mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-31 13:38:47 +00:00
1957 lines
82 KiB
C++
1957 lines
82 KiB
C++
/*
|
|
* Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_OPTO_LOOPNODE_HPP
|
|
#define SHARE_OPTO_LOOPNODE_HPP
|
|
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/multnode.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/predicates.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "opto/type.hpp"
|
|
#include "utilities/checkedCast.hpp"
|
|
|
|
class CmpNode;
|
|
class BaseCountedLoopEndNode;
|
|
class CountedLoopNode;
|
|
class IdealLoopTree;
|
|
class LoopNode;
|
|
class Node;
|
|
class OuterStripMinedLoopEndNode;
|
|
class PredicateBlock;
|
|
class PathFrequency;
|
|
class PhaseIdealLoop;
|
|
class UnswitchedLoopSelector;
|
|
class VectorSet;
|
|
class VSharedData;
|
|
class Invariance;
|
|
struct small_cache;
|
|
|
|
//
|
|
// I D E A L I Z E D L O O P S
|
|
//
|
|
// Idealized loops are the set of loops I perform more interesting
|
|
// transformations on, beyond simple hoisting.
|
|
|
|
//------------------------------LoopNode---------------------------------------
|
|
// Simple loop header. Fall in path on left, loop-back path on right.
|
|
class LoopNode : public RegionNode {
|
|
// Size is bigger to hold the flags. However, the flags do not change
|
|
// the semantics so it does not appear in the hash & cmp functions.
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
protected:
|
|
uint _loop_flags;
|
|
// Names for flag bitfields
|
|
enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
|
|
MainHasNoPreLoop = 1<<2,
|
|
HasExactTripCount = 1<<3,
|
|
InnerLoop = 1<<4,
|
|
PartialPeelLoop = 1<<5,
|
|
PartialPeelFailed = 1<<6,
|
|
WasSlpAnalyzed = 1<<7,
|
|
PassedSlpAnalysis = 1<<8,
|
|
DoUnrollOnly = 1<<9,
|
|
VectorizedLoop = 1<<10,
|
|
HasAtomicPostLoop = 1<<11,
|
|
StripMined = 1<<12,
|
|
SubwordLoop = 1<<13,
|
|
ProfileTripFailed = 1<<14,
|
|
LoopNestInnerLoop = 1<<15,
|
|
LoopNestLongOuterLoop = 1<<16 };
|
|
char _unswitch_count;
|
|
enum { _unswitch_max=3 };
|
|
|
|
// Expected trip count from profile data
|
|
float _profile_trip_cnt;
|
|
|
|
public:
|
|
// Names for edge indices
|
|
enum { Self=0, EntryControl, LoopBackControl };
|
|
|
|
bool is_inner_loop() const { return _loop_flags & InnerLoop; }
|
|
void set_inner_loop() { _loop_flags |= InnerLoop; }
|
|
|
|
bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
|
|
bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
|
|
void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
|
|
bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
|
|
bool is_strip_mined() const { return _loop_flags & StripMined; }
|
|
bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
|
|
bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
|
|
bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
|
|
bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
|
|
|
|
void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
|
|
void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
|
|
void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
|
|
void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
|
|
void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
|
|
void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
|
|
void mark_strip_mined() { _loop_flags |= StripMined; }
|
|
void clear_strip_mined() { _loop_flags &= ~StripMined; }
|
|
void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
|
|
void mark_subword_loop() { _loop_flags |= SubwordLoop; }
|
|
void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
|
|
void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
|
|
|
|
int unswitch_max() { return _unswitch_max; }
|
|
int unswitch_count() { return _unswitch_count; }
|
|
|
|
void set_unswitch_count(int val) {
|
|
assert (val <= unswitch_max(), "too many unswitches");
|
|
_unswitch_count = val;
|
|
}
|
|
|
|
void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
|
|
float profile_trip_cnt() { return _profile_trip_cnt; }
|
|
|
|
LoopNode(Node *entry, Node *backedge)
|
|
: RegionNode(3), _loop_flags(0), _unswitch_count(0),
|
|
_profile_trip_cnt(COUNT_UNKNOWN) {
|
|
init_class_id(Class_Loop);
|
|
init_req(EntryControl, entry);
|
|
init_req(LoopBackControl, backedge);
|
|
}
|
|
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual int Opcode() const;
|
|
bool can_be_counted_loop(PhaseValues* phase) const {
|
|
return req() == 3 && in(0) != nullptr &&
|
|
in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
|
|
in(2) != nullptr && phase->type(in(2)) != Type::TOP;
|
|
}
|
|
bool is_valid_counted_loop(BasicType bt) const;
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const;
|
|
#endif
|
|
|
|
void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
|
|
virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
|
|
virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
|
|
virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
|
|
virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
|
|
virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
|
|
};
|
|
|
|
//------------------------------Counted Loops----------------------------------
|
|
// Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
|
|
// path (and maybe some other exit paths). The trip-counter exit is always
|
|
// last in the loop. The trip-counter have to stride by a constant;
|
|
// the exit value is also loop invariant.
|
|
|
|
// CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The
|
|
// CountedLoopNode has the incoming loop control and the loop-back-control
|
|
// which is always the IfTrue before the matching CountedLoopEndNode. The
|
|
// CountedLoopEndNode has an incoming control (possibly not the
|
|
// CountedLoopNode if there is control flow in the loop), the post-increment
|
|
// trip-counter value, and the limit. The trip-counter value is always of
|
|
// the form (Op old-trip-counter stride). The old-trip-counter is produced
|
|
// by a Phi connected to the CountedLoopNode. The stride is constant.
|
|
// The Op is any commutable opcode, including Add, Mul, Xor. The
|
|
// CountedLoopEndNode also takes in the loop-invariant limit value.
|
|
|
|
// From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
|
|
// loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes
|
|
// via the old-trip-counter from the Op node.
|
|
|
|
//------------------------------CountedLoopNode--------------------------------
|
|
// CountedLoopNodes head simple counted loops. CountedLoopNodes have as
|
|
// inputs the incoming loop-start control and the loop-back control, so they
|
|
// act like RegionNodes. They also take in the initial trip counter, the
|
|
// loop-invariant stride and the loop-invariant limit value. CountedLoopNodes
|
|
// produce a loop-body control and the trip counter value. Since
|
|
// CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
|
|
|
|
class BaseCountedLoopNode : public LoopNode {
|
|
public:
|
|
BaseCountedLoopNode(Node *entry, Node *backedge)
|
|
: LoopNode(entry, backedge) {
|
|
}
|
|
|
|
Node *init_control() const { return in(EntryControl); }
|
|
Node *back_control() const { return in(LoopBackControl); }
|
|
|
|
Node* init_trip() const;
|
|
Node* stride() const;
|
|
bool stride_is_con() const;
|
|
Node* limit() const;
|
|
Node* incr() const;
|
|
Node* phi() const;
|
|
|
|
BaseCountedLoopEndNode* loopexit_or_null() const;
|
|
BaseCountedLoopEndNode* loopexit() const;
|
|
|
|
virtual BasicType bt() const = 0;
|
|
|
|
jlong stride_con() const;
|
|
|
|
static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
|
|
};
|
|
|
|
|
|
class CountedLoopNode : public BaseCountedLoopNode {
|
|
// Size is bigger to hold _main_idx. However, _main_idx does not change
|
|
// the semantics so it does not appear in the hash & cmp functions.
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
|
|
// For Pre- and Post-loops during debugging ONLY, this holds the index of
|
|
// the Main CountedLoop. Used to assert that we understand the graph shape.
|
|
node_idx_t _main_idx;
|
|
|
|
// Known trip count calculated by compute_exact_trip_count()
|
|
uint _trip_count;
|
|
|
|
// Log2 of original loop bodies in unrolled loop
|
|
int _unrolled_count_log2;
|
|
|
|
// Node count prior to last unrolling - used to decide if
|
|
// unroll,optimize,unroll,optimize,... is making progress
|
|
int _node_count_before_unroll;
|
|
|
|
// If slp analysis is performed we record the maximum
|
|
// vector mapped unroll factor here
|
|
int _slp_maximum_unroll_factor;
|
|
|
|
public:
|
|
CountedLoopNode(Node *entry, Node *backedge)
|
|
: BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
|
|
_unrolled_count_log2(0), _node_count_before_unroll(0),
|
|
_slp_maximum_unroll_factor(0) {
|
|
init_class_id(Class_CountedLoop);
|
|
// Initialize _trip_count to the largest possible value.
|
|
// Will be reset (lower) if the loop's trip count is known.
|
|
}
|
|
|
|
virtual int Opcode() const;
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
|
|
CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
|
|
CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
|
|
int stride_con() const;
|
|
|
|
// Match increment with optional truncation
|
|
static Node*
|
|
match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
|
|
BasicType bt);
|
|
|
|
// A 'main' loop has a pre-loop and a post-loop. The 'main' loop
|
|
// can run short a few iterations and may start a few iterations in.
|
|
// It will be RCE'd and unrolled and aligned.
|
|
|
|
// A following 'post' loop will run any remaining iterations. Used
|
|
// during Range Check Elimination, the 'post' loop will do any final
|
|
// iterations with full checks. Also used by Loop Unrolling, where
|
|
// the 'post' loop will do any epilog iterations needed. Basically,
|
|
// a 'post' loop can not profitably be further unrolled or RCE'd.
|
|
|
|
// A preceding 'pre' loop will run at least 1 iteration (to do peeling),
|
|
// it may do under-flow checks for RCE and may do alignment iterations
|
|
// so the following main loop 'knows' that it is striding down cache
|
|
// lines.
|
|
|
|
// A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
|
|
// Aligned, may be missing it's pre-loop.
|
|
bool is_normal_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
|
|
bool is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; }
|
|
bool is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; }
|
|
bool is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; }
|
|
bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
|
|
bool has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
|
|
bool is_unroll_only () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
|
|
bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
|
|
bool has_atomic_post_loop () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
|
|
void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
|
|
|
|
int main_idx() const { return _main_idx; }
|
|
|
|
|
|
void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
|
|
void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; }
|
|
void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
|
|
void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; }
|
|
|
|
void set_trip_count(uint tc) { _trip_count = tc; }
|
|
uint trip_count() { return _trip_count; }
|
|
|
|
bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
|
|
void set_exact_trip_count(uint tc) {
|
|
_trip_count = tc;
|
|
_loop_flags |= HasExactTripCount;
|
|
}
|
|
void set_nonexact_trip_count() {
|
|
_loop_flags &= ~HasExactTripCount;
|
|
}
|
|
void set_notpassed_slp() {
|
|
_loop_flags &= ~PassedSlpAnalysis;
|
|
}
|
|
|
|
void double_unrolled_count() { _unrolled_count_log2++; }
|
|
int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
|
|
|
|
void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
|
|
int node_count_before_unroll() { return _node_count_before_unroll; }
|
|
void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
|
|
int slp_max_unroll() const { return _slp_maximum_unroll_factor; }
|
|
|
|
virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
|
|
OuterStripMinedLoopNode* outer_loop() const;
|
|
virtual IfTrueNode* outer_loop_tail() const;
|
|
virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
|
|
virtual IfFalseNode* outer_loop_exit() const;
|
|
virtual SafePointNode* outer_safepoint() const;
|
|
|
|
Node* skip_assertion_predicates_with_halt();
|
|
|
|
virtual BasicType bt() const {
|
|
return T_INT;
|
|
}
|
|
|
|
Node* is_canonical_loop_entry();
|
|
CountedLoopEndNode* find_pre_loop_end();
|
|
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const;
|
|
#endif
|
|
};
|
|
|
|
class LongCountedLoopNode : public BaseCountedLoopNode {
|
|
public:
|
|
LongCountedLoopNode(Node *entry, Node *backedge)
|
|
: BaseCountedLoopNode(entry, backedge) {
|
|
init_class_id(Class_LongCountedLoop);
|
|
}
|
|
|
|
virtual int Opcode() const;
|
|
|
|
virtual BasicType bt() const {
|
|
return T_LONG;
|
|
}
|
|
|
|
LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
|
|
LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
|
|
};
|
|
|
|
|
|
//------------------------------CountedLoopEndNode-----------------------------
|
|
// CountedLoopEndNodes end simple trip counted loops. They act much like
|
|
// IfNodes.
|
|
|
|
class BaseCountedLoopEndNode : public IfNode {
|
|
public:
|
|
enum { TestControl, TestValue };
|
|
BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
|
|
: IfNode(control, test, prob, cnt) {
|
|
init_class_id(Class_BaseCountedLoopEnd);
|
|
}
|
|
|
|
Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
|
|
Node* incr() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
|
|
Node* limit() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
|
|
Node* stride() const { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
|
|
Node* init_trip() const { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
|
|
bool stride_is_con() const { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
|
|
|
|
PhiNode* phi() const {
|
|
Node* tmp = incr();
|
|
if (tmp && tmp->req() == 3) {
|
|
Node* phi = tmp->in(1);
|
|
if (phi->is_Phi()) {
|
|
return phi->as_Phi();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
BaseCountedLoopNode* loopnode() const {
|
|
// The CountedLoopNode that goes with this CountedLoopEndNode may
|
|
// have been optimized out by the IGVN so be cautious with the
|
|
// pattern matching on the graph
|
|
PhiNode* iv_phi = phi();
|
|
if (iv_phi == nullptr) {
|
|
return nullptr;
|
|
}
|
|
Node* ln = iv_phi->in(0);
|
|
if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
|
|
return nullptr;
|
|
}
|
|
if (ln->as_BaseCountedLoop()->bt() != bt()) {
|
|
return nullptr;
|
|
}
|
|
return ln->as_BaseCountedLoop();
|
|
}
|
|
|
|
BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; }
|
|
|
|
jlong stride_con() const;
|
|
virtual BasicType bt() const = 0;
|
|
|
|
static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
|
|
};
|
|
|
|
class CountedLoopEndNode : public BaseCountedLoopEndNode {
|
|
public:
|
|
|
|
CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
|
|
: BaseCountedLoopEndNode(control, test, prob, cnt) {
|
|
init_class_id(Class_CountedLoopEnd);
|
|
}
|
|
virtual int Opcode() const;
|
|
|
|
CountedLoopNode* loopnode() const {
|
|
return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
|
|
}
|
|
|
|
virtual BasicType bt() const {
|
|
return T_INT;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const;
|
|
#endif
|
|
};
|
|
|
|
class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
|
|
public:
|
|
LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
|
|
: BaseCountedLoopEndNode(control, test, prob, cnt) {
|
|
init_class_id(Class_LongCountedLoopEnd);
|
|
}
|
|
|
|
LongCountedLoopNode* loopnode() const {
|
|
return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
|
|
}
|
|
|
|
virtual int Opcode() const;
|
|
|
|
virtual BasicType bt() const {
|
|
return T_LONG;
|
|
}
|
|
};
|
|
|
|
|
|
inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
|
|
Node* bctrl = back_control();
|
|
if (bctrl == nullptr) return nullptr;
|
|
|
|
Node* lexit = bctrl->in(0);
|
|
if (!lexit->is_BaseCountedLoopEnd()) {
|
|
return nullptr;
|
|
}
|
|
BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
|
|
if (result->bt() != bt()) {
|
|
return nullptr;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
assert(cle != nullptr, "loopexit is null");
|
|
return cle;
|
|
}
|
|
|
|
inline Node* BaseCountedLoopNode::init_trip() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
return cle != nullptr ? cle->init_trip() : nullptr;
|
|
}
|
|
inline Node* BaseCountedLoopNode::stride() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
return cle != nullptr ? cle->stride() : nullptr;
|
|
}
|
|
|
|
inline bool BaseCountedLoopNode::stride_is_con() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
return cle != nullptr && cle->stride_is_con();
|
|
}
|
|
inline Node* BaseCountedLoopNode::limit() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
return cle != nullptr ? cle->limit() : nullptr;
|
|
}
|
|
inline Node* BaseCountedLoopNode::incr() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
return cle != nullptr ? cle->incr() : nullptr;
|
|
}
|
|
inline Node* BaseCountedLoopNode::phi() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
return cle != nullptr ? cle->phi() : nullptr;
|
|
}
|
|
|
|
inline jlong BaseCountedLoopNode::stride_con() const {
|
|
BaseCountedLoopEndNode* cle = loopexit_or_null();
|
|
return cle != nullptr ? cle->stride_con() : 0;
|
|
}
|
|
|
|
|
|
//------------------------------LoopLimitNode-----------------------------
|
|
// Counted Loop limit node which represents exact final iterator value:
|
|
// trip_count = (limit - init_trip + stride - 1)/stride
|
|
// final_value= trip_count * stride + init_trip.
|
|
// Use HW instructions to calculate it when it can overflow in integer.
|
|
// Note, final_value should fit into integer since counted loop has
|
|
// limit check: limit <= max_int-stride.
|
|
class LoopLimitNode : public Node {
|
|
enum { Init=1, Limit=2, Stride=3 };
|
|
public:
|
|
LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) {
|
|
// Put it on the Macro nodes list to optimize during macro nodes expansion.
|
|
init_flags(Flag_is_macro);
|
|
C->add_macro_node(this);
|
|
}
|
|
virtual int Opcode() const;
|
|
virtual const Type *bottom_type() const { return TypeInt::INT; }
|
|
virtual uint ideal_reg() const { return Op_RegI; }
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
};
|
|
|
|
// Support for strip mining
|
|
class OuterStripMinedLoopNode : public LoopNode {
|
|
private:
|
|
static void fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
|
|
|
|
public:
|
|
OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
|
|
: LoopNode(entry, backedge) {
|
|
init_class_id(Class_OuterStripMinedLoop);
|
|
init_flags(Flag_is_macro);
|
|
C->add_macro_node(this);
|
|
}
|
|
|
|
virtual int Opcode() const;
|
|
|
|
virtual IfTrueNode* outer_loop_tail() const;
|
|
virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
|
|
virtual IfFalseNode* outer_loop_exit() const;
|
|
virtual SafePointNode* outer_safepoint() const;
|
|
void adjust_strip_mined_loop(PhaseIterGVN* igvn);
|
|
|
|
void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
|
|
|
|
void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
|
|
|
|
static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
|
|
|
|
Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
|
|
PhaseIdealLoop* iloop);
|
|
};
|
|
|
|
class OuterStripMinedLoopEndNode : public IfNode {
|
|
public:
|
|
OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
|
|
: IfNode(control, test, prob, cnt) {
|
|
init_class_id(Class_OuterStripMinedLoopEnd);
|
|
}
|
|
|
|
virtual int Opcode() const;
|
|
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
|
|
bool is_expanded(PhaseGVN *phase) const;
|
|
};
|
|
|
|
// -----------------------------IdealLoopTree----------------------------------
|
|
class IdealLoopTree : public ResourceObj {
|
|
public:
|
|
IdealLoopTree *_parent; // Parent in loop tree
|
|
IdealLoopTree *_next; // Next sibling in loop tree
|
|
IdealLoopTree *_child; // First child in loop tree
|
|
|
|
// The head-tail backedge defines the loop.
|
|
// If a loop has multiple backedges, this is addressed during cleanup where
|
|
// we peel off the multiple backedges, merging all edges at the bottom and
|
|
// ensuring that one proper backedge flow into the loop.
|
|
Node *_head; // Head of loop
|
|
Node *_tail; // Tail of loop
|
|
inline Node *tail(); // Handle lazy update of _tail field
|
|
inline Node *head(); // Handle lazy update of _head field
|
|
PhaseIdealLoop* _phase;
|
|
int _local_loop_unroll_limit;
|
|
int _local_loop_unroll_factor;
|
|
|
|
Node_List _body; // Loop body for inner loops
|
|
|
|
uint16_t _nest; // Nesting depth
|
|
uint8_t _irreducible:1, // True if irreducible
|
|
_has_call:1, // True if has call safepoint
|
|
_has_sfpt:1, // True if has non-call safepoint
|
|
_rce_candidate:1, // True if candidate for range check elimination
|
|
_has_range_checks:1,
|
|
_has_range_checks_computed:1;
|
|
|
|
Node_List* _safepts; // List of safepoints in this loop
|
|
Node_List* _required_safept; // A inner loop cannot delete these safepts;
|
|
bool _allow_optimizations; // Allow loop optimizations
|
|
|
|
IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
|
|
: _parent(nullptr), _next(nullptr), _child(nullptr),
|
|
_head(head), _tail(tail),
|
|
_phase(phase),
|
|
_local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
|
|
_body(Compile::current()->comp_arena()),
|
|
_nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
|
|
_has_range_checks(0), _has_range_checks_computed(0),
|
|
_safepts(nullptr),
|
|
_required_safept(nullptr),
|
|
_allow_optimizations(true)
|
|
{
|
|
precond(_head != nullptr);
|
|
precond(_tail != nullptr);
|
|
}
|
|
|
|
// Is 'l' a member of 'this'?
|
|
bool is_member(const IdealLoopTree *l) const; // Test for nested membership
|
|
|
|
// Set loop nesting depth. Accumulate has_call bits.
|
|
int set_nest( uint depth );
|
|
|
|
// Split out multiple fall-in edges from the loop header. Move them to a
|
|
// private RegionNode before the loop. This becomes the loop landing pad.
|
|
void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
|
|
|
|
// Split out the outermost loop from this shared header.
|
|
void split_outer_loop( PhaseIdealLoop *phase );
|
|
|
|
// Merge all the backedges from the shared header into a private Region.
|
|
// Feed that region as the one backedge to this loop.
|
|
void merge_many_backedges( PhaseIdealLoop *phase );
|
|
|
|
// Split shared headers and insert loop landing pads.
|
|
// Insert a LoopNode to replace the RegionNode.
|
|
// Returns TRUE if loop tree is structurally changed.
|
|
bool beautify_loops( PhaseIdealLoop *phase );
|
|
|
|
// Perform optimization to use the loop predicates for null checks and range checks.
|
|
// Applies to any loop level (not just the innermost one)
|
|
bool loop_predication( PhaseIdealLoop *phase);
|
|
bool can_apply_loop_predication();
|
|
|
|
// Perform iteration-splitting on inner loops. Split iterations to
|
|
// avoid range checks or one-shot null checks. Returns false if the
|
|
// current round of loop opts should stop.
|
|
bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
|
|
|
|
// Driver for various flavors of iteration splitting. Returns false
|
|
// if the current round of loop opts should stop.
|
|
bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
|
|
|
|
// Given dominators, try to find loops with calls that must always be
|
|
// executed (call dominates loop tail). These loops do not need non-call
|
|
// safepoints (ncsfpt).
|
|
void check_safepts(VectorSet &visited, Node_List &stack);
|
|
|
|
// Allpaths backwards scan from loop tail, terminating each path at first safepoint
|
|
// encountered.
|
|
void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
|
|
|
|
// Remove safepoints from loop. Optionally keeping one.
|
|
void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
|
|
|
|
// Convert to counted loops where possible
|
|
void counted_loop( PhaseIdealLoop *phase );
|
|
|
|
// Check for Node being a loop-breaking test
|
|
Node *is_loop_exit(Node *iff) const;
|
|
|
|
// Remove simplistic dead code from loop body
|
|
void DCE_loop_body();
|
|
|
|
// Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
|
|
// Replace with a 1-in-10 exit guess.
|
|
void adjust_loop_exit_prob( PhaseIdealLoop *phase );
|
|
|
|
// Return TRUE or FALSE if the loop should never be RCE'd or aligned.
|
|
// Useful for unrolling loops with NO array accesses.
|
|
bool policy_peel_only( PhaseIdealLoop *phase ) const;
|
|
|
|
// Return TRUE or FALSE if the loop should be unswitched -- clone
|
|
// loop with an invariant test
|
|
bool policy_unswitching( PhaseIdealLoop *phase ) const;
|
|
|
|
// Micro-benchmark spamming. Remove empty loops.
|
|
bool do_remove_empty_loop( PhaseIdealLoop *phase );
|
|
|
|
// Convert one iteration loop into normal code.
|
|
bool do_one_iteration_loop( PhaseIdealLoop *phase );
|
|
|
|
// Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
|
|
// move some loop-invariant test (usually a null-check) before the loop.
|
|
bool policy_peeling(PhaseIdealLoop *phase);
|
|
|
|
uint estimate_peeling(PhaseIdealLoop *phase);
|
|
|
|
// Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
|
|
// known trip count in the counted loop node.
|
|
bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
|
|
|
|
// Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
|
|
// if the loop is a counted loop and the loop body is small enough.
|
|
bool policy_unroll(PhaseIdealLoop *phase);
|
|
|
|
// Loop analyses to map to a maximal superword unrolling for vectorization.
|
|
void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
|
|
|
|
// Return TRUE or FALSE if the loop should be range-check-eliminated.
|
|
// Gather a list of IF tests that are dominated by iteration splitting;
|
|
// also gather the end of the first split and the start of the 2nd split.
|
|
bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
|
|
|
|
// Return TRUE if "iff" is a range check.
|
|
bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
|
|
bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
|
|
jlong& scale) const;
|
|
|
|
// Estimate the number of nodes required when cloning a loop (body).
|
|
uint est_loop_clone_sz(uint factor) const;
|
|
// Estimate the number of nodes required when unrolling a loop (body).
|
|
uint est_loop_unroll_sz(uint factor) const;
|
|
|
|
// Compute loop trip count if possible
|
|
void compute_trip_count(PhaseIdealLoop* phase);
|
|
|
|
// Compute loop trip count from profile data
|
|
float compute_profile_trip_cnt_helper(Node* n);
|
|
void compute_profile_trip_cnt( PhaseIdealLoop *phase );
|
|
|
|
// Reassociate invariant expressions.
|
|
void reassociate_invariants(PhaseIdealLoop *phase);
|
|
// Reassociate invariant binary expressions.
|
|
Node* reassociate(Node* n1, PhaseIdealLoop *phase);
|
|
// Reassociate invariant add, subtract, and compare expressions.
|
|
Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase);
|
|
// Return nonzero index of invariant operand if invariant and variant
|
|
// are combined with an associative binary. Helper for reassociate_invariants.
|
|
int find_invariant(Node* n, PhaseIdealLoop *phase);
|
|
// Return TRUE if "n" is associative.
|
|
bool is_associative(Node* n, Node* base=nullptr);
|
|
// Return TRUE if "n" is an associative cmp node.
|
|
bool is_associative_cmp(Node* n);
|
|
|
|
// Return true if n is invariant
|
|
bool is_invariant(Node* n) const;
|
|
|
|
// Put loop body on igvn work list
|
|
void record_for_igvn();
|
|
|
|
bool is_root() { return _parent == nullptr; }
|
|
// A proper/reducible loop w/o any (occasional) dead back-edge.
|
|
bool is_loop() { return !_irreducible && !tail()->is_top(); }
|
|
bool is_counted() { return is_loop() && _head->is_CountedLoop(); }
|
|
bool is_innermost() { return is_loop() && _child == nullptr; }
|
|
|
|
void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
|
|
|
|
bool compute_has_range_checks() const;
|
|
bool range_checks_present() {
|
|
if (!_has_range_checks_computed) {
|
|
if (compute_has_range_checks()) {
|
|
_has_range_checks = 1;
|
|
}
|
|
_has_range_checks_computed = 1;
|
|
}
|
|
return _has_range_checks;
|
|
}
|
|
|
|
// Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop.
|
|
// In all other cases, return this.
|
|
IdealLoopTree* skip_strip_mined() {
|
|
return _head->as_Loop()->is_strip_mined() ? _parent : this;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void dump_head(); // Dump loop head only
|
|
void dump(); // Dump this loop recursively
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
GrowableArray<IdealLoopTree*> collect_sorted_children() const;
|
|
bool verify_tree(IdealLoopTree* loop_verify) const;
|
|
#endif
|
|
|
|
private:
|
|
enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
|
|
|
|
// Estimate the number of nodes resulting from control and data flow merge.
|
|
uint est_loop_flow_merge_sz() const;
|
|
|
|
// Check if the number of residual iterations is large with unroll_cnt.
|
|
// Return true if the residual iterations are more than 10% of the trip count.
|
|
bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
|
|
return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
|
|
}
|
|
|
|
void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
|
|
|
|
bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
|
|
|
|
void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
|
|
|
|
bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
|
|
Node* sfpt) const;
|
|
|
|
bool empty_loop_candidate(PhaseIdealLoop* phase) const;
|
|
|
|
bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
|
|
};
|
|
|
|
// -----------------------------PhaseIdealLoop---------------------------------
|
|
// Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
|
|
// into a loop tree. Drives the loop-based transformations on the ideal graph.
|
|
class PhaseIdealLoop : public PhaseTransform {
|
|
friend class IdealLoopTree;
|
|
friend class SuperWord;
|
|
friend class ShenandoahBarrierC2Support;
|
|
friend class AutoNodeBudget;
|
|
|
|
// Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
|
|
Node_List _loop_or_ctrl;
|
|
|
|
// Pre-computed def-use info
|
|
PhaseIterGVN &_igvn;
|
|
|
|
// Head of loop tree
|
|
IdealLoopTree* _ltree_root;
|
|
|
|
// Array of pre-order numbers, plus post-visited bit.
|
|
// ZERO for not pre-visited. EVEN for pre-visited but not post-visited.
|
|
// ODD for post-visited. Other bits are the pre-order number.
|
|
uint *_preorders;
|
|
uint _max_preorder;
|
|
|
|
ReallocMark _nesting; // Safety checks for arena reallocation
|
|
|
|
const PhaseIdealLoop* _verify_me;
|
|
bool _verify_only;
|
|
|
|
// Allocate _preorders[] array
|
|
void allocate_preorders() {
|
|
_max_preorder = C->unique()+8;
|
|
_preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
|
|
memset(_preorders, 0, sizeof(uint) * _max_preorder);
|
|
}
|
|
|
|
// Allocate _preorders[] array
|
|
void reallocate_preorders() {
|
|
_nesting.check(); // Check if a potential re-allocation in the resource arena is safe
|
|
if ( _max_preorder < C->unique() ) {
|
|
_preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
|
|
_max_preorder = C->unique();
|
|
}
|
|
memset(_preorders, 0, sizeof(uint) * _max_preorder);
|
|
}
|
|
|
|
// Check to grow _preorders[] array for the case when build_loop_tree_impl()
|
|
// adds new nodes.
|
|
void check_grow_preorders( ) {
|
|
_nesting.check(); // Check if a potential re-allocation in the resource arena is safe
|
|
if ( _max_preorder < C->unique() ) {
|
|
uint newsize = _max_preorder<<1; // double size of array
|
|
_preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
|
|
memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
|
|
_max_preorder = newsize;
|
|
}
|
|
}
|
|
// Check for pre-visited. Zero for NOT visited; non-zero for visited.
|
|
int is_visited( Node *n ) const { return _preorders[n->_idx]; }
|
|
// Pre-order numbers are written to the Nodes array as low-bit-set values.
|
|
void set_preorder_visited( Node *n, int pre_order ) {
|
|
assert( !is_visited( n ), "already set" );
|
|
_preorders[n->_idx] = (pre_order<<1);
|
|
};
|
|
// Return pre-order number.
|
|
int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
|
|
|
|
// Check for being post-visited.
|
|
// Should be previsited already (checked with assert(is_visited(n))).
|
|
int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
|
|
|
|
// Mark as post visited
|
|
void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
|
|
|
|
public:
|
|
// Set/get control node out. Set lower bit to distinguish from IdealLoopTree
|
|
// Returns true if "n" is a data node, false if it's a control node.
|
|
bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
|
|
|
|
private:
|
|
// clear out dead code after build_loop_late
|
|
Node_List _deadlist;
|
|
Node_List _zero_trip_guard_opaque_nodes;
|
|
|
|
// Support for faster execution of get_late_ctrl()/dom_lca()
|
|
// when a node has many uses and dominator depth is deep.
|
|
GrowableArray<jlong> _dom_lca_tags;
|
|
uint _dom_lca_tags_round;
|
|
void init_dom_lca_tags();
|
|
|
|
// Helper for debugging bad dominance relationships
|
|
bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
|
|
|
|
Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
|
|
|
|
// Inline wrapper for frequent cases:
|
|
// 1) only one use
|
|
// 2) a use is the same as the current LCA passed as 'n1'
|
|
Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
|
|
assert( n->is_CFG(), "" );
|
|
// Fast-path null lca
|
|
if( lca != nullptr && lca != n ) {
|
|
assert( lca->is_CFG(), "" );
|
|
// find LCA of all uses
|
|
n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
|
|
}
|
|
return find_non_split_ctrl(n);
|
|
}
|
|
Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
|
|
|
|
// Helper function for directing control inputs away from CFG split points.
|
|
Node *find_non_split_ctrl( Node *ctrl ) const {
|
|
if (ctrl != nullptr) {
|
|
if (ctrl->is_MultiBranch()) {
|
|
ctrl = ctrl->in(0);
|
|
}
|
|
assert(ctrl->is_CFG(), "CFG");
|
|
}
|
|
return ctrl;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
|
|
#endif
|
|
private:
|
|
static void get_template_assertion_predicates(ParsePredicateSuccessProj* parse_predicate_proj, Unique_Node_List& list, bool get_opaque = false);
|
|
void update_main_loop_assertion_predicates(CountedLoopNode* main_loop_head);
|
|
void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head,
|
|
CountedLoopNode* remaining_loop_head,
|
|
uint first_node_index_in_cloned_loop_body,
|
|
const Node_List& old_new);
|
|
void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head,
|
|
CountedLoopNode* main_loop_head,
|
|
uint first_node_index_in_cloned_loop_body,
|
|
const Node_List& old_new);
|
|
void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head,
|
|
uint first_node_index_in_cloned_loop_body);
|
|
void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head,
|
|
const NodeInLoopBody& _node_in_loop_body, bool clone_template);
|
|
void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
|
|
Node* bol);
|
|
void log_loop_tree();
|
|
|
|
public:
|
|
|
|
PhaseIterGVN &igvn() const { return _igvn; }
|
|
|
|
bool has_node(const Node* n) const {
|
|
guarantee(n != nullptr, "No Node.");
|
|
return _loop_or_ctrl[n->_idx] != nullptr;
|
|
}
|
|
// check if transform created new nodes that need _ctrl recorded
|
|
Node *get_late_ctrl( Node *n, Node *early );
|
|
Node *get_early_ctrl( Node *n );
|
|
Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
|
|
void set_early_ctrl(Node* n, bool update_body);
|
|
void set_subtree_ctrl(Node* n, bool update_body);
|
|
void set_ctrl( Node *n, Node *ctrl ) {
|
|
assert( !has_node(n) || has_ctrl(n), "" );
|
|
assert( ctrl->in(0), "cannot set dead control node" );
|
|
assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
|
|
_loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
|
|
}
|
|
// Set control and update loop membership
|
|
void set_ctrl_and_loop(Node* n, Node* ctrl) {
|
|
IdealLoopTree* old_loop = get_loop(get_ctrl(n));
|
|
IdealLoopTree* new_loop = get_loop(ctrl);
|
|
if (old_loop != new_loop) {
|
|
if (old_loop->_child == nullptr) old_loop->_body.yank(n);
|
|
if (new_loop->_child == nullptr) new_loop->_body.push(n);
|
|
}
|
|
set_ctrl(n, ctrl);
|
|
}
|
|
// Control nodes can be replaced or subsumed. During this pass they
|
|
// get their replacement Node in slot 1. Instead of updating the block
|
|
// location of all Nodes in the subsumed block, we lazily do it. As we
|
|
// pull such a subsumed block out of the array, we write back the final
|
|
// correct block.
|
|
Node* get_ctrl(const Node* i) {
|
|
assert(has_node(i), "");
|
|
Node *n = get_ctrl_no_update(i);
|
|
_loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
|
|
assert(has_node(i) && has_ctrl(i), "");
|
|
assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
|
|
return n;
|
|
}
|
|
|
|
bool is_dominator(Node* dominator, Node* n);
|
|
bool is_strict_dominator(Node* dominator, Node* n);
|
|
|
|
// return get_ctrl for a data node and self(n) for a CFG node
|
|
Node* ctrl_or_self(Node* n) {
|
|
if (has_ctrl(n))
|
|
return get_ctrl(n);
|
|
else {
|
|
assert (n->is_CFG(), "must be a CFG node");
|
|
return n;
|
|
}
|
|
}
|
|
|
|
Node* get_ctrl_no_update_helper(const Node* i) const {
|
|
assert(has_ctrl(i), "should be control, not loop");
|
|
return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
|
|
}
|
|
|
|
Node* get_ctrl_no_update(const Node* i) const {
|
|
assert( has_ctrl(i), "" );
|
|
Node *n = get_ctrl_no_update_helper(i);
|
|
if (!n->in(0)) {
|
|
// Skip dead CFG nodes
|
|
do {
|
|
n = get_ctrl_no_update_helper(n);
|
|
} while (!n->in(0));
|
|
n = find_non_split_ctrl(n);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
// Check for loop being set
|
|
// "n" must be a control node. Returns true if "n" is known to be in a loop.
|
|
bool has_loop( Node *n ) const {
|
|
assert(!has_node(n) || !has_ctrl(n), "");
|
|
return has_node(n);
|
|
}
|
|
// Set loop
|
|
void set_loop( Node *n, IdealLoopTree *loop ) {
|
|
_loop_or_ctrl.map(n->_idx, (Node*)loop);
|
|
}
|
|
// Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace
|
|
// the 'old_node' with 'new_node'. Kill old-node. Add a reference
|
|
// from old_node to new_node to support the lazy update. Reference
|
|
// replaces loop reference, since that is not needed for dead node.
|
|
void lazy_update(Node *old_node, Node *new_node) {
|
|
assert(old_node != new_node, "no cycles please");
|
|
// Re-use the side array slot for this node to provide the
|
|
// forwarding pointer.
|
|
_loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
|
|
}
|
|
void lazy_replace(Node *old_node, Node *new_node) {
|
|
_igvn.replace_node(old_node, new_node);
|
|
lazy_update(old_node, new_node);
|
|
}
|
|
|
|
private:
|
|
|
|
// Place 'n' in some loop nest, where 'n' is a CFG node
|
|
void build_loop_tree();
|
|
int build_loop_tree_impl(Node* n, int pre_order);
|
|
// Insert loop into the existing loop tree. 'innermost' is a leaf of the
|
|
// loop tree, not the root.
|
|
IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
|
|
|
|
#ifdef ASSERT
|
|
// verify that regions in irreducible loops are marked is_in_irreducible_loop
|
|
void verify_regions_in_irreducible_loops();
|
|
bool is_in_irreducible_loop(RegionNode* region);
|
|
#endif
|
|
|
|
// Place Data nodes in some loop nest
|
|
void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
|
|
void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
|
|
void build_loop_late_post_work(Node* n, bool pinned);
|
|
void build_loop_late_post(Node* n);
|
|
void verify_strip_mined_scheduling(Node *n, Node* least);
|
|
|
|
// Array of immediate dominance info for each CFG node indexed by node idx
|
|
private:
|
|
uint _idom_size;
|
|
Node **_idom; // Array of immediate dominators
|
|
uint *_dom_depth; // Used for fast LCA test
|
|
GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
|
|
LoopOptsMode _mode;
|
|
|
|
// build the loop tree and perform any requested optimizations
|
|
void build_and_optimize();
|
|
|
|
// Dominators for the sea of nodes
|
|
void Dominators();
|
|
|
|
// Compute the Ideal Node to Loop mapping
|
|
PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
|
|
PhaseTransform(Ideal_Loop),
|
|
_loop_or_ctrl(igvn.C->comp_arena()),
|
|
_igvn(igvn),
|
|
_verify_me(nullptr),
|
|
_verify_only(false),
|
|
_mode(mode),
|
|
_nodes_required(UINT_MAX) {
|
|
assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
|
|
build_and_optimize();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Verify that verify_me made the same decisions as a fresh run
|
|
// or only verify that the graph is valid if verify_me is null.
|
|
PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
|
|
PhaseTransform(Ideal_Loop),
|
|
_loop_or_ctrl(igvn.C->comp_arena()),
|
|
_igvn(igvn),
|
|
_verify_me(verify_me),
|
|
_verify_only(verify_me == nullptr),
|
|
_mode(LoopOptsVerify),
|
|
_nodes_required(UINT_MAX) {
|
|
DEBUG_ONLY(C->set_phase_verify_ideal_loop();)
|
|
build_and_optimize();
|
|
DEBUG_ONLY(C->reset_phase_verify_ideal_loop();)
|
|
}
|
|
#endif
|
|
|
|
Node* insert_convert_node_if_needed(BasicType target, Node* input);
|
|
|
|
public:
|
|
Node* idom_no_update(Node* d) const {
|
|
return idom_no_update(d->_idx);
|
|
}
|
|
|
|
Node* idom_no_update(uint didx) const {
|
|
assert(didx < _idom_size, "oob");
|
|
Node* n = _idom[didx];
|
|
assert(n != nullptr,"Bad immediate dominator info.");
|
|
while (n->in(0) == nullptr) { // Skip dead CFG nodes
|
|
n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
|
|
assert(n != nullptr,"Bad immediate dominator info.");
|
|
}
|
|
return n;
|
|
}
|
|
|
|
Node *idom(Node* d) const {
|
|
return idom(d->_idx);
|
|
}
|
|
|
|
Node *idom(uint didx) const {
|
|
Node *n = idom_no_update(didx);
|
|
_idom[didx] = n; // Lazily remove dead CFG nodes from table.
|
|
return n;
|
|
}
|
|
|
|
uint dom_depth(Node* d) const {
|
|
guarantee(d != nullptr, "Null dominator info.");
|
|
guarantee(d->_idx < _idom_size, "");
|
|
return _dom_depth[d->_idx];
|
|
}
|
|
void set_idom(Node* d, Node* n, uint dom_depth);
|
|
// Locally compute IDOM using dom_lca call
|
|
Node *compute_idom( Node *region ) const;
|
|
// Recompute dom_depth
|
|
void recompute_dom_depth();
|
|
|
|
// Is safept not required by an outer loop?
|
|
bool is_deleteable_safept(Node* sfpt);
|
|
|
|
// Replace parallel induction variable (parallel to trip counter)
|
|
void replace_parallel_iv(IdealLoopTree *loop);
|
|
|
|
Node *dom_lca( Node *n1, Node *n2 ) const {
|
|
return find_non_split_ctrl(dom_lca_internal(n1, n2));
|
|
}
|
|
Node *dom_lca_internal( Node *n1, Node *n2 ) const;
|
|
|
|
Node* dominated_node(Node* c1, Node* c2) {
|
|
assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related");
|
|
return is_dominator(c1, c2) ? c2 : c1;
|
|
}
|
|
|
|
// Return control node that's dominated by the 2 others
|
|
Node* dominated_node(Node* c1, Node* c2, Node* c3) {
|
|
return dominated_node(c1, dominated_node(c2, c3));
|
|
}
|
|
|
|
// Build and verify the loop tree without modifying the graph. This
|
|
// is useful to verify that all inputs properly dominate their uses.
|
|
static void verify(PhaseIterGVN& igvn) {
|
|
#ifdef ASSERT
|
|
ResourceMark rm;
|
|
Compile::TracePhase tp(_t_idealLoopVerify);
|
|
PhaseIdealLoop v(igvn);
|
|
#endif
|
|
}
|
|
|
|
// Recommended way to use PhaseIdealLoop.
|
|
// Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
|
|
static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
|
|
ResourceMark rm;
|
|
PhaseIdealLoop v(igvn, mode);
|
|
|
|
Compile* C = Compile::current();
|
|
if (!C->failing()) {
|
|
// Cleanup any modified bits
|
|
igvn.optimize();
|
|
if (C->failing()) { return; }
|
|
v.log_loop_tree();
|
|
}
|
|
}
|
|
|
|
// True if the method has at least 1 irreducible loop
|
|
bool _has_irreducible_loops;
|
|
|
|
// Per-Node transform
|
|
virtual Node* transform(Node* n) { return nullptr; }
|
|
|
|
Node* loop_exit_control(Node* x, IdealLoopTree* loop);
|
|
Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
|
|
Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
|
|
Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi);
|
|
PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop);
|
|
|
|
bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
|
|
|
|
Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
|
|
bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
|
|
#ifdef ASSERT
|
|
bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
|
|
#endif
|
|
void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
|
|
SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
|
|
IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
|
|
IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
|
|
IdealLoopTree* loop, float cl_prob, float le_fcnt,
|
|
Node*& entry_control, Node*& iffalse);
|
|
|
|
Node* exact_limit( IdealLoopTree *loop );
|
|
|
|
// Return a post-walked LoopNode
|
|
IdealLoopTree *get_loop( Node *n ) const {
|
|
// Dead nodes have no loop, so return the top level loop instead
|
|
if (!has_node(n)) return _ltree_root;
|
|
assert(!has_ctrl(n), "");
|
|
return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
|
|
}
|
|
|
|
IdealLoopTree* ltree_root() const { return _ltree_root; }
|
|
|
|
// Is 'n' a (nested) member of 'loop'?
|
|
int is_member( const IdealLoopTree *loop, Node *n ) const {
|
|
return loop->is_member(get_loop(n)); }
|
|
|
|
// This is the basic building block of the loop optimizations. It clones an
|
|
// entire loop body. It makes an old_new loop body mapping; with this
|
|
// mapping you can find the new-loop equivalent to an old-loop node. All
|
|
// new-loop nodes are exactly equal to their old-loop counterparts, all
|
|
// edges are the same. All exits from the old-loop now have a RegionNode
|
|
// that merges the equivalent new-loop path. This is true even for the
|
|
// normal "loop-exit" condition. All uses of loop-invariant old-loop values
|
|
// now come from (one or more) Phis that merge their new-loop equivalents.
|
|
// Parameter side_by_side_idom:
|
|
// When side_by_size_idom is null, the dominator tree is constructed for
|
|
// the clone loop to dominate the original. Used in construction of
|
|
// pre-main-post loop sequence.
|
|
// When nonnull, the clone and original are side-by-side, both are
|
|
// dominated by the passed in side_by_side_idom node. Used in
|
|
// construction of unswitched loops.
|
|
enum CloneLoopMode {
|
|
IgnoreStripMined = 0, // Only clone inner strip mined loop
|
|
CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
|
|
ControlAroundStripMined = 2 // Only clone inner strip mined loop,
|
|
// result control flow branches
|
|
// either to inner clone or outer
|
|
// strip mined loop.
|
|
};
|
|
void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
|
|
CloneLoopMode mode, Node* side_by_side_idom = nullptr);
|
|
void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
|
|
IdealLoopTree* loop, IdealLoopTree* companion_loop,
|
|
Node_List*& split_if_set, Node_List*& split_bool_set,
|
|
Node_List*& split_cex_set, Node_List& worklist,
|
|
uint new_counter, CloneLoopMode mode);
|
|
void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
|
|
IdealLoopTree* outer_loop, int dd, Node_List &old_new,
|
|
Node_List& extra_data_nodes);
|
|
|
|
// If we got the effect of peeling, either by actually peeling or by
|
|
// making a pre-loop which must execute at least once, we can remove
|
|
// all loop-invariant dominated tests in the main body.
|
|
void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
|
|
|
|
// Generate code to do a loop peel for the given loop (and body).
|
|
// old_new is a temp array.
|
|
void do_peeling( IdealLoopTree *loop, Node_List &old_new );
|
|
|
|
// Add pre and post loops around the given loop. These loops are used
|
|
// during RCE, unrolling and aligning loops.
|
|
void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
|
|
|
|
// Add post loop after the given loop.
|
|
Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
|
|
CountedLoopNode* main_head, CountedLoopEndNode* main_end,
|
|
Node*& incr, Node* limit, CountedLoopNode*& post_head);
|
|
|
|
// Add a vector post loop between a vector main loop and the current post loop
|
|
void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
|
|
// If Node n lives in the back_ctrl block, we clone a private version of n
|
|
// in preheader_ctrl block and return that, otherwise return n.
|
|
Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
|
|
|
|
// Take steps to maximally unroll the loop. Peel any odd iterations, then
|
|
// unroll to do double iterations. The next round of major loop transforms
|
|
// will repeat till the doubled loop body does all remaining iterations in 1
|
|
// pass.
|
|
void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
|
|
|
|
// Unroll the loop body one step - make each trip do 2 iterations.
|
|
void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
|
|
|
|
// Return true if exp is a constant times an induction var
|
|
bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
|
|
|
|
bool is_iv(Node* exp, Node* iv, BasicType bt);
|
|
|
|
// Return true if exp is a scaled induction var plus (or minus) constant
|
|
bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
|
|
bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
|
|
jlong long_scale;
|
|
if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
|
|
int int_scale = checked_cast<int>(long_scale);
|
|
if (p_scale != nullptr) {
|
|
*p_scale = int_scale;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
// Helper for finding more complex matches to is_scaled_iv_plus_offset.
|
|
bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
|
|
BasicType bt,
|
|
jlong* p_scale, Node** p_offset,
|
|
bool* p_short_scale, int depth);
|
|
|
|
// Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
|
|
IfTrueNode* create_new_if_for_predicate(
|
|
ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry, Deoptimization::DeoptReason reason, int opcode,
|
|
bool rewire_uncommon_proj_phi_inputs = false,
|
|
AssertionPredicateType assertion_predicate_type = AssertionPredicateType::None);
|
|
|
|
private:
|
|
// Helper functions for create_new_if_for_predicate()
|
|
void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
|
|
Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
|
|
Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
|
|
void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj,
|
|
const OrigToNewHashtable& orig_to_clone);
|
|
bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
|
|
Node* loop_entry);
|
|
|
|
public:
|
|
void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
|
|
|
|
void replace_loop_entry(LoopNode* loop_head, Node* new_entry) {
|
|
_igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry);
|
|
set_idom(loop_head, new_entry, dom_depth(new_entry));
|
|
}
|
|
|
|
// Construct a range check for a predicate if
|
|
BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
|
|
jint stride, Node* range, bool upper, bool& overflow);
|
|
|
|
// Implementation of the loop predication to promote checks outside the loop
|
|
bool loop_predication_impl(IdealLoopTree *loop);
|
|
|
|
private:
|
|
bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
|
|
ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
|
|
Invariance& invar, Deoptimization::DeoptReason deopt_reason);
|
|
bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
|
|
bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
|
|
void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
|
|
PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
|
|
Node_List& if_proj_list);
|
|
IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate,
|
|
IfProjNode* new_control, int scale, Node* offset, Node* range);
|
|
void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj);
|
|
|
|
// Helper function to collect predicate for eliminating the useless ones
|
|
void eliminate_useless_predicates();
|
|
|
|
void eliminate_useless_parse_predicates();
|
|
void mark_all_parse_predicates_useless() const;
|
|
void mark_loop_associated_parse_predicates_useful();
|
|
static void mark_useful_parse_predicates_for_loop(IdealLoopTree* loop);
|
|
void add_useless_parse_predicates_to_igvn_worklist();
|
|
|
|
void eliminate_useless_template_assertion_predicates();
|
|
void collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates);
|
|
static void collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, Unique_Node_List& useful_predicates);
|
|
void eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates);
|
|
|
|
void eliminate_useless_zero_trip_guard();
|
|
|
|
public:
|
|
// Change the control input of expensive nodes to allow commoning by
|
|
// IGVN when it is guaranteed to not result in a more frequent
|
|
// execution of the expensive node. Return true if progress.
|
|
bool process_expensive_nodes();
|
|
|
|
// Check whether node has become unreachable
|
|
bool is_node_unreachable(Node *n) const {
|
|
return !has_node(n) || n->is_unreachable(_igvn);
|
|
}
|
|
|
|
// Eliminate range-checks and other trip-counter vs loop-invariant tests.
|
|
void do_range_check(IdealLoopTree *loop, Node_List &old_new);
|
|
|
|
// Clone loop with an invariant test (that does not exit) and
|
|
// insert a clone of the test that selects which version to
|
|
// execute.
|
|
void do_unswitching(IdealLoopTree* loop, Node_List& old_new);
|
|
|
|
IfNode* find_unswitch_candidate(const IdealLoopTree* loop) const;
|
|
|
|
private:
|
|
static bool has_control_dependencies_from_predicates(LoopNode* head);
|
|
static void revert_to_normal_loop(const LoopNode* loop_head);
|
|
|
|
void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new,
|
|
const UnswitchedLoopSelector& unswitched_loop_selector);
|
|
void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new);
|
|
static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head);
|
|
void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector);
|
|
#ifndef PRODUCT
|
|
static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head);
|
|
static void trace_loop_unswitching_impossible(const LoopNode* original_head);
|
|
static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector,
|
|
const LoopNode* original_head, const LoopNode* new_head);
|
|
#endif
|
|
|
|
public:
|
|
|
|
// Range Check Elimination uses this function!
|
|
// Constrain the main loop iterations so the affine function:
|
|
// low_limit <= scale_con * I + offset < upper_limit
|
|
// always holds true. That is, either increase the number of iterations in
|
|
// the pre-loop or the post-loop until the condition holds true in the main
|
|
// loop. Scale_con, offset and limit are all loop invariant.
|
|
void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
|
|
// Helper function for add_constraint().
|
|
Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
|
|
|
|
// Partially peel loop up through last_peel node.
|
|
bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
|
|
bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
|
|
|
|
// AutoVectorize the loop: replace scalar ops with vector ops.
|
|
enum AutoVectorizeStatus {
|
|
Impossible, // This loop has the wrong shape to even try vectorization.
|
|
Success, // We just successfully vectorized the loop.
|
|
TriedAndFailed, // We tried to vectorize, but failed.
|
|
};
|
|
AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
|
|
|
|
// Move an unordered Reduction out of loop if possible
|
|
void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
|
|
|
|
// Create a scheduled list of nodes control dependent on ctrl set.
|
|
void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
|
|
// Has a use in the vector set
|
|
bool has_use_in_set( Node* n, VectorSet& vset );
|
|
// Has use internal to the vector set (ie. not in a phi at the loop head)
|
|
bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
|
|
// clone "n" for uses that are outside of loop
|
|
int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
|
|
// clone "n" for special uses that are in the not_peeled region
|
|
void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
|
|
VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
|
|
// Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
|
|
void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
|
|
#ifdef ASSERT
|
|
// Validate the loop partition sets: peel and not_peel
|
|
bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
|
|
// Ensure that uses outside of loop are of the right form
|
|
bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
|
|
uint orig_exit_idx, uint clone_exit_idx);
|
|
bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
|
|
#endif
|
|
|
|
// Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
|
|
int stride_of_possible_iv( Node* iff );
|
|
bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
|
|
// Return the (unique) control output node that's in the loop (if it exists.)
|
|
Node* stay_in_loop( Node* n, IdealLoopTree *loop);
|
|
// Insert a signed compare loop exit cloned from an unsigned compare.
|
|
IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
|
|
void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
|
|
// Utility to register node "n" with PhaseIdealLoop
|
|
void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
|
|
// Utility to create an if-projection
|
|
ProjNode* proj_clone(ProjNode* p, IfNode* iff);
|
|
// Force the iff control output to be the live_proj
|
|
Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
|
|
// Insert a region before an if projection
|
|
RegionNode* insert_region_before_proj(ProjNode* proj);
|
|
// Insert a new if before an if projection
|
|
ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
|
|
|
|
// Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
|
|
// "Nearly" because all Nodes have been cloned from the original in the loop,
|
|
// but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs
|
|
// through the Phi recursively, and return a Bool.
|
|
Node* clone_iff(PhiNode* phi);
|
|
CmpNode* clone_bool(PhiNode* phi);
|
|
|
|
|
|
// Rework addressing expressions to get the most loop-invariant stuff
|
|
// moved out. We'd like to do all associative operators, but it's especially
|
|
// important (common) to do address expressions.
|
|
Node* remix_address_expressions(Node* n);
|
|
Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
|
|
|
|
// Convert add to muladd to generate MuladdS2I under certain criteria
|
|
Node * convert_add_to_muladd(Node * n);
|
|
|
|
// Attempt to use a conditional move instead of a phi/branch
|
|
Node *conditional_move( Node *n );
|
|
|
|
bool split_thru_phi_could_prevent_vectorization(Node* n, Node* n_blk);
|
|
|
|
// Check for aggressive application of 'split-if' optimization,
|
|
// using basic block level info.
|
|
void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack);
|
|
Node *split_if_with_blocks_pre ( Node *n );
|
|
void split_if_with_blocks_post( Node *n );
|
|
Node *has_local_phi_input( Node *n );
|
|
// Mark an IfNode as being dominated by a prior test,
|
|
// without actually altering the CFG (and hence IDOM info).
|
|
void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
|
|
void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes);
|
|
|
|
// Split Node 'n' through merge point
|
|
RegionNode* split_thru_region(Node* n, RegionNode* region);
|
|
// Split Node 'n' through merge point if there is enough win.
|
|
Node *split_thru_phi( Node *n, Node *region, int policy );
|
|
// Found an If getting its condition-code input from a Phi in the
|
|
// same block. Split thru the Region.
|
|
void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
|
|
|
|
// Conversion of fill/copy patterns into intrinsic versions
|
|
bool do_intrinsify_fill();
|
|
bool intrinsify_fill(IdealLoopTree* lpt);
|
|
bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
|
|
Node*& shift, Node*& offset);
|
|
|
|
private:
|
|
// Return a type based on condition control flow
|
|
const TypeInt* filtered_type( Node *n, Node* n_ctrl);
|
|
const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
|
|
// Helpers for filtered type
|
|
const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
|
|
|
|
// Helper functions
|
|
Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
|
|
Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
|
|
void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
|
|
bool split_up( Node *n, Node *blk1, Node *blk2 );
|
|
|
|
Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
|
|
Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
|
|
void try_move_store_after_loop(Node* n);
|
|
bool identical_backtoback_ifs(Node *n);
|
|
bool can_split_if(Node *n_ctrl);
|
|
bool cannot_split_division(const Node* n, const Node* region) const;
|
|
static bool is_divisor_loop_phi(const Node* divisor, const Node* loop);
|
|
bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
|
|
|
|
// Determine if a method is too big for a/another round of split-if, based on
|
|
// a magic (approximate) ratio derived from the equally magic constant 35000,
|
|
// previously used for this purpose (but without relating to the node limit).
|
|
bool must_throttle_split_if() {
|
|
uint threshold = C->max_node_limit() * 2 / 5;
|
|
return C->live_nodes() > threshold;
|
|
}
|
|
|
|
// A simplistic node request tracking mechanism, where
|
|
// = UINT_MAX Request not valid or made final.
|
|
// < UINT_MAX Nodes currently requested (estimate).
|
|
uint _nodes_required;
|
|
|
|
enum { REQUIRE_MIN = 70 };
|
|
|
|
uint nodes_required() const { return _nodes_required; }
|
|
|
|
// Given the _currently_ available number of nodes, check whether there is
|
|
// "room" for an additional request or not, considering the already required
|
|
// number of nodes. Return TRUE if the new request is exceeding the node
|
|
// budget limit, otherwise return FALSE. Note that this interpretation will
|
|
// act pessimistic on additional requests when new nodes have already been
|
|
// generated since the 'begin'. This behaviour fits with the intention that
|
|
// node estimates/requests should be made upfront.
|
|
bool exceeding_node_budget(uint required = 0) {
|
|
assert(C->live_nodes() < C->max_node_limit(), "sanity");
|
|
uint available = C->max_node_limit() - C->live_nodes();
|
|
return available < required + _nodes_required + REQUIRE_MIN;
|
|
}
|
|
|
|
uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
|
|
precond(require > 0);
|
|
_nodes_required += MAX2(require, minreq);
|
|
return _nodes_required;
|
|
}
|
|
|
|
bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
|
|
return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
|
|
}
|
|
|
|
uint require_nodes_begin() {
|
|
assert(_nodes_required == UINT_MAX, "Bad state (begin).");
|
|
_nodes_required = 0;
|
|
return C->live_nodes();
|
|
}
|
|
|
|
// When a node request is final, optionally check that the requested number
|
|
// of nodes was reasonably correct with respect to the number of new nodes
|
|
// introduced since the last 'begin'. Always check that we have not exceeded
|
|
// the maximum node limit.
|
|
void require_nodes_final(uint live_at_begin, bool check_estimate) {
|
|
assert(_nodes_required < UINT_MAX, "Bad state (final).");
|
|
|
|
#ifdef ASSERT
|
|
if (check_estimate) {
|
|
// Check that the node budget request was not off by too much (x2).
|
|
// Should this be the case we _surely_ need to improve the estimates
|
|
// used in our budget calculations.
|
|
if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
|
|
log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
|
|
C->live_nodes() - live_at_begin, _nodes_required);
|
|
}
|
|
}
|
|
#endif
|
|
// Assert that we have stayed within the node budget limit.
|
|
assert(C->live_nodes() < C->max_node_limit(),
|
|
"Exceeding node budget limit: %d + %d > %d (request = %d)",
|
|
C->live_nodes() - live_at_begin, live_at_begin,
|
|
C->max_node_limit(), _nodes_required);
|
|
|
|
_nodes_required = UINT_MAX;
|
|
}
|
|
|
|
public:
|
|
// Clone Parse Predicates to slow and fast loop when unswitching a loop
|
|
void clone_parse_and_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, Node_List& old_new,
|
|
IfProjNode*& true_path_loop_entry,
|
|
IfProjNode*& false_path_loop_entry);
|
|
private:
|
|
void clone_loop_predication_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
|
|
const PredicateBlock* predicate_block,
|
|
Deoptimization::DeoptReason reason,
|
|
IfProjNode*& true_path_loop_entry,
|
|
IfProjNode*& false_path_loop_entry);
|
|
void clone_parse_predicate_to_unswitched_loops(const PredicateBlock* predicate_block, Deoptimization::DeoptReason reason,
|
|
IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
|
|
IfProjNode* clone_parse_predicate_to_unswitched_loop(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
|
|
Deoptimization::DeoptReason reason, bool slow_loop);
|
|
void clone_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
|
|
ParsePredicateSuccessProj* old_parse_predicate_proj,
|
|
ParsePredicateNode* true_path_loop_parse_predicate,
|
|
ParsePredicateNode* false_path_loop_parse_predicate);
|
|
IfTrueNode* clone_assertion_predicate_for_unswitched_loops(IfTrueNode* template_assertion_predicate_success_proj,
|
|
ParsePredicateNode* unswitched_loop_parse_predicate);
|
|
static void check_cloned_parse_predicate_for_unswitching(const Node* new_entry, bool is_fast_loop) PRODUCT_RETURN;
|
|
|
|
bool _created_loop_node;
|
|
DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
|
|
NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
|
|
|
|
public:
|
|
void set_created_loop_node() { _created_loop_node = true; }
|
|
bool created_loop_node() { return _created_loop_node; }
|
|
void register_new_node(Node* n, Node* blk);
|
|
void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) {
|
|
register_new_node(new_node, get_ctrl(ctrl_of));
|
|
}
|
|
|
|
Node* clone_and_register(Node* n, Node* ctrl) {
|
|
n = n->clone();
|
|
register_new_node(n, ctrl);
|
|
return n;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
void dump() const;
|
|
void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
|
|
void dump_idom(Node* n, uint count) const;
|
|
void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
|
|
void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
|
|
IdealLoopTree* get_loop_idx(Node* n) const {
|
|
// Dead nodes have no loop, so return the top level loop instead
|
|
return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
|
|
}
|
|
// Print some stats
|
|
static void print_statistics();
|
|
static int _loop_invokes; // Count of PhaseIdealLoop invokes
|
|
static int _loop_work; // Sum of PhaseIdealLoop x _unique
|
|
static volatile int _long_loop_candidates;
|
|
static volatile int _long_loop_nests;
|
|
static volatile int _long_loop_counted_loops;
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
void verify() const;
|
|
bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
|
|
bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
|
|
bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
|
|
#endif
|
|
|
|
void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
|
|
|
|
void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
|
|
|
|
LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
|
|
|
|
|
|
int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
|
|
Node_List &range_checks);
|
|
|
|
void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
|
|
Node* inner_iters_actual_int, Node* inner_phi,
|
|
Node* iv_add, LoopNode* inner_head);
|
|
|
|
Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
|
|
|
|
bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
|
|
|
|
bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
|
|
|
|
Node* compute_early_ctrl(Node* n, Node* n_ctrl);
|
|
|
|
void try_sink_out_of_loop(Node* n);
|
|
|
|
Node* clamp(Node* R, Node* L, Node* H);
|
|
|
|
bool safe_for_if_replacement(const Node* dom) const;
|
|
|
|
void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
|
|
|
|
bool try_merge_identical_ifs(Node* n);
|
|
|
|
void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
|
|
|
|
void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
|
|
IdealLoopTree* parent, bool partial);
|
|
|
|
void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
|
|
Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
|
|
|
|
void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
|
|
uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
|
|
Node_List*& split_bool_set, Node_List*& split_cex_set);
|
|
|
|
void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
|
|
|
|
bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
|
|
|
|
bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
|
|
void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
|
|
bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
|
|
void clone_template_assertion_expression_down(Node* node);
|
|
|
|
Node* similar_subtype_check(const Node* x, Node* r_in);
|
|
|
|
void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
|
|
|
|
bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
|
|
|
|
void pin_array_access_nodes_dependent_on(Node* ctrl);
|
|
|
|
Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node);
|
|
};
|
|
|
|
|
|
class AutoNodeBudget : public StackObj
|
|
{
|
|
public:
|
|
enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
|
|
|
|
AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
|
|
: _phase(phase),
|
|
_check_at_final(chk == BUDGET_CHECK),
|
|
_nodes_at_begin(0)
|
|
{
|
|
precond(_phase != nullptr);
|
|
|
|
_nodes_at_begin = _phase->require_nodes_begin();
|
|
}
|
|
|
|
~AutoNodeBudget() {
|
|
#ifndef PRODUCT
|
|
if (TraceLoopOpts) {
|
|
uint request = _phase->nodes_required();
|
|
uint delta = _phase->C->live_nodes() - _nodes_at_begin;
|
|
|
|
if (request < delta) {
|
|
tty->print_cr("Exceeding node budget: %d < %d", request, delta);
|
|
} else {
|
|
uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
|
|
// Identify the worst estimates as "poor" ones.
|
|
if (request > REQUIRE_MIN && delta > 0) {
|
|
if ((delta > REQUIRE_MIN && request > 3 * delta) ||
|
|
(delta <= REQUIRE_MIN && request > 10 * delta)) {
|
|
tty->print_cr("Poor node estimate: %d >> %d", request, delta);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // PRODUCT
|
|
_phase->require_nodes_final(_nodes_at_begin, _check_at_final);
|
|
}
|
|
|
|
private:
|
|
PhaseIdealLoop* _phase;
|
|
bool _check_at_final;
|
|
uint _nodes_at_begin;
|
|
};
|
|
|
|
inline Node* IdealLoopTree::tail() {
|
|
// Handle lazy update of _tail field.
|
|
if (_tail->in(0) == nullptr) {
|
|
_tail = _phase->get_ctrl(_tail);
|
|
}
|
|
return _tail;
|
|
}
|
|
|
|
inline Node* IdealLoopTree::head() {
|
|
// Handle lazy update of _head field.
|
|
if (_head->in(0) == nullptr) {
|
|
_head = _phase->get_ctrl(_head);
|
|
}
|
|
return _head;
|
|
}
|
|
|
|
// Iterate over the loop tree using a preorder, left-to-right traversal.
|
|
//
|
|
// Example that visits all counted loops from within PhaseIdealLoop
|
|
//
|
|
// for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
|
|
// IdealLoopTree* lpt = iter.current();
|
|
// if (!lpt->is_counted()) continue;
|
|
// ...
|
|
class LoopTreeIterator : public StackObj {
|
|
private:
|
|
IdealLoopTree* _root;
|
|
IdealLoopTree* _curnt;
|
|
|
|
public:
|
|
LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
|
|
|
|
bool done() { return _curnt == nullptr; } // Finished iterating?
|
|
|
|
void next(); // Advance to next loop tree
|
|
|
|
IdealLoopTree* current() { return _curnt; } // Return current value of iterator.
|
|
};
|
|
|
|
// Compute probability of reaching some CFG node from a fixed
|
|
// dominating CFG node
|
|
class PathFrequency {
|
|
private:
|
|
Node* _dom; // frequencies are computed relative to this node
|
|
Node_Stack _stack;
|
|
GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
|
|
GrowableArray<float> _freqs; // cache frequencies
|
|
PhaseIdealLoop* _phase;
|
|
|
|
float check_and_truncate_frequency(float f) {
|
|
assert(f >= 0, "Incorrect frequency");
|
|
// We do not perform an exact (f <= 1) check
|
|
// this would be error prone with rounding of floats.
|
|
// Performing a check like (f <= 1+eps) would be of benefit,
|
|
// however, it is not evident how to determine such an eps,
|
|
// given that an arbitrary number of add/mul operations
|
|
// are performed on these frequencies.
|
|
return (f > 1) ? 1 : f;
|
|
}
|
|
|
|
public:
|
|
PathFrequency(Node* dom, PhaseIdealLoop* phase)
|
|
: _dom(dom), _stack(0), _phase(phase) {
|
|
}
|
|
|
|
float to(Node* n);
|
|
};
|
|
|
|
// Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps:
|
|
// 1. Clone the data nodes
|
|
// 2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping.
|
|
class DataNodeGraph : public StackObj {
|
|
PhaseIdealLoop* const _phase;
|
|
const Unique_Node_List& _data_nodes;
|
|
OrigToNewHashtable _orig_to_new;
|
|
|
|
public:
|
|
DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase)
|
|
: _phase(phase),
|
|
_data_nodes(data_nodes),
|
|
// Use 107 as best guess which is the first resize value in ResizeableResourceHashtable::large_table_sizes.
|
|
_orig_to_new(107, MaxNodeLimit)
|
|
{
|
|
#ifdef ASSERT
|
|
for (uint i = 0; i < data_nodes.size(); i++) {
|
|
assert(!data_nodes[i]->is_CFG(), "only data nodes");
|
|
}
|
|
#endif
|
|
}
|
|
NONCOPYABLE(DataNodeGraph);
|
|
|
|
private:
|
|
void clone(Node* node, Node* new_ctrl);
|
|
void clone_data_nodes(Node* new_ctrl);
|
|
void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy,
|
|
Node* new_ctrl);
|
|
void rewire_clones_to_cloned_inputs();
|
|
void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node);
|
|
|
|
public:
|
|
// Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy.
|
|
// Set 'new_ctrl' as ctrl for the cloned nodes.
|
|
const OrigToNewHashtable& clone(Node* new_ctrl) {
|
|
assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row");
|
|
clone_data_nodes(new_ctrl);
|
|
rewire_clones_to_cloned_inputs();
|
|
return _orig_to_new;
|
|
}
|
|
|
|
// Create a copy of the data nodes provided to the constructor by doing the following:
|
|
// Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes,
|
|
// apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete
|
|
// "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set
|
|
// `new_ctrl` as ctrl.
|
|
const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy(
|
|
const TransformStrategyForOpaqueLoopNodes& transform_strategy,
|
|
Node* new_ctrl) {
|
|
clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl);
|
|
rewire_clones_to_cloned_inputs();
|
|
return _orig_to_new;
|
|
}
|
|
};
|
|
#endif // SHARE_OPTO_LOOPNODE_HPP
|