/* * Copyright (c) 1999, 2026, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "asm/macroAssembler.hpp" #include "classfile/vmSymbols.hpp" #include "code/codeCache.hpp" #include "code/vtableStubs.hpp" #include "code/nativeInst.hpp" #include "cppstdlib/cstdlib.hpp" #include "interpreter/interpreter.hpp" #include "jvm.h" #include "memory/allocation.inline.hpp" #include "os_linux.hpp" #include "os_posix.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/osThread.hpp" #include "runtime/safepointMechanism.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/javaThread.hpp" #include "runtime/timer.hpp" #include "signals_posix.hpp" #include "utilities/debug.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" // put OS-includes here # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include #define REG_FP 29 #define REG_LR 30 #define REG_BCP 22 NOINLINE address os::current_stack_pointer() { return (address)__builtin_frame_address(0); } char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). return (char*) 0xffffffffffff; } address os::Posix::ucontext_get_pc(const ucontext_t * uc) { return (address)uc->uc_mcontext.pc; } void os::Posix::ucontext_set_pc(ucontext_t * uc, address pc) { uc->uc_mcontext.pc = (intptr_t)pc; } intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) { return (intptr_t*)uc->uc_mcontext.sp; } intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) { return (intptr_t*)uc->uc_mcontext.regs[REG_FP]; } address os::fetch_frame_from_context(const void* ucVoid, intptr_t** ret_sp, intptr_t** ret_fp) { address epc; const ucontext_t* uc = (const ucontext_t*)ucVoid; if (uc != nullptr) { epc = os::Posix::ucontext_get_pc(uc); if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc); if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc); } else { epc = nullptr; if (ret_sp) *ret_sp = (intptr_t *)nullptr; if (ret_fp) *ret_fp = (intptr_t *)nullptr; } return epc; } frame os::fetch_frame_from_context(const void* ucVoid) { intptr_t* sp; intptr_t* fp; address epc = fetch_frame_from_context(ucVoid, &sp, &fp); if (!is_readable_pointer(epc)) { // Try to recover from calling into bad memory // Assume new frame has not been set up, the same as // compiled frame stack bang return fetch_compiled_frame_from_context(ucVoid); } return frame(sp, fp, epc); } frame os::fetch_compiled_frame_from_context(const void* ucVoid) { const ucontext_t* uc = (const ucontext_t*)ucVoid; // In compiled code, the stack banging is performed before LR // has been saved in the frame. LR is live, and SP and FP // belong to the caller. intptr_t* fp = os::Linux::ucontext_get_fp(uc); intptr_t* sp = os::Linux::ucontext_get_sp(uc); address pc = (address)(uc->uc_mcontext.regs[REG_LR] - NativeInstruction::instruction_size); return frame(sp, fp, pc); } intptr_t* os::fetch_bcp_from_context(const void* ucVoid) { assert(ucVoid != nullptr, "invariant"); const ucontext_t* uc = (const ucontext_t*)ucVoid; assert(os::Posix::ucontext_is_interpreter(uc), "invariant"); return reinterpret_cast(uc->uc_mcontext.regs[REG_BCP]); } // By default, gcc always saves frame pointer rfp on this stack. This // may get turned off by -fomit-frame-pointer. // The "Procedure Call Standard for the Arm 64-bit Architecture" doesn't // specify a location for the frame record within a stack frame (6.4.6). // GCC currently chooses to save it at the top of the frame (lowest address). // This means that using fr->sender_sp() to set the caller's frame _unextended_sp, // as we do in x86, is wrong. Using fr->link() instead only makes sense for // native frames. Setting a correct value for _unextended_sp is important // if this value is later used to get that frame's caller. This will happen // if we end up calling frame::sender_for_compiled_frame(), which will be the // case if the _pc is associated with a CodeBlob that has a _frame_size > 0 // (nmethod, runtime stub, safepoint stub, etc). frame os::get_sender_for_C_frame(frame* fr) { address pc = fr->sender_pc(); CodeBlob* cb = CodeCache::find_blob(pc); bool use_codeblob = cb != nullptr && cb->frame_size() > 0; assert(!use_codeblob || !Interpreter::contains(pc), "should not be an interpreter frame"); intptr_t* sender_sp = use_codeblob ? (fr->link() + frame::metadata_words - cb->frame_size()) : fr->link(); return frame(sender_sp, sender_sp, fr->link(), pc, cb, true /* allow_cb_null */); } NOINLINE frame os::current_frame() { intptr_t *fp = *(intptr_t **)__builtin_frame_address(0); frame myframe((intptr_t*)os::current_stack_pointer(), (intptr_t*)fp, CAST_FROM_FN_PTR(address, os::current_frame)); if (os::is_first_C_frame(&myframe)) { // stack is not walkable return frame(); } else { return os::get_sender_for_C_frame(&myframe); } } bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info, ucontext_t* uc, JavaThread* thread) { /* NOTE: does not seem to work on linux. if (info == nullptr || info->si_code <= 0 || info->si_code == SI_NOINFO) { // can't decode this kind of signal info = nullptr; } else { assert(sig == info->si_signo, "bad siginfo"); } */ // decide if this trap can be handled by a stub address stub = nullptr; address pc = nullptr; //%note os_trap_1 if (info != nullptr && uc != nullptr && thread != nullptr) { pc = (address) os::Posix::ucontext_get_pc(uc); address addr = (address) info->si_addr; // Make sure the high order byte is sign extended, as it may be masked away by the hardware. if ((uintptr_t(addr) & (uintptr_t(1) << 55)) != 0) { addr = address(uintptr_t(addr) | (uintptr_t(0xFF) << 56)); } // Handle ALL stack overflow variations here if (sig == SIGSEGV) { // check if fault address is within thread stack if (thread->is_in_full_stack(addr)) { if (os::Posix::handle_stack_overflow(thread, addr, pc, uc, &stub)) { return true; // continue } } } if (thread->thread_state() == _thread_in_Java) { // Java thread running in Java code => find exception handler if any // a fault inside compiled code, the interpreter, or a stub if (sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) { stub = SharedRuntime::get_poll_stub(pc); } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) { // BugId 4454115: A read from a MappedByteBuffer can fault // here if the underlying file has been truncated. // Do not crash the VM in such a case. CodeBlob* cb = CodeCache::find_blob(pc); nmethod* nm = (cb != nullptr) ? cb->as_nmethod_or_null() : nullptr; bool is_unsafe_memory_access = (thread->doing_unsafe_access() && UnsafeMemoryAccess::contains_pc(pc)); if ((nm != nullptr && nm->has_unsafe_access()) || is_unsafe_memory_access) { address next_pc = pc + NativeCall::instruction_size; if (is_unsafe_memory_access) { next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc); } stub = SharedRuntime::handle_unsafe_access(thread, next_pc); } } else if (sig == SIGILL && nativeInstruction_at(pc)->is_stop()) { // A pointer to the message will have been placed in r0 const char *detail_msg = (const char *)(uc->uc_mcontext.regs[0]); const char *msg = "stop"; if (TraceTraps) { tty->print_cr("trap: %s: (SIGILL)", msg); } // End life with a fatal error, message and detail message and the context. // Note: no need to do any post-processing here (e.g. signal chaining) VMError::report_and_die(thread, uc, nullptr, 0, msg, "%s", detail_msg); ShouldNotReachHere(); } else if (sig == SIGFPE && (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) { stub = SharedRuntime:: continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO); } else if (sig == SIGSEGV && MacroAssembler::uses_implicit_null_check((void*)addr)) { // Determination of interpreter/vtable stub/compiled code null exception stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); } } else if ((thread->thread_state() == _thread_in_vm || thread->thread_state() == _thread_in_native) && sig == SIGBUS && /* info->si_code == BUS_OBJERR && */ thread->doing_unsafe_access()) { address next_pc = pc + NativeCall::instruction_size; if (UnsafeMemoryAccess::contains_pc(pc)) { next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc); } stub = SharedRuntime::handle_unsafe_access(thread, next_pc); } // jni_fast_GetField can trap at certain pc's if a GC kicks in // and the heap gets shrunk before the field access. if ((sig == SIGSEGV) || (sig == SIGBUS)) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { stub = addr; } } } if (stub != nullptr) { // save all thread context in case we need to restore it if (thread != nullptr) thread->set_saved_exception_pc(pc); os::Posix::ucontext_set_pc(uc, stub); return true; } return false; // Mute compiler } void os::Linux::init_thread_fpu_state(void) { } int os::Linux::get_fpu_control_word(void) { return 0; } void os::Linux::set_fpu_control_word(int fpu_control) { } //////////////////////////////////////////////////////////////////////////////// // thread stack // Minimum usable stack sizes required to get to user code. Space for // HotSpot guard pages is added later. size_t os::_compiler_thread_min_stack_allowed = 72 * K; size_t os::_java_thread_min_stack_allowed = 72 * K; size_t os::_vm_internal_thread_min_stack_allowed = 72 * K; // return default stack size for thr_type size_t os::Posix::default_stack_size(os::ThreadType thr_type) { // default stack size (compiler thread needs larger stack) size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); return s; } ///////////////////////////////////////////////////////////////////////////// // helper functions for fatal error handler void os::print_context(outputStream *st, const void *context) { if (context == nullptr) return; const ucontext_t *uc = (const ucontext_t*)context; st->print_cr("Registers:"); for (int r = 0; r < 31; r++) { st->print_cr( "R%d=" INTPTR_FORMAT, r, (uintptr_t)uc->uc_mcontext.regs[r]); } st->cr(); } void os::print_register_info(outputStream *st, const void *context, int& continuation) { const int register_count = 31 /* r0-r30 */; int n = continuation; assert(n >= 0 && n <= register_count, "Invalid continuation value"); if (context == nullptr || n == register_count) { return; } const ucontext_t *uc = (const ucontext_t*)context; while (n < register_count) { // Update continuation with next index before printing location continuation = n + 1; st->print("R%-2d=", n); print_location(st, uc->uc_mcontext.regs[n]); ++n; } } void os::setup_fpu() { } #ifndef PRODUCT void os::verify_stack_alignment() { assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); } #endif int os::extra_bang_size_in_bytes() { // AArch64 does not require the additional stack bang. return 0; } static inline void atomic_copy64(const volatile void *src, volatile void *dst) { *(jlong *) dst = *(const jlong *) src; } extern "C" { int SpinPause() { using spin_wait_func_ptr_t = void (*)(); spin_wait_func_ptr_t func = CAST_TO_FN_PTR(spin_wait_func_ptr_t, StubRoutines::aarch64::spin_wait()); assert(func != nullptr, "StubRoutines::aarch64::spin_wait must not be null."); (*func)(); // If StubRoutines::aarch64::spin_wait consists of only a RET, // SpinPause can be considered as implemented. There will be a sequence // of instructions for: // - call of SpinPause // - load of StubRoutines::aarch64::spin_wait stub pointer // - indirect call of the stub // - return from the stub // - return from SpinPause // So '1' always is returned. return 1; } void _Copy_conjoint_jshorts_atomic(const jshort* from, jshort* to, size_t count) { if (from > to) { const jshort *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { const jshort *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jints_atomic(const jint* from, jint* to, size_t count) { if (from > to) { const jint *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { const jint *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jlongs_atomic(const jlong* from, jlong* to, size_t count) { if (from > to) { const jlong *end = from + count; while (from < end) atomic_copy64(from++, to++); } else if (from < to) { const jlong *end = from; from += count - 1; to += count - 1; while (from >= end) atomic_copy64(from--, to--); } } void _Copy_arrayof_conjoint_bytes(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count); } void _Copy_arrayof_conjoint_jshorts(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 2); } void _Copy_arrayof_conjoint_jints(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 4); } void _Copy_arrayof_conjoint_jlongs(const HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 8); } };