mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-04 07:28:22 +00:00
Co-authored-by: Amit Kumar <amitkumar@openjdk.org> Reviewed-by: sspitsyn, vlivanov, yzheng, dlong, dholmes
2492 lines
92 KiB
C++
2492 lines
92 KiB
C++
/*
|
|
* Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2024 SAP SE. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/barrierSetAssembler.hpp"
|
|
#include "interp_masm_ppc.hpp"
|
|
#include "interpreter/interpreterRuntime.hpp"
|
|
#include "oops/methodCounters.hpp"
|
|
#include "oops/methodData.hpp"
|
|
#include "oops/resolvedFieldEntry.hpp"
|
|
#include "oops/resolvedIndyEntry.hpp"
|
|
#include "oops/resolvedMethodEntry.hpp"
|
|
#include "prims/jvmtiExport.hpp"
|
|
#include "prims/jvmtiThreadState.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/safepointMechanism.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/vm_version.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
|
|
// Implementation of InterpreterMacroAssembler.
|
|
|
|
// This file specializes the assembler with interpreter-specific macros.
|
|
|
|
#ifdef PRODUCT
|
|
#define BLOCK_COMMENT(str) // nothing
|
|
#else
|
|
#define BLOCK_COMMENT(str) block_comment(str)
|
|
#endif
|
|
|
|
void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
|
|
address exception_entry = Interpreter::throw_NullPointerException_entry();
|
|
MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::load_klass_check_null_throw(Register dst, Register src, Register temp_reg) {
|
|
null_check_throw(src, oopDesc::klass_offset_in_bytes(), temp_reg);
|
|
load_klass(dst, src);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
|
|
assert(entry, "Entry must have been generated by now");
|
|
if (is_within_range_of_b(entry, pc())) {
|
|
b(entry);
|
|
} else {
|
|
load_const_optimized(Rscratch, entry, R0);
|
|
mtctr(Rscratch);
|
|
bctr();
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
|
|
Register bytecode = R12_scratch2;
|
|
if (bcp_incr != 0) {
|
|
lbzu(bytecode, bcp_incr, R14_bcp);
|
|
} else {
|
|
lbz(bytecode, 0, R14_bcp);
|
|
}
|
|
|
|
dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
|
|
// Load current bytecode.
|
|
Register bytecode = R12_scratch2;
|
|
lbz(bytecode, 0, R14_bcp);
|
|
dispatch_Lbyte_code(state, bytecode, table);
|
|
}
|
|
|
|
// Dispatch code executed in the prolog of a bytecode which does not do it's
|
|
// own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
|
|
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
|
|
Register bytecode = R12_scratch2;
|
|
lbz(bytecode, bcp_incr, R14_bcp);
|
|
|
|
load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
|
|
|
|
sldi(bytecode, bytecode, LogBytesPerWord);
|
|
ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
|
|
}
|
|
|
|
// Dispatch code executed in the epilog of a bytecode which does not do it's
|
|
// own dispatch. The dispatch address in R24_dispatch_addr is used for the
|
|
// dispatch.
|
|
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
|
|
if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); }
|
|
mtctr(R24_dispatch_addr);
|
|
bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
|
|
assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
|
|
if (JvmtiExport::can_pop_frame()) {
|
|
Label L;
|
|
|
|
// Check the "pending popframe condition" flag in the current thread.
|
|
lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
|
|
|
|
// Initiate popframe handling only if it is not already being
|
|
// processed. If the flag has the popframe_processing bit set, it
|
|
// means that this code is called *during* popframe handling - we
|
|
// don't want to reenter.
|
|
andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
|
|
beq(CCR0, L);
|
|
|
|
andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
|
|
bne(CCR0, L);
|
|
|
|
// Call the Interpreter::remove_activation_preserving_args_entry()
|
|
// func to get the address of the same-named entrypoint in the
|
|
// generated interpreter code.
|
|
call_c(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
|
|
|
|
// Jump to Interpreter::_remove_activation_preserving_args_entry.
|
|
mtctr(R3_RET);
|
|
bctr();
|
|
|
|
align(32, 12);
|
|
bind(L);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
|
|
const Register Rthr_state_addr = scratch_reg;
|
|
if (JvmtiExport::can_force_early_return()) {
|
|
Label Lno_early_ret;
|
|
ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
|
|
cmpdi(CCR0, Rthr_state_addr, 0);
|
|
beq(CCR0, Lno_early_ret);
|
|
|
|
lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
|
|
cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
|
|
bne(CCR0, Lno_early_ret);
|
|
|
|
// Jump to Interpreter::_earlyret_entry.
|
|
lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
|
|
mtlr(R3_RET);
|
|
blr();
|
|
|
|
align(32, 12);
|
|
bind(Lno_early_ret);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
|
|
const Register RjvmtiState = Rscratch1;
|
|
const Register Rscratch2 = R0;
|
|
|
|
ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
|
|
li(Rscratch2, 0);
|
|
|
|
switch (state) {
|
|
case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
|
|
std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
|
|
break;
|
|
case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
|
|
break;
|
|
case btos: // fall through
|
|
case ztos: // fall through
|
|
case ctos: // fall through
|
|
case stos: // fall through
|
|
case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
|
|
break;
|
|
case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
|
|
break;
|
|
case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
|
|
break;
|
|
case vtos: break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
|
|
// Clean up tos value in the jvmti thread state.
|
|
std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
|
|
// Set tos state field to illegal value.
|
|
li(Rscratch2, ilgl);
|
|
stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
|
|
}
|
|
|
|
// Common code to dispatch and dispatch_only.
|
|
// Dispatch value in Lbyte_code and increment Lbcp.
|
|
|
|
void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
|
|
address table_base = (address)Interpreter::dispatch_table((TosState)0);
|
|
intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
|
|
if (is_simm16(table_offs)) {
|
|
addi(dst, R25_templateTableBase, (int)table_offs);
|
|
} else {
|
|
load_const_optimized(dst, table, R0);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode,
|
|
address* table, bool generate_poll) {
|
|
assert_different_registers(bytecode, R11_scratch1);
|
|
|
|
// Calc dispatch table address.
|
|
load_dispatch_table(R11_scratch1, table);
|
|
|
|
if (generate_poll) {
|
|
address *sfpt_tbl = Interpreter::safept_table(state);
|
|
if (table != sfpt_tbl) {
|
|
Label dispatch;
|
|
ld(R0, in_bytes(JavaThread::polling_word_offset()), R16_thread);
|
|
// Armed page has poll_bit set, if poll bit is cleared just continue.
|
|
andi_(R0, R0, SafepointMechanism::poll_bit());
|
|
beq(CCR0, dispatch);
|
|
load_dispatch_table(R11_scratch1, sfpt_tbl);
|
|
align(32, 16);
|
|
bind(dispatch);
|
|
}
|
|
}
|
|
|
|
sldi(R12_scratch2, bytecode, LogBytesPerWord);
|
|
ldx(R11_scratch1, R11_scratch1, R12_scratch2);
|
|
|
|
// Jump off!
|
|
mtctr(R11_scratch1);
|
|
bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
|
|
sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
|
|
ldx(Rrecv_dst, Rrecv_dst, R15_esp);
|
|
}
|
|
|
|
// helpers for expression stack
|
|
|
|
void InterpreterMacroAssembler::pop_i(Register r) {
|
|
lwzu(r, Interpreter::stackElementSize, R15_esp);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_ptr(Register r) {
|
|
ldu(r, Interpreter::stackElementSize, R15_esp);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_l(Register r) {
|
|
ld(r, Interpreter::stackElementSize, R15_esp);
|
|
addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_f(FloatRegister f) {
|
|
lfsu(f, Interpreter::stackElementSize, R15_esp);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_d(FloatRegister f) {
|
|
lfd(f, Interpreter::stackElementSize, R15_esp);
|
|
addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_i(Register r) {
|
|
stw(r, 0, R15_esp);
|
|
addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_ptr(Register r) {
|
|
std(r, 0, R15_esp);
|
|
addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_l(Register r) {
|
|
// Clear unused slot.
|
|
load_const_optimized(R0, 0L);
|
|
std(R0, 0, R15_esp);
|
|
std(r, - Interpreter::stackElementSize, R15_esp);
|
|
addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_f(FloatRegister f) {
|
|
stfs(f, 0, R15_esp);
|
|
addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_d(FloatRegister f) {
|
|
stfd(f, - Interpreter::stackElementSize, R15_esp);
|
|
addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
|
|
std(first, 0, R15_esp);
|
|
std(second, -Interpreter::stackElementSize, R15_esp);
|
|
addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
|
|
}
|
|
|
|
void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) {
|
|
if (VM_Version::has_mtfprd()) {
|
|
mtfprd(d, l);
|
|
} else {
|
|
std(l, 0, R15_esp);
|
|
lfd(d, 0, R15_esp);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) {
|
|
if (VM_Version::has_mtfprd()) {
|
|
mffprd(l, d);
|
|
} else {
|
|
stfd(d, 0, R15_esp);
|
|
ld(l, 0, R15_esp);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push(TosState state) {
|
|
switch (state) {
|
|
case atos: push_ptr(); break;
|
|
case btos:
|
|
case ztos:
|
|
case ctos:
|
|
case stos:
|
|
case itos: push_i(); break;
|
|
case ltos: push_l(); break;
|
|
case ftos: push_f(); break;
|
|
case dtos: push_d(); break;
|
|
case vtos: /* nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop(TosState state) {
|
|
switch (state) {
|
|
case atos: pop_ptr(); break;
|
|
case btos:
|
|
case ztos:
|
|
case ctos:
|
|
case stos:
|
|
case itos: pop_i(); break;
|
|
case ltos: pop_l(); break;
|
|
case ftos: pop_f(); break;
|
|
case dtos: pop_d(); break;
|
|
case vtos: /* nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
verify_oop(R17_tos, state);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::empty_expression_stack() {
|
|
addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset,
|
|
Register Rdst,
|
|
signedOrNot is_signed) {
|
|
#if defined(VM_LITTLE_ENDIAN)
|
|
if (bcp_offset) {
|
|
load_const_optimized(Rdst, bcp_offset);
|
|
lhbrx(Rdst, R14_bcp, Rdst);
|
|
} else {
|
|
lhbrx(Rdst, R14_bcp);
|
|
}
|
|
if (is_signed == Signed) {
|
|
extsh(Rdst, Rdst);
|
|
}
|
|
#else
|
|
// Read Java big endian format.
|
|
if (is_signed == Signed) {
|
|
lha(Rdst, bcp_offset, R14_bcp);
|
|
} else {
|
|
lhz(Rdst, bcp_offset, R14_bcp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset,
|
|
Register Rdst,
|
|
signedOrNot is_signed) {
|
|
#if defined(VM_LITTLE_ENDIAN)
|
|
if (bcp_offset) {
|
|
load_const_optimized(Rdst, bcp_offset);
|
|
lwbrx(Rdst, R14_bcp, Rdst);
|
|
} else {
|
|
lwbrx(Rdst, R14_bcp);
|
|
}
|
|
if (is_signed == Signed) {
|
|
extsw(Rdst, Rdst);
|
|
}
|
|
#else
|
|
// Read Java big endian format.
|
|
if (bcp_offset & 3) { // Offset unaligned?
|
|
load_const_optimized(Rdst, bcp_offset);
|
|
if (is_signed == Signed) {
|
|
lwax(Rdst, R14_bcp, Rdst);
|
|
} else {
|
|
lwzx(Rdst, R14_bcp, Rdst);
|
|
}
|
|
} else {
|
|
if (is_signed == Signed) {
|
|
lwa(Rdst, bcp_offset, R14_bcp);
|
|
} else {
|
|
lwz(Rdst, bcp_offset, R14_bcp);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
// Load the constant pool cache index from the bytecode stream.
|
|
//
|
|
// Kills / writes:
|
|
// - Rdst, Rscratch
|
|
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset,
|
|
size_t index_size) {
|
|
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
|
|
// Cache index is always in the native format, courtesy of Rewriter.
|
|
if (index_size == sizeof(u2)) {
|
|
lhz(Rdst, bcp_offset, R14_bcp);
|
|
} else if (index_size == sizeof(u4)) {
|
|
if (bcp_offset & 3) {
|
|
load_const_optimized(Rdst, bcp_offset);
|
|
lwax(Rdst, R14_bcp, Rdst);
|
|
} else {
|
|
lwa(Rdst, bcp_offset, R14_bcp);
|
|
}
|
|
} else if (index_size == sizeof(u1)) {
|
|
lbz(Rdst, bcp_offset, R14_bcp);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
// Rdst now contains cp cache index.
|
|
}
|
|
|
|
// Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
|
|
// from (Rsrc)+offset.
|
|
void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
|
|
signedOrNot is_signed) {
|
|
#if defined(VM_LITTLE_ENDIAN)
|
|
if (offset) {
|
|
load_const_optimized(Rdst, offset);
|
|
lwbrx(Rdst, Rdst, Rsrc);
|
|
} else {
|
|
lwbrx(Rdst, Rsrc);
|
|
}
|
|
if (is_signed == Signed) {
|
|
extsw(Rdst, Rdst);
|
|
}
|
|
#else
|
|
if (is_signed == Signed) {
|
|
lwa(Rdst, offset, Rsrc);
|
|
} else {
|
|
lwz(Rdst, offset, Rsrc);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
|
|
// Get index out of bytecode pointer
|
|
get_cache_index_at_bcp(index, 1, sizeof(u4));
|
|
|
|
// Get address of invokedynamic array
|
|
ld_ptr(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()), R27_constPoolCache);
|
|
// Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
|
|
sldi(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
|
|
addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
|
|
add(cache, cache, index);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
|
|
// Get index out of bytecode pointer
|
|
get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
|
|
// Take shortcut if the size is a power of 2
|
|
if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
|
|
// Scale index by power of 2
|
|
sldi(index, index, log2i_exact(sizeof(ResolvedFieldEntry)));
|
|
} else {
|
|
// Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
|
|
mulli(index, index, sizeof(ResolvedFieldEntry));
|
|
}
|
|
// Get address of field entries array
|
|
ld_ptr(cache, in_bytes(ConstantPoolCache::field_entries_offset()), R27_constPoolCache);
|
|
addi(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
|
|
add(cache, cache, index);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
|
|
// Get index out of bytecode pointer
|
|
get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
|
|
// Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
|
|
mulli(index, index, sizeof(ResolvedMethodEntry));
|
|
|
|
// Get address of field entries array
|
|
ld_ptr(cache, ConstantPoolCache::method_entries_offset(), R27_constPoolCache);
|
|
addi(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
|
|
add(cache, cache, index); // method_entries + base_offset + scaled index
|
|
}
|
|
|
|
// Load object from cpool->resolved_references(index).
|
|
// Kills:
|
|
// - index
|
|
void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index,
|
|
Register tmp1, Register tmp2,
|
|
Label *L_handle_null) {
|
|
assert_different_registers(result, index, tmp1, tmp2);
|
|
assert(index->is_nonvolatile(), "needs to survive C-call in resolve_oop_handle");
|
|
get_constant_pool(result);
|
|
|
|
// Convert from field index to resolved_references() index and from
|
|
// word index to byte offset. Since this is a java object, it can be compressed.
|
|
sldi(index, index, LogBytesPerHeapOop);
|
|
// Load pointer for resolved_references[] objArray.
|
|
ld(result, ConstantPool::cache_offset(), result);
|
|
ld(result, ConstantPoolCache::resolved_references_offset(), result);
|
|
resolve_oop_handle(result, tmp1, tmp2, MacroAssembler::PRESERVATION_NONE);
|
|
#ifdef ASSERT
|
|
Label index_ok;
|
|
lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
|
|
sldi(R0, R0, LogBytesPerHeapOop);
|
|
cmpd(CCR0, index, R0);
|
|
blt(CCR0, index_ok);
|
|
stop("resolved reference index out of bounds");
|
|
bind(index_ok);
|
|
#endif
|
|
// Add in the index.
|
|
add(result, index, result);
|
|
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result,
|
|
tmp1, tmp2,
|
|
MacroAssembler::PRESERVATION_NONE,
|
|
0, L_handle_null);
|
|
}
|
|
|
|
// load cpool->resolved_klass_at(index)
|
|
void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) {
|
|
// int value = *(Rcpool->int_at_addr(which));
|
|
// int resolved_klass_index = extract_low_short_from_int(value);
|
|
add(Roffset, Rcpool, Roffset);
|
|
#if defined(VM_LITTLE_ENDIAN)
|
|
lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index
|
|
#else
|
|
lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index
|
|
#endif
|
|
|
|
ld(Rklass, ConstantPool::resolved_klasses_offset(), Rcpool); // Rklass = Rcpool->_resolved_klasses
|
|
|
|
sldi(Roffset, Roffset, LogBytesPerWord);
|
|
addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes());
|
|
isync(); // Order load of instance Klass wrt. tags.
|
|
ldx(Rklass, Rklass, Roffset);
|
|
}
|
|
|
|
// Generate a subtype check: branch to ok_is_subtype if sub_klass is
|
|
// a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
|
|
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
|
|
Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
|
|
// Profile the not-null value's klass.
|
|
profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
|
|
check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
|
|
}
|
|
|
|
// Separate these two to allow for delay slot in middle.
|
|
// These are used to do a test and full jump to exception-throwing code.
|
|
|
|
// Check that index is in range for array, then shift index by index_shift,
|
|
// and put arrayOop + shifted_index into res.
|
|
// Note: res is still shy of address by array offset into object.
|
|
|
|
void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex,
|
|
int index_shift, Register Rtmp, Register Rres) {
|
|
// Check that index is in range for array, then shift index by index_shift,
|
|
// and put arrayOop + shifted_index into res.
|
|
// Note: res is still shy of address by array offset into object.
|
|
// Kills:
|
|
// - Rindex
|
|
// Writes:
|
|
// - Rres: Address that corresponds to the array index if check was successful.
|
|
verify_oop(Rarray);
|
|
const Register Rlength = R0;
|
|
const Register RsxtIndex = Rtmp;
|
|
Label LisNull, LnotOOR;
|
|
|
|
// Array nullcheck
|
|
if (!ImplicitNullChecks) {
|
|
cmpdi(CCR0, Rarray, 0);
|
|
beq(CCR0, LisNull);
|
|
} else {
|
|
null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
|
|
}
|
|
|
|
// Rindex might contain garbage in upper bits (remember that we don't sign extend
|
|
// during integer arithmetic operations). So kill them and put value into same register
|
|
// where ArrayIndexOutOfBounds would expect the index in.
|
|
rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
|
|
|
|
// Index check
|
|
lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
|
|
cmplw(CCR0, Rindex, Rlength);
|
|
sldi(RsxtIndex, RsxtIndex, index_shift);
|
|
blt(CCR0, LnotOOR);
|
|
// Index should be in R17_tos, array should be in R4_ARG2.
|
|
mr_if_needed(R17_tos, Rindex);
|
|
mr_if_needed(R4_ARG2, Rarray);
|
|
load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
|
|
mtctr(Rtmp);
|
|
bctr();
|
|
|
|
if (!ImplicitNullChecks) {
|
|
bind(LisNull);
|
|
load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
|
|
mtctr(Rtmp);
|
|
bctr();
|
|
}
|
|
|
|
align(32, 16);
|
|
bind(LnotOOR);
|
|
|
|
// Calc address
|
|
add(Rres, RsxtIndex, Rarray);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::index_check(Register array, Register index,
|
|
int index_shift, Register tmp, Register res) {
|
|
// pop array
|
|
pop_ptr(array);
|
|
|
|
// check array
|
|
index_check_without_pop(array, index, index_shift, tmp, res);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_const(Register Rdst) {
|
|
ld(Rdst, in_bytes(Method::const_offset()), R19_method);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
|
|
get_const(Rdst);
|
|
ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
|
|
get_constant_pool(Rdst);
|
|
ld(Rdst, ConstantPool::cache_offset(), Rdst);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
|
|
get_constant_pool(Rcpool);
|
|
ld(Rtags, ConstantPool::tags_offset(), Rcpool);
|
|
}
|
|
|
|
// Unlock if synchronized method.
|
|
//
|
|
// Unlock the receiver if this is a synchronized method.
|
|
// Unlock any Java monitors from synchronized blocks.
|
|
//
|
|
// If there are locked Java monitors
|
|
// If throw_monitor_exception
|
|
// throws IllegalMonitorStateException
|
|
// Else if install_monitor_exception
|
|
// installs IllegalMonitorStateException
|
|
// Else
|
|
// no error processing
|
|
void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
|
|
bool throw_monitor_exception,
|
|
bool install_monitor_exception) {
|
|
Label Lunlocked, Lno_unlock;
|
|
{
|
|
Register Rdo_not_unlock_flag = R11_scratch1;
|
|
Register Raccess_flags = R12_scratch2;
|
|
|
|
// Check if synchronized method or unlocking prevented by
|
|
// JavaThread::do_not_unlock_if_synchronized flag.
|
|
lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
|
|
lhz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
|
|
li(R0, 0);
|
|
stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
|
|
|
|
push(state);
|
|
|
|
// Skip if we don't have to unlock.
|
|
testbitdi(CCR0, R0, Raccess_flags, JVM_ACC_SYNCHRONIZED_BIT);
|
|
beq(CCR0, Lunlocked);
|
|
|
|
cmpwi(CCR0, Rdo_not_unlock_flag, 0);
|
|
bne(CCR0, Lno_unlock);
|
|
}
|
|
|
|
// Unlock
|
|
{
|
|
Register Rmonitor_base = R11_scratch1;
|
|
|
|
Label Lunlock;
|
|
// If it's still locked, everything is ok, unlock it.
|
|
ld(Rmonitor_base, 0, R1_SP);
|
|
addi(Rmonitor_base, Rmonitor_base,
|
|
-(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
|
|
|
|
ld(R0, BasicObjectLock::obj_offset(), Rmonitor_base);
|
|
cmpdi(CCR0, R0, 0);
|
|
bne(CCR0, Lunlock);
|
|
|
|
// If it's already unlocked, throw exception.
|
|
if (throw_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
|
|
should_not_reach_here();
|
|
} else {
|
|
if (install_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
|
|
b(Lunlocked);
|
|
}
|
|
}
|
|
|
|
bind(Lunlock);
|
|
unlock_object(Rmonitor_base);
|
|
}
|
|
|
|
// Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
|
|
bind(Lunlocked);
|
|
{
|
|
Label Lexception, Lrestart;
|
|
Register Rcurrent_obj_addr = R11_scratch1;
|
|
const int delta = frame::interpreter_frame_monitor_size_in_bytes();
|
|
assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
|
|
|
|
bind(Lrestart);
|
|
// Set up search loop: Calc num of iterations.
|
|
{
|
|
Register Riterations = R12_scratch2;
|
|
Register Rmonitor_base = Rcurrent_obj_addr;
|
|
ld(Rmonitor_base, 0, R1_SP);
|
|
addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base
|
|
|
|
subf_(Riterations, R26_monitor, Rmonitor_base);
|
|
ble(CCR0, Lno_unlock);
|
|
|
|
addi(Rcurrent_obj_addr, Rmonitor_base,
|
|
in_bytes(BasicObjectLock::obj_offset()) - frame::interpreter_frame_monitor_size_in_bytes());
|
|
// Check if any monitor is on stack, bail out if not
|
|
srdi(Riterations, Riterations, exact_log2(delta));
|
|
mtctr(Riterations);
|
|
}
|
|
|
|
// The search loop: Look for locked monitors.
|
|
{
|
|
const Register Rcurrent_obj = R0;
|
|
Label Lloop;
|
|
|
|
ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
|
|
addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
|
|
bind(Lloop);
|
|
|
|
// Check if current entry is used.
|
|
cmpdi(CCR0, Rcurrent_obj, 0);
|
|
bne(CCR0, Lexception);
|
|
// Preload next iteration's compare value.
|
|
ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
|
|
addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
|
|
bdnz(Lloop);
|
|
}
|
|
// Fell through: Everything's unlocked => finish.
|
|
b(Lno_unlock);
|
|
|
|
// An object is still locked => need to throw exception.
|
|
bind(Lexception);
|
|
if (throw_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
|
|
should_not_reach_here();
|
|
} else {
|
|
// Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
|
|
// Unlock does not block, so don't have to worry about the frame.
|
|
Register Rmonitor_addr = R11_scratch1;
|
|
addi(Rmonitor_addr, Rcurrent_obj_addr, -in_bytes(BasicObjectLock::obj_offset()) + delta);
|
|
unlock_object(Rmonitor_addr);
|
|
if (install_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
|
|
}
|
|
b(Lrestart);
|
|
}
|
|
}
|
|
|
|
align(32, 12);
|
|
bind(Lno_unlock);
|
|
pop(state);
|
|
}
|
|
|
|
// Support function for remove_activation & Co.
|
|
void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc,
|
|
Register Rscratch1, Register Rscratch2) {
|
|
// Pop interpreter frame.
|
|
ld(Rscratch1, 0, R1_SP); // *SP
|
|
ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
|
|
ld(Rscratch2, 0, Rscratch1); // **SP
|
|
if (return_pc!=noreg) {
|
|
ld(return_pc, _abi0(lr), Rscratch1); // LR
|
|
}
|
|
|
|
// Merge top frames.
|
|
subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
|
|
stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
|
|
}
|
|
|
|
void InterpreterMacroAssembler::narrow(Register result) {
|
|
Register ret_type = R11_scratch1;
|
|
ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
|
|
lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
|
|
|
|
Label notBool, notByte, notChar, done;
|
|
|
|
// common case first
|
|
cmpwi(CCR0, ret_type, T_INT);
|
|
beq(CCR0, done);
|
|
|
|
cmpwi(CCR0, ret_type, T_BOOLEAN);
|
|
bne(CCR0, notBool);
|
|
andi(result, result, 0x1);
|
|
b(done);
|
|
|
|
bind(notBool);
|
|
cmpwi(CCR0, ret_type, T_BYTE);
|
|
bne(CCR0, notByte);
|
|
extsb(result, result);
|
|
b(done);
|
|
|
|
bind(notByte);
|
|
cmpwi(CCR0, ret_type, T_CHAR);
|
|
bne(CCR0, notChar);
|
|
andi(result, result, 0xffff);
|
|
b(done);
|
|
|
|
bind(notChar);
|
|
// cmpwi(CCR0, ret_type, T_SHORT); // all that's left
|
|
// bne(CCR0, done);
|
|
extsh(result, result);
|
|
|
|
// Nothing to do for T_INT
|
|
bind(done);
|
|
}
|
|
|
|
// Remove activation.
|
|
//
|
|
// Apply stack watermark barrier.
|
|
// Unlock the receiver if this is a synchronized method.
|
|
// Unlock any Java monitors from synchronized blocks.
|
|
// Remove the activation from the stack.
|
|
//
|
|
// If there are locked Java monitors
|
|
// If throw_monitor_exception
|
|
// throws IllegalMonitorStateException
|
|
// Else if install_monitor_exception
|
|
// installs IllegalMonitorStateException
|
|
// Else
|
|
// no error processing
|
|
void InterpreterMacroAssembler::remove_activation(TosState state,
|
|
bool throw_monitor_exception,
|
|
bool install_monitor_exception) {
|
|
BLOCK_COMMENT("remove_activation {");
|
|
|
|
// The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
|
|
// that would normally not be safe to use. Such bad returns into unsafe territory of
|
|
// the stack, will call InterpreterRuntime::at_unwind.
|
|
Label slow_path;
|
|
Label fast_path;
|
|
safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */);
|
|
b(fast_path);
|
|
bind(slow_path);
|
|
push(state);
|
|
set_last_Java_frame(R1_SP, noreg);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread);
|
|
reset_last_Java_frame();
|
|
pop(state);
|
|
align(32);
|
|
bind(fast_path);
|
|
|
|
unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
|
|
|
|
// Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
|
|
notify_method_exit(false, state, NotifyJVMTI, true);
|
|
|
|
BLOCK_COMMENT("reserved_stack_check:");
|
|
if (StackReservedPages > 0) {
|
|
// Test if reserved zone needs to be enabled.
|
|
Label no_reserved_zone_enabling;
|
|
|
|
// check if already enabled - if so no re-enabling needed
|
|
assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
|
|
lwz(R0, in_bytes(JavaThread::stack_guard_state_offset()), R16_thread);
|
|
cmpwi(CCR0, R0, StackOverflow::stack_guard_enabled);
|
|
beq_predict_taken(CCR0, no_reserved_zone_enabling);
|
|
|
|
// Compare frame pointers. There is no good stack pointer, as with stack
|
|
// frame compression we can get different SPs when we do calls. A subsequent
|
|
// call could have a smaller SP, so that this compare succeeds for an
|
|
// inner call of the method annotated with ReservedStack.
|
|
ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
|
|
ld_ptr(R11_scratch1, _abi0(callers_sp), R1_SP); // Load frame pointer.
|
|
cmpld(CCR0, R11_scratch1, R0);
|
|
blt_predict_taken(CCR0, no_reserved_zone_enabling);
|
|
|
|
// Enable reserved zone again, throw stack overflow exception.
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
|
|
|
|
should_not_reach_here();
|
|
|
|
bind(no_reserved_zone_enabling);
|
|
}
|
|
|
|
verify_oop(R17_tos, state);
|
|
|
|
merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
|
|
mtlr(R0);
|
|
pop_cont_fastpath();
|
|
BLOCK_COMMENT("} remove_activation");
|
|
}
|
|
|
|
// Lock object
|
|
//
|
|
// Registers alive
|
|
// monitor - Address of the BasicObjectLock to be used for locking,
|
|
// which must be initialized with the object to lock.
|
|
// object - Address of the object to be locked.
|
|
//
|
|
void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
|
|
if (LockingMode == LM_MONITOR) {
|
|
call_VM_preemptable(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
|
|
} else {
|
|
// template code (for LM_LEGACY):
|
|
//
|
|
// markWord displaced_header = obj->mark().set_unlocked();
|
|
// monitor->lock()->set_displaced_header(displaced_header);
|
|
// if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) {
|
|
// // We stored the monitor address into the object's mark word.
|
|
// } else if (THREAD->is_lock_owned((address)displaced_header))
|
|
// // Simple recursive case.
|
|
// monitor->lock()->set_displaced_header(nullptr);
|
|
// } else {
|
|
// // Slow path.
|
|
// InterpreterRuntime::monitorenter(THREAD, monitor);
|
|
// }
|
|
|
|
const Register header = R7_ARG5;
|
|
const Register object_mark_addr = R8_ARG6;
|
|
const Register current_header = R9_ARG7;
|
|
const Register tmp = R10_ARG8;
|
|
|
|
Label count_locking, done, slow_case, cas_failed;
|
|
|
|
assert_different_registers(header, object_mark_addr, current_header, tmp);
|
|
|
|
// markWord displaced_header = obj->mark().set_unlocked();
|
|
|
|
if (DiagnoseSyncOnValueBasedClasses != 0) {
|
|
load_klass(tmp, object);
|
|
lbz(tmp, in_bytes(Klass::misc_flags_offset()), tmp);
|
|
testbitdi(CCR0, R0, tmp, exact_log2(KlassFlags::_misc_is_value_based_class));
|
|
bne(CCR0, slow_case);
|
|
}
|
|
|
|
if (LockingMode == LM_LIGHTWEIGHT) {
|
|
lightweight_lock(monitor, object, header, tmp, slow_case);
|
|
b(done);
|
|
} else if (LockingMode == LM_LEGACY) {
|
|
// Load markWord from object into header.
|
|
ld(header, oopDesc::mark_offset_in_bytes(), object);
|
|
|
|
// Set displaced_header to be (markWord of object | UNLOCK_VALUE).
|
|
ori(header, header, markWord::unlocked_value);
|
|
|
|
// monitor->lock()->set_displaced_header(displaced_header);
|
|
const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
|
|
const int mark_offset = lock_offset +
|
|
BasicLock::displaced_header_offset_in_bytes();
|
|
|
|
// Initialize the box (Must happen before we update the object mark!).
|
|
std(header, mark_offset, monitor);
|
|
|
|
// if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) {
|
|
|
|
// Store stack address of the BasicObjectLock (this is monitor) into object.
|
|
addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
|
|
|
|
// Must fence, otherwise, preceding store(s) may float below cmpxchg.
|
|
// CmpxchgX sets CCR0 to cmpX(current, displaced).
|
|
cmpxchgd(/*flag=*/CCR0,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/header, /*exchange_value=*/monitor,
|
|
/*where=*/object_mark_addr,
|
|
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock(),
|
|
noreg,
|
|
&cas_failed,
|
|
/*check without membar and ldarx first*/true);
|
|
|
|
// If the compare-and-exchange succeeded, then we found an unlocked
|
|
// object and we have now locked it.
|
|
b(count_locking);
|
|
bind(cas_failed);
|
|
|
|
// } else if (THREAD->is_lock_owned((address)displaced_header))
|
|
// // Simple recursive case.
|
|
// monitor->lock()->set_displaced_header(nullptr);
|
|
|
|
// We did not see an unlocked object so try the fast recursive case.
|
|
|
|
// Check if owner is self by comparing the value in the markWord of object
|
|
// (current_header) with the stack pointer.
|
|
sub(current_header, current_header, R1_SP);
|
|
|
|
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
|
|
load_const_optimized(tmp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place);
|
|
|
|
and_(R0/*==0?*/, current_header, tmp);
|
|
// If condition is true we are done and hence we can store 0 in the displaced
|
|
// header indicating it is a recursive lock.
|
|
bne(CCR0, slow_case);
|
|
std(R0/*==0!*/, mark_offset, monitor);
|
|
b(count_locking);
|
|
}
|
|
|
|
// } else {
|
|
// // Slow path.
|
|
// InterpreterRuntime::monitorenter(THREAD, monitor);
|
|
|
|
// None of the above fast optimizations worked so we have to get into the
|
|
// slow case of monitor enter.
|
|
bind(slow_case);
|
|
call_VM_preemptable(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
|
|
// }
|
|
|
|
if (LockingMode == LM_LEGACY) {
|
|
b(done);
|
|
align(32, 12);
|
|
bind(count_locking);
|
|
inc_held_monitor_count(current_header /*tmp*/);
|
|
}
|
|
bind(done);
|
|
}
|
|
}
|
|
|
|
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
|
|
//
|
|
// Registers alive
|
|
// monitor - Address of the BasicObjectLock to be used for locking,
|
|
// which must be initialized with the object to lock.
|
|
//
|
|
// Throw IllegalMonitorException if object is not locked by current thread.
|
|
void InterpreterMacroAssembler::unlock_object(Register monitor) {
|
|
if (LockingMode == LM_MONITOR) {
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
|
|
} else {
|
|
|
|
// template code (for LM_LEGACY):
|
|
//
|
|
// if ((displaced_header = monitor->displaced_header()) == nullptr) {
|
|
// // Recursive unlock. Mark the monitor unlocked by setting the object field to null.
|
|
// monitor->set_obj(nullptr);
|
|
// } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) {
|
|
// // We swapped the unlocked mark in displaced_header into the object's mark word.
|
|
// monitor->set_obj(nullptr);
|
|
// } else {
|
|
// // Slow path.
|
|
// InterpreterRuntime::monitorexit(monitor);
|
|
// }
|
|
|
|
const Register object = R7_ARG5;
|
|
const Register header = R8_ARG6;
|
|
const Register object_mark_addr = R9_ARG7;
|
|
const Register current_header = R10_ARG8;
|
|
|
|
Label free_slot;
|
|
Label slow_case;
|
|
|
|
assert_different_registers(object, header, object_mark_addr, current_header);
|
|
|
|
if (LockingMode != LM_LIGHTWEIGHT) {
|
|
// Test first if we are in the fast recursive case.
|
|
ld(header, in_bytes(BasicObjectLock::lock_offset()) +
|
|
BasicLock::displaced_header_offset_in_bytes(), monitor);
|
|
|
|
// If the displaced header is zero, we have a recursive unlock.
|
|
cmpdi(CCR0, header, 0);
|
|
beq(CCR0, free_slot); // recursive unlock
|
|
}
|
|
|
|
// } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) {
|
|
// // We swapped the unlocked mark in displaced_header into the object's mark word.
|
|
// monitor->set_obj(nullptr);
|
|
|
|
// If we still have a lightweight lock, unlock the object and be done.
|
|
|
|
// The object address from the monitor is in object.
|
|
ld(object, in_bytes(BasicObjectLock::obj_offset()), monitor);
|
|
|
|
if (LockingMode == LM_LIGHTWEIGHT) {
|
|
lightweight_unlock(object, header, slow_case);
|
|
} else {
|
|
addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
|
|
|
|
// We have the displaced header in displaced_header. If the lock is still
|
|
// lightweight, it will contain the monitor address and we'll store the
|
|
// displaced header back into the object's mark word.
|
|
// CmpxchgX sets CCR0 to cmpX(current, monitor).
|
|
cmpxchgd(/*flag=*/CCR0,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/monitor, /*exchange_value=*/header,
|
|
/*where=*/object_mark_addr,
|
|
MacroAssembler::MemBarRel,
|
|
MacroAssembler::cmpxchgx_hint_release_lock(),
|
|
noreg,
|
|
&slow_case);
|
|
}
|
|
b(free_slot);
|
|
|
|
// } else {
|
|
// // Slow path.
|
|
// InterpreterRuntime::monitorexit(monitor);
|
|
|
|
// The lock has been converted into a heavy lock and hence
|
|
// we need to get into the slow case.
|
|
bind(slow_case);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
|
|
// }
|
|
|
|
Label done;
|
|
b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
|
|
|
|
// Exchange worked, do monitor->set_obj(nullptr);
|
|
align(32, 12);
|
|
bind(free_slot);
|
|
li(R0, 0);
|
|
std(R0, in_bytes(BasicObjectLock::obj_offset()), monitor);
|
|
if (LockingMode == LM_LEGACY) {
|
|
dec_held_monitor_count(current_header /*tmp*/);
|
|
}
|
|
bind(done);
|
|
}
|
|
}
|
|
|
|
// Load compiled (i2c) or interpreter entry when calling from interpreted and
|
|
// do the call. Centralized so that all interpreter calls will do the same actions.
|
|
// If jvmti single stepping is on for a thread we must not call compiled code.
|
|
//
|
|
// Input:
|
|
// - Rtarget_method: method to call
|
|
// - Rret_addr: return address
|
|
// - 2 scratch regs
|
|
//
|
|
void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr,
|
|
Register Rscratch1, Register Rscratch2) {
|
|
assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
|
|
// Assume we want to go compiled if available.
|
|
const Register Rtarget_addr = Rscratch1;
|
|
const Register Rinterp_only = Rscratch2;
|
|
|
|
ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
|
|
|
|
if (JvmtiExport::can_post_interpreter_events()) {
|
|
lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
|
|
|
|
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
|
|
// compiled code in threads for which the event is enabled. Check here for
|
|
// interp_only_mode if these events CAN be enabled.
|
|
Label done;
|
|
cmpwi(CCR0, Rinterp_only, 0);
|
|
beq(CCR0, done);
|
|
ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
|
|
align(32, 12);
|
|
bind(done);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
Label Lok;
|
|
cmpdi(CCR0, Rtarget_addr, 0);
|
|
bne(CCR0, Lok);
|
|
stop("null entry point");
|
|
bind(Lok);
|
|
}
|
|
#endif // ASSERT
|
|
|
|
mr(R21_sender_SP, R1_SP);
|
|
|
|
// Calc a precise SP for the call. The SP value we calculated in
|
|
// generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
|
|
// if esp is not max. Also, the i2c adapter extends the stack space without restoring
|
|
// our pre-calced value, so repeating calls via i2c would result in stack overflow.
|
|
// Since esp already points to an empty slot, we just have to sub 1 additional slot
|
|
// to meet the abi scratch requirements.
|
|
// The max_stack pointer will get restored by means of the GR_Lmax_stack local in
|
|
// the return entry of the interpreter.
|
|
addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::top_ijava_frame_abi_size);
|
|
clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
|
|
resize_frame_absolute(Rscratch2, Rscratch2, R0);
|
|
|
|
mr_if_needed(R19_method, Rtarget_method);
|
|
mtctr(Rtarget_addr);
|
|
mtlr(Rret_addr);
|
|
|
|
save_interpreter_state(Rscratch2);
|
|
#ifdef ASSERT
|
|
ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
|
|
sldi(Rscratch1, Rscratch1, Interpreter::logStackElementSize);
|
|
add(Rscratch1, Rscratch1, Rscratch2); // Rscratch2 contains fp
|
|
// Compare sender_sp with the derelativized top_frame_sp
|
|
cmpd(CCR0, R21_sender_SP, Rscratch1);
|
|
asm_assert_eq("top_frame_sp incorrect");
|
|
#endif
|
|
|
|
bctr();
|
|
}
|
|
|
|
// Set the method data pointer for the current bcp.
|
|
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
Label get_continue;
|
|
ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
|
|
test_method_data_pointer(get_continue);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
|
|
|
|
addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
|
|
add(R28_mdx, R28_mdx, R3_RET);
|
|
bind(get_continue);
|
|
}
|
|
|
|
// Test ImethodDataPtr. If it is null, continue at the specified label.
|
|
void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
cmpdi(CCR0, R28_mdx, 0);
|
|
beq(CCR0, zero_continue);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::verify_method_data_pointer() {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
#ifdef ASSERT
|
|
Label verify_continue;
|
|
test_method_data_pointer(verify_continue);
|
|
|
|
// If the mdp is valid, it will point to a DataLayout header which is
|
|
// consistent with the bcp. The converse is highly probable also.
|
|
lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
|
|
ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
|
|
addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
|
|
add(R11_scratch1, R12_scratch2, R12_scratch2);
|
|
cmpd(CCR0, R11_scratch1, R14_bcp);
|
|
beq(CCR0, verify_continue);
|
|
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
|
|
|
|
bind(verify_continue);
|
|
#endif
|
|
}
|
|
|
|
// Store a value at some constant offset from the method data pointer.
|
|
void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
std(value, constant, R28_mdx);
|
|
}
|
|
|
|
// Increment the value at some constant offset from the method data pointer.
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
|
|
Register counter_addr,
|
|
Register Rbumped_count,
|
|
bool decrement) {
|
|
// Locate the counter at a fixed offset from the mdp:
|
|
addi(counter_addr, R28_mdx, constant);
|
|
increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
|
|
}
|
|
|
|
// Increment the value at some non-fixed (reg + constant) offset from
|
|
// the method data pointer.
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
|
|
int constant,
|
|
Register scratch,
|
|
Register Rbumped_count,
|
|
bool decrement) {
|
|
// Add the constant to reg to get the offset.
|
|
add(scratch, R28_mdx, reg);
|
|
// Then calculate the counter address.
|
|
addi(scratch, scratch, constant);
|
|
increment_mdp_data_at(scratch, Rbumped_count, decrement);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
|
|
Register Rbumped_count,
|
|
bool decrement) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
// Load the counter.
|
|
ld(Rbumped_count, 0, counter_addr);
|
|
|
|
if (decrement) {
|
|
// Decrement the register. Set condition codes.
|
|
addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
|
|
// Store the decremented counter, if it is still negative.
|
|
std(Rbumped_count, 0, counter_addr);
|
|
// Note: add/sub overflow check are not ported, since 64 bit
|
|
// calculation should never overflow.
|
|
} else {
|
|
// Increment the register. Set carry flag.
|
|
addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
|
|
// Store the incremented counter.
|
|
std(Rbumped_count, 0, counter_addr);
|
|
}
|
|
}
|
|
|
|
// Set a flag value at the current method data pointer position.
|
|
void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
|
|
Register scratch) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
// Load the data header.
|
|
lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
|
|
// Set the flag.
|
|
ori(scratch, scratch, flag_constant);
|
|
// Store the modified header.
|
|
stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
|
|
}
|
|
|
|
// Test the location at some offset from the method data pointer.
|
|
// If it is not equal to value, branch to the not_equal_continue Label.
|
|
void InterpreterMacroAssembler::test_mdp_data_at(int offset,
|
|
Register value,
|
|
Label& not_equal_continue,
|
|
Register test_out) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
ld(test_out, offset, R28_mdx);
|
|
cmpd(CCR0, value, test_out);
|
|
bne(CCR0, not_equal_continue);
|
|
}
|
|
|
|
// Update the method data pointer by the displacement located at some fixed
|
|
// offset from the method data pointer.
|
|
void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
|
|
Register scratch) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
ld(scratch, offset_of_disp, R28_mdx);
|
|
add(R28_mdx, scratch, R28_mdx);
|
|
}
|
|
|
|
// Update the method data pointer by the displacement located at the
|
|
// offset (reg + offset_of_disp).
|
|
void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
|
|
int offset_of_disp,
|
|
Register scratch) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
add(scratch, reg, R28_mdx);
|
|
ld(scratch, offset_of_disp, scratch);
|
|
add(R28_mdx, scratch, R28_mdx);
|
|
}
|
|
|
|
// Update the method data pointer by a simple constant displacement.
|
|
void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
addi(R28_mdx, R28_mdx, constant);
|
|
}
|
|
|
|
// Update the method data pointer for a _ret bytecode whose target
|
|
// was not among our cached targets.
|
|
void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
|
|
Register return_bci) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
|
|
push(state);
|
|
assert(return_bci->is_nonvolatile(), "need to protect return_bci");
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
|
|
pop(state);
|
|
}
|
|
|
|
// Increments the backedge counter.
|
|
// Returns backedge counter + invocation counter in Rdst.
|
|
void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
|
|
const Register Rtmp1, Register Rscratch) {
|
|
assert(UseCompiler, "incrementing must be useful");
|
|
assert_different_registers(Rdst, Rtmp1);
|
|
const Register invocation_counter = Rtmp1;
|
|
const Register counter = Rdst;
|
|
// TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
|
|
|
|
// Load backedge counter.
|
|
lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
|
|
in_bytes(InvocationCounter::counter_offset()), Rcounters);
|
|
// Load invocation counter.
|
|
lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
|
|
in_bytes(InvocationCounter::counter_offset()), Rcounters);
|
|
|
|
// Add the delta to the backedge counter.
|
|
addi(counter, counter, InvocationCounter::count_increment);
|
|
|
|
// Mask the invocation counter.
|
|
andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value);
|
|
|
|
// Store new counter value.
|
|
stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
|
|
in_bytes(InvocationCounter::counter_offset()), Rcounters);
|
|
// Return invocation counter + backedge counter.
|
|
add(counter, counter, invocation_counter);
|
|
}
|
|
|
|
// Count a taken branch in the bytecodes.
|
|
void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// We are taking a branch. Increment the taken count.
|
|
increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
// Count a not-taken branch in the bytecodes.
|
|
void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// We are taking a branch. Increment the not taken count.
|
|
increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
|
|
|
|
// The method data pointer needs to be updated to correspond to the
|
|
// next bytecode.
|
|
update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
// Count a non-virtual call in the bytecodes.
|
|
void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// We are making a call. Increment the count.
|
|
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
// Count a final call in the bytecodes.
|
|
void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// We are making a call. Increment the count.
|
|
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
// Count a virtual call in the bytecodes.
|
|
void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
|
|
Register Rscratch1,
|
|
Register Rscratch2,
|
|
bool receiver_can_be_null) {
|
|
if (!ProfileInterpreter) { return; }
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
Label skip_receiver_profile;
|
|
if (receiver_can_be_null) {
|
|
Label not_null;
|
|
cmpdi(CCR0, Rreceiver, 0);
|
|
bne(CCR0, not_null);
|
|
// We are making a call. Increment the count for null receiver.
|
|
increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
|
|
b(skip_receiver_profile);
|
|
bind(not_null);
|
|
}
|
|
|
|
// Record the receiver type.
|
|
record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2);
|
|
bind(skip_receiver_profile);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
|
|
bind (profile_continue);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
int mdp_delta = in_bytes(BitData::bit_data_size());
|
|
if (TypeProfileCasts) {
|
|
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
|
|
|
|
// Record the object type.
|
|
record_klass_in_profile(Rklass, Rscratch1, Rscratch2);
|
|
}
|
|
|
|
// The method data pointer needs to be updated.
|
|
update_mdp_by_constant(mdp_delta);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
// Count a ret in the bytecodes.
|
|
void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci,
|
|
Register scratch1, Register scratch2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
uint row;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// Update the total ret count.
|
|
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
|
|
|
|
for (row = 0; row < RetData::row_limit(); row++) {
|
|
Label next_test;
|
|
|
|
// See if return_bci is equal to bci[n]:
|
|
test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
|
|
|
|
// return_bci is equal to bci[n]. Increment the count.
|
|
increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
|
|
b(profile_continue);
|
|
bind(next_test);
|
|
}
|
|
|
|
update_mdp_for_ret(state, return_bci);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
// Count the default case of a switch construct.
|
|
void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// Update the default case count
|
|
increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
|
|
scratch1, scratch2);
|
|
|
|
// The method data pointer needs to be updated.
|
|
update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
|
|
scratch1);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
// Count the index'th case of a switch construct.
|
|
void InterpreterMacroAssembler::profile_switch_case(Register index,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3) {
|
|
if (ProfileInterpreter) {
|
|
assert_different_registers(index, scratch1, scratch2, scratch3);
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
|
|
li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
|
|
|
|
assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
|
|
sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
|
|
add(scratch1, scratch1, scratch3);
|
|
|
|
// Update the case count.
|
|
increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
|
|
|
|
// The method data pointer needs to be updated.
|
|
update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
|
|
if (ProfileInterpreter) {
|
|
assert_different_registers(Rscratch1, Rscratch2);
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
|
|
|
|
// The method data pointer needs to be updated.
|
|
int mdp_delta = in_bytes(BitData::bit_data_size());
|
|
if (TypeProfileCasts) {
|
|
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
|
|
}
|
|
update_mdp_by_constant(mdp_delta);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
|
|
Register Rscratch1, Register Rscratch2) {
|
|
assert(ProfileInterpreter, "must be profiling");
|
|
assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
|
|
|
|
Label done;
|
|
record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done);
|
|
bind (done);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::record_klass_in_profile_helper(
|
|
Register receiver, Register scratch1, Register scratch2,
|
|
int start_row, Label& done) {
|
|
if (TypeProfileWidth == 0) {
|
|
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
|
|
return;
|
|
}
|
|
|
|
int last_row = VirtualCallData::row_limit() - 1;
|
|
assert(start_row <= last_row, "must be work left to do");
|
|
// Test this row for both the receiver and for null.
|
|
// Take any of three different outcomes:
|
|
// 1. found receiver => increment count and goto done
|
|
// 2. found null => keep looking for case 1, maybe allocate this cell
|
|
// 3. found something else => keep looking for cases 1 and 2
|
|
// Case 3 is handled by a recursive call.
|
|
for (int row = start_row; row <= last_row; row++) {
|
|
Label next_test;
|
|
bool test_for_null_also = (row == start_row);
|
|
|
|
// See if the receiver is receiver[n].
|
|
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
|
|
test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
|
|
// delayed()->tst(scratch);
|
|
|
|
// The receiver is receiver[n]. Increment count[n].
|
|
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
|
|
increment_mdp_data_at(count_offset, scratch1, scratch2);
|
|
b(done);
|
|
bind(next_test);
|
|
|
|
if (test_for_null_also) {
|
|
Label found_null;
|
|
// Failed the equality check on receiver[n]... Test for null.
|
|
if (start_row == last_row) {
|
|
// The only thing left to do is handle the null case.
|
|
// Scratch1 contains test_out from test_mdp_data_at.
|
|
cmpdi(CCR0, scratch1, 0);
|
|
beq(CCR0, found_null);
|
|
// Receiver did not match any saved receiver and there is no empty row for it.
|
|
// Increment total counter to indicate polymorphic case.
|
|
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
|
|
b(done);
|
|
bind(found_null);
|
|
break;
|
|
}
|
|
// Since null is rare, make it be the branch-taken case.
|
|
cmpdi(CCR0, scratch1, 0);
|
|
beq(CCR0, found_null);
|
|
|
|
// Put all the "Case 3" tests here.
|
|
record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done);
|
|
|
|
// Found a null. Keep searching for a matching receiver,
|
|
// but remember that this is an empty (unused) slot.
|
|
bind(found_null);
|
|
}
|
|
}
|
|
|
|
// In the fall-through case, we found no matching receiver, but we
|
|
// observed the receiver[start_row] is null.
|
|
|
|
// Fill in the receiver field and increment the count.
|
|
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
|
|
set_mdp_data_at(recvr_offset, receiver);
|
|
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
|
|
li(scratch1, DataLayout::counter_increment);
|
|
set_mdp_data_at(count_offset, scratch1);
|
|
if (start_row > 0) {
|
|
b(done);
|
|
}
|
|
}
|
|
|
|
// Argument and return type profilig.
|
|
// kills: tmp, tmp2, R0, CR0, CR1
|
|
void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
|
|
RegisterOrConstant mdo_addr_offs,
|
|
Register tmp, Register tmp2) {
|
|
Label do_nothing, do_update;
|
|
|
|
// tmp2 = obj is allowed
|
|
assert_different_registers(obj, mdo_addr_base, tmp, R0);
|
|
assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
|
|
const Register klass = tmp2;
|
|
|
|
verify_oop(obj);
|
|
|
|
ld(tmp, mdo_addr_offs, mdo_addr_base);
|
|
|
|
// Set null_seen if obj is 0.
|
|
cmpdi(CCR0, obj, 0);
|
|
ori(R0, tmp, TypeEntries::null_seen);
|
|
beq(CCR0, do_update);
|
|
|
|
load_klass(klass, obj);
|
|
|
|
clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
|
|
// Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
|
|
cmpd(CCR1, R0, klass);
|
|
// Klass seen before, nothing to do (regardless of unknown bit).
|
|
//beq(CCR1, do_nothing);
|
|
|
|
andi_(R0, tmp, TypeEntries::type_unknown);
|
|
// Already unknown. Nothing to do anymore.
|
|
//bne(CCR0, do_nothing);
|
|
crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
|
|
beq(CCR0, do_nothing);
|
|
|
|
clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
|
|
orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
|
|
beq(CCR0, do_update); // First time here. Set profile type.
|
|
|
|
// Different than before. Cannot keep accurate profile.
|
|
ori(R0, tmp, TypeEntries::type_unknown);
|
|
|
|
bind(do_update);
|
|
// update profile
|
|
std(R0, mdo_addr_offs, mdo_addr_base);
|
|
|
|
align(32, 12);
|
|
bind(do_nothing);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::profile_arguments_type(Register callee,
|
|
Register tmp1, Register tmp2,
|
|
bool is_virtual) {
|
|
if (!ProfileInterpreter) {
|
|
return;
|
|
}
|
|
|
|
assert_different_registers(callee, tmp1, tmp2, R28_mdx);
|
|
|
|
if (MethodData::profile_arguments() || MethodData::profile_return()) {
|
|
Label profile_continue;
|
|
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
int off_to_start = is_virtual ?
|
|
in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
|
|
|
|
lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
|
|
cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
|
|
bne(CCR0, profile_continue);
|
|
|
|
if (MethodData::profile_arguments()) {
|
|
Label done;
|
|
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
|
|
addi(R28_mdx, R28_mdx, off_to_args);
|
|
|
|
for (int i = 0; i < TypeProfileArgsLimit; i++) {
|
|
if (i > 0 || MethodData::profile_return()) {
|
|
// If return value type is profiled we may have no argument to profile.
|
|
ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
|
|
cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
|
|
addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
|
|
blt(CCR0, done);
|
|
}
|
|
ld(tmp1, in_bytes(Method::const_offset()), callee);
|
|
lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
|
|
// Stack offset o (zero based) from the start of the argument
|
|
// list, for n arguments translates into offset n - o - 1 from
|
|
// the end of the argument list. But there's an extra slot at
|
|
// the top of the stack. So the offset is n - o from Lesp.
|
|
ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
|
|
subf(tmp1, tmp2, tmp1);
|
|
|
|
sldi(tmp1, tmp1, Interpreter::logStackElementSize);
|
|
ldx(tmp1, tmp1, R15_esp);
|
|
|
|
profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
|
|
|
|
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
|
|
addi(R28_mdx, R28_mdx, to_add);
|
|
off_to_args += to_add;
|
|
}
|
|
|
|
if (MethodData::profile_return()) {
|
|
ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
|
|
addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
|
|
}
|
|
|
|
bind(done);
|
|
|
|
if (MethodData::profile_return()) {
|
|
// We're right after the type profile for the last
|
|
// argument. tmp1 is the number of cells left in the
|
|
// CallTypeData/VirtualCallTypeData to reach its end. Non null
|
|
// if there's a return to profile.
|
|
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(),
|
|
"can't move past ret type");
|
|
sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
|
|
add(R28_mdx, tmp1, R28_mdx);
|
|
}
|
|
} else {
|
|
assert(MethodData::profile_return(), "either profile call args or call ret");
|
|
update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
|
|
}
|
|
|
|
// Mdp points right after the end of the
|
|
// CallTypeData/VirtualCallTypeData, right after the cells for the
|
|
// return value type if there's one.
|
|
align(32, 12);
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
|
|
assert_different_registers(ret, tmp1, tmp2);
|
|
if (ProfileInterpreter && MethodData::profile_return()) {
|
|
Label profile_continue;
|
|
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
if (MethodData::profile_return_jsr292_only()) {
|
|
// If we don't profile all invoke bytecodes we must make sure
|
|
// it's a bytecode we indeed profile. We can't go back to the
|
|
// beginning of the ProfileData we intend to update to check its
|
|
// type because we're right after it and we don't known its
|
|
// length.
|
|
lbz(tmp1, 0, R14_bcp);
|
|
lbz(tmp2, in_bytes(Method::intrinsic_id_offset()), R19_method);
|
|
cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
|
|
cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
|
|
cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
|
|
cmpwi(CCR1, tmp2, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
|
|
cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
|
|
bne(CCR0, profile_continue);
|
|
}
|
|
|
|
profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
|
|
|
|
align(32, 12);
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4) {
|
|
if (ProfileInterpreter && MethodData::profile_parameters()) {
|
|
Label profile_continue, done;
|
|
|
|
test_method_data_pointer(profile_continue);
|
|
|
|
// Load the offset of the area within the MDO used for
|
|
// parameters. If it's negative we're not profiling any parameters.
|
|
lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
|
|
cmpwi(CCR0, tmp1, 0);
|
|
blt(CCR0, profile_continue);
|
|
|
|
// Compute a pointer to the area for parameters from the offset
|
|
// and move the pointer to the slot for the last
|
|
// parameters. Collect profiling from last parameter down.
|
|
// mdo start + parameters offset + array length - 1
|
|
|
|
// Pointer to the parameter area in the MDO.
|
|
const Register mdp = tmp1;
|
|
add(mdp, tmp1, R28_mdx);
|
|
|
|
// Offset of the current profile entry to update.
|
|
const Register entry_offset = tmp2;
|
|
// entry_offset = array len in number of cells
|
|
ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
|
|
|
|
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
|
|
assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
|
|
|
|
// entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field
|
|
addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
|
|
// entry_offset in bytes
|
|
sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
|
|
|
|
Label loop;
|
|
align(32, 12);
|
|
bind(loop);
|
|
|
|
// Load offset on the stack from the slot for this parameter.
|
|
ld(tmp3, entry_offset, mdp);
|
|
sldi(tmp3, tmp3, Interpreter::logStackElementSize);
|
|
neg(tmp3, tmp3);
|
|
// Read the parameter from the local area.
|
|
ldx(tmp3, tmp3, R18_locals);
|
|
|
|
// Make entry_offset now point to the type field for this parameter.
|
|
int type_base = in_bytes(ParametersTypeData::type_offset(0));
|
|
assert(type_base > off_base, "unexpected");
|
|
addi(entry_offset, entry_offset, type_base - off_base);
|
|
|
|
// Profile the parameter.
|
|
profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
|
|
|
|
// Go to next parameter.
|
|
int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
|
|
cmpdi(CCR0, entry_offset, off_base + delta);
|
|
addi(entry_offset, entry_offset, -delta);
|
|
bge(CCR0, loop);
|
|
|
|
align(32, 12);
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
// Add a monitor (see frame_ppc.hpp).
|
|
void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
|
|
|
|
// Very-local scratch registers.
|
|
const Register esp = Rtemp1;
|
|
const Register slot = Rtemp2;
|
|
|
|
// Extracted monitor_size.
|
|
int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
|
|
assert(Assembler::is_aligned((unsigned int)monitor_size,
|
|
(unsigned int)frame::alignment_in_bytes),
|
|
"size of a monitor must respect alignment of SP");
|
|
|
|
resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
|
|
subf(Rtemp2, esp, R1_SP); // esp contains fp
|
|
sradi(Rtemp2, Rtemp2, Interpreter::logStackElementSize);
|
|
// Store relativized top_frame_sp
|
|
std(Rtemp2, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
|
|
|
|
// Shuffle expression stack down. Recall that stack_base points
|
|
// just above the new expression stack bottom. Old_tos and new_tos
|
|
// are used to scan thru the old and new expression stacks.
|
|
if (!stack_is_empty) {
|
|
Label copy_slot, copy_slot_finished;
|
|
const Register n_slots = slot;
|
|
|
|
addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
|
|
subf(n_slots, esp, R26_monitor);
|
|
srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy.
|
|
assert(LogBytesPerWord == 3, "conflicts assembler instructions");
|
|
beq(CCR0, copy_slot_finished); // Nothing to copy.
|
|
|
|
mtctr(n_slots);
|
|
|
|
// loop
|
|
bind(copy_slot);
|
|
ld(slot, 0, esp); // Move expression stack down.
|
|
std(slot, -monitor_size, esp); // distance = monitor_size
|
|
addi(esp, esp, BytesPerWord);
|
|
bdnz(copy_slot);
|
|
|
|
bind(copy_slot_finished);
|
|
}
|
|
|
|
addi(R15_esp, R15_esp, -monitor_size);
|
|
addi(R26_monitor, R26_monitor, -monitor_size);
|
|
|
|
// Restart interpreter
|
|
}
|
|
|
|
// ============================================================================
|
|
// Java locals access
|
|
|
|
// Load a local variable at index in Rindex into register Rdst_value.
|
|
// Also puts address of local into Rdst_address as a service.
|
|
// Kills:
|
|
// - Rdst_value
|
|
// - Rdst_address
|
|
void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
|
|
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rdst_address, Rdst_address, R18_locals);
|
|
lwz(Rdst_value, 0, Rdst_address);
|
|
}
|
|
|
|
// Load a local variable at index in Rindex into register Rdst_value.
|
|
// Also puts address of local into Rdst_address as a service.
|
|
// Kills:
|
|
// - Rdst_value
|
|
// - Rdst_address
|
|
void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
|
|
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rdst_address, Rdst_address, R18_locals);
|
|
ld(Rdst_value, -8, Rdst_address);
|
|
}
|
|
|
|
// Load a local variable at index in Rindex into register Rdst_value.
|
|
// Also puts address of local into Rdst_address as a service.
|
|
// Input:
|
|
// - Rindex: slot nr of local variable
|
|
// Kills:
|
|
// - Rdst_value
|
|
// - Rdst_address
|
|
void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value,
|
|
Register Rdst_address,
|
|
Register Rindex) {
|
|
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rdst_address, Rdst_address, R18_locals);
|
|
ld(Rdst_value, 0, Rdst_address);
|
|
}
|
|
|
|
// Load a local variable at index in Rindex into register Rdst_value.
|
|
// Also puts address of local into Rdst_address as a service.
|
|
// Kills:
|
|
// - Rdst_value
|
|
// - Rdst_address
|
|
void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value,
|
|
Register Rdst_address,
|
|
Register Rindex) {
|
|
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rdst_address, Rdst_address, R18_locals);
|
|
lfs(Rdst_value, 0, Rdst_address);
|
|
}
|
|
|
|
// Load a local variable at index in Rindex into register Rdst_value.
|
|
// Also puts address of local into Rdst_address as a service.
|
|
// Kills:
|
|
// - Rdst_value
|
|
// - Rdst_address
|
|
void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value,
|
|
Register Rdst_address,
|
|
Register Rindex) {
|
|
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rdst_address, Rdst_address, R18_locals);
|
|
lfd(Rdst_value, -8, Rdst_address);
|
|
}
|
|
|
|
// Store an int value at local variable slot Rindex.
|
|
// Kills:
|
|
// - Rindex
|
|
void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
|
|
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rindex, Rindex, R18_locals);
|
|
stw(Rvalue, 0, Rindex);
|
|
}
|
|
|
|
// Store a long value at local variable slot Rindex.
|
|
// Kills:
|
|
// - Rindex
|
|
void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
|
|
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rindex, Rindex, R18_locals);
|
|
std(Rvalue, -8, Rindex);
|
|
}
|
|
|
|
// Store an oop value at local variable slot Rindex.
|
|
// Kills:
|
|
// - Rindex
|
|
void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
|
|
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rindex, Rindex, R18_locals);
|
|
std(Rvalue, 0, Rindex);
|
|
}
|
|
|
|
// Store an int value at local variable slot Rindex.
|
|
// Kills:
|
|
// - Rindex
|
|
void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
|
|
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rindex, Rindex, R18_locals);
|
|
stfs(Rvalue, 0, Rindex);
|
|
}
|
|
|
|
// Store an int value at local variable slot Rindex.
|
|
// Kills:
|
|
// - Rindex
|
|
void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
|
|
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
|
|
subf(Rindex, Rindex, R18_locals);
|
|
stfd(Rvalue, -8, Rindex);
|
|
}
|
|
|
|
// Read pending exception from thread and jump to interpreter.
|
|
// Throw exception entry if one if pending. Fall through otherwise.
|
|
void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
|
|
assert_different_registers(Rscratch1, Rscratch2, R3);
|
|
Register Rexception = Rscratch1;
|
|
Register Rtmp = Rscratch2;
|
|
Label Ldone;
|
|
// Get pending exception oop.
|
|
ld(Rexception, thread_(pending_exception));
|
|
cmpdi(CCR0, Rexception, 0);
|
|
beq(CCR0, Ldone);
|
|
li(Rtmp, 0);
|
|
mr_if_needed(R3, Rexception);
|
|
std(Rtmp, thread_(pending_exception)); // Clear exception in thread
|
|
if (Interpreter::rethrow_exception_entry() != nullptr) {
|
|
// Already got entry address.
|
|
load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
|
|
} else {
|
|
// Dynamically load entry address.
|
|
int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
|
|
ld(Rtmp, simm16_rest, Rtmp);
|
|
}
|
|
mtctr(Rtmp);
|
|
save_interpreter_state(Rtmp);
|
|
bctr();
|
|
|
|
align(32, 12);
|
|
bind(Ldone);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions, Label* last_java_pc) {
|
|
save_interpreter_state(R11_scratch1);
|
|
|
|
MacroAssembler::call_VM(oop_result, entry_point, false /*check_exceptions*/, last_java_pc);
|
|
|
|
restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
|
|
|
|
check_and_handle_popframe(R11_scratch1);
|
|
check_and_handle_earlyret(R11_scratch1);
|
|
// Now check exceptions manually.
|
|
if (check_exceptions) {
|
|
check_and_forward_exception(R11_scratch1, R12_scratch2);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
|
|
Register arg_1, bool check_exceptions) {
|
|
// ARG1 is reserved for the thread.
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, address entry_point,
|
|
Register arg_1, bool check_exceptions) {
|
|
if (!Continuations::enabled()) {
|
|
call_VM(oop_result, entry_point, arg_1, check_exceptions);
|
|
return;
|
|
}
|
|
|
|
Label resume_pc, not_preempted;
|
|
|
|
DEBUG_ONLY(ld(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread));
|
|
DEBUG_ONLY(cmpdi(CCR0, R0, 0));
|
|
asm_assert_eq("Should not have alternate return address set");
|
|
|
|
// Preserve 2 registers
|
|
assert(nonvolatile_accross_vthread_preemtion(R31) && nonvolatile_accross_vthread_preemtion(R22), "");
|
|
ld(R3_ARG1, _abi0(callers_sp), R1_SP); // load FP
|
|
std(R31, _ijava_state_neg(lresult), R3_ARG1);
|
|
std(R22, _ijava_state_neg(fresult), R3_ARG1);
|
|
|
|
// We set resume_pc as last java pc. It will be saved if the vthread gets preempted.
|
|
// Later execution will continue right there.
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
push_cont_fastpath();
|
|
call_VM(oop_result, entry_point, false /*check_exceptions*/, &resume_pc /* last_java_pc */);
|
|
pop_cont_fastpath();
|
|
|
|
// Jump to handler if the call was preempted
|
|
ld(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread);
|
|
cmpdi(CCR0, R0, 0);
|
|
beq(CCR0, not_preempted);
|
|
mtlr(R0);
|
|
li(R0, 0);
|
|
std(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread);
|
|
blr();
|
|
|
|
bind(resume_pc); // Location to resume execution
|
|
restore_after_resume(noreg /* fp */);
|
|
bind(not_preempted);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::restore_after_resume(Register fp) {
|
|
if (!Continuations::enabled()) return;
|
|
|
|
const address resume_adapter = TemplateInterpreter::cont_resume_interpreter_adapter();
|
|
add_const_optimized(R31, R29_TOC, MacroAssembler::offset_to_global_toc(resume_adapter));
|
|
mtctr(R31);
|
|
bctrl();
|
|
// Restore registers that are preserved across vthread preemption
|
|
assert(nonvolatile_accross_vthread_preemtion(R31) && nonvolatile_accross_vthread_preemtion(R22), "");
|
|
ld(R3_ARG1, _abi0(callers_sp), R1_SP); // load FP
|
|
ld(R31, _ijava_state_neg(lresult), R3_ARG1);
|
|
ld(R22, _ijava_state_neg(fresult), R3_ARG1);
|
|
#ifdef ASSERT
|
|
// Assert FP is in R11_scratch1 (see generate_cont_resume_interpreter_adapter())
|
|
{
|
|
Label ok;
|
|
ld(R12_scratch2, 0, R1_SP); // load fp
|
|
cmpd(CCR0, R12_scratch2, R11_scratch1);
|
|
beq(CCR0, ok);
|
|
stop(FILE_AND_LINE ": FP is expected in R11_scratch1");
|
|
bind(ok);
|
|
}
|
|
#endif
|
|
if (fp != noreg && fp != R11_scratch1) {
|
|
mr(fp, R11_scratch1);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
|
|
Register arg_1, Register arg_2,
|
|
bool check_exceptions) {
|
|
// ARG1 is reserved for the thread.
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
assert(arg_2 != R4_ARG2, "smashed argument");
|
|
mr_if_needed(R5_ARG3, arg_2);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions) {
|
|
// ARG1 is reserved for the thread.
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
assert(arg_2 != R4_ARG2, "smashed argument");
|
|
mr_if_needed(R5_ARG3, arg_2);
|
|
assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
|
|
mr_if_needed(R6_ARG4, arg_3);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
|
|
ld(scratch, 0, R1_SP);
|
|
subf(R0, scratch, R15_esp);
|
|
sradi(R0, R0, Interpreter::logStackElementSize);
|
|
std(R0, _ijava_state_neg(esp), scratch);
|
|
std(R14_bcp, _ijava_state_neg(bcp), scratch);
|
|
subf(R0, scratch, R26_monitor);
|
|
sradi(R0, R0, Interpreter::logStackElementSize);
|
|
std(R0, _ijava_state_neg(monitors), scratch);
|
|
if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
|
|
// Other entries should be unchanged.
|
|
}
|
|
|
|
void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only, bool restore_top_frame_sp) {
|
|
ld_ptr(scratch, _abi0(callers_sp), R1_SP); // Load frame pointer.
|
|
if (restore_top_frame_sp) {
|
|
// After thawing the top frame of a continuation we reach here with frame::java_abi.
|
|
// therefore we have to restore top_frame_sp before the assertion below.
|
|
assert(!bcp_and_mdx_only, "chose other registers");
|
|
Register tfsp = R18_locals;
|
|
Register scratch2 = R26_monitor;
|
|
ld(tfsp, _ijava_state_neg(top_frame_sp), scratch);
|
|
// Derelativize top_frame_sp
|
|
sldi(tfsp, tfsp, Interpreter::logStackElementSize);
|
|
add(tfsp, tfsp, scratch);
|
|
resize_frame_absolute(tfsp, scratch2, R0);
|
|
}
|
|
ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
|
|
if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
|
|
if (!bcp_and_mdx_only) {
|
|
// Following ones are Metadata.
|
|
ld(R19_method, _ijava_state_neg(method), scratch);
|
|
ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
|
|
// Following ones are stack addresses and don't require reload.
|
|
// Derelativize esp
|
|
ld(R15_esp, _ijava_state_neg(esp), scratch);
|
|
sldi(R15_esp, R15_esp, Interpreter::logStackElementSize);
|
|
add(R15_esp, R15_esp, scratch);
|
|
ld(R18_locals, _ijava_state_neg(locals), scratch);
|
|
sldi(R18_locals, R18_locals, Interpreter::logStackElementSize);
|
|
add(R18_locals, R18_locals, scratch);
|
|
ld(R26_monitor, _ijava_state_neg(monitors), scratch);
|
|
// Derelativize monitors
|
|
sldi(R26_monitor, R26_monitor, Interpreter::logStackElementSize);
|
|
add(R26_monitor, R26_monitor, scratch);
|
|
}
|
|
#ifdef ASSERT
|
|
{
|
|
Label Lok;
|
|
subf(R0, R1_SP, scratch);
|
|
cmpdi(CCR0, R0, frame::top_ijava_frame_abi_size + frame::ijava_state_size);
|
|
bge(CCR0, Lok);
|
|
stop("frame too small (restore istate)");
|
|
bind(Lok);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void InterpreterMacroAssembler::get_method_counters(Register method,
|
|
Register Rcounters,
|
|
Label& skip) {
|
|
BLOCK_COMMENT("Load and ev. allocate counter object {");
|
|
Label has_counters;
|
|
ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
|
|
cmpdi(CCR0, Rcounters, 0);
|
|
bne(CCR0, has_counters);
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address,
|
|
InterpreterRuntime::build_method_counters), method);
|
|
ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
|
|
cmpdi(CCR0, Rcounters, 0);
|
|
beq(CCR0, skip); // No MethodCounters, OutOfMemory.
|
|
BLOCK_COMMENT("} Load and ev. allocate counter object");
|
|
|
|
bind(has_counters);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters,
|
|
Register iv_be_count,
|
|
Register Rtmp_r0) {
|
|
assert(UseCompiler, "incrementing must be useful");
|
|
Register invocation_count = iv_be_count;
|
|
Register backedge_count = Rtmp_r0;
|
|
int delta = InvocationCounter::count_increment;
|
|
|
|
// Load each counter in a register.
|
|
// ld(inv_counter, Rtmp);
|
|
// ld(be_counter, Rtmp2);
|
|
int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
|
|
InvocationCounter::counter_offset());
|
|
int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() +
|
|
InvocationCounter::counter_offset());
|
|
|
|
BLOCK_COMMENT("Increment profiling counters {");
|
|
|
|
// Load the backedge counter.
|
|
lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
|
|
// Mask the backedge counter.
|
|
andi(backedge_count, backedge_count, InvocationCounter::count_mask_value);
|
|
|
|
// Load the invocation counter.
|
|
lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
|
|
// Add the delta to the invocation counter and store the result.
|
|
addi(invocation_count, invocation_count, delta);
|
|
// Store value.
|
|
stw(invocation_count, inv_counter_offset, Rcounters);
|
|
|
|
// Add invocation counter + backedge counter.
|
|
add(iv_be_count, backedge_count, invocation_count);
|
|
|
|
// Note that this macro must leave the backedge_count + invocation_count in
|
|
// register iv_be_count!
|
|
BLOCK_COMMENT("} Increment profiling counters");
|
|
}
|
|
|
|
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
|
|
if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); }
|
|
}
|
|
|
|
// Local helper function for the verify_oop_or_return_address macro.
|
|
static bool verify_return_address(Method* m, int bci) {
|
|
#ifndef PRODUCT
|
|
address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
|
|
// Assume it is a valid return address if it is inside m and is preceded by a jsr.
|
|
if (!m->contains(pc)) return false;
|
|
address jsr_pc;
|
|
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
|
|
if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
|
|
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
|
|
if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
|
|
#endif // PRODUCT
|
|
return false;
|
|
}
|
|
|
|
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
|
|
if (VerifyFPU) {
|
|
unimplemented("verfiyFPU");
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
|
|
if (!VerifyOops) return;
|
|
|
|
// The VM documentation for the astore[_wide] bytecode allows
|
|
// the TOS to be not only an oop but also a return address.
|
|
Label test;
|
|
Label skip;
|
|
// See if it is an address (in the current method):
|
|
|
|
const int log2_bytecode_size_limit = 16;
|
|
srdi_(Rtmp, reg, log2_bytecode_size_limit);
|
|
bne(CCR0, test);
|
|
|
|
address fd = CAST_FROM_FN_PTR(address, verify_return_address);
|
|
const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
|
|
save_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
save_LR_CR(Rtmp); // Save in old frame.
|
|
push_frame_reg_args(nbytes_save, Rtmp);
|
|
|
|
load_const_optimized(Rtmp, fd, R0);
|
|
mr_if_needed(R4_ARG2, reg);
|
|
mr(R3_ARG1, R19_method);
|
|
call_c(Rtmp); // call C
|
|
|
|
pop_frame();
|
|
restore_LR_CR(Rtmp);
|
|
restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
b(skip);
|
|
|
|
// Perform a more elaborate out-of-line call.
|
|
// Not an address; verify it:
|
|
bind(test);
|
|
verify_oop(reg);
|
|
bind(skip);
|
|
}
|
|
|
|
// Inline assembly for:
|
|
//
|
|
// if (thread is in interp_only_mode) {
|
|
// InterpreterRuntime::post_method_entry();
|
|
// }
|
|
// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
|
|
// *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) {
|
|
// SharedRuntime::jvmpi_method_entry(method, receiver);
|
|
// }
|
|
void InterpreterMacroAssembler::notify_method_entry() {
|
|
// JVMTI
|
|
// Whenever JVMTI puts a thread in interp_only_mode, method
|
|
// entry/exit events are sent for that thread to track stack
|
|
// depth. If it is possible to enter interp_only_mode we add
|
|
// the code to check if the event should be sent.
|
|
if (JvmtiExport::can_post_interpreter_events()) {
|
|
Label jvmti_post_done;
|
|
|
|
lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
|
|
cmpwi(CCR0, R0, 0);
|
|
beq(CCR0, jvmti_post_done);
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
|
|
|
|
bind(jvmti_post_done);
|
|
}
|
|
}
|
|
|
|
// Inline assembly for:
|
|
//
|
|
// if (thread is in interp_only_mode) {
|
|
// // save result
|
|
// InterpreterRuntime::post_method_exit();
|
|
// // restore result
|
|
// }
|
|
// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
|
|
// // save result
|
|
// SharedRuntime::jvmpi_method_exit();
|
|
// // restore result
|
|
// }
|
|
//
|
|
// Native methods have their result stored in d_tmp and l_tmp.
|
|
// Java methods have their result stored in the expression stack.
|
|
void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
|
|
NotifyMethodExitMode mode, bool check_exceptions) {
|
|
// JVMTI
|
|
// Whenever JVMTI puts a thread in interp_only_mode, method
|
|
// entry/exit events are sent for that thread to track stack
|
|
// depth. If it is possible to enter interp_only_mode we add
|
|
// the code to check if the event should be sent.
|
|
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
|
|
Label jvmti_post_done;
|
|
|
|
lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
|
|
cmpwi(CCR0, R0, 0);
|
|
beq(CCR0, jvmti_post_done);
|
|
if (!is_native_method) { push(state); } // Expose tos to GC.
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), check_exceptions);
|
|
if (!is_native_method) { pop(state); }
|
|
|
|
align(32, 12);
|
|
bind(jvmti_post_done);
|
|
}
|
|
|
|
// Dtrace support not implemented.
|
|
}
|