by_address(Symbol** a, Symbol** b) { if (a[0] < b[0]) { return -1; } else { assert(a[0] > b[0], "Duplicated symbol %s unexpected", (*a)->as_C_string()); return 1; } } int ArchiveBuilder::compare_klass_by_name(Klass** a, Klass** b) { return a[0]->name()->fast_compare(b[0]->name()); } void ArchiveBuilder::sort_klasses() { aot_log_info(aot)("Sorting classes ... "); _klasses->sort(compare_klass_by_name); } address ArchiveBuilder::reserve_buffer() { // AOTCodeCache::max_aot_code_size() accounts for aot code region. size_t buffer_size = LP64_ONLY(CompressedClassSpaceSize) NOT_LP64(256 * M) + AOTCodeCache::max_aot_code_size(); ReservedSpace rs = MemoryReserver::reserve(buffer_size, AOTMetaspace::core_region_alignment(), os::vm_page_size(), mtNone); if (!rs.is_reserved()) { aot_log_error(aot)("Failed to reserve %zu bytes of output buffer.", buffer_size); AOTMetaspace::unrecoverable_writing_error(); } // buffer_bottom is the lowest address of the 2 core regions (rw, ro) when // we are copying the class metadata into the buffer. address buffer_bottom = (address)rs.base(); aot_log_info(aot)("Reserved output buffer space at " PTR_FORMAT " [%zu bytes]", p2i(buffer_bottom), buffer_size); _shared_rs = rs; _buffer_bottom = buffer_bottom; if (CDSConfig::is_dumping_static_archive()) { _current_dump_region = &_pz_region; } else { _current_dump_region = &_rw_region; } _current_dump_region->init(&_shared_rs, &_shared_vs); ArchivePtrMarker::initialize(&_ptrmap, &_shared_vs); // The bottom of the static archive should be mapped at this address by default. _requested_static_archive_bottom = (address)AOTMetaspace::requested_base_address(); // The bottom of the archive (that I am writing now) should be mapped at this address by default. address my_archive_requested_bottom; if (CDSConfig::is_dumping_static_archive()) { my_archive_requested_bottom = _requested_static_archive_bottom; } else { _mapped_static_archive_bottom = (address)MetaspaceObj::aot_metaspace_base(); _mapped_static_archive_top = (address)MetaspaceObj::aot_metaspace_top(); assert(_mapped_static_archive_top >= _mapped_static_archive_bottom, "must be"); size_t static_archive_size = _mapped_static_archive_top - _mapped_static_archive_bottom; // At run time, we will mmap the dynamic archive at my_archive_requested_bottom _requested_static_archive_top = _requested_static_archive_bottom + static_archive_size; my_archive_requested_bottom = align_up(_requested_static_archive_top, AOTMetaspace::core_region_alignment()); _requested_dynamic_archive_bottom = my_archive_requested_bottom; } _buffer_to_requested_delta = my_archive_requested_bottom - _buffer_bottom; address my_archive_requested_top = my_archive_requested_bottom + buffer_size; if (my_archive_requested_bottom < _requested_static_archive_bottom || my_archive_requested_top <= _requested_static_archive_bottom) { // Size overflow. aot_log_error(aot)("my_archive_requested_bottom = " INTPTR_FORMAT, p2i(my_archive_requested_bottom)); aot_log_error(aot)("my_archive_requested_top = " INTPTR_FORMAT, p2i(my_archive_requested_top)); aot_log_error(aot)("SharedBaseAddress (" INTPTR_FORMAT ") is too high. " "Please rerun java -Xshare:dump with a lower value", p2i(_requested_static_archive_bottom)); AOTMetaspace::unrecoverable_writing_error(); } if (CDSConfig::is_dumping_static_archive()) { // We don't want any valid object to be at the very bottom of the archive. // See ArchivePtrMarker::mark_pointer(). _pz_region.allocate(AOTMetaspace::protection_zone_size()); start_dump_region(&_rw_region); } return buffer_bottom; } void ArchiveBuilder::iterate_sorted_roots(MetaspaceClosure* it) { int num_symbols = _symbols->length(); for (int i = 0; i < num_symbols; i++) { it->push(_symbols->adr_at(i)); } int num_klasses = _klasses->length(); for (int i = 0; i < num_klasses; i++) { it->push(_klasses->adr_at(i)); } iterate_roots(it); } class GatherSortedSourceObjs : public MetaspaceClosure { ArchiveBuilder* _builder; public: GatherSortedSourceObjs(ArchiveBuilder* builder) : _builder(builder) {} virtual bool do_ref(Ref* ref, bool read_only) { return _builder->gather_one_source_obj(ref, read_only); } }; bool ArchiveBuilder::gather_one_source_obj(MetaspaceClosure::Ref* ref, bool read_only) { address src_obj = ref->obj(); if (src_obj == nullptr) { return false; } remember_embedded_pointer_in_enclosing_obj(ref); if (RegeneratedClasses::has_been_regenerated(src_obj)) { // No need to copy it. We will later relocate it to point to the regenerated klass/method. return false; } FollowMode follow_mode = get_follow_mode(ref); SourceObjInfo src_info(ref, read_only, follow_mode); bool created; SourceObjInfo* p = _src_obj_table.put_if_absent(src_obj, src_info, &created); if (created) { if (_src_obj_table.maybe_grow()) { log_info(aot, hashtables)("Expanded _src_obj_table table to %d", _src_obj_table.table_size()); } } #ifdef ASSERT if (ref->type() == MetaspaceClosureType::MethodType) { Method* m = (Method*)ref->obj(); assert(!RegeneratedClasses::has_been_regenerated((address)m->method_holder()), "Should not archive methods in a class that has been regenerated"); } #endif if (ref->type() == MetaspaceClosureType::MethodDataType) { MethodData* md = (MethodData*)ref->obj(); md->clean_method_data(false /* always_clean */); } assert(p->read_only() == src_info.read_only(), "must be"); if (created && src_info.should_copy()) { if (read_only) { _ro_src_objs.append(p); } else { _rw_src_objs.append(p); } return true; // Need to recurse into this ref only if we are copying it } else { return false; } } void ArchiveBuilder::record_regenerated_object(address orig_src_obj, address regen_src_obj) { // Record the fact that orig_src_obj has been replaced by regen_src_obj. All calls to get_buffered_addr(orig_src_obj) // should return the same value as get_buffered_addr(regen_src_obj). SourceObjInfo* p = _src_obj_table.get(regen_src_obj); assert(p != nullptr, "regenerated object should always be dumped"); SourceObjInfo orig_src_info(orig_src_obj, p); bool created; _src_obj_table.put_if_absent(orig_src_obj, orig_src_info, &created); assert(created, "We shouldn't have archived the original copy of a regenerated object"); } // Remember that we have a pointer inside ref->enclosing_obj() that points to ref->obj() void ArchiveBuilder::remember_embedded_pointer_in_enclosing_obj(MetaspaceClosure::Ref* ref) { assert(ref->obj() != nullptr, "should have checked"); address enclosing_obj = ref->enclosing_obj(); if (enclosing_obj == nullptr) { return; } // We are dealing with 3 addresses: // address o = ref->obj(): We have found an object whose address is o. // address* mpp = ref->mpp(): The object o is pointed to by a pointer whose address is mpp. // I.e., (*mpp == o) // enclosing_obj : If non-null, it is the object which has a field that points to o. // mpp is the address if that field. // // Example: We have an array whose first element points to a Method: // Method* o = 0x0000abcd; // Array* enclosing_obj = 0x00001000; // enclosing_obj->at_put(0, o); // // We the MetaspaceClosure iterates on the very first element of this array, we have // ref->obj() == 0x0000abcd (the Method) // ref->mpp() == 0x00001008 (the location of the first element in the array) // ref->enclosing_obj() == 0x00001000 (the Array that contains the Method) // // We use the above information to mark the bitmap to indicate that there's a pointer on address 0x00001008. SourceObjInfo* src_info = _src_obj_table.get(enclosing_obj); if (src_info == nullptr || !src_info->should_copy()) { // source objects of point_to_it/set_to_null types are not copied // so we don't need to remember their pointers. } else { if (src_info->read_only()) { _ro_src_objs.remember_embedded_pointer(src_info, ref); } else { _rw_src_objs.remember_embedded_pointer(src_info, ref); } } } void ArchiveBuilder::gather_source_objs() { ResourceMark rm; aot_log_info(aot)("Gathering all archivable objects ... "); gather_klasses_and_symbols(); GatherSortedSourceObjs doit(this); iterate_sorted_roots(&doit); doit.finish(); } bool ArchiveBuilder::is_excluded(Klass* klass) { if (klass->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(klass); return SystemDictionaryShared::is_excluded_class(ik); } else if (klass->is_objArray_klass()) { Klass* bottom = ObjArrayKlass::cast(klass)->bottom_klass(); if (CDSConfig::is_dumping_dynamic_archive() && AOTMetaspace::in_aot_cache_static_region(bottom)) { // The bottom class is in the static archive so it's clearly not excluded. return false; } else if (bottom->is_instance_klass()) { return SystemDictionaryShared::is_excluded_class(InstanceKlass::cast(bottom)); } } return false; } ArchiveBuilder::FollowMode ArchiveBuilder::get_follow_mode(MetaspaceClosure::Ref *ref) { address obj = ref->obj(); if (CDSConfig::is_dumping_dynamic_archive() && AOTMetaspace::in_aot_cache(obj)) { // Don't dump existing shared metadata again. return point_to_it; } else if (ref->type() == MetaspaceClosureType::MethodDataType || ref->type() == MetaspaceClosureType::MethodCountersType || ref->type() == MetaspaceClosureType::KlassTrainingDataType || ref->type() == MetaspaceClosureType::MethodTrainingDataType || ref->type() == MetaspaceClosureType::CompileTrainingDataType) { return (TrainingData::need_data() || TrainingData::assembling_data()) ? make_a_copy : set_to_null; } else if (ref->type() == MetaspaceClosureType::AdapterHandlerEntryType) { return CDSConfig::is_dumping_adapters() ? make_a_copy : set_to_null; } else { if (ref->type() == MetaspaceClosureType::ClassType) { Klass* klass = (Klass*)ref->obj(); assert(klass->is_klass(), "must be"); if (RegeneratedClasses::has_been_regenerated(klass)) { klass = RegeneratedClasses::get_regenerated_object(klass); } if (is_excluded(klass)) { ResourceMark rm; aot_log_trace(aot)("pointer set to null: class (excluded): %s", klass->external_name()); return set_to_null; } if (klass->is_array_klass() && CDSConfig::is_dumping_dynamic_archive()) { ResourceMark rm; aot_log_trace(aot)("pointer set to null: array class not supported in dynamic region: %s", klass->external_name()); return set_to_null; } } return make_a_copy; } } void ArchiveBuilder::start_dump_region(DumpRegion* next) { current_dump_region()->pack(next); _current_dump_region = next; } char* ArchiveBuilder::ro_strdup(const char* s) { char* archived_str = ro_region_alloc((int)strlen(s) + 1); strcpy(archived_str, s); return archived_str; } // The objects that have embedded pointers will sink // towards the end of the list. This ensures we have a maximum // number of leading zero bits in the relocation bitmap. int ArchiveBuilder::compare_src_objs(SourceObjInfo** a, SourceObjInfo** b) { if ((*a)->has_embedded_pointer() && !(*b)->has_embedded_pointer()) { return 1; } else if (!(*a)->has_embedded_pointer() && (*b)->has_embedded_pointer()) { return -1; } else { // This is necessary to keep the sorting order stable. Otherwise the // archive's contents may not be deterministic. return (*a)->id() - (*b)->id(); } } void ArchiveBuilder::sort_metadata_objs() { _rw_src_objs.objs()->sort(compare_src_objs); _ro_src_objs.objs()->sort(compare_src_objs); } void ArchiveBuilder::dump_rw_metadata() { ResourceMark rm; aot_log_info(aot)("Allocating RW objects ... "); make_shallow_copies(&_rw_region, &_rw_src_objs); } void ArchiveBuilder::dump_ro_metadata() { ResourceMark rm; aot_log_info(aot)("Allocating RO objects ... "); start_dump_region(&_ro_region); make_shallow_copies(&_ro_region, &_ro_src_objs); RegeneratedClasses::record_regenerated_objects(); } void ArchiveBuilder::make_shallow_copies(DumpRegion *dump_region, const ArchiveBuilder::SourceObjList* src_objs) { for (int i = 0; i < src_objs->objs()->length(); i++) { make_shallow_copy(dump_region, src_objs->objs()->at(i)); } aot_log_info(aot)("done (%d objects)", src_objs->objs()->length()); } void ArchiveBuilder::make_shallow_copy(DumpRegion *dump_region, SourceObjInfo* src_info) { address src = src_info->source_addr(); int bytes = src_info->size_in_bytes(); // word-aligned size_t alignment = SharedSpaceObjectAlignment; // alignment for the dest pointer char* oldtop = dump_region->top(); if (src_info->type() == MetaspaceClosureType::ClassType) { // Allocate space for a pointer directly in front of the future InstanceKlass, so // we can do a quick lookup from InstanceKlass* -> RunTimeClassInfo* // without building another hashtable. See RunTimeClassInfo::get_for() // in systemDictionaryShared.cpp. Klass* klass = (Klass*)src; if (klass->is_instance_klass()) { SystemDictionaryShared::validate_before_archiving(InstanceKlass::cast(klass)); dump_region->allocate(sizeof(address)); } #ifdef _LP64 // More strict alignments needed for UseCompressedClassPointers if (UseCompressedClassPointers) { alignment = nth_bit(ArchiveBuilder::precomputed_narrow_klass_shift()); } #endif } else if (src_info->type() == MetaspaceClosureType::SymbolType) { // Symbols may be allocated by using AllocateHeap, so their sizes // may be less than size_in_bytes() indicates. bytes = ((Symbol*)src)->byte_size(); } char* dest = dump_region->allocate(bytes, alignment); memcpy(dest, src, bytes); // Update the hash of buffered sorted symbols for static dump so that the symbols have deterministic contents if (CDSConfig::is_dumping_static_archive() && (src_info->type() == MetaspaceClosureType::SymbolType)) { Symbol* buffered_symbol = (Symbol*)dest; assert(((Symbol*)src)->is_permanent(), "archived symbols must be permanent"); buffered_symbol->update_identity_hash(); } { bool created; _buffered_to_src_table.put_if_absent((address)dest, src, &created); assert(created, "must be"); if (_buffered_to_src_table.maybe_grow()) { log_info(aot, hashtables)("Expanded _buffered_to_src_table table to %d", _buffered_to_src_table.table_size()); } } intptr_t* archived_vtable = CppVtables::get_archived_vtable(src_info->type(), (address)dest); if (archived_vtable != nullptr) { *(address*)dest = (address)archived_vtable; ArchivePtrMarker::mark_pointer((address*)dest); } log_trace(aot)("Copy: " PTR_FORMAT " ==> " PTR_FORMAT " %d", p2i(src), p2i(dest), bytes); src_info->set_buffered_addr((address)dest); char* newtop = dump_region->top(); _alloc_stats.record(src_info->type(), int(newtop - oldtop), src_info->read_only()); DEBUG_ONLY(_alloc_stats.verify((int)dump_region->used(), src_info->read_only())); } // This is used by code that hand-assembles data structures, such as the LambdaProxyClassKey, that are // not handled by MetaspaceClosure. void ArchiveBuilder::write_pointer_in_buffer(address* ptr_location, address src_addr) { assert(is_in_buffer_space(ptr_location), "must be"); if (src_addr == nullptr) { *ptr_location = nullptr; ArchivePtrMarker::clear_pointer(ptr_location); } else { *ptr_location = get_buffered_addr(src_addr); ArchivePtrMarker::mark_pointer(ptr_location); } } void ArchiveBuilder::mark_and_relocate_to_buffered_addr(address* ptr_location) { assert(*ptr_location != nullptr, "sanity"); if (!is_in_mapped_static_archive(*ptr_location)) { *ptr_location = get_buffered_addr(*ptr_location); } ArchivePtrMarker::mark_pointer(ptr_location); } bool ArchiveBuilder::has_been_archived(address src_addr) const { SourceObjInfo* p = _src_obj_table.get(src_addr); if (p == nullptr) { // This object has never been seen by ArchiveBuilder return false; } if (p->buffered_addr() == nullptr) { // ArchiveBuilder has seen this object, but decided not to archive it. So // Any reference to this object will be modified to nullptr inside the buffer. assert(p->follow_mode() == set_to_null, "must be"); return false; } DEBUG_ONLY({ // This is a class/method that belongs to one of the "original" classes that // have been regenerated by lambdaFormInvokers.cpp. We must have archived // the "regenerated" version of it. if (RegeneratedClasses::has_been_regenerated(src_addr)) { address regen_obj = RegeneratedClasses::get_regenerated_object(src_addr); precond(regen_obj != nullptr && regen_obj != src_addr); assert(has_been_archived(regen_obj), "must be"); assert(get_buffered_addr(src_addr) == get_buffered_addr(regen_obj), "must be"); }}); return true; } address ArchiveBuilder::get_buffered_addr(address src_addr) const { SourceObjInfo* p = _src_obj_table.get(src_addr); assert(p != nullptr, "src_addr " INTPTR_FORMAT " is used but has not been archived", p2i(src_addr)); return p->buffered_addr(); } address ArchiveBuilder::get_source_addr(address buffered_addr) const { assert(is_in_buffer_space(buffered_addr), "must be"); address* src_p = _buffered_to_src_table.get(buffered_addr); assert(src_p != nullptr && *src_p != nullptr, "must be"); return *src_p; } void ArchiveBuilder::relocate_embedded_pointers(ArchiveBuilder::SourceObjList* src_objs) { for (int i = 0; i < src_objs->objs()->length(); i++) { src_objs->relocate(i, this); } } void ArchiveBuilder::relocate_metaspaceobj_embedded_pointers() { aot_log_info(aot)("Relocating embedded pointers in core regions ... "); relocate_embedded_pointers(&_rw_src_objs); relocate_embedded_pointers(&_ro_src_objs); log_info(cds)("Relocating %zu pointers, %zu tagged, %zu nulled", _relocated_ptr_info._num_ptrs, _relocated_ptr_info._num_tagged_ptrs, _relocated_ptr_info._num_nulled_ptrs); } #define ADD_COUNT(x) \ x += 1; \ x ## _a += aotlinked ? 1 : 0; \ x ## _i += inited ? 1 : 0; #define DECLARE_INSTANCE_KLASS_COUNTER(x) \ int x = 0; \ int x ## _a = 0; \ int x ## _i = 0; void ArchiveBuilder::make_klasses_shareable() { DECLARE_INSTANCE_KLASS_COUNTER(num_instance_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_boot_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_vm_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_platform_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_app_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_old_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_hidden_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_enum_klasses); DECLARE_INSTANCE_KLASS_COUNTER(num_unregistered_klasses); int num_unlinked_klasses = 0; int num_obj_array_klasses = 0; int num_type_array_klasses = 0; int boot_unlinked = 0; int platform_unlinked = 0; int app_unlinked = 0; int unreg_unlinked = 0; for (int i = 0; i < klasses()->length(); i++) { // Some of the code in ConstantPool::remove_unshareable_info() requires the classes // to be in linked state, so it must be call here before the next loop, which returns // all classes to unlinked state. Klass* k = get_buffered_addr(klasses()->at(i)); if (k->is_instance_klass()) { InstanceKlass::cast(k)->constants()->remove_unshareable_info(); } } for (int i = 0; i < klasses()->length(); i++) { const char* type; const char* unlinked = ""; const char* kind = ""; const char* hidden = ""; const char* old = ""; const char* generated = ""; const char* aotlinked_msg = ""; const char* inited_msg = ""; Klass* k = get_buffered_addr(klasses()->at(i)); bool inited = false; k->remove_java_mirror(); #ifdef _LP64 if (UseCompactObjectHeaders) { Klass* requested_k = to_requested(k); address narrow_klass_base = _requested_static_archive_bottom; // runtime encoding base == runtime mapping start const int narrow_klass_shift = precomputed_narrow_klass_shift(); narrowKlass nk = CompressedKlassPointers::encode_not_null_without_asserts(requested_k, narrow_klass_base, narrow_klass_shift); k->set_prototype_header(markWord::prototype().set_narrow_klass(nk)); } #endif //_LP64 if (k->is_objArray_klass()) { // InstanceKlass and TypeArrayKlass will in turn call remove_unshareable_info // on their array classes. num_obj_array_klasses ++; type = "array"; } else if (k->is_typeArray_klass()) { num_type_array_klasses ++; type = "array"; k->remove_unshareable_info(); } else { assert(k->is_instance_klass(), " must be"); InstanceKlass* ik = InstanceKlass::cast(k); InstanceKlass* src_ik = get_source_addr(ik); bool aotlinked = AOTClassLinker::is_candidate(src_ik); inited = ik->has_aot_initialized_mirror(); ADD_COUNT(num_instance_klasses); if (ik->is_hidden()) { ADD_COUNT(num_hidden_klasses); hidden = " hidden"; oop loader = k->class_loader(); if (loader == nullptr) { type = "boot"; ADD_COUNT(num_boot_klasses); } else if (loader == SystemDictionary::java_platform_loader()) { type = "plat"; ADD_COUNT(num_platform_klasses); } else if (loader == SystemDictionary::java_system_loader()) { type = "app"; ADD_COUNT(num_app_klasses); } else { type = "bad"; assert(0, "shouldn't happen"); } if (CDSConfig::is_dumping_method_handles()) { assert(HeapShared::is_archivable_hidden_klass(ik), "sanity"); } else { // Legacy CDS support for lambda proxies CDS_JAVA_HEAP_ONLY(assert(HeapShared::is_lambda_proxy_klass(ik), "sanity");) } } else if (ik->defined_by_boot_loader()) { type = "boot"; ADD_COUNT(num_boot_klasses); } else if (ik->defined_by_platform_loader()) { type = "plat"; ADD_COUNT(num_platform_klasses); } else if (ik->defined_by_app_loader()) { type = "app"; ADD_COUNT(num_app_klasses); } else { assert(ik->defined_by_other_loaders(), "must be"); type = "unreg"; ADD_COUNT(num_unregistered_klasses); } if (AOTClassLinker::is_vm_class(src_ik)) { ADD_COUNT(num_vm_klasses); } if (!ik->is_linked()) { num_unlinked_klasses ++; unlinked = " unlinked"; if (ik->defined_by_boot_loader()) { boot_unlinked ++; } else if (ik->defined_by_platform_loader()) { platform_unlinked ++; } else if (ik->defined_by_app_loader()) { app_unlinked ++; } else { unreg_unlinked ++; } } if (ik->is_interface()) { kind = " interface"; } else if (src_ik->is_enum_subclass()) { kind = " enum"; ADD_COUNT(num_enum_klasses); } if (CDSConfig::is_old_class_for_verifier(ik)) { ADD_COUNT(num_old_klasses); old = " old"; } if (ik->is_aot_generated_class()) { generated = " generated"; } if (aotlinked) { aotlinked_msg = " aot-linked"; } if (inited) { if (InstanceKlass::cast(k)->static_field_size() == 0) { inited_msg = " inited (no static fields)"; } else { inited_msg = " inited"; } } AOTMetaspace::rewrite_bytecodes_and_calculate_fingerprints(Thread::current(), ik); ik->remove_unshareable_info(); } if (aot_log_is_enabled(Debug, aot, class)) { ResourceMark rm; aot_log_debug(aot, class)("klasses[%5d] = " PTR_FORMAT " %-5s %s%s%s%s%s%s%s%s", i, p2i(to_requested(k)), type, k->external_name(), kind, hidden, old, unlinked, generated, aotlinked_msg, inited_msg); } } #define STATS_FORMAT "= %5d, aot-linked = %5d, inited = %5d" #define STATS_PARAMS(x) num_ ## x, num_ ## x ## _a, num_ ## x ## _i aot_log_info(aot)("Number of classes %d", num_instance_klasses + num_obj_array_klasses + num_type_array_klasses); aot_log_info(aot)(" instance classes " STATS_FORMAT, STATS_PARAMS(instance_klasses)); aot_log_info(aot)(" boot " STATS_FORMAT, STATS_PARAMS(boot_klasses)); aot_log_info(aot)(" vm " STATS_FORMAT, STATS_PARAMS(vm_klasses)); aot_log_info(aot)(" platform " STATS_FORMAT, STATS_PARAMS(platform_klasses)); aot_log_info(aot)(" app " STATS_FORMAT, STATS_PARAMS(app_klasses)); aot_log_info(aot)(" unregistered " STATS_FORMAT, STATS_PARAMS(unregistered_klasses)); aot_log_info(aot)(" (enum) " STATS_FORMAT, STATS_PARAMS(enum_klasses)); aot_log_info(aot)(" (hidden) " STATS_FORMAT, STATS_PARAMS(hidden_klasses)); aot_log_info(aot)(" (old) " STATS_FORMAT, STATS_PARAMS(old_klasses)); aot_log_info(aot)(" (unlinked) = %5d, boot = %d, plat = %d, app = %d, unreg = %d", num_unlinked_klasses, boot_unlinked, platform_unlinked, app_unlinked, unreg_unlinked); aot_log_info(aot)(" obj array classes = %5d", num_obj_array_klasses); aot_log_info(aot)(" type array classes = %5d", num_type_array_klasses); aot_log_info(aot)(" symbols = %5d", _symbols->length()); #undef STATS_FORMAT #undef STATS_PARAMS } void ArchiveBuilder::make_training_data_shareable() { auto clean_td = [&] (address& src_obj, SourceObjInfo& info) { if (!is_in_buffer_space(info.buffered_addr())) { return; } if (info.type() == MetaspaceClosureType::KlassTrainingDataType || info.type() == MetaspaceClosureType::MethodTrainingDataType || info.type() == MetaspaceClosureType::CompileTrainingDataType) { TrainingData* buffered_td = (TrainingData*)info.buffered_addr(); buffered_td->remove_unshareable_info(); } else if (info.type() == MetaspaceClosureType::MethodDataType) { MethodData* buffered_mdo = (MethodData*)info.buffered_addr(); buffered_mdo->remove_unshareable_info(); } else if (info.type() == MetaspaceClosureType::MethodCountersType) { MethodCounters* buffered_mc = (MethodCounters*)info.buffered_addr(); buffered_mc->remove_unshareable_info(); } }; _src_obj_table.iterate_all(clean_td); } uintx ArchiveBuilder::buffer_to_offset(address p) const { address requested_p = to_requested(p); assert(requested_p >= _requested_static_archive_bottom, "must be"); return requested_p - _requested_static_archive_bottom; } uintx ArchiveBuilder::any_to_offset(address p) const { if (is_in_mapped_static_archive(p)) { assert(CDSConfig::is_dumping_dynamic_archive(), "must be"); return p - _mapped_static_archive_bottom; } if (!is_in_buffer_space(p)) { // p must be a "source" address p = get_buffered_addr(p); } return buffer_to_offset(p); } address ArchiveBuilder::offset_to_buffered_address(u4 offset) const { address requested_addr = _requested_static_archive_bottom + offset; address buffered_addr = requested_addr - _buffer_to_requested_delta; assert(is_in_buffer_space(buffered_addr), "bad offset"); return buffered_addr; } void ArchiveBuilder::start_ac_region() { ro_region()->pack(); start_dump_region(&_ac_region); } void ArchiveBuilder::end_ac_region() { _ac_region.pack(); } #if INCLUDE_CDS_JAVA_HEAP narrowKlass ArchiveBuilder::get_requested_narrow_klass(Klass* k) { assert(CDSConfig::is_dumping_heap(), "sanity"); k = get_buffered_klass(k); Klass* requested_k = to_requested(k); const int narrow_klass_shift = ArchiveBuilder::precomputed_narrow_klass_shift(); #ifdef ASSERT const size_t klass_alignment = MAX2(SharedSpaceObjectAlignment, (size_t)nth_bit(narrow_klass_shift)); assert(is_aligned(k, klass_alignment), "Klass " PTR_FORMAT " misaligned.", p2i(k)); #endif address narrow_klass_base = _requested_static_archive_bottom; // runtime encoding base == runtime mapping start // Note: use the "raw" version of encode that takes explicit narrow klass base and shift. Don't use any // of the variants that do sanity checks, nor any of those that use the current - dump - JVM's encoding setting. return CompressedKlassPointers::encode_not_null_without_asserts(requested_k, narrow_klass_base, narrow_klass_shift); } #endif // INCLUDE_CDS_JAVA_HEAP // RelocateBufferToRequested --- Relocate all the pointers in rw/ro, // so that the archive can be mapped to the "requested" location without runtime relocation. // // - See ArchiveBuilder header for the definition of "buffer", "mapped" and "requested" // - ArchivePtrMarker::ptrmap() marks all the pointers in the rw/ro regions // - Every pointer must have one of the following values: // [a] nullptr: // No relocation is needed. Remove this pointer from ptrmap so we don't need to // consider it at runtime. // [b] Points into an object X which is inside the buffer: // Adjust this pointer by _buffer_to_requested_delta, so it points to X // when the archive is mapped at the requested location. // [c] Points into an object Y which is inside mapped static archive: // - This happens only during dynamic dump // - Adjust this pointer by _mapped_to_requested_static_archive_delta, // so it points to Y when the static archive is mapped at the requested location. template class RelocateBufferToRequested : public BitMapClosure { ArchiveBuilder* _builder; address _buffer_bottom; intx _buffer_to_requested_delta; intx _mapped_to_requested_static_archive_delta; size_t _max_non_null_offset; public: RelocateBufferToRequested(ArchiveBuilder* builder) { _builder = builder; _buffer_bottom = _builder->buffer_bottom(); _buffer_to_requested_delta = builder->buffer_to_requested_delta(); _mapped_to_requested_static_archive_delta = builder->requested_static_archive_bottom() - builder->mapped_static_archive_bottom(); _max_non_null_offset = 0; address bottom = _builder->buffer_bottom(); address top = _builder->buffer_top(); address new_bottom = bottom + _buffer_to_requested_delta; address new_top = top + _buffer_to_requested_delta; aot_log_debug(aot)("Relocating archive from [" INTPTR_FORMAT " - " INTPTR_FORMAT "] to " "[" INTPTR_FORMAT " - " INTPTR_FORMAT "]", p2i(bottom), p2i(top), p2i(new_bottom), p2i(new_top)); } bool do_bit(size_t offset) { address* p = (address*)_buffer_bottom + offset; assert(_builder->is_in_buffer_space(p), "pointer must live in buffer space"); if (*p == nullptr) { // todo -- clear bit, etc ArchivePtrMarker::ptrmap()->clear_bit(offset); } else { if (STATIC_DUMP) { assert(_builder->is_in_buffer_space(*p), "old pointer must point inside buffer space"); *p += _buffer_to_requested_delta; assert(_builder->is_in_requested_static_archive(*p), "new pointer must point inside requested archive"); } else { if (_builder->is_in_buffer_space(*p)) { *p += _buffer_to_requested_delta; // assert is in requested dynamic archive } else { assert(_builder->is_in_mapped_static_archive(*p), "old pointer must point inside buffer space or mapped static archive"); *p += _mapped_to_requested_static_archive_delta; assert(_builder->is_in_requested_static_archive(*p), "new pointer must point inside requested archive"); } } _max_non_null_offset = offset; } return true; // keep iterating } void doit() { ArchivePtrMarker::ptrmap()->iterate(this); ArchivePtrMarker::compact(_max_non_null_offset); } }; #ifdef _LP64 int ArchiveBuilder::precomputed_narrow_klass_shift() { // Legacy Mode: // We use 32 bits for narrowKlass, which should cover the full 4G Klass range. Shift can be 0. // CompactObjectHeader Mode: // narrowKlass is much smaller, and we use the highest possible shift value to later get the maximum // Klass encoding range. // // Note that all of this may change in the future, if we decide to correct the pre-calculated // narrow Klass IDs at archive load time. assert(UseCompressedClassPointers, "Only needed for compressed class pointers"); return UseCompactObjectHeaders ? CompressedKlassPointers::max_shift() : 0; } #endif // _LP64 void ArchiveBuilder::relocate_to_requested() { if (!ro_region()->is_packed()) { ro_region()->pack(); } size_t my_archive_size = buffer_top() - buffer_bottom(); if (CDSConfig::is_dumping_static_archive()) { _requested_static_archive_top = _requested_static_archive_bottom + my_archive_size; RelocateBufferToRequested patcher(this); patcher.doit(); } else { assert(CDSConfig::is_dumping_dynamic_archive(), "must be"); _requested_dynamic_archive_top = _requested_dynamic_archive_bottom + my_archive_size; RelocateBufferToRequested patcher(this); patcher.doit(); } } void ArchiveBuilder::print_stats() { _alloc_stats.print_stats(int(_ro_region.used()), int(_rw_region.used())); } void ArchiveBuilder::write_archive(FileMapInfo* mapinfo, ArchiveMappedHeapInfo* mapped_heap_info, ArchiveStreamedHeapInfo* streamed_heap_info) { // Make sure NUM_CDS_REGIONS (exported in cds.h) agrees with // AOTMetaspace::n_regions (internal to hotspot). assert(NUM_CDS_REGIONS == AOTMetaspace::n_regions, "sanity"); ResourceMark rm; write_region(mapinfo, AOTMetaspace::rw, &_rw_region, /*read_only=*/false,/*allow_exec=*/false); write_region(mapinfo, AOTMetaspace::ro, &_ro_region, /*read_only=*/true, /*allow_exec=*/false); write_region(mapinfo, AOTMetaspace::ac, &_ac_region, /*read_only=*/false,/*allow_exec=*/false); // Split pointer map into read-write and read-only bitmaps ArchivePtrMarker::initialize_rw_ro_maps(&_rw_ptrmap, &_ro_ptrmap); size_t bitmap_size_in_bytes; char* bitmap = mapinfo->write_bitmap_region(ArchivePtrMarker::rw_ptrmap(), ArchivePtrMarker::ro_ptrmap(), mapped_heap_info, streamed_heap_info, bitmap_size_in_bytes); if (mapped_heap_info != nullptr && mapped_heap_info->is_used()) { _total_heap_region_size = mapinfo->write_mapped_heap_region(mapped_heap_info); } else if (streamed_heap_info != nullptr && streamed_heap_info->is_used()) { _total_heap_region_size = mapinfo->write_streamed_heap_region(streamed_heap_info); } print_region_stats(mapinfo, mapped_heap_info, streamed_heap_info); mapinfo->set_requested_base((char*)AOTMetaspace::requested_base_address()); mapinfo->set_header_crc(mapinfo->compute_header_crc()); // After this point, we should not write any data into mapinfo->header() since this // would corrupt its checksum we have calculated before. mapinfo->write_header(); mapinfo->close(); if (log_is_enabled(Info, aot)) { log_info(aot)("Full module graph = %s", CDSConfig::is_dumping_full_module_graph() ? "enabled" : "disabled"); print_stats(); } if (log_is_enabled(Info, aot, map)) { AOTMapLogger::dumptime_log(this, mapinfo, mapped_heap_info, streamed_heap_info, bitmap, bitmap_size_in_bytes); } CDS_JAVA_HEAP_ONLY(HeapShared::destroy_archived_object_cache()); FREE_C_HEAP_ARRAY(char, bitmap); } void ArchiveBuilder::write_region(FileMapInfo* mapinfo, int region_idx, DumpRegion* dump_region, bool read_only, bool allow_exec) { mapinfo->write_region(region_idx, dump_region->base(), dump_region->used(), read_only, allow_exec); } void ArchiveBuilder::count_relocated_pointer(bool tagged, bool nulled) { _relocated_ptr_info._num_ptrs ++; _relocated_ptr_info._num_tagged_ptrs += tagged ? 1 : 0; _relocated_ptr_info._num_nulled_ptrs += nulled ? 1 : 0; } void ArchiveBuilder::print_region_stats(FileMapInfo *mapinfo, ArchiveMappedHeapInfo* mapped_heap_info, ArchiveStreamedHeapInfo* streamed_heap_info) { // Print statistics of all the regions const size_t bitmap_used = mapinfo->region_at(AOTMetaspace::bm)->used(); const size_t bitmap_reserved = mapinfo->region_at(AOTMetaspace::bm)->used_aligned(); const size_t total_reserved = _ro_region.reserved() + _rw_region.reserved() + bitmap_reserved + _total_heap_region_size; const size_t total_bytes = _ro_region.used() + _rw_region.used() + bitmap_used + _total_heap_region_size; const double total_u_perc = percent_of(total_bytes, total_reserved); _rw_region.print(total_reserved); _ro_region.print(total_reserved); _ac_region.print(total_reserved); print_bitmap_region_stats(bitmap_used, total_reserved); if (mapped_heap_info != nullptr && mapped_heap_info->is_used()) { print_heap_region_stats(mapped_heap_info->buffer_start(), mapped_heap_info->buffer_byte_size(), total_reserved); } else if (streamed_heap_info != nullptr && streamed_heap_info->is_used()) { print_heap_region_stats(streamed_heap_info->buffer_start(), streamed_heap_info->buffer_byte_size(), total_reserved); } aot_log_debug(aot)("total : %9zu [100.0%% of total] out of %9zu bytes [%5.1f%% used]", total_bytes, total_reserved, total_u_perc); } void ArchiveBuilder::print_bitmap_region_stats(size_t size, size_t total_size) { aot_log_debug(aot)("bm space: %9zu [ %4.1f%% of total] out of %9zu bytes [100.0%% used]", size, size/double(total_size)*100.0, size); } void ArchiveBuilder::print_heap_region_stats(char* start, size_t size, size_t total_size) { char* top = start + size; aot_log_debug(aot)("hp space: %9zu [ %4.1f%% of total] out of %9zu bytes [100.0%% used] at " INTPTR_FORMAT, size, size/double(total_size)*100.0, size, p2i(start)); } void ArchiveBuilder::report_out_of_space(const char* name, size_t needed_bytes) { // This is highly unlikely to happen on 64-bits because we have reserved a 4GB space. // On 32-bit we reserve only 256MB so you could run out of space with 100,000 classes // or so. _rw_region.print_out_of_space_msg(name, needed_bytes); _ro_region.print_out_of_space_msg(name, needed_bytes); log_error(aot)("Unable to allocate from '%s' region: Please reduce the number of shared classes.", name); AOTMetaspace::unrecoverable_writing_error(); }