/* * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import java.security.*; import jdk.internal.access.JavaLangAccess; import jdk.internal.access.SharedSecrets; import jdk.internal.util.ByteArrayLittleEndian; /** * A class that represents an immutable Universally Unique IDentifier (UUID). * A UUID represents a 128-bit value. * *
This class is primarily designed for manipulating Leach-Salz variant UUIDs, * but it also supports the creation of UUIDs of other variants. * *
The layout of a variant 2 (Leach-Salz) UUID is as follows: * * The most significant long consists of the following unsigned fields: *
* 0xFFFFFFFF00000000 time_low * 0x00000000FFFF0000 time_mid * 0x000000000000F000 version * 0x0000000000000FFF time_hi ** The least significant long consists of the following unsigned fields: *
* 0xC000000000000000 variant * 0x3FFF000000000000 clock_seq * 0x0000FFFFFFFFFFFF node ** *
The variant field contains a value which identifies the layout of the * {@code UUID}. The bit layout described above is valid only for a {@code * UUID} with a variant value of 2, which indicates the Leach-Salz variant. * *
See * RFC 9562: Universally Unique Identifiers (UUIDs) for the complete specification, * including the UUID format, layouts, and algorithms for creating {@code UUID}s. * *
There are eight defined types of UUIDs, each identified by a version number:
* time-based (version 1), DCE security (version 2), name-based with MD5 (version 3),
* randomly generated (version 4), name-based with SHA-1 (version 5), reordered time-based (version 6),
* Unix epoch time-based (version 7), and custom-defined layout (version 8).
*
* @spec https://www.rfc-editor.org/rfc/rfc9562.html
* RFC 9562 Universally Unique IDentifiers (UUIDs)
* @since 1.5
*/
public final class UUID implements java.io.Serializable, Comparable
* Monotonicity (each subsequent value being greater than the last) is a primary characteristic
* of {@code UUIDv7} values. This is due to the {@code timestamp} value being part of the {@code UUID}.
* Callers of this method that wish to generate monotonic {@code UUIDv7} values are expected to
* ensure that the given {@code timestamp} value is monotonic.
*
*
* @param timestamp the number of milliseconds since midnight 1 Jan 1970 UTC,
* leap seconds excluded.
*
* @return a {@code UUID} constructed using the given {@code timestamp}
*
* @throws IllegalArgumentException if the timestamp is negative or greater than {@code (1L << 48) - 1}
*
* @since 26
*/
public static UUID ofEpochMillis(long timestamp) {
if ((timestamp >> 48) != 0) {
throw new IllegalArgumentException("Supplied timestamp: " + timestamp + "does not fit within 48 bits");
}
SecureRandom ng = Holder.numberGenerator;
byte[] randomBytes = new byte[16];
ng.nextBytes(randomBytes);
// Embed the timestamp into the first 6 bytes
randomBytes[0] = (byte)(timestamp >>> 40);
randomBytes[1] = (byte)(timestamp >>> 32);
randomBytes[2] = (byte)(timestamp >>> 24);
randomBytes[3] = (byte)(timestamp >>> 16);
randomBytes[4] = (byte)(timestamp >>> 8);
randomBytes[5] = (byte)(timestamp);
// Set version to 7
randomBytes[6] &= 0x0f;
randomBytes[6] |= 0x70;
// Set variant to IETF
randomBytes[8] &= 0x3f;
randomBytes[8] |= (byte) 0x80;
return new UUID(randomBytes);
}
private static final byte[] NIBBLES;
static {
byte[] ns = new byte[256];
Arrays.fill(ns, (byte) -1);
ns['0'] = 0;
ns['1'] = 1;
ns['2'] = 2;
ns['3'] = 3;
ns['4'] = 4;
ns['5'] = 5;
ns['6'] = 6;
ns['7'] = 7;
ns['8'] = 8;
ns['9'] = 9;
ns['A'] = 10;
ns['B'] = 11;
ns['C'] = 12;
ns['D'] = 13;
ns['E'] = 14;
ns['F'] = 15;
ns['a'] = 10;
ns['b'] = 11;
ns['c'] = 12;
ns['d'] = 13;
ns['e'] = 14;
ns['f'] = 15;
NIBBLES = ns;
}
private static long parse4Nibbles(String name, int pos) {
byte[] ns = NIBBLES;
char ch1 = name.charAt(pos);
char ch2 = name.charAt(pos + 1);
char ch3 = name.charAt(pos + 2);
char ch4 = name.charAt(pos + 3);
return (ch1 | ch2 | ch3 | ch4) > 0xff ?
-1 : ns[ch1] << 12 | ns[ch2] << 8 | ns[ch3] << 4 | ns[ch4];
}
/**
* Creates a {@code UUID} from the string standard representation as
* described in the {@link #toString} method.
*
* @param name
* A string that specifies a {@code UUID}
*
* @return A {@code UUID} with the specified value
*
* @throws IllegalArgumentException
* If name does not conform to the string representation as
* described in {@link #toString}
*
*/
public static UUID fromString(String name) {
if (name.length() == 36) {
char ch1 = name.charAt(8);
char ch2 = name.charAt(13);
char ch3 = name.charAt(18);
char ch4 = name.charAt(23);
if (ch1 == '-' && ch2 == '-' && ch3 == '-' && ch4 == '-') {
long msb1 = parse4Nibbles(name, 0);
long msb2 = parse4Nibbles(name, 4);
long msb3 = parse4Nibbles(name, 9);
long msb4 = parse4Nibbles(name, 14);
long lsb1 = parse4Nibbles(name, 19);
long lsb2 = parse4Nibbles(name, 24);
long lsb3 = parse4Nibbles(name, 28);
long lsb4 = parse4Nibbles(name, 32);
if ((msb1 | msb2 | msb3 | msb4 | lsb1 | lsb2 | lsb3 | lsb4) >= 0) {
return new UUID(
msb1 << 48 | msb2 << 32 | msb3 << 16 | msb4,
lsb1 << 48 | lsb2 << 32 | lsb3 << 16 | lsb4);
}
}
}
return fromString1(name);
}
private static UUID fromString1(String name) {
int len = name.length();
if (len > 36) {
throw new IllegalArgumentException("UUID string too large");
}
int dash1 = name.indexOf('-');
int dash2 = name.indexOf('-', dash1 + 1);
int dash3 = name.indexOf('-', dash2 + 1);
int dash4 = name.indexOf('-', dash3 + 1);
int dash5 = name.indexOf('-', dash4 + 1);
// For any valid input, dash1 through dash4 will be positive and dash5
// negative, but it's enough to check dash4 and dash5:
// - if dash1 is -1, dash4 will be -1
// - if dash1 is positive but dash2 is -1, dash4 will be -1
// - if dash1 and dash2 is positive, dash3 will be -1, dash4 will be
// positive, but so will dash5
if (dash4 < 0 || dash5 >= 0) {
throw new IllegalArgumentException("Invalid UUID string: " + name);
}
long mostSigBits = Long.parseLong(name, 0, dash1, 16) & 0xffffffffL;
mostSigBits <<= 16;
mostSigBits |= Long.parseLong(name, dash1 + 1, dash2, 16) & 0xffffL;
mostSigBits <<= 16;
mostSigBits |= Long.parseLong(name, dash2 + 1, dash3, 16) & 0xffffL;
long leastSigBits = Long.parseLong(name, dash3 + 1, dash4, 16) & 0xffffL;
leastSigBits <<= 48;
leastSigBits |= Long.parseLong(name, dash4 + 1, len, 16) & 0xffffffffffffL;
return new UUID(mostSigBits, leastSigBits);
}
// Field Accessor Methods
/**
* Returns the least significant 64 bits of this UUID's 128 bit value.
*
* @return The least significant 64 bits of this UUID's 128 bit value
*/
public long getLeastSignificantBits() {
return leastSigBits;
}
/**
* Returns the most significant 64 bits of this UUID's 128 bit value.
*
* @return The most significant 64 bits of this UUID's 128 bit value
*/
public long getMostSignificantBits() {
return mostSigBits;
}
/**
* The version number associated with this {@code UUID}. The version
* number describes how this {@code UUID} was generated.
*
* The version number has the following meaning:
* The 60 bit timestamp value is constructed from the time_low,
* time_mid, and time_hi fields of this {@code UUID}. The resulting
* timestamp is measured in 100-nanosecond units since midnight,
* October 15, 1582 UTC.
*
* The timestamp value is only meaningful in a time-based UUID, which
* has version type 1. If this {@code UUID} is not a time-based UUID then
* this method throws UnsupportedOperationException.
*
* @throws UnsupportedOperationException
* If this UUID is not a version 1 UUID
* @return The timestamp of this {@code UUID}.
*/
public long timestamp() {
if (version() != 1) {
throw new UnsupportedOperationException("Not a time-based UUID");
}
return (mostSigBits & 0x0FFFL) << 48
| ((mostSigBits >> 16) & 0x0FFFFL) << 32
| mostSigBits >>> 32;
}
/**
* The clock sequence value associated with this UUID.
*
* The 14 bit clock sequence value is constructed from the clock
* sequence field of this UUID. The clock sequence field is used to
* guarantee temporal uniqueness in a time-based UUID.
*
* The {@code clockSequence} value is only meaningful in a time-based
* UUID, which has version type 1. If this UUID is not a time-based UUID
* then this method throws UnsupportedOperationException.
*
* @return The clock sequence of this {@code UUID}
*
* @throws UnsupportedOperationException
* If this UUID is not a version 1 UUID
*/
public int clockSequence() {
if (version() != 1) {
throw new UnsupportedOperationException("Not a time-based UUID");
}
return (int)((leastSigBits & 0x3FFF000000000000L) >>> 48);
}
/**
* The node value associated with this UUID.
*
* The 48 bit node value is constructed from the node field of this
* UUID. This field is intended to hold the IEEE 802 address of the machine
* that generated this UUID to guarantee spatial uniqueness.
*
* The node value is only meaningful in a time-based UUID, which has
* version type 1. If this UUID is not a time-based UUID then this method
* throws UnsupportedOperationException.
*
* @return The node value of this {@code UUID}
*
* @throws UnsupportedOperationException
* If this UUID is not a version 1 UUID
*/
public long node() {
if (version() != 1) {
throw new UnsupportedOperationException("Not a time-based UUID");
}
return leastSigBits & 0x0000FFFFFFFFFFFFL;
}
// Object Inherited Methods
/**
* Returns a {@code String} object representing this {@code UUID}.
*
* The UUID string representation is as described by this BNF:
* The conversion algorithm works as follows:
* Performance characteristics:
* ASCII conversion mapping:
* The first of two UUIDs is greater than the second if the most
* significant field in which the UUIDs differ is greater for the first
* UUID.
*
* @param val
* {@code UUID} to which this {@code UUID} is to be compared
*
* @return -1, 0 or 1 as this {@code UUID} is less than, equal to, or
* greater than {@code val}
*
*/
@Override
public int compareTo(UUID val) {
// The ordering is intentionally set up so that the UUIDs
// can simply be numerically compared as two numbers
int mostSigBits = Long.compare(this.mostSigBits, val.mostSigBits);
return mostSigBits != 0 ? mostSigBits : Long.compare(this.leastSigBits, val.leastSigBits);
}
}
*
*
* @return The version number of this {@code UUID}
*/
public int version() {
// Version is bits masked by 0x000000000000F000 in MS long
return (int)((mostSigBits >> 12) & 0x0f);
}
/**
* The variant number associated with this {@code UUID}. The variant
* number describes the layout of the {@code UUID}.
*
* The variant number has the following meaning:
*
*
*
* @return The variant number of this {@code UUID}
*/
public int variant() {
// This field is composed of a varying number of bits.
// 0 - - Reserved for NCS backward compatibility
// 1 0 - The IETF aka Leach-Salz variant (used by this class)
// 1 1 0 Reserved, Microsoft backward compatibility
// 1 1 1 Reserved for future definition.
return (int) ((leastSigBits >>> (64 - (leastSigBits >>> 62)))
& (leastSigBits >> 63));
}
/**
* The timestamp value associated with this UUID.
*
*
*
* @return A string representation of this {@code UUID}
*/
@Override
public String toString() {
byte[] buf = new byte[36];
buf[8] = '-';
buf[13] = '-';
buf[18] = '-';
buf[23] = '-';
// Although the UUID byte ordering is defined to be big-endian, ByteArrayLittleEndian is used here to optimize
// for the most common architectures. hex8 reverses the order internally.
ByteArrayLittleEndian.setLong(buf, 0, hex8(mostSigBits >>> 32));
long x0 = hex8(mostSigBits);
ByteArrayLittleEndian.setInt(buf, 9, (int) x0);
ByteArrayLittleEndian.setInt(buf, 14, (int) (x0 >>> 32));
long x1 = hex8(leastSigBits >>> 32);
ByteArrayLittleEndian.setInt(buf, 19, (int) (x1));
ByteArrayLittleEndian.setInt(buf, 24, (int) (x1 >>> 32));
ByteArrayLittleEndian.setLong(buf, 28, hex8(leastSigBits));
return jla.uncheckedNewStringWithLatin1Bytes(buf);
}
/**
* Efficiently converts 8 hexadecimal digits to their ASCII representation using SIMD-style vector operations.
* This method processes multiple digits in parallel by treating a long value as eight 8-bit lanes,
* achieving significantly better performance compared to traditional loop-based conversion.
*
*
* {@code
* UUID =
* 1. Input expansion: Each 4-bit hex digit is expanded to 8 bits
* 2. Vector processing:
* - Add 6 to each digit: triggers carry flag for a-f digits
* - Mask with 0x10 pattern to isolate carry flags
* - Calculate ASCII adjustment: (carry << 1) + (carry >> 1) - (carry >> 4)
* - Add ASCII '0' base (0x30) and original value
* 3. Byte order adjustment for final output
*
*
*
*
*
*
*
*
* @param input A long containing 8 hex digits (each digit must be 0-15)
* @return A long containing 8 ASCII bytes representing the hex digits
*
* @implNote The implementation leverages CPU vector processing capabilities through
* long integer operations. The algorithm is based on the observation that
* ASCII hex digits have a specific pattern that can be computed efficiently
* using carry flag manipulation.
*
* @example
*
* Input: 0xABCDEF01
* Output: 3130666564636261 ('1','0','f','e','d','c','b','a' in ASCII)
*
*
* @see Long#reverseBytes(long)
*/
private static long hex8(long i) {
// Expand each 4-bit group into 8 bits, spreading them out in the long value: 0xAABBCCDD -> 0xA0A0B0B0C0C0D0D
i = Long.expand(i, 0x0F0F_0F0F_0F0F_0F0FL);
/*
* This method efficiently converts 8 hexadecimal digits simultaneously using vector operations
* The algorithm works as follows:
*
* For input values 0-15:
* - For digits 0-9: converts to ASCII '0'-'9' (0x30-0x39)
* - For digits 10-15: converts to ASCII 'a'-'f' (0x61-0x66)
*
* The conversion process:
* 1. Add 6 to each 4-bit group: i + 0x0606_0606_0606_0606L
* 2. Mask to get the adjustment flags: & 0x1010_1010_1010_1010L
* 3. Calculate the offset: (m << 1) + (m >> 1) - (m >> 4)
* - For 0-9: offset = 0
* - For a-f: offset = 39 (to bridge the gap between '9' and 'a' in ASCII)
* 4. Add ASCII '0' base (0x30) and the original value
* 5. Reverse byte order for correct positioning
*/
long m = (i + 0x0606_0606_0606_0606L) & 0x1010_1010_1010_1010L;
// Calculate final ASCII values and reverse bytes for proper ordering
return Long.reverseBytes(
((m << 1) + (m >> 1) - (m >> 4))
+ 0x3030_3030_3030_3030L // Add ASCII '0' base to all digits
+ i // Add original values
);
}
/**
* Returns a hash code for this {@code UUID}.
*
* @return A hash code value for this {@code UUID}
*/
@Override
public int hashCode() {
return Long.hashCode(mostSigBits ^ leastSigBits);
}
/**
* Compares this object to the specified object. The result is {@code
* true} if and only if the argument is not {@code null}, is a {@code UUID}
* object, has the same variant, and contains the same value, bit for bit,
* as this {@code UUID}.
*
* @param obj
* The object to be compared
*
* @return {@code true} if the objects are the same; {@code false}
* otherwise
*/
@Override
public boolean equals(Object obj) {
if ((null == obj) || (obj.getClass() != UUID.class))
return false;
UUID id = (UUID)obj;
return (mostSigBits == id.mostSigBits &&
leastSigBits == id.leastSigBits);
}
// Comparison Operations
/**
* Compares this UUID with the specified UUID.
*
*