/* * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2025 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "asm/assembler.inline.hpp" #include "asm/macroAssembler.inline.hpp" #include "compiler/disassembler.hpp" #include "jvm.h" #include "memory/resourceArea.hpp" #include "runtime/globals_extension.hpp" #include "runtime/java.hpp" #include "runtime/os.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/vm_version.hpp" #include "utilities/align.hpp" #include "utilities/defaultStream.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/powerOfTwo.hpp" #include #if defined(_AIX) #include "os_aix.hpp" #include #endif bool VM_Version::_is_determine_features_test_running = false; uint64_t VM_Version::_dscr_val = 0; #define MSG(flag) \ if (flag && !FLAG_IS_DEFAULT(flag)) \ jio_fprintf(defaultStream::error_stream(), \ "warning: -XX:+" #flag " requires -XX:+UseSIGTRAP\n" \ " -XX:+" #flag " will be disabled!\n"); void VM_Version::initialize() { // Test which instructions are supported and measure cache line size. determine_features(); // If PowerArchitecturePPC64 hasn't been specified explicitly determine from features. if (FLAG_IS_DEFAULT(PowerArchitecturePPC64)) { if (VM_Version::has_brw()) { FLAG_SET_ERGO(PowerArchitecturePPC64, 10); } else if (VM_Version::has_darn()) { FLAG_SET_ERGO(PowerArchitecturePPC64, 9); } else { FLAG_SET_ERGO(PowerArchitecturePPC64, 8); } } bool PowerArchitecturePPC64_ok = false; switch (PowerArchitecturePPC64) { case 10: if (!VM_Version::has_brw() ) break; case 9: if (!VM_Version::has_darn() ) break; case 8: PowerArchitecturePPC64_ok = true; break; default: break; } guarantee(PowerArchitecturePPC64_ok, "PowerArchitecturePPC64 cannot be set to " "%zu on this machine", PowerArchitecturePPC64); // Power 8: Configure Data Stream Control Register. if (VM_Version::has_mfdscr()) { config_dscr(); } if (!UseSIGTRAP) { MSG(TrapBasedICMissChecks); MSG(TrapBasedNullChecks); FLAG_SET_ERGO(TrapBasedNullChecks, false); FLAG_SET_ERGO(TrapBasedICMissChecks, false); } #ifdef COMPILER2 if (!UseSIGTRAP) { MSG(TrapBasedRangeChecks); FLAG_SET_ERGO(TrapBasedRangeChecks, false); } if (PowerArchitecturePPC64 >= 9) { // Performance is good since Power9. if (FLAG_IS_DEFAULT(SuperwordUseVSX)) { FLAG_SET_ERGO(SuperwordUseVSX, true); } } MaxVectorSize = SuperwordUseVSX ? 16 : 8; if (FLAG_IS_DEFAULT(AlignVector)) { FLAG_SET_ERGO(AlignVector, false); } if (PowerArchitecturePPC64 >= 9) { if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstructionsPPC64)) { FLAG_SET_ERGO(UseCountTrailingZerosInstructionsPPC64, true); } if (FLAG_IS_DEFAULT(UseCharacterCompareIntrinsics)) { FLAG_SET_ERGO(UseCharacterCompareIntrinsics, true); } if (SuperwordUseVSX) { if (FLAG_IS_DEFAULT(UseVectorByteReverseInstructionsPPC64)) { FLAG_SET_ERGO(UseVectorByteReverseInstructionsPPC64, true); } } else if (UseVectorByteReverseInstructionsPPC64) { warning("UseVectorByteReverseInstructionsPPC64 specified, but needs SuperwordUseVSX."); FLAG_SET_DEFAULT(UseVectorByteReverseInstructionsPPC64, false); } if (FLAG_IS_DEFAULT(UseBASE64Intrinsics)) { FLAG_SET_ERGO(UseBASE64Intrinsics, true); } } else { if (UseCountTrailingZerosInstructionsPPC64) { warning("UseCountTrailingZerosInstructionsPPC64 specified, but needs at least Power9."); FLAG_SET_DEFAULT(UseCountTrailingZerosInstructionsPPC64, false); } if (UseCharacterCompareIntrinsics) { warning("UseCharacterCompareIntrinsics specified, but needs at least Power9."); FLAG_SET_DEFAULT(UseCharacterCompareIntrinsics, false); } if (UseVectorByteReverseInstructionsPPC64) { warning("UseVectorByteReverseInstructionsPPC64 specified, but needs at least Power9."); FLAG_SET_DEFAULT(UseVectorByteReverseInstructionsPPC64, false); } if (UseBASE64Intrinsics) { warning("UseBASE64Intrinsics specified, but needs at least Power9."); FLAG_SET_DEFAULT(UseBASE64Intrinsics, false); } } if (PowerArchitecturePPC64 >= 10) { if (FLAG_IS_DEFAULT(UseByteReverseInstructions)) { FLAG_SET_ERGO(UseByteReverseInstructions, true); } } else { if (UseByteReverseInstructions) { warning("UseByteReverseInstructions specified, but needs at least Power10."); FLAG_SET_DEFAULT(UseByteReverseInstructions, false); } } if (OptimizeFill) { warning("OptimizeFill is not supported on this CPU."); FLAG_SET_DEFAULT(OptimizeFill, false); } if (OptoScheduling) { // The OptoScheduling information is not maintained in ppd.ad. warning("OptoScheduling is not supported on this CPU."); FLAG_SET_DEFAULT(OptoScheduling, false); } #endif // Create and print feature-string. char buf[(num_features+1) * 16]; // Max 16 chars per feature. jio_snprintf(buf, sizeof(buf), "ppc64 sha aes%s%s%s", (has_mfdscr() ? " mfdscr" : ""), (has_darn() ? " darn" : ""), (has_brw() ? " brw" : "") // Make sure number of %s matches num_features! ); _cpu_info_string = os::strdup(buf); if (Verbose) { print_features(); } // Used by C1. _supports_atomic_getset4 = true; _supports_atomic_getadd4 = true; _supports_atomic_getset8 = true; _supports_atomic_getadd8 = true; intx cache_line_size = L1_data_cache_line_size(); if (PowerArchitecturePPC64 >= 9) { if (os::supports_map_sync() == true) { _data_cache_line_flush_size = cache_line_size; } } if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) AllocatePrefetchStyle = 1; if (cache_line_size > AllocatePrefetchStepSize) AllocatePrefetchStepSize = cache_line_size; // PPC processors have an automatic prefetch engine. if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) AllocatePrefetchLines = 1; if (AllocatePrefetchDistance < 0) AllocatePrefetchDistance = 3 * cache_line_size; assert(AllocatePrefetchLines > 0, "invalid value"); if (AllocatePrefetchLines < 1) { // Set valid value in product VM. AllocatePrefetchLines = 1; // Conservative value. } if (AllocatePrefetchStyle == 3 && AllocatePrefetchDistance < cache_line_size) { AllocatePrefetchStyle = 1; // Fall back if inappropriate. } assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive"); if (FLAG_IS_DEFAULT(ContendedPaddingWidth) && (cache_line_size > ContendedPaddingWidth)) { ContendedPaddingWidth = cache_line_size; } // If running on Power8 or newer hardware, the implementation uses the available vector instructions. // In all other cases, the implementation uses only generally available instructions. if (!UseCRC32Intrinsics) { if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) { FLAG_SET_DEFAULT(UseCRC32Intrinsics, true); } } // Implementation does not use any of the vector instructions available with Power8. // Their exploitation is still pending (aka "work in progress"). if (!UseCRC32CIntrinsics) { if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true); } } // TODO: Provide implementation. if (UseAdler32Intrinsics) { warning("Adler32Intrinsics not available on this CPU."); FLAG_SET_DEFAULT(UseAdler32Intrinsics, false); } // The AES intrinsic stubs require AES instruction support. if (FLAG_IS_DEFAULT(UseAES)) { UseAES = true; } if (FLAG_IS_DEFAULT(UseAESIntrinsics)) { UseAESIntrinsics = true; } if (UseAESCTRIntrinsics) { warning("AES/CTR intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); } if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) { UseGHASHIntrinsics = true; } if (FLAG_IS_DEFAULT(UseFMA)) { FLAG_SET_DEFAULT(UseFMA, true); } if (UseMD5Intrinsics) { warning("MD5 intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseMD5Intrinsics, false); } if (FLAG_IS_DEFAULT(UseSHA)) { UseSHA = true; } if (UseSHA1Intrinsics) { warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA1Intrinsics, false); } if (UseSHA) { if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) { FLAG_SET_DEFAULT(UseSHA256Intrinsics, true); } } else if (UseSHA256Intrinsics) { warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA256Intrinsics, false); } if (UseSHA) { if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA512Intrinsics, true); } } else if (UseSHA512Intrinsics) { warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA512Intrinsics, false); } if (UseSHA3Intrinsics) { warning("Intrinsics for SHA3-224, SHA3-256, SHA3-384 and SHA3-512 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA3Intrinsics, false); } if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA, false); } #ifdef COMPILER2 if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) { UseSquareToLenIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) { UseMulAddIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) { UseMultiplyToLenIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) { UseMontgomeryMultiplyIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) { UseMontgomerySquareIntrinsic = true; } #endif if (UseVectorizedMismatchIntrinsic) { warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU."); FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); } // This machine allows unaligned memory accesses if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) { FLAG_SET_DEFAULT(UseUnalignedAccesses, true); } check_virtualizations(); } void VM_Version::check_virtualizations() { #if defined(_AIX) int rc = 0; perfstat_partition_total_t pinfo; rc = perfstat_partition_total(nullptr, &pinfo, sizeof(perfstat_partition_total_t), 1); if (rc == 1) { Abstract_VM_Version::_detected_virtualization = PowerVM; } #else const char* info_file = "/proc/ppc64/lparcfg"; // system_type=...qemu indicates PowerKVM // e.g. system_type=IBM pSeries (emulated by qemu) char line[500]; FILE* fp = os::fopen(info_file, "r"); if (fp == nullptr) { return; } const char* system_type="system_type="; // in case this line contains qemu, it is KVM const char* num_lpars="NumLpars="; // in case of non-KVM : if this line is found it is PowerVM bool num_lpars_found = false; while (fgets(line, sizeof(line), fp) != nullptr) { if (strncmp(line, system_type, strlen(system_type)) == 0) { if (strstr(line, "qemu") != nullptr) { Abstract_VM_Version::_detected_virtualization = PowerKVM; fclose(fp); return; } } if (strncmp(line, num_lpars, strlen(num_lpars)) == 0) { num_lpars_found = true; } } if (num_lpars_found) { Abstract_VM_Version::_detected_virtualization = PowerVM; } else { Abstract_VM_Version::_detected_virtualization = PowerFullPartitionMode; } fclose(fp); #endif } void VM_Version::print_platform_virtualization_info(outputStream* st) { #if defined(_AIX) // more info about perfstat API see // https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.prftools/idprftools_perfstat_glob_partition.htm int rc = 0; perfstat_partition_total_t pinfo; memset(&pinfo, 0, sizeof(perfstat_partition_total_t)); rc = perfstat_partition_total(nullptr, &pinfo, sizeof(perfstat_partition_total_t), 1); if (rc != 1) { return; } else { st->print_cr("Virtualization type : PowerVM"); } // CPU information perfstat_cpu_total_t cpuinfo; memset(&cpuinfo, 0, sizeof(perfstat_cpu_total_t)); rc = perfstat_cpu_total(nullptr, &cpuinfo, sizeof(perfstat_cpu_total_t), 1); if (rc != 1) { return; } st->print_cr("Processor description : %s", cpuinfo.description); st->print_cr("Processor speed : %llu Hz", cpuinfo.processorHZ); st->print_cr("LPAR partition name : %s", pinfo.name); st->print_cr("LPAR partition number : %u", pinfo.lpar_id); st->print_cr("LPAR partition type : %s", pinfo.type.b.shared_enabled ? "shared" : "dedicated"); st->print_cr("LPAR mode : %s", pinfo.type.b.donate_enabled ? "donating" : pinfo.type.b.capped ? "capped" : "uncapped"); st->print_cr("LPAR partition group ID : %u", pinfo.group_id); st->print_cr("LPAR shared pool ID : %u", pinfo.pool_id); st->print_cr("AMS (active memory sharing) : %s", pinfo.type.b.ams_capable ? "capable" : "not capable"); st->print_cr("AMS (active memory sharing) : %s", pinfo.type.b.ams_enabled ? "on" : "off"); st->print_cr("AME (active memory expansion) : %s", pinfo.type.b.ame_enabled ? "on" : "off"); if (pinfo.type.b.ame_enabled) { st->print_cr("AME true memory in bytes : %llu", pinfo.true_memory); st->print_cr("AME expanded memory in bytes : %llu", pinfo.expanded_memory); } st->print_cr("SMT : %s", pinfo.type.b.smt_capable ? "capable" : "not capable"); st->print_cr("SMT : %s", pinfo.type.b.smt_enabled ? "on" : "off"); int ocpus = pinfo.online_cpus > 0 ? pinfo.online_cpus : 1; st->print_cr("LPAR threads : %d", cpuinfo.ncpus/ocpus); st->print_cr("LPAR online virtual cpus : %d", pinfo.online_cpus); st->print_cr("LPAR logical cpus : %d", cpuinfo.ncpus); st->print_cr("LPAR maximum virtual cpus : %u", pinfo.max_cpus); st->print_cr("LPAR minimum virtual cpus : %u", pinfo.min_cpus); st->print_cr("LPAR entitled capacity : %4.2f", (double) (pinfo.entitled_proc_capacity/100.0)); st->print_cr("LPAR online memory : %llu MB", pinfo.online_memory); st->print_cr("LPAR maximum memory : %llu MB", pinfo.max_memory); st->print_cr("LPAR minimum memory : %llu MB", pinfo.min_memory); #else const char* info_file = "/proc/ppc64/lparcfg"; const char* kw[] = { "system_type=", // qemu indicates PowerKVM "partition_entitled_capacity=", // entitled processor capacity percentage "partition_max_entitled_capacity=", "capacity_weight=", // partition CPU weight "partition_active_processors=", "partition_potential_processors=", "entitled_proc_capacity_available=", "capped=", // 0 - uncapped, 1 - vcpus capped at entitled processor capacity percentage "shared_processor_mode=", // (non)dedicated partition "system_potential_processors=", "pool=", // CPU-pool number "pool_capacity=", "NumLpars=", // on non-KVM machines, NumLpars is not found for full partition mode machines nullptr }; if (!print_matching_lines_from_file(info_file, st, kw)) { st->print_cr(" <%s Not Available>", info_file); } #endif } void VM_Version::print_features() { tty->print_cr("Version: %s L1_data_cache_line_size=%d", cpu_info_string(), L1_data_cache_line_size()); if (Verbose) { if (ContendedPaddingWidth > 0) { tty->cr(); tty->print_cr("ContendedPaddingWidth %d", ContendedPaddingWidth); } } } void VM_Version::determine_features() { #if defined(ABI_ELFv2) // 1 InstWord per call for the blr instruction. const int code_size = (num_features+1+2*1)*BytesPerInstWord; #else // 7 InstWords for each call (function descriptor + blr instruction). const int code_size = (num_features+1+2*7)*BytesPerInstWord; #endif int features = 0; // create test area enum { BUFFER_SIZE = 2*4*K }; // Needs to be >=2* max cache line size (cache line size can't exceed min page size). char test_area[BUFFER_SIZE]; char *mid_of_test_area = &test_area[BUFFER_SIZE>>1]; // Allocate space for the code. ResourceMark rm; CodeBuffer cb("detect_cpu_features", code_size, 0); MacroAssembler* a = new MacroAssembler(&cb); // Must be set to true so we can generate the test code. _features = VM_Version::all_features_m; // Emit code. void (*test)(address addr, uint64_t offset)=(void(*)(address addr, uint64_t offset))(void *)a->function_entry(); uint32_t *code = (uint32_t *)a->pc(); // Keep R3_ARG1 unmodified, it contains &field (see below). // Keep R4_ARG2 unmodified, it contains offset = 0 (see below). a->mfdscr(R0); a->darn(R7); a->brw(R5, R6); a->blr(); // Emit function to set one cache line to zero. Emit function descriptor and get pointer to it. void (*zero_cacheline_func_ptr)(char*) = (void(*)(char*))(void *)a->function_entry(); a->dcbz(R3_ARG1); // R3_ARG1 = addr a->blr(); uint32_t *code_end = (uint32_t *)a->pc(); a->flush(); _features = VM_Version::unknown_m; // Print the detection code. if (PrintAssembly) { ttyLocker ttyl; tty->print_cr("Decoding cpu-feature detection stub at " INTPTR_FORMAT " before execution:", p2i(code)); Disassembler::decode((u_char*)code, (u_char*)code_end, tty); } // Measure cache line size. memset(test_area, 0xFF, BUFFER_SIZE); // Fill test area with 0xFF. (*zero_cacheline_func_ptr)(mid_of_test_area); // Call function which executes dcbz to the middle. int count = 0; // count zeroed bytes for (int i = 0; i < BUFFER_SIZE; i++) if (test_area[i] == 0) count++; guarantee(is_power_of_2(count), "cache line size needs to be a power of 2"); _L1_data_cache_line_size = count; // Execute code. Illegal instructions will be replaced by 0 in the signal handler. VM_Version::_is_determine_features_test_running = true; // We must align the first argument to 16 bytes because of the lqarx check. (*test)(align_up((address)mid_of_test_area, 16), 0); VM_Version::_is_determine_features_test_running = false; // determine which instructions are legal. int feature_cntr = 0; if (code[feature_cntr++]) features |= mfdscr_m; if (code[feature_cntr++]) features |= darn_m; if (code[feature_cntr++]) features |= brw_m; // Print the detection code. if (PrintAssembly) { ttyLocker ttyl; tty->print_cr("Decoding cpu-feature detection stub at " INTPTR_FORMAT " after execution:", p2i(code)); Disassembler::decode((u_char*)code, (u_char*)code_end, tty); } _features = features; } // Power 8: Configure Data Stream Control Register. void VM_Version::config_dscr() { // 7 InstWords for each call (function descriptor + blr instruction). const int code_size = (2+2*7)*BytesPerInstWord; // Allocate space for the code. ResourceMark rm; CodeBuffer cb("config_dscr", code_size, 0); MacroAssembler* a = new MacroAssembler(&cb); // Emit code. uint64_t (*get_dscr)() = (uint64_t(*)())(void *)a->function_entry(); uint32_t *code = (uint32_t *)a->pc(); a->mfdscr(R3); a->blr(); void (*set_dscr)(long) = (void(*)(long))(void *)a->function_entry(); a->mtdscr(R3); a->blr(); uint32_t *code_end = (uint32_t *)a->pc(); a->flush(); // Print the detection code. if (PrintAssembly) { ttyLocker ttyl; tty->print_cr("Decoding dscr configuration stub at " INTPTR_FORMAT " before execution:", p2i(code)); Disassembler::decode((u_char*)code, (u_char*)code_end, tty); } // Apply the configuration if needed. _dscr_val = (*get_dscr)(); if (Verbose) { tty->print_cr("dscr value was 0x%lx" , _dscr_val); } bool change_requested = false; if (DSCR_PPC64 != (uintx)-1) { _dscr_val = DSCR_PPC64; change_requested = true; } if (DSCR_DPFD_PPC64 <= 7) { uint64_t mask = 0x7; if ((_dscr_val & mask) != DSCR_DPFD_PPC64) { _dscr_val = (_dscr_val & ~mask) | (DSCR_DPFD_PPC64); change_requested = true; } } if (DSCR_URG_PPC64 <= 7) { uint64_t mask = 0x7 << 6; if ((_dscr_val & mask) != DSCR_DPFD_PPC64 << 6) { _dscr_val = (_dscr_val & ~mask) | (DSCR_URG_PPC64 << 6); change_requested = true; } } if (change_requested) { (*set_dscr)(_dscr_val); if (Verbose) { tty->print_cr("dscr was set to 0x%lx" , (*get_dscr)()); } } } static uint64_t saved_features = 0; void VM_Version::allow_all() { saved_features = _features; _features = all_features_m; } void VM_Version::revert() { _features = saved_features; } // get cpu information. void VM_Version::initialize_cpu_information(void) { // do nothing if cpu info has been initialized if (_initialized) { return; } _no_of_cores = os::processor_count(); _no_of_threads = _no_of_cores; _no_of_sockets = _no_of_cores; os::snprintf_checked(_cpu_name, CPU_TYPE_DESC_BUF_SIZE, "PowerPC POWER%lu", PowerArchitecturePPC64); os::snprintf_checked(_cpu_desc, CPU_DETAILED_DESC_BUF_SIZE, "PPC %s", cpu_info_string()); _initialized = true; }