mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-12 19:35:24 +00:00
4772 lines
167 KiB
C++
4772 lines
167 KiB
C++
/*
|
|
* Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2024 SAP SE. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/barrierSetAssembler.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "nativeInst_ppc.hpp"
|
|
#include "oops/compressedKlass.inline.hpp"
|
|
#include "oops/compressedOops.inline.hpp"
|
|
#include "oops/klass.inline.hpp"
|
|
#include "oops/methodData.hpp"
|
|
#include "prims/methodHandles.hpp"
|
|
#include "register_ppc.hpp"
|
|
#include "runtime/icache.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/safepoint.hpp"
|
|
#include "runtime/safepointMechanism.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/vm_version.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
|
|
#ifdef PRODUCT
|
|
#define BLOCK_COMMENT(str) // nothing
|
|
#else
|
|
#define BLOCK_COMMENT(str) block_comment(str)
|
|
#endif
|
|
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
|
|
|
|
#ifdef ASSERT
|
|
// On RISC, there's no benefit to verifying instruction boundaries.
|
|
bool AbstractAssembler::pd_check_instruction_mark() { return false; }
|
|
#endif
|
|
|
|
void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
|
|
assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
|
|
if (Assembler::is_simm(si31, 16)) {
|
|
ld(d, si31, a);
|
|
if (emit_filler_nop) nop();
|
|
} else {
|
|
const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
|
|
const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
|
|
addis(d, a, hi);
|
|
ld(d, lo, d);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
|
|
assert_different_registers(d, a);
|
|
ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
|
|
}
|
|
|
|
void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
|
|
size_t size_in_bytes, bool is_signed) {
|
|
switch (size_in_bytes) {
|
|
case 8: ld(dst, offs, base); break;
|
|
case 4: is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
|
|
case 2: is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
|
|
case 1: lbz(dst, offs, base); if (is_signed) extsb(dst, dst); break; // lba doesn't exist :(
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
|
|
size_t size_in_bytes) {
|
|
switch (size_in_bytes) {
|
|
case 8: std(dst, offs, base); break;
|
|
case 4: stw(dst, offs, base); break;
|
|
case 2: sth(dst, offs, base); break;
|
|
case 1: stb(dst, offs, base); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::align(int modulus, int max, int rem) {
|
|
int padding = (rem + modulus - (offset() % modulus)) % modulus;
|
|
if (padding > max) return;
|
|
for (int c = (padding >> 2); c > 0; --c) { nop(); }
|
|
}
|
|
|
|
void MacroAssembler::align_prefix() {
|
|
if (is_aligned(offset() + BytesPerInstWord, 64)) { nop(); }
|
|
}
|
|
|
|
// Issue instructions that calculate given TOC from global TOC.
|
|
void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
|
|
bool add_relocation, bool emit_dummy_addr) {
|
|
int offset = -1;
|
|
if (emit_dummy_addr) {
|
|
offset = -128; // dummy address
|
|
} else if (addr != (address)(intptr_t)-1) {
|
|
offset = MacroAssembler::offset_to_global_toc(addr);
|
|
}
|
|
|
|
if (hi16) {
|
|
addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
|
|
}
|
|
if (lo16) {
|
|
if (add_relocation) {
|
|
// Relocate at the addi to avoid confusion with a load from the method's TOC.
|
|
relocate(internal_word_Relocation::spec(addr));
|
|
}
|
|
addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
|
|
}
|
|
}
|
|
|
|
address MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
|
|
const int offset = MacroAssembler::offset_to_global_toc(addr);
|
|
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the addi,
|
|
// and the addi reads and writes the same register dst.
|
|
const int dst = inv_rt_field(inst2);
|
|
assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
|
|
|
|
// Now, find the preceding addis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *) inst1_addr;
|
|
if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
|
|
// Stop, found the addis which writes dst.
|
|
break;
|
|
}
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
|
|
assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
|
|
set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
|
|
set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
|
|
return inst1_addr;
|
|
}
|
|
|
|
address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the addi,
|
|
// and the addi reads and writes the same register dst.
|
|
const int dst = inv_rt_field(inst2);
|
|
assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
|
|
|
|
// Now, find the preceding addis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *) inst1_addr;
|
|
if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
|
|
// stop, found the addis which writes dst
|
|
break;
|
|
}
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
|
|
assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
|
|
|
|
int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
|
|
// -1 is a special case
|
|
if (offset == -1) {
|
|
return (address)(intptr_t)-1;
|
|
} else {
|
|
return global_toc() + offset;
|
|
}
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// Patch compressed oops or klass constants.
|
|
// Assembler sequence is
|
|
// 1) compressed oops:
|
|
// lis rx = const.hi
|
|
// ori rx = rx | const.lo
|
|
// 2) compressed klass:
|
|
// lis rx = const.hi
|
|
// clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
|
|
// ori rx = rx | const.lo
|
|
// Clrldi will be passed by.
|
|
address MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
|
|
assert(UseCompressedOops, "Should only patch compressed oops");
|
|
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the ori,
|
|
// and the ori reads and writes the same register dst.
|
|
const int dst = inv_rta_field(inst2);
|
|
assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
|
|
// Now, find the preceding addis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
bool inst1_found = false;
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *)inst1_addr;
|
|
if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
assert(inst1_found, "inst is not lis");
|
|
|
|
uint32_t data_value = CompressedOops::narrow_oop_value(data);
|
|
int xc = (data_value >> 16) & 0xffff;
|
|
int xd = (data_value >> 0) & 0xffff;
|
|
|
|
set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
|
|
set_imm((int *)inst2_addr, (xd)); // unsigned int
|
|
return inst1_addr;
|
|
}
|
|
|
|
// Get compressed oop constant.
|
|
narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
|
|
assert(UseCompressedOops, "Should only patch compressed oops");
|
|
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the ori,
|
|
// and the ori reads and writes the same register dst.
|
|
const int dst = inv_rta_field(inst2);
|
|
assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
|
|
// Now, find the preceding lis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
bool inst1_found = false;
|
|
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *) inst1_addr;
|
|
if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
assert(inst1_found, "inst is not lis");
|
|
|
|
uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
|
|
uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
|
|
|
|
return CompressedOops::narrow_oop_cast(xl | xh);
|
|
}
|
|
#endif // _LP64
|
|
|
|
// Returns true if successful.
|
|
bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
|
|
Register toc, bool fixed_size) {
|
|
int toc_offset = 0;
|
|
// Use RelocationHolder::none for the constant pool entry, otherwise
|
|
// we will end up with a failing NativeCall::verify(x) where x is
|
|
// the address of the constant pool entry.
|
|
// FIXME: We should insert relocation information for oops at the constant
|
|
// pool entries instead of inserting it at the loads; patching of a constant
|
|
// pool entry should be less expensive.
|
|
address const_address = address_constant((address)a.value(), RelocationHolder::none);
|
|
if (const_address == nullptr) { return false; } // allocation failure
|
|
// Relocate at the pc of the load.
|
|
relocate(a.rspec());
|
|
toc_offset = (int)(const_address - code()->consts()->start());
|
|
ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
|
|
return true;
|
|
}
|
|
|
|
bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
|
|
const address inst1_addr = a;
|
|
const int inst1 = *(int *)inst1_addr;
|
|
|
|
// The relocation points to the ld or the addis.
|
|
return (is_ld(inst1)) ||
|
|
(is_addis(inst1) && inv_ra_field(inst1) != 0);
|
|
}
|
|
|
|
int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
|
|
assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
|
|
|
|
const address inst1_addr = a;
|
|
const int inst1 = *(int *)inst1_addr;
|
|
|
|
if (is_ld(inst1)) {
|
|
return inv_d1_field(inst1);
|
|
} else if (is_addis(inst1)) {
|
|
const int dst = inv_rt_field(inst1);
|
|
|
|
// Now, find the succeeding ld which reads and writes to dst.
|
|
address inst2_addr = inst1_addr + BytesPerInstWord;
|
|
int inst2 = 0;
|
|
while (true) {
|
|
inst2 = *(int *) inst2_addr;
|
|
if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
|
|
// Stop, found the ld which reads and writes dst.
|
|
break;
|
|
}
|
|
inst2_addr += BytesPerInstWord;
|
|
}
|
|
return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
|
|
}
|
|
ShouldNotReachHere();
|
|
return 0;
|
|
}
|
|
|
|
// Get the constant from a `load_const' sequence.
|
|
long MacroAssembler::get_const(address a) {
|
|
assert(is_load_const_at(a), "not a load of a constant");
|
|
const int *p = (const int*) a;
|
|
unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
|
|
if (is_ori(*(p+1))) {
|
|
x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
|
|
x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
|
|
x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
|
|
} else if (is_lis(*(p+1))) {
|
|
x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
|
|
x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
|
|
x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return (long) 0;
|
|
}
|
|
return (long) x;
|
|
}
|
|
|
|
// Patch the 64 bit constant of a `load_const' sequence. This is a low
|
|
// level procedure. It neither flushes the instruction cache nor is it
|
|
// mt safe.
|
|
void MacroAssembler::patch_const(address a, long x) {
|
|
assert(is_load_const_at(a), "not a load of a constant");
|
|
int *p = (int*) a;
|
|
if (is_ori(*(p+1))) {
|
|
set_imm(0 + p, (x >> 48) & 0xffff);
|
|
set_imm(1 + p, (x >> 32) & 0xffff);
|
|
set_imm(3 + p, (x >> 16) & 0xffff);
|
|
set_imm(4 + p, x & 0xffff);
|
|
} else if (is_lis(*(p+1))) {
|
|
set_imm(0 + p, (x >> 48) & 0xffff);
|
|
set_imm(2 + p, (x >> 32) & 0xffff);
|
|
set_imm(1 + p, (x >> 16) & 0xffff);
|
|
set_imm(3 + p, x & 0xffff);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
|
|
assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
|
|
int index = oop_recorder()->allocate_metadata_index(obj);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
return AddressLiteral((address)obj, rspec);
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
|
|
assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
|
|
int index = oop_recorder()->find_index(obj);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
return AddressLiteral((address)obj, rspec);
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
|
|
assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
|
|
int oop_index = oop_recorder()->allocate_oop_index(obj);
|
|
return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
|
|
assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
|
|
int oop_index = oop_recorder()->find_index(obj);
|
|
return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void MacroAssembler::pd_print_patched_instruction(address branch) {
|
|
Unimplemented(); // TODO: PPC port
|
|
}
|
|
#endif // ndef PRODUCT
|
|
|
|
// Conditional far branch for destinations encodable in 24+2 bits.
|
|
void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
|
|
|
|
// If requested by flag optimize, relocate the bc_far as a
|
|
// runtime_call and prepare for optimizing it when the code gets
|
|
// relocated.
|
|
if (optimize == bc_far_optimize_on_relocate) {
|
|
relocate(relocInfo::runtime_call_type);
|
|
}
|
|
|
|
// variant 2:
|
|
//
|
|
// b!cxx SKIP
|
|
// bxx DEST
|
|
// SKIP:
|
|
//
|
|
|
|
const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
|
|
opposite_bcond(inv_boint_bcond(boint)));
|
|
|
|
// We emit two branches.
|
|
// First, a conditional branch which jumps around the far branch.
|
|
const address not_taken_pc = pc() + 2 * BytesPerInstWord;
|
|
const address bc_pc = pc();
|
|
bc(opposite_boint, biint, not_taken_pc);
|
|
|
|
const int bc_instr = *(int*)bc_pc;
|
|
assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
|
|
assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
|
|
assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
|
|
opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
|
|
"postcondition");
|
|
assert(biint == inv_bi_field(bc_instr), "postcondition");
|
|
|
|
// Second, an unconditional far branch which jumps to dest.
|
|
// Note: target(dest) remembers the current pc (see CodeSection::target)
|
|
// and returns the current pc if the label is not bound yet; when
|
|
// the label gets bound, the unconditional far branch will be patched.
|
|
const address target_pc = target(dest);
|
|
const address b_pc = pc();
|
|
b(target_pc);
|
|
|
|
assert(not_taken_pc == pc(), "postcondition");
|
|
assert(dest.is_bound() || target_pc == b_pc, "postcondition");
|
|
}
|
|
|
|
// 1 or 2 instructions
|
|
void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
|
|
if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
|
|
bc(boint, biint, dest);
|
|
} else {
|
|
bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
|
|
}
|
|
}
|
|
|
|
bool MacroAssembler::is_bc_far_at(address instruction_addr) {
|
|
return is_bc_far_variant1_at(instruction_addr) ||
|
|
is_bc_far_variant2_at(instruction_addr) ||
|
|
is_bc_far_variant3_at(instruction_addr);
|
|
}
|
|
|
|
address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
|
|
if (is_bc_far_variant1_at(instruction_addr)) {
|
|
const address instruction_1_addr = instruction_addr;
|
|
const int instruction_1 = *(int*)instruction_1_addr;
|
|
return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
|
|
} else if (is_bc_far_variant2_at(instruction_addr)) {
|
|
const address instruction_2_addr = instruction_addr + 4;
|
|
return bxx_destination(instruction_2_addr);
|
|
} else if (is_bc_far_variant3_at(instruction_addr)) {
|
|
return instruction_addr + 8;
|
|
}
|
|
// variant 4 ???
|
|
ShouldNotReachHere();
|
|
return nullptr;
|
|
}
|
|
void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
|
|
|
|
if (is_bc_far_variant3_at(instruction_addr)) {
|
|
// variant 3, far cond branch to the next instruction, already patched to nops:
|
|
//
|
|
// nop
|
|
// endgroup
|
|
// SKIP/DEST:
|
|
//
|
|
return;
|
|
}
|
|
|
|
// first, extract boint and biint from the current branch
|
|
int boint = 0;
|
|
int biint = 0;
|
|
|
|
ResourceMark rm;
|
|
const int code_size = 2 * BytesPerInstWord;
|
|
CodeBuffer buf(instruction_addr, code_size);
|
|
MacroAssembler masm(&buf);
|
|
if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
|
|
// Far branch to next instruction: Optimize it by patching nops (produce variant 3).
|
|
masm.nop();
|
|
masm.endgroup();
|
|
} else {
|
|
if (is_bc_far_variant1_at(instruction_addr)) {
|
|
// variant 1, the 1st instruction contains the destination address:
|
|
//
|
|
// bcxx DEST
|
|
// nop
|
|
//
|
|
const int instruction_1 = *(int*)(instruction_addr);
|
|
boint = inv_bo_field(instruction_1);
|
|
biint = inv_bi_field(instruction_1);
|
|
} else if (is_bc_far_variant2_at(instruction_addr)) {
|
|
// variant 2, the 2nd instruction contains the destination address:
|
|
//
|
|
// b!cxx SKIP
|
|
// bxx DEST
|
|
// SKIP:
|
|
//
|
|
const int instruction_1 = *(int*)(instruction_addr);
|
|
boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
|
|
opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
|
|
biint = inv_bi_field(instruction_1);
|
|
} else {
|
|
// variant 4???
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// second, set the new branch destination and optimize the code
|
|
if (dest != instruction_addr + 4 && // the bc_far is still unbound!
|
|
masm.is_within_range_of_bcxx(dest, instruction_addr)) {
|
|
// variant 1:
|
|
//
|
|
// bcxx DEST
|
|
// nop
|
|
//
|
|
masm.bc(boint, biint, dest);
|
|
masm.nop();
|
|
} else {
|
|
// variant 2:
|
|
//
|
|
// b!cxx SKIP
|
|
// bxx DEST
|
|
// SKIP:
|
|
//
|
|
const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
|
|
opposite_bcond(inv_boint_bcond(boint)));
|
|
const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
|
|
masm.bc(opposite_boint, biint, not_taken_pc);
|
|
masm.b(dest);
|
|
}
|
|
}
|
|
ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
|
|
}
|
|
|
|
// Emit a NOT mt-safe patchable 64 bit absolute call/jump.
|
|
void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
|
|
// get current pc
|
|
uint64_t start_pc = (uint64_t) pc();
|
|
|
|
const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
|
|
const address pc_of_b = (address) (start_pc + (0*BytesPerInstWord)); // b is first
|
|
|
|
// relocate here
|
|
if (rt != relocInfo::none) {
|
|
relocate(rt);
|
|
}
|
|
|
|
if ( ReoptimizeCallSequences &&
|
|
(( link && is_within_range_of_b(dest, pc_of_bl)) ||
|
|
(!link && is_within_range_of_b(dest, pc_of_b)))) {
|
|
// variant 2:
|
|
// Emit an optimized, pc-relative call/jump.
|
|
|
|
if (link) {
|
|
// some padding
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
|
|
// do the call
|
|
assert(pc() == pc_of_bl, "just checking");
|
|
bl(dest, relocInfo::none);
|
|
} else {
|
|
// do the jump
|
|
assert(pc() == pc_of_b, "just checking");
|
|
b(dest, relocInfo::none);
|
|
|
|
// some padding
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
}
|
|
|
|
// Assert that we can identify the emitted call/jump.
|
|
assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
|
|
"can't identify emitted call");
|
|
} else {
|
|
// variant 1:
|
|
mr(R0, R11); // spill R11 -> R0.
|
|
|
|
// Load the destination address into CTR,
|
|
// calculate destination relative to global toc.
|
|
calculate_address_from_global_toc(R11, dest, true, true, false);
|
|
|
|
mtctr(R11);
|
|
mr(R11, R0); // spill R11 <- R0.
|
|
nop();
|
|
|
|
// do the call/jump
|
|
if (link) {
|
|
bctrl();
|
|
} else{
|
|
bctr();
|
|
}
|
|
// Assert that we can identify the emitted call/jump.
|
|
assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
|
|
"can't identify emitted call");
|
|
}
|
|
|
|
// Assert that we can identify the emitted call/jump.
|
|
assert(is_bxx64_patchable_at((address)start_pc, link),
|
|
"can't identify emitted call");
|
|
assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
|
|
"wrong encoding of dest address");
|
|
}
|
|
|
|
// Identify a bxx64_patchable instruction.
|
|
bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
|
|
return is_bxx64_patchable_variant1b_at(instruction_addr, link)
|
|
//|| is_bxx64_patchable_variant1_at(instruction_addr, link)
|
|
|| is_bxx64_patchable_variant2_at(instruction_addr, link);
|
|
}
|
|
|
|
// Does the call64_patchable instruction use a pc-relative encoding of
|
|
// the call destination?
|
|
bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
|
|
// variant 2 is pc-relative
|
|
return is_bxx64_patchable_variant2_at(instruction_addr, link);
|
|
}
|
|
|
|
// Identify variant 1.
|
|
bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
|
|
&& is_mtctr(instr[5]) // mtctr
|
|
&& is_load_const_at(instruction_addr);
|
|
}
|
|
|
|
// Identify variant 1b: load destination relative to global toc.
|
|
bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
|
|
&& is_mtctr(instr[3]) // mtctr
|
|
&& is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
|
|
}
|
|
|
|
// Identify variant 2.
|
|
bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
if (link) {
|
|
return is_bl (instr[6]) // bl dest is last
|
|
&& is_nop(instr[0]) // nop
|
|
&& is_nop(instr[1]) // nop
|
|
&& is_nop(instr[2]) // nop
|
|
&& is_nop(instr[3]) // nop
|
|
&& is_nop(instr[4]) // nop
|
|
&& is_nop(instr[5]); // nop
|
|
} else {
|
|
return is_b (instr[0]) // b dest is first
|
|
&& is_nop(instr[1]) // nop
|
|
&& is_nop(instr[2]) // nop
|
|
&& is_nop(instr[3]) // nop
|
|
&& is_nop(instr[4]) // nop
|
|
&& is_nop(instr[5]) // nop
|
|
&& is_nop(instr[6]); // nop
|
|
}
|
|
}
|
|
|
|
// Set dest address of a bxx64_patchable instruction.
|
|
void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
|
|
ResourceMark rm;
|
|
int code_size = MacroAssembler::bxx64_patchable_size;
|
|
CodeBuffer buf(instruction_addr, code_size);
|
|
MacroAssembler masm(&buf);
|
|
masm.bxx64_patchable(dest, relocInfo::none, link);
|
|
ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
|
|
}
|
|
|
|
// Get dest address of a bxx64_patchable instruction.
|
|
address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
|
|
if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
|
|
return (address) (unsigned long) get_const(instruction_addr);
|
|
} else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
if (link) {
|
|
const int instr_idx = 6; // bl is last
|
|
int branchoffset = branch_destination(instr[instr_idx], 0);
|
|
return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
|
|
} else {
|
|
const int instr_idx = 0; // b is first
|
|
int branchoffset = branch_destination(instr[instr_idx], 0);
|
|
return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
|
|
}
|
|
// Load dest relative to global toc.
|
|
} else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
|
|
return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
|
|
instruction_addr);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::clobber_volatile_gprs(Register excluded_register) {
|
|
const int magic_number = 0x42;
|
|
|
|
// Preserve stack pointer register (R1_SP) and system thread id register (R13);
|
|
// although they're technically volatile
|
|
for (int i = 2; i < 13; i++) {
|
|
Register reg = as_Register(i);
|
|
if (reg == excluded_register) {
|
|
continue;
|
|
}
|
|
|
|
li(reg, magic_number);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::clobber_carg_stack_slots(Register tmp) {
|
|
const int magic_number = 0x43;
|
|
|
|
li(tmp, magic_number);
|
|
for (int m = 0; m <= 7; m++) {
|
|
std(tmp, frame::native_abi_minframe_size + m * 8, R1_SP);
|
|
}
|
|
}
|
|
|
|
// Uses ordering which corresponds to ABI:
|
|
// _savegpr0_14: std r14,-144(r1)
|
|
// _savegpr0_15: std r15,-136(r1)
|
|
// _savegpr0_16: std r16,-128(r1)
|
|
void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
|
|
std(R14, offset, dst); offset += 8;
|
|
std(R15, offset, dst); offset += 8;
|
|
std(R16, offset, dst); offset += 8;
|
|
std(R17, offset, dst); offset += 8;
|
|
std(R18, offset, dst); offset += 8;
|
|
std(R19, offset, dst); offset += 8;
|
|
std(R20, offset, dst); offset += 8;
|
|
std(R21, offset, dst); offset += 8;
|
|
std(R22, offset, dst); offset += 8;
|
|
std(R23, offset, dst); offset += 8;
|
|
std(R24, offset, dst); offset += 8;
|
|
std(R25, offset, dst); offset += 8;
|
|
std(R26, offset, dst); offset += 8;
|
|
std(R27, offset, dst); offset += 8;
|
|
std(R28, offset, dst); offset += 8;
|
|
std(R29, offset, dst); offset += 8;
|
|
std(R30, offset, dst); offset += 8;
|
|
std(R31, offset, dst); offset += 8;
|
|
|
|
stfd(F14, offset, dst); offset += 8;
|
|
stfd(F15, offset, dst); offset += 8;
|
|
stfd(F16, offset, dst); offset += 8;
|
|
stfd(F17, offset, dst); offset += 8;
|
|
stfd(F18, offset, dst); offset += 8;
|
|
stfd(F19, offset, dst); offset += 8;
|
|
stfd(F20, offset, dst); offset += 8;
|
|
stfd(F21, offset, dst); offset += 8;
|
|
stfd(F22, offset, dst); offset += 8;
|
|
stfd(F23, offset, dst); offset += 8;
|
|
stfd(F24, offset, dst); offset += 8;
|
|
stfd(F25, offset, dst); offset += 8;
|
|
stfd(F26, offset, dst); offset += 8;
|
|
stfd(F27, offset, dst); offset += 8;
|
|
stfd(F28, offset, dst); offset += 8;
|
|
stfd(F29, offset, dst); offset += 8;
|
|
stfd(F30, offset, dst); offset += 8;
|
|
stfd(F31, offset, dst);
|
|
}
|
|
|
|
// Uses ordering which corresponds to ABI:
|
|
// _restgpr0_14: ld r14,-144(r1)
|
|
// _restgpr0_15: ld r15,-136(r1)
|
|
// _restgpr0_16: ld r16,-128(r1)
|
|
void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
|
|
ld(R14, offset, src); offset += 8;
|
|
ld(R15, offset, src); offset += 8;
|
|
ld(R16, offset, src); offset += 8;
|
|
ld(R17, offset, src); offset += 8;
|
|
ld(R18, offset, src); offset += 8;
|
|
ld(R19, offset, src); offset += 8;
|
|
ld(R20, offset, src); offset += 8;
|
|
ld(R21, offset, src); offset += 8;
|
|
ld(R22, offset, src); offset += 8;
|
|
ld(R23, offset, src); offset += 8;
|
|
ld(R24, offset, src); offset += 8;
|
|
ld(R25, offset, src); offset += 8;
|
|
ld(R26, offset, src); offset += 8;
|
|
ld(R27, offset, src); offset += 8;
|
|
ld(R28, offset, src); offset += 8;
|
|
ld(R29, offset, src); offset += 8;
|
|
ld(R30, offset, src); offset += 8;
|
|
ld(R31, offset, src); offset += 8;
|
|
|
|
// FP registers
|
|
lfd(F14, offset, src); offset += 8;
|
|
lfd(F15, offset, src); offset += 8;
|
|
lfd(F16, offset, src); offset += 8;
|
|
lfd(F17, offset, src); offset += 8;
|
|
lfd(F18, offset, src); offset += 8;
|
|
lfd(F19, offset, src); offset += 8;
|
|
lfd(F20, offset, src); offset += 8;
|
|
lfd(F21, offset, src); offset += 8;
|
|
lfd(F22, offset, src); offset += 8;
|
|
lfd(F23, offset, src); offset += 8;
|
|
lfd(F24, offset, src); offset += 8;
|
|
lfd(F25, offset, src); offset += 8;
|
|
lfd(F26, offset, src); offset += 8;
|
|
lfd(F27, offset, src); offset += 8;
|
|
lfd(F28, offset, src); offset += 8;
|
|
lfd(F29, offset, src); offset += 8;
|
|
lfd(F30, offset, src); offset += 8;
|
|
lfd(F31, offset, src);
|
|
}
|
|
|
|
// For verify_oops.
|
|
void MacroAssembler::save_volatile_gprs(Register dst, int offset, bool include_fp_regs, bool include_R3_RET_reg) {
|
|
std(R2, offset, dst); offset += 8;
|
|
if (include_R3_RET_reg) {
|
|
std(R3, offset, dst); offset += 8;
|
|
}
|
|
std(R4, offset, dst); offset += 8;
|
|
std(R5, offset, dst); offset += 8;
|
|
std(R6, offset, dst); offset += 8;
|
|
std(R7, offset, dst); offset += 8;
|
|
std(R8, offset, dst); offset += 8;
|
|
std(R9, offset, dst); offset += 8;
|
|
std(R10, offset, dst); offset += 8;
|
|
std(R11, offset, dst); offset += 8;
|
|
std(R12, offset, dst); offset += 8;
|
|
|
|
if (include_fp_regs) {
|
|
stfd(F0, offset, dst); offset += 8;
|
|
stfd(F1, offset, dst); offset += 8;
|
|
stfd(F2, offset, dst); offset += 8;
|
|
stfd(F3, offset, dst); offset += 8;
|
|
stfd(F4, offset, dst); offset += 8;
|
|
stfd(F5, offset, dst); offset += 8;
|
|
stfd(F6, offset, dst); offset += 8;
|
|
stfd(F7, offset, dst); offset += 8;
|
|
stfd(F8, offset, dst); offset += 8;
|
|
stfd(F9, offset, dst); offset += 8;
|
|
stfd(F10, offset, dst); offset += 8;
|
|
stfd(F11, offset, dst); offset += 8;
|
|
stfd(F12, offset, dst); offset += 8;
|
|
stfd(F13, offset, dst);
|
|
}
|
|
}
|
|
|
|
// For verify_oops.
|
|
void MacroAssembler::restore_volatile_gprs(Register src, int offset, bool include_fp_regs, bool include_R3_RET_reg) {
|
|
ld(R2, offset, src); offset += 8;
|
|
if (include_R3_RET_reg) {
|
|
ld(R3, offset, src); offset += 8;
|
|
}
|
|
ld(R4, offset, src); offset += 8;
|
|
ld(R5, offset, src); offset += 8;
|
|
ld(R6, offset, src); offset += 8;
|
|
ld(R7, offset, src); offset += 8;
|
|
ld(R8, offset, src); offset += 8;
|
|
ld(R9, offset, src); offset += 8;
|
|
ld(R10, offset, src); offset += 8;
|
|
ld(R11, offset, src); offset += 8;
|
|
ld(R12, offset, src); offset += 8;
|
|
|
|
if (include_fp_regs) {
|
|
lfd(F0, offset, src); offset += 8;
|
|
lfd(F1, offset, src); offset += 8;
|
|
lfd(F2, offset, src); offset += 8;
|
|
lfd(F3, offset, src); offset += 8;
|
|
lfd(F4, offset, src); offset += 8;
|
|
lfd(F5, offset, src); offset += 8;
|
|
lfd(F6, offset, src); offset += 8;
|
|
lfd(F7, offset, src); offset += 8;
|
|
lfd(F8, offset, src); offset += 8;
|
|
lfd(F9, offset, src); offset += 8;
|
|
lfd(F10, offset, src); offset += 8;
|
|
lfd(F11, offset, src); offset += 8;
|
|
lfd(F12, offset, src); offset += 8;
|
|
lfd(F13, offset, src);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::save_LR(Register tmp) {
|
|
mflr(tmp);
|
|
std(tmp, _abi0(lr), R1_SP);
|
|
}
|
|
|
|
void MacroAssembler::restore_LR(Register tmp) {
|
|
assert(tmp != R1_SP, "must be distinct");
|
|
ld(tmp, _abi0(lr), R1_SP);
|
|
mtlr(tmp);
|
|
}
|
|
|
|
void MacroAssembler::save_LR_CR(Register tmp) {
|
|
mfcr(tmp);
|
|
std(tmp, _abi0(cr), R1_SP);
|
|
save_LR(tmp);
|
|
// Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
|
|
}
|
|
|
|
void MacroAssembler::restore_LR_CR(Register tmp) {
|
|
restore_LR(tmp);
|
|
ld(tmp, _abi0(cr), R1_SP);
|
|
mtcr(tmp);
|
|
}
|
|
|
|
address MacroAssembler::get_PC_trash_LR(Register result) {
|
|
Label L;
|
|
bl(L);
|
|
bind(L);
|
|
address lr_pc = pc();
|
|
mflr(result);
|
|
return lr_pc;
|
|
}
|
|
|
|
void MacroAssembler::resize_frame(Register offset, Register tmp) {
|
|
#ifdef ASSERT
|
|
assert_different_registers(offset, tmp, R1_SP);
|
|
andi_(tmp, offset, frame::alignment_in_bytes-1);
|
|
asm_assert_eq("resize_frame: unaligned");
|
|
#endif
|
|
|
|
// tmp <- *(SP)
|
|
ld(tmp, _abi0(callers_sp), R1_SP);
|
|
// addr <- SP + offset;
|
|
// *(addr) <- tmp;
|
|
// SP <- addr
|
|
stdux(tmp, R1_SP, offset);
|
|
}
|
|
|
|
void MacroAssembler::resize_frame(int offset, Register tmp) {
|
|
assert(is_simm(offset, 16), "too big an offset");
|
|
assert_different_registers(tmp, R1_SP);
|
|
assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
|
|
// tmp <- *(SP)
|
|
ld(tmp, _abi0(callers_sp), R1_SP);
|
|
// addr <- SP + offset;
|
|
// *(addr) <- tmp;
|
|
// SP <- addr
|
|
stdu(tmp, offset, R1_SP);
|
|
}
|
|
|
|
void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
|
|
// (addr == tmp1) || (addr == tmp2) is allowed here!
|
|
assert(tmp1 != tmp2, "must be distinct");
|
|
|
|
// compute offset w.r.t. current stack pointer
|
|
// tmp_1 <- addr - SP (!)
|
|
subf(tmp1, R1_SP, addr);
|
|
|
|
// atomically update SP keeping back link.
|
|
resize_frame(tmp1/* offset */, tmp2/* tmp */);
|
|
}
|
|
|
|
void MacroAssembler::push_frame(Register bytes, Register tmp) {
|
|
#ifdef ASSERT
|
|
assert(bytes != R0, "r0 not allowed here");
|
|
andi_(R0, bytes, frame::alignment_in_bytes-1);
|
|
asm_assert_eq("push_frame(Reg, Reg): unaligned");
|
|
#endif
|
|
neg(tmp, bytes);
|
|
stdux(R1_SP, R1_SP, tmp);
|
|
}
|
|
|
|
// Push a frame of size `bytes'.
|
|
void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
|
|
long offset = align_addr(bytes, frame::alignment_in_bytes);
|
|
if (is_simm(-offset, 16)) {
|
|
stdu(R1_SP, -offset, R1_SP);
|
|
} else {
|
|
load_const_optimized(tmp, -offset);
|
|
stdux(R1_SP, R1_SP, tmp);
|
|
}
|
|
}
|
|
|
|
// Push a frame of size `bytes' plus native_abi_reg_args on top.
|
|
void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
|
|
push_frame(bytes + frame::native_abi_reg_args_size, tmp);
|
|
}
|
|
|
|
// Setup up a new C frame with a spill area for non-volatile GPRs and
|
|
// additional space for local variables.
|
|
void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
|
|
Register tmp) {
|
|
push_frame(bytes + frame::native_abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
|
|
}
|
|
|
|
// Pop current C frame.
|
|
void MacroAssembler::pop_frame() {
|
|
ld(R1_SP, _abi0(callers_sp), R1_SP);
|
|
}
|
|
|
|
#if defined(ABI_ELFv2)
|
|
address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
|
|
// TODO(asmundak): make sure the caller uses R12 as function descriptor
|
|
// most of the times.
|
|
if (R12 != r_function_entry) {
|
|
mr(R12, r_function_entry);
|
|
}
|
|
mtctr(R12);
|
|
// Do a call or a branch.
|
|
if (and_link) {
|
|
bctrl();
|
|
} else {
|
|
bctr();
|
|
}
|
|
_last_calls_return_pc = pc();
|
|
|
|
return _last_calls_return_pc;
|
|
}
|
|
|
|
// Call a C function via a function descriptor and use full C
|
|
// calling conventions. Updates and returns _last_calls_return_pc.
|
|
address MacroAssembler::call_c(Register r_function_entry) {
|
|
return branch_to(r_function_entry, /*and_link=*/true);
|
|
}
|
|
|
|
// For tail calls: only branch, don't link, so callee returns to caller of this function.
|
|
address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
|
|
return branch_to(r_function_entry, /*and_link=*/false);
|
|
}
|
|
|
|
address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
|
|
load_const(R12, function_entry, R0);
|
|
return branch_to(R12, /*and_link=*/true);
|
|
}
|
|
|
|
#else
|
|
// Generic version of a call to C function via a function descriptor
|
|
// with variable support for C calling conventions (TOC, ENV, etc.).
|
|
// Updates and returns _last_calls_return_pc.
|
|
address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
|
|
bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
|
|
// we emit standard ptrgl glue code here
|
|
assert((function_descriptor != R0), "function_descriptor cannot be R0");
|
|
|
|
// retrieve necessary entries from the function descriptor
|
|
ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
|
|
mtctr(R0);
|
|
|
|
if (load_toc_of_callee) {
|
|
ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
|
|
}
|
|
if (load_env_of_callee) {
|
|
ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
|
|
} else if (load_toc_of_callee) {
|
|
li(R11, 0);
|
|
}
|
|
|
|
// do a call or a branch
|
|
if (and_link) {
|
|
bctrl();
|
|
} else {
|
|
bctr();
|
|
}
|
|
_last_calls_return_pc = pc();
|
|
|
|
return _last_calls_return_pc;
|
|
}
|
|
|
|
// Call a C function via a function descriptor and use full C calling
|
|
// conventions.
|
|
// We don't use the TOC in generated code, so there is no need to save
|
|
// and restore its value.
|
|
address MacroAssembler::call_c(Register fd) {
|
|
return branch_to(fd, /*and_link=*/true,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/true);
|
|
}
|
|
|
|
address MacroAssembler::call_c_and_return_to_caller(Register fd) {
|
|
return branch_to(fd, /*and_link=*/false,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/true);
|
|
}
|
|
|
|
address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
|
|
if (rt != relocInfo::none) {
|
|
// this call needs to be relocatable
|
|
if (!ReoptimizeCallSequences
|
|
|| (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
|
|
|| fd == nullptr // support code-size estimation
|
|
|| !fd->is_friend_function()
|
|
|| fd->entry() == nullptr) {
|
|
// it's not a friend function as defined by class FunctionDescriptor,
|
|
// so do a full call-c here.
|
|
load_const(R11, (address)fd, R0);
|
|
|
|
bool has_env = (fd != nullptr && fd->env() != nullptr);
|
|
return branch_to(R11, /*and_link=*/true,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/has_env);
|
|
} else {
|
|
// It's a friend function. Load the entry point and don't care about
|
|
// toc and env. Use an optimizable call instruction, but ensure the
|
|
// same code-size as in the case of a non-friend function.
|
|
nop();
|
|
nop();
|
|
nop();
|
|
bl64_patchable(fd->entry(), rt);
|
|
_last_calls_return_pc = pc();
|
|
return _last_calls_return_pc;
|
|
}
|
|
} else {
|
|
// This call does not need to be relocatable, do more aggressive
|
|
// optimizations.
|
|
if (!ReoptimizeCallSequences
|
|
|| !fd->is_friend_function()) {
|
|
// It's not a friend function as defined by class FunctionDescriptor,
|
|
// so do a full call-c here.
|
|
load_const(R11, (address)fd, R0);
|
|
return branch_to(R11, /*and_link=*/true,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/true);
|
|
} else {
|
|
// it's a friend function, load the entry point and don't care about
|
|
// toc and env.
|
|
address dest = fd->entry();
|
|
if (is_within_range_of_b(dest, pc())) {
|
|
bl(dest);
|
|
} else {
|
|
bl64_patchable(dest, rt);
|
|
}
|
|
_last_calls_return_pc = pc();
|
|
return _last_calls_return_pc;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Call a C function. All constants needed reside in TOC.
|
|
//
|
|
// Read the address to call from the TOC.
|
|
// Read env from TOC, if fd specifies an env.
|
|
// Read new TOC from TOC.
|
|
address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
|
|
relocInfo::relocType rt, Register toc) {
|
|
if (!ReoptimizeCallSequences
|
|
|| (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
|
|
|| !fd->is_friend_function()) {
|
|
// It's not a friend function as defined by class FunctionDescriptor,
|
|
// so do a full call-c here.
|
|
assert(fd->entry() != nullptr, "function must be linked");
|
|
|
|
AddressLiteral fd_entry(fd->entry());
|
|
bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
|
|
mtctr(R11);
|
|
if (fd->env() == nullptr) {
|
|
li(R11, 0);
|
|
nop();
|
|
} else {
|
|
AddressLiteral fd_env(fd->env());
|
|
success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
|
|
}
|
|
AddressLiteral fd_toc(fd->toc());
|
|
// Set R2_TOC (load from toc)
|
|
success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
|
|
bctrl();
|
|
_last_calls_return_pc = pc();
|
|
if (!success) { return nullptr; }
|
|
} else {
|
|
// It's a friend function, load the entry point and don't care about
|
|
// toc and env. Use an optimizable call instruction, but ensure the
|
|
// same code-size as in the case of a non-friend function.
|
|
nop();
|
|
bl64_patchable(fd->entry(), rt);
|
|
_last_calls_return_pc = pc();
|
|
}
|
|
return _last_calls_return_pc;
|
|
}
|
|
#endif // ABI_ELFv2
|
|
|
|
void MacroAssembler::post_call_nop() {
|
|
// Make inline again when loom is always enabled.
|
|
if (!Continuations::enabled()) {
|
|
return;
|
|
}
|
|
// We use CMPI/CMPLI instructions to encode post call nops.
|
|
// Refer to NativePostCallNop for details.
|
|
relocate(post_call_nop_Relocation::spec());
|
|
InlineSkippedInstructionsCounter skipCounter(this);
|
|
Assembler::emit_int32(Assembler::CMPLI_OPCODE | Assembler::opp_u_field(1, 9, 9));
|
|
assert(is_post_call_nop(*(int*)(pc() - 4)), "post call not not found");
|
|
}
|
|
|
|
int MacroAssembler::ic_check_size() {
|
|
bool implicit_null_checks_available = ImplicitNullChecks && os::zero_page_read_protected(),
|
|
use_fast_receiver_null_check = implicit_null_checks_available || TrapBasedNullChecks,
|
|
use_trap_based_null_check = !implicit_null_checks_available && TrapBasedNullChecks;
|
|
|
|
int num_ins;
|
|
if (use_fast_receiver_null_check && TrapBasedICMissChecks) {
|
|
num_ins = 3;
|
|
if (use_trap_based_null_check) num_ins += 1;
|
|
} else {
|
|
num_ins = 7;
|
|
if (!implicit_null_checks_available) num_ins += 2;
|
|
}
|
|
return num_ins * BytesPerInstWord;
|
|
}
|
|
|
|
int MacroAssembler::ic_check(int end_alignment) {
|
|
bool implicit_null_checks_available = ImplicitNullChecks && os::zero_page_read_protected(),
|
|
use_fast_receiver_null_check = implicit_null_checks_available || TrapBasedNullChecks,
|
|
use_trap_based_null_check = !implicit_null_checks_available && TrapBasedNullChecks;
|
|
|
|
Register receiver = R3_ARG1;
|
|
Register data = R19_inline_cache_reg;
|
|
Register tmp1 = R11_scratch1;
|
|
Register tmp2 = R12_scratch2;
|
|
|
|
// The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
|
|
// before the inline cache check, so we don't have to execute any nop instructions when dispatching
|
|
// through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
|
|
// before the inline cache check here, and not after
|
|
align(end_alignment, end_alignment, end_alignment - ic_check_size());
|
|
|
|
int uep_offset = offset();
|
|
|
|
if (use_fast_receiver_null_check && TrapBasedICMissChecks) {
|
|
// Fast version which uses SIGTRAP
|
|
|
|
if (use_trap_based_null_check) {
|
|
trap_null_check(receiver);
|
|
}
|
|
if (UseCompressedClassPointers) {
|
|
lwz(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
|
|
} else {
|
|
ld(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
|
|
}
|
|
ld(tmp2, in_bytes(CompiledICData::speculated_klass_offset()), data);
|
|
trap_ic_miss_check(tmp1, tmp2);
|
|
|
|
} else {
|
|
// Slower version which doesn't use SIGTRAP
|
|
|
|
// Load stub address using toc (fixed instruction size, unlike load_const_optimized)
|
|
calculate_address_from_global_toc(tmp1, SharedRuntime::get_ic_miss_stub(),
|
|
true, true, false); // 2 instructions
|
|
mtctr(tmp1);
|
|
|
|
if (!implicit_null_checks_available) {
|
|
cmpdi(CCR0, receiver, 0);
|
|
beqctr(CCR0);
|
|
}
|
|
if (UseCompressedClassPointers) {
|
|
lwz(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
|
|
} else {
|
|
ld(tmp1, oopDesc::klass_offset_in_bytes(), receiver);
|
|
}
|
|
ld(tmp2, in_bytes(CompiledICData::speculated_klass_offset()), data);
|
|
cmpd(CCR0, tmp1, tmp2);
|
|
bnectr(CCR0);
|
|
}
|
|
|
|
assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
|
|
|
|
return uep_offset;
|
|
}
|
|
|
|
void MacroAssembler::call_VM_base(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
bool check_exceptions) {
|
|
BLOCK_COMMENT("call_VM {");
|
|
// Determine last_java_sp register.
|
|
if (!last_java_sp->is_valid()) {
|
|
last_java_sp = R1_SP;
|
|
}
|
|
set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
|
|
|
|
// ARG1 must hold thread address.
|
|
mr(R3_ARG1, R16_thread);
|
|
#if defined(ABI_ELFv2)
|
|
address return_pc = call_c(entry_point, relocInfo::none);
|
|
#else
|
|
address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
|
|
#endif
|
|
|
|
reset_last_Java_frame();
|
|
|
|
// Check for pending exceptions.
|
|
if (check_exceptions) {
|
|
// We don't check for exceptions here.
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// Get oop result if there is one and reset the value in the thread.
|
|
if (oop_result->is_valid()) {
|
|
get_vm_result(oop_result);
|
|
}
|
|
|
|
_last_calls_return_pc = return_pc;
|
|
BLOCK_COMMENT("} call_VM");
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_base(address entry_point) {
|
|
BLOCK_COMMENT("call_VM_leaf {");
|
|
#if defined(ABI_ELFv2)
|
|
call_c(entry_point, relocInfo::none);
|
|
#else
|
|
call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
|
|
#endif
|
|
BLOCK_COMMENT("} call_VM_leaf");
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
|
|
call_VM_base(oop_result, noreg, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
|
|
bool check_exceptions) {
|
|
// R3_ARG1 is reserved for the thread.
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
|
|
bool check_exceptions) {
|
|
// R3_ARG1 is reserved for the thread
|
|
assert_different_registers(arg_2, R4_ARG2);
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
mr_if_needed(R5_ARG3, arg_2);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions) {
|
|
// R3_ARG1 is reserved for the thread
|
|
assert_different_registers(arg_2, R4_ARG2);
|
|
assert_different_registers(arg_3, R4_ARG2, R5_ARG3);
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
mr_if_needed(R5_ARG3, arg_2);
|
|
mr_if_needed(R6_ARG4, arg_3);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point) {
|
|
call_VM_leaf_base(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
|
|
mr_if_needed(R3_ARG1, arg_1);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
|
|
assert_different_registers(arg_2, R3_ARG1);
|
|
mr_if_needed(R3_ARG1, arg_1);
|
|
mr_if_needed(R4_ARG2, arg_2);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
|
|
assert_different_registers(arg_2, R3_ARG1);
|
|
assert_different_registers(arg_3, R3_ARG1, R4_ARG2);
|
|
mr_if_needed(R3_ARG1, arg_1);
|
|
mr_if_needed(R4_ARG2, arg_2);
|
|
mr_if_needed(R5_ARG3, arg_3);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
// Check whether instruction is a read access to the polling page
|
|
// which was emitted by load_from_polling_page(..).
|
|
bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
|
|
address* polling_address_ptr) {
|
|
if (!is_ld(instruction))
|
|
return false; // It's not a ld. Fail.
|
|
|
|
int rt = inv_rt_field(instruction);
|
|
int ra = inv_ra_field(instruction);
|
|
int ds = inv_ds_field(instruction);
|
|
if (!(ds == 0 && ra != 0 && rt == 0)) {
|
|
return false; // It's not a ld(r0, X, ra). Fail.
|
|
}
|
|
|
|
if (!ucontext) {
|
|
// Set polling address.
|
|
if (polling_address_ptr != nullptr) {
|
|
*polling_address_ptr = nullptr;
|
|
}
|
|
return true; // No ucontext given. Can't check value of ra. Assume true.
|
|
}
|
|
|
|
#ifdef LINUX
|
|
// Ucontext given. Check that register ra contains the address of
|
|
// the safepoing polling page.
|
|
ucontext_t* uc = (ucontext_t*) ucontext;
|
|
// Set polling address.
|
|
address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
|
|
if (polling_address_ptr != nullptr) {
|
|
*polling_address_ptr = addr;
|
|
}
|
|
return SafepointMechanism::is_poll_address(addr);
|
|
#else
|
|
// Not on Linux, ucontext must be null.
|
|
ShouldNotReachHere();
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void MacroAssembler::bang_stack_with_offset(int offset) {
|
|
// When increasing the stack, the old stack pointer will be written
|
|
// to the new top of stack according to the PPC64 abi.
|
|
// Therefore, stack banging is not necessary when increasing
|
|
// the stack by <= os::vm_page_size() bytes.
|
|
// When increasing the stack by a larger amount, this method is
|
|
// called repeatedly to bang the intermediate pages.
|
|
|
|
// Stack grows down, caller passes positive offset.
|
|
assert(offset > 0, "must bang with positive offset");
|
|
|
|
long stdoffset = -offset;
|
|
|
|
if (is_simm(stdoffset, 16)) {
|
|
// Signed 16 bit offset, a simple std is ok.
|
|
if (UseLoadInstructionsForStackBangingPPC64) {
|
|
ld(R0, (int)(signed short)stdoffset, R1_SP);
|
|
} else {
|
|
std(R0,(int)(signed short)stdoffset, R1_SP);
|
|
}
|
|
} else if (is_simm(stdoffset, 31)) {
|
|
const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
|
|
const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
|
|
|
|
Register tmp = R11;
|
|
addis(tmp, R1_SP, hi);
|
|
if (UseLoadInstructionsForStackBangingPPC64) {
|
|
ld(R0, lo, tmp);
|
|
} else {
|
|
std(R0, lo, tmp);
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// If instruction is a stack bang of the form
|
|
// std R0, x(Ry), (see bang_stack_with_offset())
|
|
// stdu R1_SP, x(R1_SP), (see push_frame(), resize_frame())
|
|
// or stdux R1_SP, Rx, R1_SP (see push_frame(), resize_frame())
|
|
// return the banged address. Otherwise, return 0.
|
|
address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
|
|
#ifdef LINUX
|
|
ucontext_t* uc = (ucontext_t*) ucontext;
|
|
int rs = inv_rs_field(instruction);
|
|
int ra = inv_ra_field(instruction);
|
|
if ( (is_ld(instruction) && rs == 0 && UseLoadInstructionsForStackBangingPPC64)
|
|
|| (is_std(instruction) && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
|
|
|| (is_stdu(instruction) && rs == 1)) {
|
|
int ds = inv_ds_field(instruction);
|
|
// return banged address
|
|
return ds+(address)uc->uc_mcontext.regs->gpr[ra];
|
|
} else if (is_stdux(instruction) && rs == 1) {
|
|
int rb = inv_rb_field(instruction);
|
|
address sp = (address)uc->uc_mcontext.regs->gpr[1];
|
|
long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
|
|
return ra != 1 || rb_val >= 0 ? nullptr // not a stack bang
|
|
: sp + rb_val; // banged address
|
|
}
|
|
return nullptr; // not a stack bang
|
|
#else
|
|
// workaround not needed on !LINUX :-)
|
|
ShouldNotCallThis();
|
|
return nullptr;
|
|
#endif
|
|
}
|
|
|
|
void MacroAssembler::reserved_stack_check(Register return_pc) {
|
|
// Test if reserved zone needs to be enabled.
|
|
Label no_reserved_zone_enabling;
|
|
|
|
ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
|
|
cmpld(CCR0, R1_SP, R0);
|
|
blt_predict_taken(CCR0, no_reserved_zone_enabling);
|
|
|
|
// Enable reserved zone again, throw stack overflow exception.
|
|
push_frame_reg_args(0, R0);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
|
|
pop_frame();
|
|
mtlr(return_pc);
|
|
load_const_optimized(R0, SharedRuntime::throw_delayed_StackOverflowError_entry());
|
|
mtctr(R0);
|
|
bctr();
|
|
|
|
should_not_reach_here();
|
|
|
|
bind(no_reserved_zone_enabling);
|
|
}
|
|
|
|
void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
|
|
bool cmpxchgx_hint) {
|
|
Label retry;
|
|
bind(retry);
|
|
ldarx(dest_current_value, addr_base, cmpxchgx_hint);
|
|
stdcx_(exchange_value, addr_base);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
|
|
} else {
|
|
bne( CCR0, retry); // StXcx_ sets CCR0.
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
|
|
Register tmp, bool cmpxchgx_hint) {
|
|
Label retry;
|
|
bind(retry);
|
|
ldarx(dest_current_value, addr_base, cmpxchgx_hint);
|
|
add(tmp, dest_current_value, inc_value);
|
|
stdcx_(tmp, addr_base);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
|
|
} else {
|
|
bne( CCR0, retry); // StXcx_ sets CCR0.
|
|
}
|
|
}
|
|
|
|
// Word/sub-word atomic helper functions
|
|
|
|
// Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
|
|
// Only signed types are supported with size < 4.
|
|
// Atomic add always kills tmp1.
|
|
void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
|
|
Register addr_base, Register tmp1, Register tmp2, Register tmp3,
|
|
bool cmpxchgx_hint, bool is_add, int size) {
|
|
// Sub-word instructions are available since Power 8.
|
|
// For older processors, instruction_type != size holds, and we
|
|
// emulate the sub-word instructions by constructing a 4-byte value
|
|
// that leaves the other bytes unchanged.
|
|
const int instruction_type = VM_Version::has_lqarx() ? size : 4;
|
|
|
|
Label retry;
|
|
Register shift_amount = noreg,
|
|
val32 = dest_current_value,
|
|
modval = is_add ? tmp1 : exchange_value;
|
|
|
|
if (instruction_type != size) {
|
|
assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
|
|
modval = tmp1;
|
|
shift_amount = tmp2;
|
|
val32 = tmp3;
|
|
// Need some preparation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
|
|
clrrdi(addr_base, addr_base, 2);
|
|
#else
|
|
xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
|
|
clrrdi(addr_base, addr_base, 2);
|
|
rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
|
|
#endif
|
|
}
|
|
|
|
// atomic emulation loop
|
|
bind(retry);
|
|
|
|
switch (instruction_type) {
|
|
case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
|
|
case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
|
|
case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
if (instruction_type != size) {
|
|
srw(dest_current_value, val32, shift_amount);
|
|
}
|
|
|
|
if (is_add) { add(modval, dest_current_value, exchange_value); }
|
|
|
|
if (instruction_type != size) {
|
|
// Transform exchange value such that the replacement can be done by one xor instruction.
|
|
xorr(modval, dest_current_value, is_add ? modval : exchange_value);
|
|
clrldi(modval, modval, (size == 1) ? 56 : 48);
|
|
slw(modval, modval, shift_amount);
|
|
xorr(modval, val32, modval);
|
|
}
|
|
|
|
switch (instruction_type) {
|
|
case 4: stwcx_(modval, addr_base); break;
|
|
case 2: sthcx_(modval, addr_base); break;
|
|
case 1: stbcx_(modval, addr_base); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
|
|
} else {
|
|
bne( CCR0, retry); // StXcx_ sets CCR0.
|
|
}
|
|
|
|
// l?arx zero-extends, but Java wants byte/short values sign-extended.
|
|
if (size == 1) {
|
|
extsb(dest_current_value, dest_current_value);
|
|
} else if (size == 2) {
|
|
extsh(dest_current_value, dest_current_value);
|
|
};
|
|
}
|
|
|
|
// Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
|
|
// Only signed types are supported with size < 4.
|
|
void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
|
|
RegisterOrConstant compare_value, Register exchange_value,
|
|
Register addr_base, Register tmp1, Register tmp2,
|
|
Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
|
|
// Sub-word instructions are available since Power 8.
|
|
// For older processors, instruction_type != size holds, and we
|
|
// emulate the sub-word instructions by constructing a 4-byte value
|
|
// that leaves the other bytes unchanged.
|
|
const int instruction_type = VM_Version::has_lqarx() ? size : 4;
|
|
|
|
Register shift_amount = noreg,
|
|
val32 = dest_current_value,
|
|
modval = exchange_value;
|
|
|
|
if (instruction_type != size) {
|
|
assert_different_registers(tmp1, tmp2, dest_current_value, compare_value.register_or_noreg(), exchange_value, addr_base);
|
|
shift_amount = tmp1;
|
|
val32 = tmp2;
|
|
modval = tmp2;
|
|
// Need some preparation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
|
|
clrrdi(addr_base, addr_base, 2);
|
|
#else
|
|
xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
|
|
clrrdi(addr_base, addr_base, 2);
|
|
rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
|
|
#endif
|
|
// Transform exchange value such that the replacement can be done by one xor instruction.
|
|
xorr(exchange_value, compare_value, exchange_value);
|
|
clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
|
|
slw(exchange_value, exchange_value, shift_amount);
|
|
}
|
|
|
|
// atomic emulation loop
|
|
bind(retry);
|
|
|
|
switch (instruction_type) {
|
|
case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
|
|
case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
|
|
case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
if (instruction_type != size) {
|
|
srw(dest_current_value, val32, shift_amount);
|
|
}
|
|
if (size == 1) {
|
|
extsb(dest_current_value, dest_current_value);
|
|
} else if (size == 2) {
|
|
extsh(dest_current_value, dest_current_value);
|
|
};
|
|
|
|
cmpw(flag, dest_current_value, compare_value);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(flag, failed);
|
|
} else {
|
|
bne( flag, failed);
|
|
}
|
|
// branch to done => (flag == ne), (dest_current_value != compare_value)
|
|
// fall through => (flag == eq), (dest_current_value == compare_value)
|
|
|
|
if (instruction_type != size) {
|
|
xorr(modval, val32, exchange_value);
|
|
}
|
|
|
|
switch (instruction_type) {
|
|
case 4: stwcx_(modval, addr_base); break;
|
|
case 2: sthcx_(modval, addr_base); break;
|
|
case 1: stbcx_(modval, addr_base); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// CmpxchgX sets condition register to cmpX(current, compare).
|
|
void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
|
|
RegisterOrConstant compare_value, Register exchange_value,
|
|
Register addr_base, Register tmp1, Register tmp2,
|
|
int semantics, bool cmpxchgx_hint, Register int_flag_success,
|
|
Label* failed_ext, bool contention_hint, bool weak, int size) {
|
|
Label retry;
|
|
Label failed_int;
|
|
Label& failed = (failed_ext != nullptr) ? *failed_ext : failed_int;
|
|
Label done;
|
|
|
|
// Save one branch if result is returned via register and
|
|
// result register is different from the other ones.
|
|
bool use_result_reg = (int_flag_success != noreg);
|
|
bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value.register_or_noreg() &&
|
|
int_flag_success != exchange_value && int_flag_success != addr_base &&
|
|
int_flag_success != tmp1 && int_flag_success != tmp2);
|
|
assert(!weak || flag == CCR0, "weak only supported with CCR0");
|
|
assert(int_flag_success == noreg || failed_ext == nullptr, "cannot have both");
|
|
assert(size == 1 || size == 2 || size == 4, "unsupported");
|
|
|
|
if (use_result_reg && preset_result_reg) {
|
|
li(int_flag_success, 0); // preset (assume cas failed)
|
|
}
|
|
|
|
// Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
|
|
if (contention_hint) { // Don't try to reserve if cmp fails.
|
|
switch (size) {
|
|
case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
|
|
case 2: lha(dest_current_value, 0, addr_base); break;
|
|
case 4: lwz(dest_current_value, 0, addr_base); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
cmpw(flag, dest_current_value, compare_value);
|
|
bne(flag, failed);
|
|
}
|
|
|
|
// release/fence semantics
|
|
if (semantics & MemBarRel) {
|
|
release();
|
|
}
|
|
|
|
cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
|
|
retry, failed, cmpxchgx_hint, size);
|
|
if (!weak || use_result_reg || failed_ext) {
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
|
|
} else {
|
|
bne( CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
|
|
}
|
|
}
|
|
// fall through => (flag == eq), (dest_current_value == compare_value), (swapped)
|
|
|
|
// Result in register (must do this at the end because int_flag_success can be the
|
|
// same register as one above).
|
|
if (use_result_reg) {
|
|
li(int_flag_success, 1);
|
|
}
|
|
|
|
if (semantics & MemBarFenceAfter) {
|
|
fence();
|
|
} else if (semantics & MemBarAcq) {
|
|
isync();
|
|
}
|
|
|
|
if (use_result_reg && !preset_result_reg) {
|
|
b(done);
|
|
}
|
|
|
|
bind(failed_int);
|
|
if (use_result_reg && !preset_result_reg) {
|
|
li(int_flag_success, 0);
|
|
}
|
|
|
|
bind(done);
|
|
// (flag == ne) => (dest_current_value != compare_value), (!swapped)
|
|
// (flag == eq) => (dest_current_value == compare_value), ( swapped)
|
|
}
|
|
|
|
// Performs atomic compare exchange:
|
|
// if (compare_value == *addr_base)
|
|
// *addr_base = exchange_value
|
|
// int_flag_success = 1;
|
|
// else
|
|
// int_flag_success = 0;
|
|
//
|
|
// ConditionRegister flag = cmp(compare_value, *addr_base)
|
|
// Register dest_current_value = *addr_base
|
|
// Register compare_value Used to compare with value in memory
|
|
// Register exchange_value Written to memory if compare_value == *addr_base
|
|
// Register addr_base The memory location to compareXChange
|
|
// Register int_flag_success Set to 1 if exchange_value was written to *addr_base
|
|
//
|
|
// To avoid the costly compare exchange the value is tested beforehand.
|
|
// Several special cases exist to avoid that unnecessary information is generated.
|
|
//
|
|
void MacroAssembler::cmpxchgd(ConditionRegister flag, Register dest_current_value,
|
|
RegisterOrConstant compare_value, Register exchange_value,
|
|
Register addr_base,
|
|
int semantics, bool cmpxchgx_hint, Register int_flag_success,
|
|
Label* failed_ext, bool contention_hint, bool weak) {
|
|
Label retry;
|
|
Label failed_int;
|
|
Label& failed = (failed_ext != nullptr) ? *failed_ext : failed_int;
|
|
Label done;
|
|
|
|
// Save one branch if result is returned via register and result register is different from the other ones.
|
|
bool use_result_reg = (int_flag_success!=noreg);
|
|
bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
|
|
int_flag_success!=exchange_value && int_flag_success!=addr_base);
|
|
assert(!weak || flag == CCR0, "weak only supported with CCR0");
|
|
assert(int_flag_success == noreg || failed_ext == nullptr, "cannot have both");
|
|
|
|
if (use_result_reg && preset_result_reg) {
|
|
li(int_flag_success, 0); // preset (assume cas failed)
|
|
}
|
|
|
|
// Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
|
|
if (contention_hint) { // Don't try to reserve if cmp fails.
|
|
ld(dest_current_value, 0, addr_base);
|
|
cmpd(flag, dest_current_value, compare_value);
|
|
bne(flag, failed);
|
|
}
|
|
|
|
// release/fence semantics
|
|
if (semantics & MemBarRel) {
|
|
release();
|
|
}
|
|
|
|
// atomic emulation loop
|
|
bind(retry);
|
|
|
|
ldarx(dest_current_value, addr_base, cmpxchgx_hint);
|
|
cmpd(flag, dest_current_value, compare_value);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(flag, failed);
|
|
} else {
|
|
bne( flag, failed);
|
|
}
|
|
|
|
stdcx_(exchange_value, addr_base);
|
|
if (!weak || use_result_reg || failed_ext) {
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
|
|
} else {
|
|
bne( CCR0, weak ? failed : retry); // stXcx_ sets CCR0
|
|
}
|
|
}
|
|
|
|
// result in register (must do this at the end because int_flag_success can be the same register as one above)
|
|
if (use_result_reg) {
|
|
li(int_flag_success, 1);
|
|
}
|
|
|
|
if (semantics & MemBarFenceAfter) {
|
|
fence();
|
|
} else if (semantics & MemBarAcq) {
|
|
isync();
|
|
}
|
|
|
|
if (use_result_reg && !preset_result_reg) {
|
|
b(done);
|
|
}
|
|
|
|
bind(failed_int);
|
|
if (use_result_reg && !preset_result_reg) {
|
|
li(int_flag_success, 0);
|
|
}
|
|
|
|
bind(done);
|
|
// (flag == ne) => (dest_current_value != compare_value), (!swapped)
|
|
// (flag == eq) => (dest_current_value == compare_value), ( swapped)
|
|
}
|
|
|
|
// Look up the method for a megamorphic invokeinterface call.
|
|
// The target method is determined by <intf_klass, itable_index>.
|
|
// The receiver klass is in recv_klass.
|
|
// On success, the result will be in method_result, and execution falls through.
|
|
// On failure, execution transfers to the given label.
|
|
void MacroAssembler::lookup_interface_method(Register recv_klass,
|
|
Register intf_klass,
|
|
RegisterOrConstant itable_index,
|
|
Register method_result,
|
|
Register scan_temp,
|
|
Register temp2,
|
|
Label& L_no_such_interface,
|
|
bool return_method) {
|
|
assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
|
|
|
|
// Compute start of first itableOffsetEntry (which is at the end of the vtable).
|
|
int vtable_base = in_bytes(Klass::vtable_start_offset());
|
|
int itentry_off = in_bytes(itableMethodEntry::method_offset());
|
|
int logMEsize = exact_log2(itableMethodEntry::size() * wordSize);
|
|
int scan_step = itableOffsetEntry::size() * wordSize;
|
|
int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
|
|
|
|
lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
|
|
// We should store the aligned, prescaled offset in the klass.
|
|
// Then the next several instructions would fold away.
|
|
|
|
sldi(scan_temp, scan_temp, log_vte_size);
|
|
addi(scan_temp, scan_temp, vtable_base);
|
|
add(scan_temp, recv_klass, scan_temp);
|
|
|
|
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
|
|
if (return_method) {
|
|
if (itable_index.is_register()) {
|
|
Register itable_offset = itable_index.as_register();
|
|
sldi(method_result, itable_offset, logMEsize);
|
|
if (itentry_off) { addi(method_result, method_result, itentry_off); }
|
|
add(method_result, method_result, recv_klass);
|
|
} else {
|
|
long itable_offset = (long)itable_index.as_constant();
|
|
// static address, no relocation
|
|
add_const_optimized(method_result, recv_klass, (itable_offset << logMEsize) + itentry_off, temp2);
|
|
}
|
|
}
|
|
|
|
// for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
|
|
// if (scan->interface() == intf) {
|
|
// result = (klass + scan->offset() + itable_index);
|
|
// }
|
|
// }
|
|
Label search, found_method;
|
|
|
|
for (int peel = 1; peel >= 0; peel--) {
|
|
// %%%% Could load both offset and interface in one ldx, if they were
|
|
// in the opposite order. This would save a load.
|
|
ld(temp2, in_bytes(itableOffsetEntry::interface_offset()), scan_temp);
|
|
|
|
// Check that this entry is non-null. A null entry means that
|
|
// the receiver class doesn't implement the interface, and wasn't the
|
|
// same as when the caller was compiled.
|
|
cmpd(CCR0, temp2, intf_klass);
|
|
|
|
if (peel) {
|
|
beq(CCR0, found_method);
|
|
} else {
|
|
bne(CCR0, search);
|
|
// (invert the test to fall through to found_method...)
|
|
}
|
|
|
|
if (!peel) break;
|
|
|
|
bind(search);
|
|
|
|
cmpdi(CCR0, temp2, 0);
|
|
beq(CCR0, L_no_such_interface);
|
|
addi(scan_temp, scan_temp, scan_step);
|
|
}
|
|
|
|
bind(found_method);
|
|
|
|
// Got a hit.
|
|
if (return_method) {
|
|
int ito_offset = in_bytes(itableOffsetEntry::offset_offset());
|
|
lwz(scan_temp, ito_offset, scan_temp);
|
|
ldx(method_result, scan_temp, method_result);
|
|
}
|
|
}
|
|
|
|
// virtual method calling
|
|
void MacroAssembler::lookup_virtual_method(Register recv_klass,
|
|
RegisterOrConstant vtable_index,
|
|
Register method_result) {
|
|
|
|
assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
|
|
|
|
const ByteSize base = Klass::vtable_start_offset();
|
|
assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
|
|
|
|
if (vtable_index.is_register()) {
|
|
sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
|
|
add(recv_klass, vtable_index.as_register(), recv_klass);
|
|
} else {
|
|
addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
|
|
}
|
|
ld(R19_method, in_bytes(base + vtableEntry::method_offset()), recv_klass);
|
|
}
|
|
|
|
/////////////////////////////////////////// subtype checking ////////////////////////////////////////////
|
|
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
Label* L_slow_path,
|
|
RegisterOrConstant super_check_offset) {
|
|
|
|
const Register check_cache_offset = temp1_reg;
|
|
const Register cached_super = temp2_reg;
|
|
|
|
assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
|
|
|
|
int sco_offset = in_bytes(Klass::super_check_offset_offset());
|
|
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
|
|
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
|
|
bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
|
|
|
|
Label L_fallthrough;
|
|
int label_nulls = 0;
|
|
if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
|
|
if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
|
|
if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
|
|
assert(label_nulls <= 1 ||
|
|
(L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
|
|
"at most one null in the batch, usually");
|
|
|
|
// If the pointers are equal, we are done (e.g., String[] elements).
|
|
// This self-check enables sharing of secondary supertype arrays among
|
|
// non-primary types such as array-of-interface. Otherwise, each such
|
|
// type would need its own customized SSA.
|
|
// We move this check to the front of the fast path because many
|
|
// type checks are in fact trivially successful in this manner,
|
|
// so we get a nicely predicted branch right at the start of the check.
|
|
cmpd(CCR0, sub_klass, super_klass);
|
|
beq(CCR0, *L_success);
|
|
|
|
// Check the supertype display:
|
|
if (must_load_sco) {
|
|
// The super check offset is always positive...
|
|
lwz(check_cache_offset, sco_offset, super_klass);
|
|
super_check_offset = RegisterOrConstant(check_cache_offset);
|
|
// super_check_offset is register.
|
|
assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
|
|
}
|
|
// The loaded value is the offset from Klass.
|
|
|
|
ld(cached_super, super_check_offset, sub_klass);
|
|
cmpd(CCR0, cached_super, super_klass);
|
|
|
|
// This check has worked decisively for primary supers.
|
|
// Secondary supers are sought in the super_cache ('super_cache_addr').
|
|
// (Secondary supers are interfaces and very deeply nested subtypes.)
|
|
// This works in the same check above because of a tricky aliasing
|
|
// between the super_cache and the primary super display elements.
|
|
// (The 'super_check_addr' can address either, as the case requires.)
|
|
// Note that the cache is updated below if it does not help us find
|
|
// what we need immediately.
|
|
// So if it was a primary super, we can just fail immediately.
|
|
// Otherwise, it's the slow path for us (no success at this point).
|
|
|
|
#define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
|
|
|
|
if (super_check_offset.is_register()) {
|
|
beq(CCR0, *L_success);
|
|
cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
|
|
if (L_failure == &L_fallthrough) {
|
|
beq(CCR0, *L_slow_path);
|
|
} else {
|
|
bne(CCR0, *L_failure);
|
|
FINAL_JUMP(*L_slow_path);
|
|
}
|
|
} else {
|
|
if (super_check_offset.as_constant() == sc_offset) {
|
|
// Need a slow path; fast failure is impossible.
|
|
if (L_slow_path == &L_fallthrough) {
|
|
beq(CCR0, *L_success);
|
|
} else {
|
|
bne(CCR0, *L_slow_path);
|
|
FINAL_JUMP(*L_success);
|
|
}
|
|
} else {
|
|
// No slow path; it's a fast decision.
|
|
if (L_failure == &L_fallthrough) {
|
|
beq(CCR0, *L_success);
|
|
} else {
|
|
bne(CCR0, *L_failure);
|
|
FINAL_JUMP(*L_success);
|
|
}
|
|
}
|
|
}
|
|
|
|
bind(L_fallthrough);
|
|
#undef FINAL_JUMP
|
|
}
|
|
|
|
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Register result_reg) {
|
|
const Register array_ptr = temp1_reg; // current value from cache array
|
|
const Register temp = temp2_reg;
|
|
|
|
assert_different_registers(sub_klass, super_klass, array_ptr, temp);
|
|
|
|
int source_offset = in_bytes(Klass::secondary_supers_offset());
|
|
int target_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
|
|
int length_offset = Array<Klass*>::length_offset_in_bytes();
|
|
int base_offset = Array<Klass*>::base_offset_in_bytes();
|
|
|
|
Label hit, loop, failure, fallthru;
|
|
|
|
ld(array_ptr, source_offset, sub_klass);
|
|
|
|
// TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
|
|
lwz(temp, length_offset, array_ptr);
|
|
cmpwi(CCR0, temp, 0);
|
|
beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
|
|
|
|
mtctr(temp); // load ctr
|
|
|
|
bind(loop);
|
|
// Oops in table are NO MORE compressed.
|
|
ld(temp, base_offset, array_ptr);
|
|
cmpd(CCR0, temp, super_klass);
|
|
beq(CCR0, hit);
|
|
addi(array_ptr, array_ptr, BytesPerWord);
|
|
bdnz(loop);
|
|
|
|
bind(failure);
|
|
if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
|
|
b(fallthru);
|
|
|
|
bind(hit);
|
|
std(super_klass, target_offset, sub_klass); // save result to cache
|
|
if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
|
|
if (L_success != nullptr) { b(*L_success); }
|
|
else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
|
|
|
|
bind(fallthru);
|
|
}
|
|
|
|
// Try fast path, then go to slow one if not successful
|
|
void MacroAssembler::check_klass_subtype(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Register temp2_reg,
|
|
Label& L_success) {
|
|
Label L_failure;
|
|
check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
|
|
check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
|
|
bind(L_failure); // Fallthru if not successful.
|
|
}
|
|
|
|
// scans count pointer sized words at [addr] for occurrence of value,
|
|
// generic (count must be >0)
|
|
// iff found: CR0 eq, scratch == 0
|
|
void MacroAssembler::repne_scan(Register addr, Register value, Register count, Register scratch) {
|
|
Label Lloop, Lexit;
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
Label ok;
|
|
cmpdi(CCR0, count, 0);
|
|
bgt(CCR0, ok);
|
|
stop("count must be positive");
|
|
bind(ok);
|
|
}
|
|
#endif
|
|
|
|
mtctr(count);
|
|
|
|
bind(Lloop);
|
|
ld(scratch, 0 , addr);
|
|
xor_(scratch, scratch, value);
|
|
beq(CCR0, Lexit);
|
|
addi(addr, addr, wordSize);
|
|
bdnz(Lloop);
|
|
|
|
bind(Lexit);
|
|
}
|
|
|
|
// Ensure that the inline code and the stub are using the same registers.
|
|
#define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \
|
|
do { \
|
|
assert(r_super_klass == R4_ARG2 && \
|
|
r_array_base == R3_ARG1 && \
|
|
r_array_length == R7_ARG5 && \
|
|
(r_array_index == R6_ARG4 || r_array_index == noreg) && \
|
|
(r_sub_klass == R5_ARG3 || r_sub_klass == noreg) && \
|
|
(r_bitmap == R11_scratch1 || r_bitmap == noreg) && \
|
|
(result == R8_ARG6 || result == noreg), "registers must match ppc64.ad"); \
|
|
} while(0)
|
|
|
|
void MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass,
|
|
Register r_super_klass,
|
|
Register temp1,
|
|
Register temp2,
|
|
Register temp3,
|
|
Register temp4,
|
|
Register result,
|
|
u1 super_klass_slot) {
|
|
assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
|
|
|
|
Label L_done;
|
|
|
|
BLOCK_COMMENT("lookup_secondary_supers_table {");
|
|
|
|
const Register
|
|
r_array_base = temp1,
|
|
r_array_length = temp2,
|
|
r_array_index = temp3,
|
|
r_bitmap = temp4;
|
|
|
|
LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
|
|
|
|
ld(r_bitmap, in_bytes(Klass::bitmap_offset()), r_sub_klass);
|
|
|
|
// First check the bitmap to see if super_klass might be present. If
|
|
// the bit is zero, we are certain that super_klass is not one of
|
|
// the secondary supers.
|
|
u1 bit = super_klass_slot;
|
|
int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
|
|
|
|
// if (shift_count == 0) this is used for comparing with 0:
|
|
sldi_(r_array_index, r_bitmap, shift_count);
|
|
|
|
li(result, 1); // failure
|
|
// We test the MSB of r_array_index, i.e. its sign bit
|
|
bge(CCR0, L_done);
|
|
|
|
// We will consult the secondary-super array.
|
|
ld(r_array_base, in_bytes(Klass::secondary_supers_offset()), r_sub_klass);
|
|
|
|
// The value i in r_array_index is >= 1, so even though r_array_base
|
|
// points to the length, we don't need to adjust it to point to the
|
|
// data.
|
|
assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
|
|
|
|
// Get the first array index that can contain super_klass.
|
|
if (bit != 0) {
|
|
popcntd(r_array_index, r_array_index);
|
|
// NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
|
|
sldi(r_array_index, r_array_index, LogBytesPerWord); // scale
|
|
ldx(result, r_array_base, r_array_index);
|
|
} else {
|
|
// Actually use index 0, but r_array_base and r_array_index are off by 1 word
|
|
// such that the sum is precise.
|
|
ld(result, BytesPerWord, r_array_base);
|
|
li(r_array_index, BytesPerWord); // for slow path (scaled)
|
|
}
|
|
|
|
xor_(result, result, r_super_klass);
|
|
beq(CCR0, L_done); // Found a match (result == 0)
|
|
|
|
// Is there another entry to check? Consult the bitmap.
|
|
testbitdi(CCR0, /* temp */ r_array_length, r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
|
|
beq(CCR0, L_done); // (result != 0)
|
|
|
|
// Linear probe. Rotate the bitmap so that the next bit to test is
|
|
// in Bit 2 for the look-ahead check in the slow path.
|
|
if (bit != 0) {
|
|
rldicl(r_bitmap, r_bitmap, 64 - bit, 0);
|
|
}
|
|
|
|
// Calls into the stub generated by lookup_secondary_supers_table_slow_path.
|
|
// Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
|
|
// Kills: r_array_length.
|
|
// Returns: result.
|
|
address stub = StubRoutines::lookup_secondary_supers_table_slow_path_stub();
|
|
Register r_stub_addr = r_array_length;
|
|
add_const_optimized(r_stub_addr, R29_TOC, MacroAssembler::offset_to_global_toc(stub), R0);
|
|
mtctr(r_stub_addr);
|
|
bctrl();
|
|
|
|
bind(L_done);
|
|
BLOCK_COMMENT("} lookup_secondary_supers_table");
|
|
|
|
if (VerifySecondarySupers) {
|
|
verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
|
|
temp1, temp2, temp3);
|
|
}
|
|
}
|
|
|
|
// Called by code generated by check_klass_subtype_slow_path
|
|
// above. This is called when there is a collision in the hashed
|
|
// lookup in the secondary supers array.
|
|
void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
|
|
Register r_array_base,
|
|
Register r_array_index,
|
|
Register r_bitmap,
|
|
Register result,
|
|
Register temp1) {
|
|
assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, result, temp1);
|
|
|
|
const Register
|
|
r_array_length = temp1,
|
|
r_sub_klass = noreg;
|
|
|
|
LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
|
|
|
|
Label L_done;
|
|
|
|
// Load the array length.
|
|
lwa(r_array_length, Array<Klass*>::length_offset_in_bytes(), r_array_base);
|
|
// And adjust the array base to point to the data.
|
|
// NB! Effectively increments current slot index by 1.
|
|
assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
|
|
addi(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
|
|
|
|
// Linear probe
|
|
Label L_huge;
|
|
|
|
// The bitmap is full to bursting.
|
|
// Implicit invariant: BITMAP_FULL implies (length > 0)
|
|
cmpwi(CCR0, r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
|
|
bgt(CCR0, L_huge);
|
|
|
|
// NB! Our caller has checked bits 0 and 1 in the bitmap. The
|
|
// current slot (at secondary_supers[r_array_index]) has not yet
|
|
// been inspected, and r_array_index may be out of bounds if we
|
|
// wrapped around the end of the array.
|
|
|
|
{ // This is conventional linear probing, but instead of terminating
|
|
// when a null entry is found in the table, we maintain a bitmap
|
|
// in which a 0 indicates missing entries.
|
|
// The check above guarantees there are 0s in the bitmap, so the loop
|
|
// eventually terminates.
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
// We should only reach here after having found a bit in the bitmap.
|
|
// Invariant: array_length == popcount(bitmap)
|
|
Label ok;
|
|
cmpdi(CCR0, r_array_length, 0);
|
|
bgt(CCR0, ok);
|
|
stop("array_length must be positive");
|
|
bind(ok);
|
|
}
|
|
#endif
|
|
|
|
// Compute limit in r_array_length
|
|
addi(r_array_length, r_array_length, -1);
|
|
sldi(r_array_length, r_array_length, LogBytesPerWord);
|
|
|
|
Label L_loop;
|
|
bind(L_loop);
|
|
|
|
// Check for wraparound.
|
|
cmpd(CCR0, r_array_index, r_array_length);
|
|
isel_0(r_array_index, CCR0, Assembler::greater);
|
|
|
|
ldx(result, r_array_base, r_array_index);
|
|
xor_(result, result, r_super_klass);
|
|
beq(CCR0, L_done); // success (result == 0)
|
|
|
|
// look-ahead check (Bit 2); result is non-zero
|
|
testbitdi(CCR0, R0, r_bitmap, 2);
|
|
beq(CCR0, L_done); // fail (result != 0)
|
|
|
|
rldicl(r_bitmap, r_bitmap, 64 - 1, 0);
|
|
addi(r_array_index, r_array_index, BytesPerWord);
|
|
b(L_loop);
|
|
}
|
|
|
|
{ // Degenerate case: more than 64 secondary supers.
|
|
// FIXME: We could do something smarter here, maybe a vectorized
|
|
// comparison or a binary search, but is that worth any added
|
|
// complexity?
|
|
bind(L_huge);
|
|
repne_scan(r_array_base, r_super_klass, r_array_length, result);
|
|
}
|
|
|
|
bind(L_done);
|
|
}
|
|
|
|
// Make sure that the hashed lookup and a linear scan agree.
|
|
void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
|
|
Register r_super_klass,
|
|
Register result,
|
|
Register temp1,
|
|
Register temp2,
|
|
Register temp3) {
|
|
assert_different_registers(r_sub_klass, r_super_klass, result, temp1, temp2, temp3);
|
|
|
|
const Register
|
|
r_array_base = temp1,
|
|
r_array_length = temp2,
|
|
r_array_index = temp3,
|
|
r_bitmap = noreg; // unused
|
|
|
|
LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
|
|
|
|
BLOCK_COMMENT("verify_secondary_supers_table {");
|
|
|
|
Label passed, failure;
|
|
|
|
// We will consult the secondary-super array.
|
|
ld(r_array_base, in_bytes(Klass::secondary_supers_offset()), r_sub_klass);
|
|
// Load the array length.
|
|
lwa(r_array_length, Array<Klass*>::length_offset_in_bytes(), r_array_base);
|
|
// And adjust the array base to point to the data.
|
|
addi(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
|
|
|
|
// convert !=0 to 1
|
|
normalize_bool(result, R0, true);
|
|
const Register linear_result = r_array_index; // reuse
|
|
li(linear_result, 1);
|
|
cmpdi(CCR0, r_array_length, 0);
|
|
ble(CCR0, failure);
|
|
repne_scan(r_array_base, r_super_klass, r_array_length, linear_result);
|
|
bind(failure);
|
|
|
|
// convert !=0 to 1
|
|
normalize_bool(linear_result, R0, true);
|
|
|
|
cmpd(CCR0, result, linear_result);
|
|
beq(CCR0, passed);
|
|
|
|
assert_different_registers(R3_ARG1, r_sub_klass, linear_result, result);
|
|
mr_if_needed(R3_ARG1, r_super_klass);
|
|
assert_different_registers(R4_ARG2, linear_result, result);
|
|
mr_if_needed(R4_ARG2, r_sub_klass);
|
|
assert_different_registers(R5_ARG3, result);
|
|
neg(R5_ARG3, linear_result);
|
|
neg(R6_ARG4, result);
|
|
const char* msg = "mismatch";
|
|
load_const_optimized(R7_ARG5, (intptr_t)msg, R0);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure));
|
|
should_not_reach_here();
|
|
|
|
bind(passed);
|
|
|
|
BLOCK_COMMENT("} verify_secondary_supers_table");
|
|
}
|
|
|
|
void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
|
|
assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
|
|
|
|
Label L_fallthrough;
|
|
if (L_fast_path == nullptr) {
|
|
L_fast_path = &L_fallthrough;
|
|
} else if (L_slow_path == nullptr) {
|
|
L_slow_path = &L_fallthrough;
|
|
}
|
|
|
|
// Fast path check: class is fully initialized
|
|
lbz(R0, in_bytes(InstanceKlass::init_state_offset()), klass);
|
|
cmpwi(CCR0, R0, InstanceKlass::fully_initialized);
|
|
beq(CCR0, *L_fast_path);
|
|
|
|
// Fast path check: current thread is initializer thread
|
|
ld(R0, in_bytes(InstanceKlass::init_thread_offset()), klass);
|
|
cmpd(CCR0, thread, R0);
|
|
if (L_slow_path == &L_fallthrough) {
|
|
beq(CCR0, *L_fast_path);
|
|
} else if (L_fast_path == &L_fallthrough) {
|
|
bne(CCR0, *L_slow_path);
|
|
} else {
|
|
Unimplemented();
|
|
}
|
|
|
|
bind(L_fallthrough);
|
|
}
|
|
|
|
RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
|
|
Register temp_reg,
|
|
int extra_slot_offset) {
|
|
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
|
|
int stackElementSize = Interpreter::stackElementSize;
|
|
int offset = extra_slot_offset * stackElementSize;
|
|
if (arg_slot.is_constant()) {
|
|
offset += arg_slot.as_constant() * stackElementSize;
|
|
return offset;
|
|
} else {
|
|
assert(temp_reg != noreg, "must specify");
|
|
sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
|
|
if (offset != 0)
|
|
addi(temp_reg, temp_reg, offset);
|
|
return temp_reg;
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::tlab_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
) {
|
|
// make sure arguments make sense
|
|
assert_different_registers(obj, var_size_in_bytes, t1);
|
|
assert(0 <= con_size_in_bytes && is_simm16(con_size_in_bytes), "illegal object size");
|
|
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
|
|
|
|
const Register new_top = t1;
|
|
//verify_tlab(); not implemented
|
|
|
|
ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
|
|
ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
|
|
if (var_size_in_bytes == noreg) {
|
|
addi(new_top, obj, con_size_in_bytes);
|
|
} else {
|
|
add(new_top, obj, var_size_in_bytes);
|
|
}
|
|
cmpld(CCR0, new_top, R0);
|
|
bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
|
|
|
|
#ifdef ASSERT
|
|
// make sure new free pointer is properly aligned
|
|
{
|
|
Label L;
|
|
andi_(R0, new_top, MinObjAlignmentInBytesMask);
|
|
beq(CCR0, L);
|
|
stop("updated TLAB free is not properly aligned");
|
|
bind(L);
|
|
}
|
|
#endif // ASSERT
|
|
|
|
// update the tlab top pointer
|
|
std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
|
|
//verify_tlab(); not implemented
|
|
}
|
|
|
|
address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
|
|
int insts_call_instruction_offset, Register Rtoc) {
|
|
// Start the stub.
|
|
address stub = start_a_stub(64);
|
|
if (stub == nullptr) { return nullptr; } // CodeCache full: bail out
|
|
|
|
// Create a trampoline stub relocation which relates this trampoline stub
|
|
// with the call instruction at insts_call_instruction_offset in the
|
|
// instructions code-section.
|
|
relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
|
|
const int stub_start_offset = offset();
|
|
|
|
// For java_to_interp stubs we use R11_scratch1 as scratch register
|
|
// and in call trampoline stubs we use R12_scratch2. This way we
|
|
// can distinguish them (see is_NativeCallTrampolineStub_at()).
|
|
Register reg_scratch = R12_scratch2;
|
|
|
|
// Now, create the trampoline stub's code:
|
|
// - load the TOC
|
|
// - load the call target from the constant pool
|
|
// - call
|
|
if (Rtoc == noreg) {
|
|
calculate_address_from_global_toc(reg_scratch, method_toc());
|
|
Rtoc = reg_scratch;
|
|
}
|
|
|
|
ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
|
|
mtctr(reg_scratch);
|
|
bctr();
|
|
|
|
const address stub_start_addr = addr_at(stub_start_offset);
|
|
|
|
// Assert that the encoded destination_toc_offset can be identified and that it is correct.
|
|
assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
|
|
"encoded offset into the constant pool must match");
|
|
// Trampoline_stub_size should be good.
|
|
assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
|
|
assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
|
|
|
|
// End the stub.
|
|
end_a_stub();
|
|
return stub;
|
|
}
|
|
|
|
// "The box" is the space on the stack where we copy the object mark.
|
|
void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
|
|
Register temp, Register displaced_header, Register current_header) {
|
|
assert(LockingMode != LM_LIGHTWEIGHT, "uses fast_lock_lightweight");
|
|
assert_different_registers(oop, box, temp, displaced_header, current_header);
|
|
Label object_has_monitor;
|
|
Label cas_failed;
|
|
Label success, failure;
|
|
|
|
// Load markWord from object into displaced_header.
|
|
ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
|
|
|
|
if (DiagnoseSyncOnValueBasedClasses != 0) {
|
|
load_klass(temp, oop);
|
|
lbz(temp, in_bytes(Klass::misc_flags_offset()), temp);
|
|
testbitdi(flag, R0, temp, exact_log2(KlassFlags::_misc_is_value_based_class));
|
|
bne(flag, failure);
|
|
}
|
|
|
|
// Handle existing monitor.
|
|
// The object has an existing monitor iff (mark & monitor_value) != 0.
|
|
andi_(temp, displaced_header, markWord::monitor_value);
|
|
bne(CCR0, object_has_monitor);
|
|
|
|
if (LockingMode == LM_MONITOR) {
|
|
// Set NE to indicate 'failure' -> take slow-path.
|
|
crandc(flag, Assembler::equal, flag, Assembler::equal);
|
|
b(failure);
|
|
} else {
|
|
assert(LockingMode == LM_LEGACY, "must be");
|
|
// Set displaced_header to be (markWord of object | UNLOCK_VALUE).
|
|
ori(displaced_header, displaced_header, markWord::unlocked_value);
|
|
|
|
// Load Compare Value application register.
|
|
|
|
// Initialize the box. (Must happen before we update the object mark!)
|
|
std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
// Must fence, otherwise, preceding store(s) may float below cmpxchg.
|
|
// Compare object markWord with mark and if equal exchange scratch1 with object markWord.
|
|
cmpxchgd(/*flag=*/flag,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/displaced_header,
|
|
/*exchange_value=*/box,
|
|
/*where=*/oop,
|
|
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock(),
|
|
noreg,
|
|
&cas_failed,
|
|
/*check without membar and ldarx first*/true);
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
// If the compare-and-exchange succeeded, then we found an unlocked
|
|
// object and we have now locked it.
|
|
b(success);
|
|
|
|
bind(cas_failed);
|
|
// We did not see an unlocked object so try the fast recursive case.
|
|
|
|
// Check if the owner is self by comparing the value in the markWord of object
|
|
// (current_header) with the stack pointer.
|
|
sub(current_header, current_header, R1_SP);
|
|
load_const_optimized(temp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place);
|
|
|
|
and_(R0/*==0?*/, current_header, temp);
|
|
// If condition is true we are cont and hence we can store 0 as the
|
|
// displaced header in the box, which indicates that it is a recursive lock.
|
|
std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
if (flag != CCR0) {
|
|
mcrf(flag, CCR0);
|
|
}
|
|
beq(CCR0, success);
|
|
b(failure);
|
|
}
|
|
|
|
// Handle existing monitor.
|
|
bind(object_has_monitor);
|
|
// The object's monitor m is unlocked iff m->owner is null,
|
|
// otherwise m->owner may contain a thread or a stack address.
|
|
|
|
// Try to CAS m->owner from null to current thread.
|
|
addi(temp, displaced_header, in_bytes(ObjectMonitor::owner_offset()) - markWord::monitor_value);
|
|
cmpxchgd(/*flag=*/flag,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/(intptr_t)0,
|
|
/*exchange_value=*/R16_thread,
|
|
/*where=*/temp,
|
|
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock());
|
|
|
|
// Store a non-null value into the box.
|
|
std(box, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
beq(flag, success);
|
|
|
|
// Check for recursive locking.
|
|
cmpd(flag, current_header, R16_thread);
|
|
bne(flag, failure);
|
|
|
|
// Current thread already owns the lock. Just increment recursions.
|
|
Register recursions = displaced_header;
|
|
ld(recursions, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), temp);
|
|
addi(recursions, recursions, 1);
|
|
std(recursions, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), temp);
|
|
|
|
// flag == EQ indicates success, increment held monitor count
|
|
// flag == NE indicates failure
|
|
bind(success);
|
|
inc_held_monitor_count(temp);
|
|
bind(failure);
|
|
}
|
|
|
|
void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
|
|
Register temp, Register displaced_header, Register current_header) {
|
|
assert(LockingMode != LM_LIGHTWEIGHT, "uses fast_unlock_lightweight");
|
|
assert_different_registers(oop, box, temp, displaced_header, current_header);
|
|
Label success, failure, object_has_monitor, notRecursive;
|
|
|
|
if (LockingMode == LM_LEGACY) {
|
|
// Find the lock address and load the displaced header from the stack.
|
|
ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
// If the displaced header is 0, we have a recursive unlock.
|
|
cmpdi(flag, displaced_header, 0);
|
|
beq(flag, success);
|
|
}
|
|
|
|
// Handle existing monitor.
|
|
// The object has an existing monitor iff (mark & monitor_value) != 0.
|
|
ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
|
|
andi_(R0, current_header, markWord::monitor_value);
|
|
bne(CCR0, object_has_monitor);
|
|
|
|
if (LockingMode == LM_MONITOR) {
|
|
// Set NE to indicate 'failure' -> take slow-path.
|
|
crandc(flag, Assembler::equal, flag, Assembler::equal);
|
|
b(failure);
|
|
} else {
|
|
assert(LockingMode == LM_LEGACY, "must be");
|
|
// Check if it is still a light weight lock, this is is true if we see
|
|
// the stack address of the basicLock in the markWord of the object.
|
|
// Cmpxchg sets flag to cmpd(current_header, box).
|
|
cmpxchgd(/*flag=*/flag,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/box,
|
|
/*exchange_value=*/displaced_header,
|
|
/*where=*/oop,
|
|
MacroAssembler::MemBarRel,
|
|
MacroAssembler::cmpxchgx_hint_release_lock(),
|
|
noreg,
|
|
&failure);
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
b(success);
|
|
}
|
|
|
|
// Handle existing monitor.
|
|
bind(object_has_monitor);
|
|
STATIC_ASSERT(markWord::monitor_value <= INT_MAX);
|
|
addi(current_header, current_header, -(int)markWord::monitor_value); // monitor
|
|
ld(temp, in_bytes(ObjectMonitor::owner_offset()), current_header);
|
|
|
|
// In case of LM_LIGHTWEIGHT, we may reach here with (temp & ObjectMonitor::ANONYMOUS_OWNER) != 0.
|
|
// This is handled like owner thread mismatches: We take the slow path.
|
|
cmpd(flag, temp, R16_thread);
|
|
bne(flag, failure);
|
|
|
|
ld(displaced_header, in_bytes(ObjectMonitor::recursions_offset()), current_header);
|
|
|
|
addic_(displaced_header, displaced_header, -1);
|
|
blt(CCR0, notRecursive); // Not recursive if negative after decrement.
|
|
std(displaced_header, in_bytes(ObjectMonitor::recursions_offset()), current_header);
|
|
if (flag == CCR0) { // Otherwise, flag is already EQ, here.
|
|
crorc(CCR0, Assembler::equal, CCR0, Assembler::equal); // Set CCR0 EQ
|
|
}
|
|
b(success);
|
|
|
|
bind(notRecursive);
|
|
ld(temp, in_bytes(ObjectMonitor::EntryList_offset()), current_header);
|
|
ld(displaced_header, in_bytes(ObjectMonitor::cxq_offset()), current_header);
|
|
orr(temp, temp, displaced_header); // Will be 0 if both are 0.
|
|
cmpdi(flag, temp, 0);
|
|
bne(flag, failure);
|
|
release();
|
|
std(temp, in_bytes(ObjectMonitor::owner_offset()), current_header);
|
|
|
|
// flag == EQ indicates success, decrement held monitor count
|
|
// flag == NE indicates failure
|
|
bind(success);
|
|
dec_held_monitor_count(temp);
|
|
bind(failure);
|
|
}
|
|
|
|
void MacroAssembler::compiler_fast_lock_lightweight_object(ConditionRegister flag, Register obj, Register tmp1,
|
|
Register tmp2, Register tmp3) {
|
|
assert_different_registers(obj, tmp1, tmp2, tmp3);
|
|
assert(flag == CCR0, "bad condition register");
|
|
|
|
// Handle inflated monitor.
|
|
Label inflated;
|
|
// Finish fast lock successfully. MUST reach to with flag == NE
|
|
Label locked;
|
|
// Finish fast lock unsuccessfully. MUST branch to with flag == EQ
|
|
Label slow_path;
|
|
|
|
if (DiagnoseSyncOnValueBasedClasses != 0) {
|
|
load_klass(tmp1, obj);
|
|
lbz(tmp1, in_bytes(Klass::misc_flags_offset()), tmp1);
|
|
testbitdi(flag, R0, tmp1, exact_log2(KlassFlags::_misc_is_value_based_class));
|
|
bne(flag, slow_path);
|
|
}
|
|
|
|
const Register mark = tmp1;
|
|
const Register t = tmp3; // Usage of R0 allowed!
|
|
|
|
{ // Lightweight locking
|
|
|
|
// Push lock to the lock stack and finish successfully. MUST reach to with flag == EQ
|
|
Label push;
|
|
|
|
const Register top = tmp2;
|
|
|
|
// Check if lock-stack is full.
|
|
lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
cmplwi(flag, top, LockStack::end_offset() - 1);
|
|
bgt(flag, slow_path);
|
|
|
|
// The underflow check is elided. The recursive check will always fail
|
|
// when the lock stack is empty because of the _bad_oop_sentinel field.
|
|
|
|
// Check if recursive.
|
|
subi(t, top, oopSize);
|
|
ldx(t, R16_thread, t);
|
|
cmpd(flag, obj, t);
|
|
beq(flag, push);
|
|
|
|
// Check for monitor (0b10) or locked (0b00).
|
|
ld(mark, oopDesc::mark_offset_in_bytes(), obj);
|
|
andi_(t, mark, markWord::lock_mask_in_place);
|
|
cmpldi(flag, t, markWord::unlocked_value);
|
|
bgt(flag, inflated);
|
|
bne(flag, slow_path);
|
|
|
|
// Not inflated.
|
|
|
|
// Try to lock. Transition lock bits 0b00 => 0b01
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid a lea");
|
|
atomically_flip_locked_state(/* is_unlock */ false, obj, mark, slow_path, MacroAssembler::MemBarAcq);
|
|
|
|
bind(push);
|
|
// After successful lock, push object on lock-stack.
|
|
stdx(obj, R16_thread, top);
|
|
addi(top, top, oopSize);
|
|
stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
b(locked);
|
|
}
|
|
|
|
{ // Handle inflated monitor.
|
|
bind(inflated);
|
|
|
|
if (!UseObjectMonitorTable) {
|
|
// mark contains the tagged ObjectMonitor*.
|
|
const Register tagged_monitor = mark;
|
|
const uintptr_t monitor_tag = markWord::monitor_value;
|
|
const Register owner_addr = tmp2;
|
|
|
|
// Compute owner address.
|
|
addi(owner_addr, tagged_monitor, in_bytes(ObjectMonitor::owner_offset()) - monitor_tag);
|
|
|
|
// CAS owner (null => current thread).
|
|
cmpxchgd(/*flag=*/flag,
|
|
/*current_value=*/t,
|
|
/*compare_value=*/(intptr_t)0,
|
|
/*exchange_value=*/R16_thread,
|
|
/*where=*/owner_addr,
|
|
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock());
|
|
beq(flag, locked);
|
|
|
|
// Check if recursive.
|
|
cmpd(flag, t, R16_thread);
|
|
bne(flag, slow_path);
|
|
|
|
// Recursive.
|
|
ld(tmp1, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), owner_addr);
|
|
addi(tmp1, tmp1, 1);
|
|
std(tmp1, in_bytes(ObjectMonitor::recursions_offset() - ObjectMonitor::owner_offset()), owner_addr);
|
|
} else {
|
|
// OMCache lookup not supported yet. Take the slowpath.
|
|
// Set flag to NE
|
|
crxor(flag, Assembler::equal, flag, Assembler::equal);
|
|
b(slow_path);
|
|
}
|
|
}
|
|
|
|
bind(locked);
|
|
inc_held_monitor_count(tmp1);
|
|
|
|
#ifdef ASSERT
|
|
// Check that locked label is reached with flag == EQ.
|
|
Label flag_correct;
|
|
beq(flag, flag_correct);
|
|
stop("Fast Lock Flag != EQ");
|
|
#endif
|
|
bind(slow_path);
|
|
#ifdef ASSERT
|
|
// Check that slow_path label is reached with flag == NE.
|
|
bne(flag, flag_correct);
|
|
stop("Fast Lock Flag != NE");
|
|
bind(flag_correct);
|
|
#endif
|
|
// C2 uses the value of flag (NE vs EQ) to determine the continuation.
|
|
}
|
|
|
|
void MacroAssembler::compiler_fast_unlock_lightweight_object(ConditionRegister flag, Register obj, Register tmp1,
|
|
Register tmp2, Register tmp3) {
|
|
assert_different_registers(obj, tmp1, tmp2, tmp3);
|
|
assert(flag == CCR0, "bad condition register");
|
|
|
|
// Handle inflated monitor.
|
|
Label inflated, inflated_load_monitor;
|
|
// Finish fast unlock successfully. MUST reach to with flag == EQ.
|
|
Label unlocked;
|
|
// Finish fast unlock unsuccessfully. MUST branch to with flag == NE.
|
|
Label slow_path;
|
|
|
|
const Register mark = tmp1;
|
|
const Register top = tmp2;
|
|
const Register t = tmp3;
|
|
|
|
{ // Lightweight unlock
|
|
Label push_and_slow;
|
|
|
|
// Check if obj is top of lock-stack.
|
|
lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
subi(top, top, oopSize);
|
|
ldx(t, R16_thread, top);
|
|
cmpd(flag, obj, t);
|
|
// Top of lock stack was not obj. Must be monitor.
|
|
bne(flag, inflated_load_monitor);
|
|
|
|
// Pop lock-stack.
|
|
DEBUG_ONLY(li(t, 0);)
|
|
DEBUG_ONLY(stdx(t, R16_thread, top);)
|
|
stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
|
|
// The underflow check is elided. The recursive check will always fail
|
|
// when the lock stack is empty because of the _bad_oop_sentinel field.
|
|
|
|
// Check if recursive.
|
|
subi(t, top, oopSize);
|
|
ldx(t, R16_thread, t);
|
|
cmpd(flag, obj, t);
|
|
beq(flag, unlocked);
|
|
|
|
// Not recursive.
|
|
|
|
// Check for monitor (0b10).
|
|
ld(mark, oopDesc::mark_offset_in_bytes(), obj);
|
|
andi_(t, mark, markWord::monitor_value);
|
|
if (!UseObjectMonitorTable) {
|
|
bne(CCR0, inflated);
|
|
} else {
|
|
bne(CCR0, push_and_slow);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Check header not unlocked (0b01).
|
|
Label not_unlocked;
|
|
andi_(t, mark, markWord::unlocked_value);
|
|
beq(CCR0, not_unlocked);
|
|
stop("lightweight_unlock already unlocked");
|
|
bind(not_unlocked);
|
|
#endif
|
|
|
|
// Try to unlock. Transition lock bits 0b00 => 0b01
|
|
atomically_flip_locked_state(/* is_unlock */ true, obj, mark, push_and_slow, MacroAssembler::MemBarRel);
|
|
b(unlocked);
|
|
|
|
bind(push_and_slow);
|
|
// Restore lock-stack and handle the unlock in runtime.
|
|
DEBUG_ONLY(stdx(obj, R16_thread, top);)
|
|
addi(top, top, oopSize);
|
|
stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
b(slow_path);
|
|
}
|
|
|
|
{ // Handle inflated monitor.
|
|
bind(inflated_load_monitor);
|
|
ld(mark, oopDesc::mark_offset_in_bytes(), obj);
|
|
#ifdef ASSERT
|
|
andi_(t, mark, markWord::monitor_value);
|
|
bne(CCR0, inflated);
|
|
stop("Fast Unlock not monitor");
|
|
#endif
|
|
|
|
bind(inflated);
|
|
|
|
#ifdef ASSERT
|
|
Label check_done;
|
|
subi(top, top, oopSize);
|
|
cmplwi(CCR0, top, in_bytes(JavaThread::lock_stack_base_offset()));
|
|
blt(CCR0, check_done);
|
|
ldx(t, R16_thread, top);
|
|
cmpd(flag, obj, t);
|
|
bne(flag, inflated);
|
|
stop("Fast Unlock lock on stack");
|
|
bind(check_done);
|
|
#endif
|
|
|
|
if (!UseObjectMonitorTable) {
|
|
// mark contains the tagged ObjectMonitor*.
|
|
const Register monitor = mark;
|
|
const uintptr_t monitor_tag = markWord::monitor_value;
|
|
|
|
// Untag the monitor.
|
|
subi(monitor, mark, monitor_tag);
|
|
|
|
const Register recursions = tmp2;
|
|
Label not_recursive;
|
|
|
|
// Check if recursive.
|
|
ld(recursions, in_bytes(ObjectMonitor::recursions_offset()), monitor);
|
|
addic_(recursions, recursions, -1);
|
|
blt(CCR0, not_recursive);
|
|
|
|
// Recursive unlock.
|
|
std(recursions, in_bytes(ObjectMonitor::recursions_offset()), monitor);
|
|
crorc(CCR0, Assembler::equal, CCR0, Assembler::equal);
|
|
b(unlocked);
|
|
|
|
bind(not_recursive);
|
|
|
|
Label release_;
|
|
const Register t2 = tmp2;
|
|
|
|
// Check if the entry lists are empty.
|
|
ld(t, in_bytes(ObjectMonitor::EntryList_offset()), monitor);
|
|
ld(t2, in_bytes(ObjectMonitor::cxq_offset()), monitor);
|
|
orr(t, t, t2);
|
|
cmpdi(flag, t, 0);
|
|
beq(flag, release_);
|
|
|
|
// The owner may be anonymous and we removed the last obj entry in
|
|
// the lock-stack. This loses the information about the owner.
|
|
// Write the thread to the owner field so the runtime knows the owner.
|
|
std(R16_thread, in_bytes(ObjectMonitor::owner_offset()), monitor);
|
|
b(slow_path);
|
|
|
|
bind(release_);
|
|
// Set owner to null.
|
|
release();
|
|
// t contains 0
|
|
std(t, in_bytes(ObjectMonitor::owner_offset()), monitor);
|
|
} else {
|
|
// OMCache lookup not supported yet. Take the slowpath.
|
|
// Set flag to NE
|
|
crxor(flag, Assembler::equal, flag, Assembler::equal);
|
|
b(slow_path);
|
|
}
|
|
}
|
|
|
|
bind(unlocked);
|
|
dec_held_monitor_count(t);
|
|
|
|
#ifdef ASSERT
|
|
// Check that unlocked label is reached with flag == EQ.
|
|
Label flag_correct;
|
|
beq(flag, flag_correct);
|
|
stop("Fast Lock Flag != EQ");
|
|
#endif
|
|
bind(slow_path);
|
|
#ifdef ASSERT
|
|
// Check that slow_path label is reached with flag == NE.
|
|
bne(flag, flag_correct);
|
|
stop("Fast Lock Flag != NE");
|
|
bind(flag_correct);
|
|
#endif
|
|
// C2 uses the value of flag (NE vs EQ) to determine the continuation.
|
|
}
|
|
|
|
void MacroAssembler::safepoint_poll(Label& slow_path, Register temp, bool at_return, bool in_nmethod) {
|
|
ld(temp, in_bytes(JavaThread::polling_word_offset()), R16_thread);
|
|
|
|
if (at_return) {
|
|
if (in_nmethod) {
|
|
if (UseSIGTRAP) {
|
|
// Use Signal Handler.
|
|
relocate(relocInfo::poll_return_type);
|
|
td(traptoGreaterThanUnsigned, R1_SP, temp);
|
|
} else {
|
|
cmpld(CCR0, R1_SP, temp);
|
|
// Stub may be out of range for short conditional branch.
|
|
bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_path);
|
|
}
|
|
} else { // Not in nmethod.
|
|
// Frame still on stack, need to get fp.
|
|
Register fp = R0;
|
|
ld(fp, _abi0(callers_sp), R1_SP);
|
|
cmpld(CCR0, fp, temp);
|
|
bgt(CCR0, slow_path);
|
|
}
|
|
} else { // Normal safepoint poll. Not at return.
|
|
assert(!in_nmethod, "should use load_from_polling_page");
|
|
andi_(temp, temp, SafepointMechanism::poll_bit());
|
|
bne(CCR0, slow_path);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2,
|
|
MacroAssembler::PreservationLevel preservation_level) {
|
|
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
|
|
bs->resolve_jobject(this, value, tmp1, tmp2, preservation_level);
|
|
}
|
|
|
|
void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2,
|
|
MacroAssembler::PreservationLevel preservation_level) {
|
|
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
|
|
bs->resolve_global_jobject(this, value, tmp1, tmp2, preservation_level);
|
|
}
|
|
|
|
// Values for last_Java_pc, and last_Java_sp must comply to the rules
|
|
// in frame_ppc.hpp.
|
|
void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
|
|
// Always set last_Java_pc and flags first because once last_Java_sp
|
|
// is visible has_last_Java_frame is true and users will look at the
|
|
// rest of the fields. (Note: flags should always be zero before we
|
|
// get here so doesn't need to be set.)
|
|
|
|
// Verify that last_Java_pc was zeroed on return to Java
|
|
asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
|
|
"last_Java_pc not zeroed before leaving Java");
|
|
|
|
// When returning from calling out from Java mode the frame anchor's
|
|
// last_Java_pc will always be set to null. It is set here so that
|
|
// if we are doing a call to native (not VM) that we capture the
|
|
// known pc and don't have to rely on the native call having a
|
|
// standard frame linkage where we can find the pc.
|
|
if (last_Java_pc != noreg)
|
|
std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
|
|
|
|
// Set last_Java_sp last.
|
|
std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
|
|
}
|
|
|
|
void MacroAssembler::reset_last_Java_frame(void) {
|
|
asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
|
|
R16_thread, "SP was not set, still zero");
|
|
|
|
BLOCK_COMMENT("reset_last_Java_frame {");
|
|
li(R0, 0);
|
|
|
|
// _last_Java_sp = 0
|
|
std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
|
|
|
|
// _last_Java_pc = 0
|
|
std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
|
|
BLOCK_COMMENT("} reset_last_Java_frame");
|
|
}
|
|
|
|
void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
|
|
assert_different_registers(sp, tmp1);
|
|
|
|
// sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
|
|
// TOP_IJAVA_FRAME_ABI.
|
|
// FIXME: assert that we really have a TOP_IJAVA_FRAME here!
|
|
address entry = pc();
|
|
load_const_optimized(tmp1, entry);
|
|
|
|
set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
|
|
}
|
|
|
|
void MacroAssembler::get_vm_result(Register oop_result) {
|
|
// Read:
|
|
// R16_thread
|
|
// R16_thread->in_bytes(JavaThread::vm_result_offset())
|
|
//
|
|
// Updated:
|
|
// oop_result
|
|
// R16_thread->in_bytes(JavaThread::vm_result_offset())
|
|
|
|
ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
|
|
li(R0, 0);
|
|
std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
|
|
|
|
verify_oop(oop_result, FILE_AND_LINE);
|
|
}
|
|
|
|
void MacroAssembler::get_vm_result_2(Register metadata_result) {
|
|
// Read:
|
|
// R16_thread
|
|
// R16_thread->in_bytes(JavaThread::vm_result_2_offset())
|
|
//
|
|
// Updated:
|
|
// metadata_result
|
|
// R16_thread->in_bytes(JavaThread::vm_result_2_offset())
|
|
|
|
ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
|
|
li(R0, 0);
|
|
std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
|
|
}
|
|
|
|
Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
|
|
Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
|
|
if (CompressedKlassPointers::base() != 0) {
|
|
// Use dst as temp if it is free.
|
|
sub_const_optimized(dst, current, CompressedKlassPointers::base(), R0);
|
|
current = dst;
|
|
}
|
|
if (CompressedKlassPointers::shift() != 0) {
|
|
srdi(dst, current, CompressedKlassPointers::shift());
|
|
current = dst;
|
|
}
|
|
return current;
|
|
}
|
|
|
|
void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
|
|
if (UseCompressedClassPointers) {
|
|
Register compressedKlass = encode_klass_not_null(ck, klass);
|
|
stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
|
|
} else {
|
|
std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
|
|
if (UseCompressedClassPointers) {
|
|
if (val == noreg) {
|
|
val = R0;
|
|
li(val, 0);
|
|
}
|
|
stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
|
|
}
|
|
}
|
|
|
|
int MacroAssembler::instr_size_for_decode_klass_not_null() {
|
|
static int computed_size = -1;
|
|
|
|
// Not yet computed?
|
|
if (computed_size == -1) {
|
|
|
|
if (!UseCompressedClassPointers) {
|
|
computed_size = 0;
|
|
} else {
|
|
// Determine by scratch emit.
|
|
ResourceMark rm;
|
|
int code_size = 8 * BytesPerInstWord;
|
|
CodeBuffer cb("decode_klass_not_null scratch buffer", code_size, 0);
|
|
MacroAssembler* a = new MacroAssembler(&cb);
|
|
a->decode_klass_not_null(R11_scratch1);
|
|
computed_size = a->offset();
|
|
}
|
|
}
|
|
|
|
return computed_size;
|
|
}
|
|
|
|
void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
|
|
assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
|
|
if (src == noreg) src = dst;
|
|
Register shifted_src = src;
|
|
if (CompressedKlassPointers::shift() != 0 ||
|
|
(CompressedKlassPointers::base() == 0 && src != dst)) { // Move required.
|
|
shifted_src = dst;
|
|
sldi(shifted_src, src, CompressedKlassPointers::shift());
|
|
}
|
|
if (CompressedKlassPointers::base() != 0) {
|
|
add_const_optimized(dst, shifted_src, CompressedKlassPointers::base(), R0);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_klass(Register dst, Register src) {
|
|
if (UseCompressedClassPointers) {
|
|
lwz(dst, oopDesc::klass_offset_in_bytes(), src);
|
|
// Attention: no null check here!
|
|
decode_klass_not_null(dst, dst);
|
|
} else {
|
|
ld(dst, oopDesc::klass_offset_in_bytes(), src);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_klass_check_null(Register dst, Register src, Label* is_null) {
|
|
null_check(src, oopDesc::klass_offset_in_bytes(), is_null);
|
|
load_klass(dst, src);
|
|
}
|
|
|
|
// ((OopHandle)result).resolve();
|
|
void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2,
|
|
MacroAssembler::PreservationLevel preservation_level) {
|
|
access_load_at(T_OBJECT, IN_NATIVE, result, noreg, result, tmp1, tmp2, preservation_level);
|
|
}
|
|
|
|
void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2,
|
|
MacroAssembler::PreservationLevel preservation_level) {
|
|
Label resolved;
|
|
|
|
// A null weak handle resolves to null.
|
|
cmpdi(CCR0, result, 0);
|
|
beq(CCR0, resolved);
|
|
|
|
access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, result, noreg, result, tmp1, tmp2,
|
|
preservation_level);
|
|
bind(resolved);
|
|
}
|
|
|
|
void MacroAssembler::load_method_holder(Register holder, Register method) {
|
|
ld(holder, in_bytes(Method::const_offset()), method);
|
|
ld(holder, in_bytes(ConstMethod::constants_offset()), holder);
|
|
ld(holder, ConstantPool::pool_holder_offset(), holder);
|
|
}
|
|
|
|
// Clear Array
|
|
// For very short arrays. tmp == R0 is allowed.
|
|
void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
|
|
if (cnt_dwords > 0) { li(tmp, 0); }
|
|
for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
|
|
}
|
|
|
|
// Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
|
|
void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
|
|
if (cnt_dwords < 8) {
|
|
clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
|
|
return;
|
|
}
|
|
|
|
Label loop;
|
|
const long loopcnt = cnt_dwords >> 1,
|
|
remainder = cnt_dwords & 1;
|
|
|
|
li(tmp, loopcnt);
|
|
mtctr(tmp);
|
|
li(tmp, 0);
|
|
bind(loop);
|
|
std(tmp, 0, base_ptr);
|
|
std(tmp, 8, base_ptr);
|
|
addi(base_ptr, base_ptr, 16);
|
|
bdnz(loop);
|
|
if (remainder) { std(tmp, 0, base_ptr); }
|
|
}
|
|
|
|
// Kills both input registers. tmp == R0 is allowed.
|
|
void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
|
|
// Procedure for large arrays (uses data cache block zero instruction).
|
|
Label startloop, fast, fastloop, small_rest, restloop, done;
|
|
const int cl_size = VM_Version::L1_data_cache_line_size(),
|
|
cl_dwords = cl_size >> 3,
|
|
cl_dw_addr_bits = exact_log2(cl_dwords),
|
|
dcbz_min = 1, // Min count of dcbz executions, needs to be >0.
|
|
min_cnt = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;
|
|
|
|
if (const_cnt >= 0) {
|
|
// Constant case.
|
|
if (const_cnt < min_cnt) {
|
|
clear_memory_constlen(base_ptr, const_cnt, tmp);
|
|
return;
|
|
}
|
|
load_const_optimized(cnt_dwords, const_cnt, tmp);
|
|
} else {
|
|
// cnt_dwords already loaded in register. Need to check size.
|
|
cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
|
|
blt(CCR1, small_rest);
|
|
}
|
|
rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
|
|
beq(CCR0, fast); // Already 128byte aligned.
|
|
|
|
subfic(tmp, tmp, cl_dwords);
|
|
mtctr(tmp); // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
|
|
subf(cnt_dwords, tmp, cnt_dwords); // rest.
|
|
li(tmp, 0);
|
|
|
|
bind(startloop); // Clear at the beginning to reach 128byte boundary.
|
|
std(tmp, 0, base_ptr); // Clear 8byte aligned block.
|
|
addi(base_ptr, base_ptr, 8);
|
|
bdnz(startloop);
|
|
|
|
bind(fast); // Clear 128byte blocks.
|
|
srdi(tmp, cnt_dwords, cl_dw_addr_bits); // Loop count for 128byte loop (>0).
|
|
andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
|
|
mtctr(tmp); // Load counter.
|
|
|
|
bind(fastloop);
|
|
dcbz(base_ptr); // Clear 128byte aligned block.
|
|
addi(base_ptr, base_ptr, cl_size);
|
|
bdnz(fastloop);
|
|
|
|
bind(small_rest);
|
|
cmpdi(CCR0, cnt_dwords, 0); // size 0?
|
|
beq(CCR0, done); // rest == 0
|
|
li(tmp, 0);
|
|
mtctr(cnt_dwords); // Load counter.
|
|
|
|
bind(restloop); // Clear rest.
|
|
std(tmp, 0, base_ptr); // Clear 8byte aligned block.
|
|
addi(base_ptr, base_ptr, 8);
|
|
bdnz(restloop);
|
|
|
|
bind(done);
|
|
}
|
|
|
|
/////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
|
|
|
|
// Helpers for Intrinsic Emitters
|
|
//
|
|
// Revert the byte order of a 32bit value in a register
|
|
// src: 0x44556677
|
|
// dst: 0x77665544
|
|
// Three steps to obtain the result:
|
|
// 1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
|
|
// into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
|
|
// This value initializes dst.
|
|
// 2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
|
|
// byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
|
|
// This value is mask inserted into dst with a [0..23] mask of 1s.
|
|
// 3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
|
|
// This value is mask inserted into dst with a [8..15] mask of 1s.
|
|
void MacroAssembler::load_reverse_32(Register dst, Register src) {
|
|
assert_different_registers(dst, src);
|
|
|
|
rldicl(dst, src, (4+1)*8, 56); // Rotate byte 4 into position 7 (rightmost), clear all to the left.
|
|
rlwimi(dst, src, 3*8, 0, 23); // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
|
|
rlwimi(dst, src, 1*8, 8, 15); // Insert byte 6 into position 5, leave the rest alone.
|
|
}
|
|
|
|
// Calculate the column addresses of the crc32 lookup table into distinct registers.
|
|
// This loop-invariant calculation is moved out of the loop body, reducing the loop
|
|
// body size from 20 to 16 instructions.
|
|
// Returns the offset that was used to calculate the address of column tc3.
|
|
// Due to register shortage, setting tc3 may overwrite table. With the return offset
|
|
// at hand, the original table address can be easily reconstructed.
|
|
int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
|
|
assert(!VM_Version::has_vpmsumb(), "Vector version should be used instead!");
|
|
|
|
// Point to 4 byte folding tables (byte-reversed version for Big Endian)
|
|
// Layout: See StubRoutines::ppc::generate_crc_constants.
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
const int ix0 = 3 * CRC32_TABLE_SIZE;
|
|
const int ix1 = 2 * CRC32_TABLE_SIZE;
|
|
const int ix2 = 1 * CRC32_TABLE_SIZE;
|
|
const int ix3 = 0 * CRC32_TABLE_SIZE;
|
|
#else
|
|
const int ix0 = 1 * CRC32_TABLE_SIZE;
|
|
const int ix1 = 2 * CRC32_TABLE_SIZE;
|
|
const int ix2 = 3 * CRC32_TABLE_SIZE;
|
|
const int ix3 = 4 * CRC32_TABLE_SIZE;
|
|
#endif
|
|
assert_different_registers(table, tc0, tc1, tc2);
|
|
assert(table == tc3, "must be!");
|
|
|
|
addi(tc0, table, ix0);
|
|
addi(tc1, table, ix1);
|
|
addi(tc2, table, ix2);
|
|
if (ix3 != 0) addi(tc3, table, ix3);
|
|
|
|
return ix3;
|
|
}
|
|
|
|
/**
|
|
* uint32_t crc;
|
|
* table[crc & 0xFF] ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
|
|
assert_different_registers(crc, table, tmp);
|
|
assert_different_registers(val, table);
|
|
|
|
if (crc == val) { // Must rotate first to use the unmodified value.
|
|
rlwinm(tmp, val, 2, 24-2, 31-2); // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
|
|
// As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
|
|
srwi(crc, crc, 8); // Unsigned shift, clear leftmost 8 bits.
|
|
} else {
|
|
srwi(crc, crc, 8); // Unsigned shift, clear leftmost 8 bits.
|
|
rlwinm(tmp, val, 2, 24-2, 31-2); // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
|
|
}
|
|
lwzx(tmp, table, tmp);
|
|
xorr(crc, crc, tmp);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a byte value according to constants in table.
|
|
*
|
|
* @param [in,out]crc Register containing the crc.
|
|
* @param [in]val Register containing the byte to fold into the CRC.
|
|
* @param [in]table Register containing the table of crc constants.
|
|
*
|
|
* uint32_t crc;
|
|
* val = crc_table[(val ^ crc) & 0xFF];
|
|
* crc = val ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
|
|
BLOCK_COMMENT("update_byte_crc32:");
|
|
xorr(val, val, crc);
|
|
fold_byte_crc32(crc, val, table, val);
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*/
|
|
void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
|
|
Register data, bool loopAlignment) {
|
|
assert_different_registers(crc, buf, len, table, data);
|
|
|
|
Label L_mainLoop, L_done;
|
|
const int mainLoop_stepping = 1;
|
|
const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
|
|
|
|
// Process all bytes in a single-byte loop.
|
|
clrldi_(len, len, 32); // Enforce 32 bit. Anything to do?
|
|
beq(CCR0, L_done);
|
|
|
|
mtctr(len);
|
|
align(mainLoop_alignment);
|
|
BIND(L_mainLoop);
|
|
lbz(data, 0, buf); // Byte from buffer, zero-extended.
|
|
addi(buf, buf, mainLoop_stepping); // Advance buffer position.
|
|
update_byte_crc32(crc, data, table);
|
|
bdnz(L_mainLoop); // Iterate.
|
|
|
|
bind(L_done);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a 4-byte value according to constants in table
|
|
* Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
|
|
*/
|
|
// A note on the lookup table address(es):
|
|
// The implementation uses 4 table columns (byte-reversed versions for Big Endian).
|
|
// To save the effort of adding the column offset to the table address each time
|
|
// a table element is looked up, it is possible to pass the pre-calculated
|
|
// column addresses.
|
|
// Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
|
|
void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
Register tc0, Register tc1, Register tc2, Register tc3) {
|
|
assert_different_registers(crc, t3);
|
|
|
|
// XOR crc with next four bytes of buffer.
|
|
lwz(t3, bufDisp, buf);
|
|
if (bufInc != 0) {
|
|
addi(buf, buf, bufInc);
|
|
}
|
|
xorr(t3, t3, crc);
|
|
|
|
// Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
|
|
rlwinm(t0, t3, 2, 24-2, 31-2); // ((t1 >> 0) & 0xff) << 2
|
|
rlwinm(t1, t3, 32+(2- 8), 24-2, 31-2); // ((t1 >> 8) & 0xff) << 2
|
|
rlwinm(t2, t3, 32+(2-16), 24-2, 31-2); // ((t1 >> 16) & 0xff) << 2
|
|
rlwinm(t3, t3, 32+(2-24), 24-2, 31-2); // ((t1 >> 24) & 0xff) << 2
|
|
|
|
// Use the pre-calculated column addresses.
|
|
// Load pre-calculated table values.
|
|
lwzx(t0, tc0, t0);
|
|
lwzx(t1, tc1, t1);
|
|
lwzx(t2, tc2, t2);
|
|
lwzx(t3, tc3, t3);
|
|
|
|
// Calculate new crc from table values.
|
|
xorr(t0, t0, t1);
|
|
xorr(t2, t2, t3);
|
|
xorr(crc, t0, t2); // Now crc contains the final checksum value.
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*
|
|
* uses R9..R12 as work register. Must be saved/restored by caller!
|
|
*/
|
|
void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
Register tc0, Register tc1, Register tc2, Register tc3,
|
|
bool invertCRC) {
|
|
assert_different_registers(crc, buf, len, table);
|
|
|
|
Label L_mainLoop, L_tail;
|
|
Register tmp = t0;
|
|
Register data = t0;
|
|
Register tmp2 = t1;
|
|
const int mainLoop_stepping = 4;
|
|
const int tailLoop_stepping = 1;
|
|
const int log_stepping = exact_log2(mainLoop_stepping);
|
|
const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
|
|
const int complexThreshold = 2*mainLoop_stepping;
|
|
|
|
// Don't test for len <= 0 here. This pathological case should not occur anyway.
|
|
// Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
|
|
// for all well-behaved cases. The situation itself is detected and handled correctly
|
|
// within update_byteLoop_crc32.
|
|
assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
|
|
|
|
BLOCK_COMMENT("kernel_crc32_1word {");
|
|
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // 1s complement of crc
|
|
}
|
|
|
|
// Check for short (<mainLoop_stepping) buffer.
|
|
cmpdi(CCR0, len, complexThreshold);
|
|
blt(CCR0, L_tail);
|
|
|
|
// Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
|
|
// We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
|
|
{
|
|
// Align buf addr to mainLoop_stepping boundary.
|
|
neg(tmp2, buf); // Calculate # preLoop iterations for alignment.
|
|
rldicl(tmp2, tmp2, 0, 64-log_stepping); // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
|
|
|
|
if (complexThreshold > mainLoop_stepping) {
|
|
sub(len, len, tmp2); // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
|
|
} else {
|
|
sub(tmp, len, tmp2); // Remaining bytes for main loop.
|
|
cmpdi(CCR0, tmp, mainLoop_stepping);
|
|
blt(CCR0, L_tail); // For less than one mainloop_stepping left, do only tail processing
|
|
mr(len, tmp); // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
|
|
}
|
|
update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
|
|
}
|
|
|
|
srdi(tmp2, len, log_stepping); // #iterations for mainLoop
|
|
andi(len, len, mainLoop_stepping-1); // remaining bytes for tailLoop
|
|
mtctr(tmp2);
|
|
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
Register crc_rv = crc;
|
|
#else
|
|
Register crc_rv = tmp; // Load_reverse needs separate registers to work on.
|
|
// Occupies tmp, but frees up crc.
|
|
load_reverse_32(crc_rv, crc); // Revert byte order because we are dealing with big-endian data.
|
|
tmp = crc;
|
|
#endif
|
|
|
|
int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
|
|
|
|
align(mainLoop_alignment); // Octoword-aligned loop address. Shows 2% improvement.
|
|
BIND(L_mainLoop);
|
|
update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
|
|
bdnz(L_mainLoop);
|
|
|
|
#ifndef VM_LITTLE_ENDIAN
|
|
load_reverse_32(crc, crc_rv); // Revert byte order because we are dealing with big-endian data.
|
|
tmp = crc_rv; // Tmp uses it's original register again.
|
|
#endif
|
|
|
|
// Restore original table address for tailLoop.
|
|
if (reconstructTableOffset != 0) {
|
|
addi(table, table, -reconstructTableOffset);
|
|
}
|
|
|
|
// Process last few (<complexThreshold) bytes of buffer.
|
|
BIND(L_tail);
|
|
update_byteLoop_crc32(crc, buf, len, table, data, false);
|
|
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // 1s complement of crc
|
|
}
|
|
BLOCK_COMMENT("} kernel_crc32_1word");
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param constants register pointing to precomputed constants
|
|
* @param t0-t6 temp registers
|
|
*/
|
|
void MacroAssembler::kernel_crc32_vpmsum(Register crc, Register buf, Register len, Register constants,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
Register t4, Register t5, Register t6, bool invertCRC) {
|
|
assert_different_registers(crc, buf, len, constants);
|
|
|
|
Label L_tail;
|
|
|
|
BLOCK_COMMENT("kernel_crc32_vpmsum {");
|
|
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // 1s complement of crc
|
|
}
|
|
|
|
// Enforce 32 bit.
|
|
clrldi(len, len, 32);
|
|
|
|
// Align if we have enough bytes for the fast version.
|
|
const int alignment = 16,
|
|
threshold = 32;
|
|
Register prealign = t0;
|
|
|
|
neg(prealign, buf);
|
|
addi(t1, len, -threshold);
|
|
andi(prealign, prealign, alignment - 1);
|
|
cmpw(CCR0, t1, prealign);
|
|
blt(CCR0, L_tail); // len - prealign < threshold?
|
|
|
|
subf(len, prealign, len);
|
|
update_byteLoop_crc32(crc, buf, prealign, constants, t2, false);
|
|
|
|
// Calculate from first aligned address as far as possible.
|
|
addi(constants, constants, CRC32_TABLE_SIZE); // Point to vector constants.
|
|
kernel_crc32_vpmsum_aligned(crc, buf, len, constants, t0, t1, t2, t3, t4, t5, t6);
|
|
addi(constants, constants, -CRC32_TABLE_SIZE); // Point to table again.
|
|
|
|
// Remaining bytes.
|
|
BIND(L_tail);
|
|
update_byteLoop_crc32(crc, buf, len, constants, t2, false);
|
|
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // 1s complement of crc
|
|
}
|
|
|
|
BLOCK_COMMENT("} kernel_crc32_vpmsum");
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes (will get updated to remaining bytes)
|
|
* @param constants register pointing to CRC table for 128-bit aligned memory
|
|
* @param t0-t6 temp registers
|
|
*/
|
|
void MacroAssembler::kernel_crc32_vpmsum_aligned(Register crc, Register buf, Register len, Register constants,
|
|
Register t0, Register t1, Register t2, Register t3, Register t4, Register t5, Register t6) {
|
|
|
|
// Save non-volatile vector registers (frameless).
|
|
Register offset = t1;
|
|
int offsetInt = 0;
|
|
offsetInt -= 16; li(offset, offsetInt); stvx(VR20, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); stvx(VR21, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); stvx(VR22, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); stvx(VR23, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); stvx(VR24, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); stvx(VR25, offset, R1_SP);
|
|
#ifndef VM_LITTLE_ENDIAN
|
|
offsetInt -= 16; li(offset, offsetInt); stvx(VR26, offset, R1_SP);
|
|
#endif
|
|
offsetInt -= 8; std(R14, offsetInt, R1_SP);
|
|
offsetInt -= 8; std(R15, offsetInt, R1_SP);
|
|
|
|
// Implementation uses an inner loop which uses between 256 and 16 * unroll_factor
|
|
// bytes per iteration. The basic scheme is:
|
|
// lvx: load vector (Big Endian needs reversal)
|
|
// vpmsumw: carry-less 32 bit multiplications with constant representing a large CRC shift
|
|
// vxor: xor partial results together to get unroll_factor2 vectors
|
|
|
|
// Outer loop performs the CRC shifts needed to combine the unroll_factor2 vectors.
|
|
|
|
// Using 16 * unroll_factor / unroll_factor_2 bytes for constants.
|
|
const int unroll_factor = CRC32_UNROLL_FACTOR,
|
|
unroll_factor2 = CRC32_UNROLL_FACTOR2;
|
|
|
|
const int outer_consts_size = (unroll_factor2 - 1) * 16,
|
|
inner_consts_size = (unroll_factor / unroll_factor2) * 16;
|
|
|
|
// Support registers.
|
|
Register offs[] = { noreg, t0, t1, t2, t3, t4, t5, t6 };
|
|
Register num_bytes = R14,
|
|
loop_count = R15,
|
|
cur_const = crc; // will live in VCRC
|
|
// Constant array for outer loop: unroll_factor2 - 1 registers,
|
|
// Constant array for inner loop: unroll_factor / unroll_factor2 registers.
|
|
VectorRegister consts0[] = { VR16, VR17, VR18, VR19, VR20, VR21, VR22 },
|
|
consts1[] = { VR23, VR24 };
|
|
// Data register arrays: 2 arrays with unroll_factor2 registers.
|
|
VectorRegister data0[] = { VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7 },
|
|
data1[] = { VR8, VR9, VR10, VR11, VR12, VR13, VR14, VR15 };
|
|
|
|
VectorRegister VCRC = data0[0];
|
|
VectorRegister Vc = VR25;
|
|
VectorRegister swap_bytes = VR26; // Only for Big Endian.
|
|
|
|
// We have at least 1 iteration (ensured by caller).
|
|
Label L_outer_loop, L_inner_loop, L_last;
|
|
|
|
// If supported set DSCR pre-fetch to deepest.
|
|
if (VM_Version::has_mfdscr()) {
|
|
load_const_optimized(t0, VM_Version::_dscr_val | 7);
|
|
mtdscr(t0);
|
|
}
|
|
|
|
mtvrwz(VCRC, crc); // crc lives in VCRC, now
|
|
|
|
for (int i = 1; i < unroll_factor2; ++i) {
|
|
li(offs[i], 16 * i);
|
|
}
|
|
|
|
// Load consts for outer loop
|
|
lvx(consts0[0], constants);
|
|
for (int i = 1; i < unroll_factor2 - 1; ++i) {
|
|
lvx(consts0[i], offs[i], constants);
|
|
}
|
|
|
|
load_const_optimized(num_bytes, 16 * unroll_factor);
|
|
|
|
// Reuse data registers outside of the loop.
|
|
VectorRegister Vtmp = data1[0];
|
|
VectorRegister Vtmp2 = data1[1];
|
|
VectorRegister zeroes = data1[2];
|
|
|
|
vspltisb(Vtmp, 0);
|
|
vsldoi(VCRC, Vtmp, VCRC, 8); // 96 bit zeroes, 32 bit CRC.
|
|
|
|
// Load vector for vpermxor (to xor both 64 bit parts together)
|
|
lvsl(Vtmp, buf); // 000102030405060708090a0b0c0d0e0f
|
|
vspltisb(Vc, 4);
|
|
vsl(Vc, Vtmp, Vc); // 00102030405060708090a0b0c0d0e0f0
|
|
xxspltd(Vc->to_vsr(), Vc->to_vsr(), 0);
|
|
vor(Vc, Vtmp, Vc); // 001122334455667708192a3b4c5d6e7f
|
|
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
#define BE_swap_bytes(x)
|
|
#else
|
|
vspltisb(Vtmp2, 0xf);
|
|
vxor(swap_bytes, Vtmp, Vtmp2);
|
|
#define BE_swap_bytes(x) vperm(x, x, x, swap_bytes)
|
|
#endif
|
|
|
|
cmpd(CCR0, len, num_bytes);
|
|
blt(CCR0, L_last);
|
|
|
|
addi(cur_const, constants, outer_consts_size); // Point to consts for inner loop
|
|
load_const_optimized(loop_count, unroll_factor / (2 * unroll_factor2) - 1); // One double-iteration peeled off.
|
|
|
|
// ********** Main loop start **********
|
|
align(32);
|
|
bind(L_outer_loop);
|
|
|
|
// Begin of unrolled first iteration (no xor).
|
|
lvx(data1[0], buf);
|
|
for (int i = 1; i < unroll_factor2 / 2; ++i) {
|
|
lvx(data1[i], offs[i], buf);
|
|
}
|
|
vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
|
|
lvx(consts1[0], cur_const);
|
|
mtctr(loop_count);
|
|
for (int i = 0; i < unroll_factor2 / 2; ++i) {
|
|
BE_swap_bytes(data1[i]);
|
|
if (i == 0) { vxor(data1[0], data1[0], VCRC); } // xor in previous CRC.
|
|
lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
|
|
vpmsumw(data0[i], data1[i], consts1[0]);
|
|
}
|
|
addi(buf, buf, 16 * unroll_factor2);
|
|
subf(len, num_bytes, len);
|
|
lvx(consts1[1], offs[1], cur_const);
|
|
addi(cur_const, cur_const, 32);
|
|
// Begin of unrolled second iteration (head).
|
|
for (int i = 0; i < unroll_factor2 / 2; ++i) {
|
|
BE_swap_bytes(data1[i + unroll_factor2 / 2]);
|
|
if (i == 0) { lvx(data1[0], buf); } else { lvx(data1[i], offs[i], buf); }
|
|
vpmsumw(data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[0]);
|
|
}
|
|
for (int i = 0; i < unroll_factor2 / 2; ++i) {
|
|
BE_swap_bytes(data1[i]);
|
|
lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
|
|
vpmsumw(data1[i], data1[i], consts1[1]);
|
|
}
|
|
addi(buf, buf, 16 * unroll_factor2);
|
|
|
|
// Generate most performance relevant code. Loads + half of the vpmsumw have been generated.
|
|
// Double-iteration allows using the 2 constant registers alternatingly.
|
|
align(32);
|
|
bind(L_inner_loop);
|
|
for (int j = 1; j < 3; ++j) { // j < unroll_factor / unroll_factor2 - 1 for complete unrolling.
|
|
if (j & 1) {
|
|
lvx(consts1[0], cur_const);
|
|
} else {
|
|
lvx(consts1[1], offs[1], cur_const);
|
|
addi(cur_const, cur_const, 32);
|
|
}
|
|
for (int i = 0; i < unroll_factor2; ++i) {
|
|
int idx = i + unroll_factor2 / 2, inc = 0; // For modulo-scheduled input.
|
|
if (idx >= unroll_factor2) { idx -= unroll_factor2; inc = 1; }
|
|
BE_swap_bytes(data1[idx]);
|
|
vxor(data0[i], data0[i], data1[i]);
|
|
if (i == 0) lvx(data1[0], buf); else lvx(data1[i], offs[i], buf);
|
|
vpmsumw(data1[idx], data1[idx], consts1[(j + inc) & 1]);
|
|
}
|
|
addi(buf, buf, 16 * unroll_factor2);
|
|
}
|
|
bdnz(L_inner_loop);
|
|
|
|
addi(cur_const, constants, outer_consts_size); // Reset
|
|
|
|
// Tail of last iteration (no loads).
|
|
for (int i = 0; i < unroll_factor2 / 2; ++i) {
|
|
BE_swap_bytes(data1[i + unroll_factor2 / 2]);
|
|
vxor(data0[i], data0[i], data1[i]);
|
|
vpmsumw(data1[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[1]);
|
|
}
|
|
for (int i = 0; i < unroll_factor2 / 2; ++i) {
|
|
vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]); // First half of fixup shifts.
|
|
vxor(data0[i + unroll_factor2 / 2], data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2]);
|
|
}
|
|
|
|
// Last data register is ok, other ones need fixup shift.
|
|
for (int i = unroll_factor2 / 2; i < unroll_factor2 - 1; ++i) {
|
|
vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]);
|
|
}
|
|
|
|
// Combine to 128 bit result vector VCRC = data0[0].
|
|
for (int i = 1; i < unroll_factor2; i<<=1) {
|
|
for (int j = 0; j <= unroll_factor2 - 2*i; j+=2*i) {
|
|
vxor(data0[j], data0[j], data0[j+i]);
|
|
}
|
|
}
|
|
cmpd(CCR0, len, num_bytes);
|
|
bge(CCR0, L_outer_loop);
|
|
|
|
// Last chance with lower num_bytes.
|
|
bind(L_last);
|
|
srdi(loop_count, len, exact_log2(16 * 2 * unroll_factor2)); // Use double-iterations.
|
|
// Point behind last const for inner loop.
|
|
add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size);
|
|
sldi(R0, loop_count, exact_log2(16 * 2)); // Bytes of constants to be used.
|
|
clrrdi(num_bytes, len, exact_log2(16 * 2 * unroll_factor2));
|
|
subf(cur_const, R0, cur_const); // Point to constant to be used first.
|
|
|
|
addic_(loop_count, loop_count, -1); // One double-iteration peeled off.
|
|
bgt(CCR0, L_outer_loop);
|
|
// ********** Main loop end **********
|
|
|
|
// Restore DSCR pre-fetch value.
|
|
if (VM_Version::has_mfdscr()) {
|
|
load_const_optimized(t0, VM_Version::_dscr_val);
|
|
mtdscr(t0);
|
|
}
|
|
|
|
// ********** Simple loop for remaining 16 byte blocks **********
|
|
{
|
|
Label L_loop, L_done;
|
|
|
|
srdi_(t0, len, 4); // 16 bytes per iteration
|
|
clrldi(len, len, 64-4);
|
|
beq(CCR0, L_done);
|
|
|
|
// Point to const (same as last const for inner loop).
|
|
add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size - 16);
|
|
mtctr(t0);
|
|
lvx(Vtmp2, cur_const);
|
|
|
|
align(32);
|
|
bind(L_loop);
|
|
|
|
lvx(Vtmp, buf);
|
|
addi(buf, buf, 16);
|
|
vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
|
|
BE_swap_bytes(Vtmp);
|
|
vxor(VCRC, VCRC, Vtmp);
|
|
vpmsumw(VCRC, VCRC, Vtmp2);
|
|
bdnz(L_loop);
|
|
|
|
bind(L_done);
|
|
}
|
|
// ********** Simple loop end **********
|
|
#undef BE_swap_bytes
|
|
|
|
// Point to Barrett constants
|
|
add_const_optimized(cur_const, constants, outer_consts_size + inner_consts_size);
|
|
|
|
vspltisb(zeroes, 0);
|
|
|
|
// Combine to 64 bit result.
|
|
vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
|
|
|
|
// Reduce to 32 bit CRC: Remainder by multiply-high.
|
|
lvx(Vtmp, cur_const);
|
|
vsldoi(Vtmp2, zeroes, VCRC, 12); // Extract high 32 bit.
|
|
vpmsumd(Vtmp2, Vtmp2, Vtmp); // Multiply by inverse long poly.
|
|
vsldoi(Vtmp2, zeroes, Vtmp2, 12); // Extract high 32 bit.
|
|
vsldoi(Vtmp, zeroes, Vtmp, 8);
|
|
vpmsumd(Vtmp2, Vtmp2, Vtmp); // Multiply quotient by long poly.
|
|
vxor(VCRC, VCRC, Vtmp2); // Remainder fits into 32 bit.
|
|
|
|
// Move result. len is already updated.
|
|
vsldoi(VCRC, VCRC, zeroes, 8);
|
|
mfvrd(crc, VCRC);
|
|
|
|
// Restore non-volatile Vector registers (frameless).
|
|
offsetInt = 0;
|
|
offsetInt -= 16; li(offset, offsetInt); lvx(VR20, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); lvx(VR21, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); lvx(VR22, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); lvx(VR23, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); lvx(VR24, offset, R1_SP);
|
|
offsetInt -= 16; li(offset, offsetInt); lvx(VR25, offset, R1_SP);
|
|
#ifndef VM_LITTLE_ENDIAN
|
|
offsetInt -= 16; li(offset, offsetInt); lvx(VR26, offset, R1_SP);
|
|
#endif
|
|
offsetInt -= 8; ld(R14, offsetInt, R1_SP);
|
|
offsetInt -= 8; ld(R15, offsetInt, R1_SP);
|
|
}
|
|
|
|
void MacroAssembler::crc32(Register crc, Register buf, Register len, Register t0, Register t1, Register t2,
|
|
Register t3, Register t4, Register t5, Register t6, Register t7, bool is_crc32c) {
|
|
load_const_optimized(t0, is_crc32c ? StubRoutines::crc32c_table_addr()
|
|
: StubRoutines::crc_table_addr() , R0);
|
|
|
|
if (VM_Version::has_vpmsumb()) {
|
|
kernel_crc32_vpmsum(crc, buf, len, t0, t1, t2, t3, t4, t5, t6, t7, !is_crc32c);
|
|
} else {
|
|
kernel_crc32_1word(crc, buf, len, t0, t1, t2, t3, t4, t5, t6, t7, t0, !is_crc32c);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table, bool invertCRC) {
|
|
assert_different_registers(crc, val, table);
|
|
|
|
BLOCK_COMMENT("kernel_crc32_singleByteReg:");
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // 1s complement of crc
|
|
}
|
|
|
|
update_byte_crc32(crc, val, table);
|
|
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // 1s complement of crc
|
|
}
|
|
}
|
|
|
|
// dest_lo += src1 + src2
|
|
// dest_hi += carry1 + carry2
|
|
void MacroAssembler::add2_with_carry(Register dest_hi,
|
|
Register dest_lo,
|
|
Register src1, Register src2) {
|
|
li(R0, 0);
|
|
addc(dest_lo, dest_lo, src1);
|
|
adde(dest_hi, dest_hi, R0);
|
|
addc(dest_lo, dest_lo, src2);
|
|
adde(dest_hi, dest_hi, R0);
|
|
}
|
|
|
|
// Multiply 64 bit by 64 bit first loop.
|
|
void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
|
|
Register x_xstart,
|
|
Register y, Register y_idx,
|
|
Register z,
|
|
Register carry,
|
|
Register product_high, Register product,
|
|
Register idx, Register kdx,
|
|
Register tmp) {
|
|
// jlong carry, x[], y[], z[];
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
|
|
// huge_128 product = y[idx] * x[xstart] + carry;
|
|
// z[kdx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
// z[xstart] = carry;
|
|
|
|
Label L_first_loop, L_first_loop_exit;
|
|
Label L_one_x, L_one_y, L_multiply;
|
|
|
|
addic_(xstart, xstart, -1);
|
|
blt(CCR0, L_one_x); // Special case: length of x is 1.
|
|
|
|
// Load next two integers of x.
|
|
sldi(tmp, xstart, LogBytesPerInt);
|
|
ldx(x_xstart, x, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(x_xstart, x_xstart, 32, 0);
|
|
#endif
|
|
|
|
align(32, 16);
|
|
bind(L_first_loop);
|
|
|
|
cmpdi(CCR0, idx, 1);
|
|
blt(CCR0, L_first_loop_exit);
|
|
addi(idx, idx, -2);
|
|
beq(CCR0, L_one_y);
|
|
|
|
// Load next two integers of y.
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
ldx(y_idx, y, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(y_idx, y_idx, 32, 0);
|
|
#endif
|
|
|
|
|
|
bind(L_multiply);
|
|
multiply64(product_high, product, x_xstart, y_idx);
|
|
|
|
li(tmp, 0);
|
|
addc(product, product, carry); // Add carry to result.
|
|
adde(product_high, product_high, tmp); // Add carry of the last addition.
|
|
addi(kdx, kdx, -2);
|
|
|
|
// Store result.
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(product, product, 32, 0);
|
|
#endif
|
|
sldi(tmp, kdx, LogBytesPerInt);
|
|
stdx(product, z, tmp);
|
|
mr_if_needed(carry, product_high);
|
|
b(L_first_loop);
|
|
|
|
|
|
bind(L_one_y); // Load one 32 bit portion of y as (0,value).
|
|
|
|
lwz(y_idx, 0, y);
|
|
b(L_multiply);
|
|
|
|
|
|
bind(L_one_x); // Load one 32 bit portion of x as (0,value).
|
|
|
|
lwz(x_xstart, 0, x);
|
|
b(L_first_loop);
|
|
|
|
bind(L_first_loop_exit);
|
|
}
|
|
|
|
// Multiply 64 bit by 64 bit and add 128 bit.
|
|
void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
|
|
Register z, Register yz_idx,
|
|
Register idx, Register carry,
|
|
Register product_high, Register product,
|
|
Register tmp, int offset) {
|
|
|
|
// huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
|
|
// z[kdx] = (jlong)product;
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
if (offset) {
|
|
addi(tmp, tmp, offset);
|
|
}
|
|
ldx(yz_idx, y, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(yz_idx, yz_idx, 32, 0);
|
|
#endif
|
|
|
|
multiply64(product_high, product, x_xstart, yz_idx);
|
|
ldx(yz_idx, z, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(yz_idx, yz_idx, 32, 0);
|
|
#endif
|
|
|
|
add2_with_carry(product_high, product, carry, yz_idx);
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
if (offset) {
|
|
addi(tmp, tmp, offset);
|
|
}
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(product, product, 32, 0);
|
|
#endif
|
|
stdx(product, z, tmp);
|
|
}
|
|
|
|
// Multiply 128 bit by 128 bit. Unrolled inner loop.
|
|
void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
|
|
Register y, Register z,
|
|
Register yz_idx, Register idx, Register carry,
|
|
Register product_high, Register product,
|
|
Register carry2, Register tmp) {
|
|
|
|
// jlong carry, x[], y[], z[];
|
|
// int kdx = ystart+1;
|
|
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
|
|
// huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
|
|
// z[kdx+idx+1] = (jlong)product;
|
|
// jlong carry2 = (jlong)(product >>> 64);
|
|
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
|
|
// z[kdx+idx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
// idx += 2;
|
|
// if (idx > 0) {
|
|
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
|
|
// z[kdx+idx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
|
|
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
|
|
const Register jdx = R0;
|
|
|
|
// Scale the index.
|
|
srdi_(jdx, idx, 2);
|
|
beq(CCR0, L_third_loop_exit);
|
|
mtctr(jdx);
|
|
|
|
align(32, 16);
|
|
bind(L_third_loop);
|
|
|
|
addi(idx, idx, -4);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
|
|
mr_if_needed(carry2, product_high);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
|
|
mr_if_needed(carry, product_high);
|
|
bdnz(L_third_loop);
|
|
|
|
bind(L_third_loop_exit); // Handle any left-over operand parts.
|
|
|
|
andi_(idx, idx, 0x3);
|
|
beq(CCR0, L_post_third_loop_done);
|
|
|
|
Label L_check_1;
|
|
|
|
addic_(idx, idx, -2);
|
|
blt(CCR0, L_check_1);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
|
|
mr_if_needed(carry, product_high);
|
|
|
|
bind(L_check_1);
|
|
|
|
addi(idx, idx, 0x2);
|
|
andi_(idx, idx, 0x1);
|
|
addic_(idx, idx, -1);
|
|
blt(CCR0, L_post_third_loop_done);
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
lwzx(yz_idx, y, tmp);
|
|
multiply64(product_high, product, x_xstart, yz_idx);
|
|
lwzx(yz_idx, z, tmp);
|
|
|
|
add2_with_carry(product_high, product, yz_idx, carry);
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
stwx(product, z, tmp);
|
|
srdi(product, product, 32);
|
|
|
|
sldi(product_high, product_high, 32);
|
|
orr(product, product, product_high);
|
|
mr_if_needed(carry, product);
|
|
|
|
bind(L_post_third_loop_done);
|
|
} // multiply_128_x_128_loop
|
|
|
|
void MacroAssembler::muladd(Register out, Register in,
|
|
Register offset, Register len, Register k,
|
|
Register tmp1, Register tmp2, Register carry) {
|
|
|
|
// Labels
|
|
Label LOOP, SKIP;
|
|
|
|
// Make sure length is positive.
|
|
cmpdi (CCR0, len, 0);
|
|
|
|
// Prepare variables
|
|
subi (offset, offset, 4);
|
|
li (carry, 0);
|
|
ble (CCR0, SKIP);
|
|
|
|
mtctr (len);
|
|
subi (len, len, 1 );
|
|
sldi (len, len, 2 );
|
|
|
|
// Main loop
|
|
bind(LOOP);
|
|
lwzx (tmp1, len, in );
|
|
lwzx (tmp2, offset, out );
|
|
mulld (tmp1, tmp1, k );
|
|
add (tmp2, carry, tmp2 );
|
|
add (tmp2, tmp1, tmp2 );
|
|
stwx (tmp2, offset, out );
|
|
srdi (carry, tmp2, 32 );
|
|
subi (offset, offset, 4 );
|
|
subi (len, len, 4 );
|
|
bdnz (LOOP);
|
|
bind(SKIP);
|
|
}
|
|
|
|
void MacroAssembler::multiply_to_len(Register x, Register xlen,
|
|
Register y, Register ylen,
|
|
Register z,
|
|
Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4,
|
|
Register tmp5, Register tmp6,
|
|
Register tmp7, Register tmp8,
|
|
Register tmp9, Register tmp10,
|
|
Register tmp11, Register tmp12,
|
|
Register tmp13) {
|
|
|
|
ShortBranchVerifier sbv(this);
|
|
|
|
assert_different_registers(x, xlen, y, ylen, z,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
|
|
assert_different_registers(x, xlen, y, ylen, z,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
|
|
assert_different_registers(x, xlen, y, ylen, z,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
|
|
|
|
const Register idx = tmp1;
|
|
const Register kdx = tmp2;
|
|
const Register xstart = tmp3;
|
|
|
|
const Register y_idx = tmp4;
|
|
const Register carry = tmp5;
|
|
const Register product = tmp6;
|
|
const Register product_high = tmp7;
|
|
const Register x_xstart = tmp8;
|
|
const Register tmp = tmp9;
|
|
|
|
// First Loop.
|
|
//
|
|
// final static long LONG_MASK = 0xffffffffL;
|
|
// int xstart = xlen - 1;
|
|
// int ystart = ylen - 1;
|
|
// long carry = 0;
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
|
|
// long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
|
|
// z[kdx] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[xstart] = (int)carry;
|
|
|
|
mr_if_needed(idx, ylen); // idx = ylen
|
|
add(kdx, xlen, ylen); // kdx = xlen + ylen
|
|
li(carry, 0); // carry = 0
|
|
|
|
Label L_done;
|
|
|
|
addic_(xstart, xlen, -1);
|
|
blt(CCR0, L_done);
|
|
|
|
multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
|
|
carry, product_high, product, idx, kdx, tmp);
|
|
|
|
Label L_second_loop;
|
|
|
|
cmpdi(CCR0, kdx, 0);
|
|
beq(CCR0, L_second_loop);
|
|
|
|
Label L_carry;
|
|
|
|
addic_(kdx, kdx, -1);
|
|
beq(CCR0, L_carry);
|
|
|
|
// Store lower 32 bits of carry.
|
|
sldi(tmp, kdx, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
srdi(carry, carry, 32);
|
|
addi(kdx, kdx, -1);
|
|
|
|
|
|
bind(L_carry);
|
|
|
|
// Store upper 32 bits of carry.
|
|
sldi(tmp, kdx, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
|
|
// Second and third (nested) loops.
|
|
//
|
|
// for (int i = xstart-1; i >= 0; i--) { // Second loop
|
|
// carry = 0;
|
|
// for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
|
|
// long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
|
|
// (z[k] & LONG_MASK) + carry;
|
|
// z[k] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[i] = (int)carry;
|
|
// }
|
|
//
|
|
// i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
|
|
|
|
bind(L_second_loop);
|
|
|
|
li(carry, 0); // carry = 0;
|
|
|
|
addic_(xstart, xstart, -1); // i = xstart-1;
|
|
blt(CCR0, L_done);
|
|
|
|
Register zsave = tmp10;
|
|
|
|
mr(zsave, z);
|
|
|
|
|
|
Label L_last_x;
|
|
|
|
sldi(tmp, xstart, LogBytesPerInt);
|
|
add(z, z, tmp); // z = z + k - j
|
|
addi(z, z, 4);
|
|
addic_(xstart, xstart, -1); // i = xstart-1;
|
|
blt(CCR0, L_last_x);
|
|
|
|
sldi(tmp, xstart, LogBytesPerInt);
|
|
ldx(x_xstart, x, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(x_xstart, x_xstart, 32, 0);
|
|
#endif
|
|
|
|
|
|
Label L_third_loop_prologue;
|
|
|
|
bind(L_third_loop_prologue);
|
|
|
|
Register xsave = tmp11;
|
|
Register xlensave = tmp12;
|
|
Register ylensave = tmp13;
|
|
|
|
mr(xsave, x);
|
|
mr(xlensave, xstart);
|
|
mr(ylensave, ylen);
|
|
|
|
|
|
multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
|
|
carry, product_high, product, x, tmp);
|
|
|
|
mr(z, zsave);
|
|
mr(x, xsave);
|
|
mr(xlen, xlensave); // This is the decrement of the loop counter!
|
|
mr(ylen, ylensave);
|
|
|
|
addi(tmp3, xlen, 1);
|
|
sldi(tmp, tmp3, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
addic_(tmp3, tmp3, -1);
|
|
blt(CCR0, L_done);
|
|
|
|
srdi(carry, carry, 32);
|
|
sldi(tmp, tmp3, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
b(L_second_loop);
|
|
|
|
// Next infrequent code is moved outside loops.
|
|
bind(L_last_x);
|
|
|
|
lwz(x_xstart, 0, x);
|
|
b(L_third_loop_prologue);
|
|
|
|
bind(L_done);
|
|
} // multiply_to_len
|
|
|
|
void MacroAssembler::asm_assert(bool check_equal, const char *msg) {
|
|
#ifdef ASSERT
|
|
Label ok;
|
|
if (check_equal) {
|
|
beq(CCR0, ok);
|
|
} else {
|
|
bne(CCR0, ok);
|
|
}
|
|
stop(msg);
|
|
bind(ok);
|
|
#endif
|
|
}
|
|
|
|
void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
|
|
Register mem_base, const char* msg) {
|
|
#ifdef ASSERT
|
|
switch (size) {
|
|
case 4:
|
|
lwz(R0, mem_offset, mem_base);
|
|
cmpwi(CCR0, R0, 0);
|
|
break;
|
|
case 8:
|
|
ld(R0, mem_offset, mem_base);
|
|
cmpdi(CCR0, R0, 0);
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
asm_assert(check_equal, msg);
|
|
#endif // ASSERT
|
|
}
|
|
|
|
void MacroAssembler::verify_coop(Register coop, const char* msg) {
|
|
if (!VerifyOops) { return; }
|
|
if (UseCompressedOops) { decode_heap_oop(coop); }
|
|
verify_oop(coop, msg);
|
|
if (UseCompressedOops) { encode_heap_oop(coop, coop); }
|
|
}
|
|
|
|
// READ: oop. KILL: R0. Volatile floats perhaps.
|
|
void MacroAssembler::verify_oop(Register oop, const char* msg) {
|
|
if (!VerifyOops) {
|
|
return;
|
|
}
|
|
|
|
address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
|
|
const Register tmp = R11; // Will be preserved.
|
|
const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
|
|
|
|
BLOCK_COMMENT("verify_oop {");
|
|
|
|
save_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
|
|
mr_if_needed(R4_ARG2, oop);
|
|
save_LR_CR(tmp); // save in old frame
|
|
push_frame_reg_args(nbytes_save, tmp);
|
|
// load FunctionDescriptor** / entry_address *
|
|
load_const_optimized(tmp, fd, R0);
|
|
// load FunctionDescriptor* / entry_address
|
|
ld(tmp, 0, tmp);
|
|
load_const_optimized(R3_ARG1, (address)msg, R0);
|
|
// Call destination for its side effect.
|
|
call_c(tmp);
|
|
|
|
pop_frame();
|
|
restore_LR_CR(tmp);
|
|
restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
|
|
BLOCK_COMMENT("} verify_oop");
|
|
}
|
|
|
|
void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
|
|
if (!VerifyOops) {
|
|
return;
|
|
}
|
|
|
|
address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
|
|
const Register tmp = R11; // Will be preserved.
|
|
const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
|
|
save_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
|
|
ld(R4_ARG2, offs, base);
|
|
save_LR_CR(tmp); // save in old frame
|
|
push_frame_reg_args(nbytes_save, tmp);
|
|
// load FunctionDescriptor** / entry_address *
|
|
load_const_optimized(tmp, fd, R0);
|
|
// load FunctionDescriptor* / entry_address
|
|
ld(tmp, 0, tmp);
|
|
load_const_optimized(R3_ARG1, (address)msg, R0);
|
|
// Call destination for its side effect.
|
|
call_c(tmp);
|
|
|
|
pop_frame();
|
|
restore_LR_CR(tmp);
|
|
restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
}
|
|
|
|
// Call a C-function that prints output.
|
|
void MacroAssembler::stop(int type, const char* msg) {
|
|
bool msg_present = (msg != nullptr);
|
|
|
|
#ifndef PRODUCT
|
|
block_comment(err_msg("stop(type %d): %s {", type, msg_present ? msg : "null"));
|
|
#else
|
|
block_comment("stop {");
|
|
#endif
|
|
|
|
if (msg_present) {
|
|
type |= stop_msg_present;
|
|
}
|
|
tdi_unchecked(traptoUnconditional, 0/*reg 0*/, type);
|
|
if (msg_present) {
|
|
emit_int64((uintptr_t)msg);
|
|
}
|
|
|
|
block_comment("} stop;");
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Write pattern 0x0101010101010101 in memory region [low-before, high+after].
|
|
// Val, addr are temp registers.
|
|
// If low == addr, addr is killed.
|
|
// High is preserved.
|
|
void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
|
|
if (!ZapMemory) return;
|
|
|
|
assert_different_registers(low, val);
|
|
|
|
BLOCK_COMMENT("zap memory region {");
|
|
load_const_optimized(val, 0x0101010101010101);
|
|
int size = before + after;
|
|
if (low == high && size < 5 && size > 0) {
|
|
int offset = -before*BytesPerWord;
|
|
for (int i = 0; i < size; ++i) {
|
|
std(val, offset, low);
|
|
offset += (1*BytesPerWord);
|
|
}
|
|
} else {
|
|
addi(addr, low, -before*BytesPerWord);
|
|
assert_different_registers(high, val);
|
|
if (after) addi(high, high, after * BytesPerWord);
|
|
Label loop;
|
|
bind(loop);
|
|
std(val, 0, addr);
|
|
addi(addr, addr, 8);
|
|
cmpd(CCR6, addr, high);
|
|
ble(CCR6, loop);
|
|
if (after) addi(high, high, -after * BytesPerWord); // Correct back to old value.
|
|
}
|
|
BLOCK_COMMENT("} zap memory region");
|
|
}
|
|
|
|
#endif // !PRODUCT
|
|
|
|
void SkipIfEqualZero::skip_to_label_if_equal_zero(MacroAssembler* masm, Register temp,
|
|
const bool* flag_addr, Label& label) {
|
|
int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
|
|
assert(sizeof(bool) == 1, "PowerPC ABI");
|
|
masm->lbz(temp, simm16_offset, temp);
|
|
masm->cmpwi(CCR0, temp, 0);
|
|
masm->beq(CCR0, label);
|
|
}
|
|
|
|
SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
|
|
skip_to_label_if_equal_zero(masm, temp, flag_addr, _label);
|
|
}
|
|
|
|
SkipIfEqualZero::~SkipIfEqualZero() {
|
|
_masm->bind(_label);
|
|
}
|
|
|
|
void MacroAssembler::cache_wb(Address line) {
|
|
assert(line.index() == noreg, "index should be noreg");
|
|
assert(line.disp() == 0, "displacement should be 0");
|
|
assert(VM_Version::supports_data_cache_line_flush(), "CPU or OS does not support flush to persistent memory");
|
|
// Data Cache Store, not really a flush, so it works like a sync of cache
|
|
// line and persistent mem, i.e. copying the cache line to persistent whilst
|
|
// not invalidating the cache line.
|
|
dcbst(line.base());
|
|
}
|
|
|
|
void MacroAssembler::cache_wbsync(bool is_presync) {
|
|
assert(VM_Version::supports_data_cache_line_flush(), "CPU or OS does not support sync related to persistent memory");
|
|
// We only need a post sync barrier. Post means _after_ a cache line flush or
|
|
// store instruction, pre means a barrier emitted before such a instructions.
|
|
if (!is_presync) {
|
|
fence();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::push_cont_fastpath() {
|
|
Label done;
|
|
ld_ptr(R0, JavaThread::cont_fastpath_offset(), R16_thread);
|
|
cmpld(CCR0, R1_SP, R0);
|
|
ble(CCR0, done);
|
|
st_ptr(R1_SP, JavaThread::cont_fastpath_offset(), R16_thread);
|
|
bind(done);
|
|
}
|
|
|
|
void MacroAssembler::pop_cont_fastpath() {
|
|
Label done;
|
|
ld_ptr(R0, JavaThread::cont_fastpath_offset(), R16_thread);
|
|
cmpld(CCR0, R1_SP, R0);
|
|
ble(CCR0, done);
|
|
li(R0, 0);
|
|
st_ptr(R0, JavaThread::cont_fastpath_offset(), R16_thread);
|
|
bind(done);
|
|
}
|
|
|
|
// Note: Must preserve CCR0 EQ (invariant).
|
|
void MacroAssembler::inc_held_monitor_count(Register tmp) {
|
|
ld(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
|
|
#ifdef ASSERT
|
|
Label ok;
|
|
cmpdi(CCR0, tmp, 0);
|
|
bge_predict_taken(CCR0, ok);
|
|
stop("held monitor count is negativ at increment");
|
|
bind(ok);
|
|
crorc(CCR0, Assembler::equal, CCR0, Assembler::equal); // Restore CCR0 EQ
|
|
#endif
|
|
addi(tmp, tmp, 1);
|
|
std(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
|
|
}
|
|
|
|
// Note: Must preserve CCR0 EQ (invariant).
|
|
void MacroAssembler::dec_held_monitor_count(Register tmp) {
|
|
ld(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
|
|
#ifdef ASSERT
|
|
Label ok;
|
|
cmpdi(CCR0, tmp, 0);
|
|
bgt_predict_taken(CCR0, ok);
|
|
stop("held monitor count is <= 0 at decrement");
|
|
bind(ok);
|
|
crorc(CCR0, Assembler::equal, CCR0, Assembler::equal); // Restore CCR0 EQ
|
|
#endif
|
|
addi(tmp, tmp, -1);
|
|
std(tmp, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
|
|
}
|
|
|
|
// Function to flip between unlocked and locked state (fast locking).
|
|
// Branches to failed if the state is not as expected with CCR0 NE.
|
|
// Falls through upon success with CCR0 EQ.
|
|
// This requires fewer instructions and registers and is easier to use than the
|
|
// cmpxchg based implementation.
|
|
void MacroAssembler::atomically_flip_locked_state(bool is_unlock, Register obj, Register tmp, Label& failed, int semantics) {
|
|
assert_different_registers(obj, tmp, R0);
|
|
Label retry;
|
|
|
|
if (semantics & MemBarRel) {
|
|
release();
|
|
}
|
|
|
|
bind(retry);
|
|
STATIC_ASSERT(markWord::locked_value == 0); // Or need to change this!
|
|
if (!is_unlock) {
|
|
ldarx(tmp, obj, MacroAssembler::cmpxchgx_hint_acquire_lock());
|
|
xori(tmp, tmp, markWord::unlocked_value); // flip unlocked bit
|
|
andi_(R0, tmp, markWord::lock_mask_in_place);
|
|
bne(CCR0, failed); // failed if new header doesn't contain locked_value (which is 0)
|
|
} else {
|
|
ldarx(tmp, obj, MacroAssembler::cmpxchgx_hint_release_lock());
|
|
andi_(R0, tmp, markWord::lock_mask_in_place);
|
|
bne(CCR0, failed); // failed if old header doesn't contain locked_value (which is 0)
|
|
ori(tmp, tmp, markWord::unlocked_value); // set unlocked bit
|
|
}
|
|
stdcx_(tmp, obj);
|
|
bne(CCR0, retry);
|
|
|
|
if (semantics & MemBarFenceAfter) {
|
|
fence();
|
|
} else if (semantics & MemBarAcq) {
|
|
isync();
|
|
}
|
|
}
|
|
|
|
// Implements lightweight-locking.
|
|
//
|
|
// - obj: the object to be locked
|
|
// - t1, t2: temporary register
|
|
void MacroAssembler::lightweight_lock(Register obj, Register t1, Register t2, Label& slow) {
|
|
assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
|
|
assert_different_registers(obj, t1, t2);
|
|
|
|
Label push;
|
|
const Register top = t1;
|
|
const Register mark = t2;
|
|
const Register t = R0;
|
|
|
|
// Check if the lock-stack is full.
|
|
lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
cmplwi(CCR0, top, LockStack::end_offset());
|
|
bge(CCR0, slow);
|
|
|
|
// The underflow check is elided. The recursive check will always fail
|
|
// when the lock stack is empty because of the _bad_oop_sentinel field.
|
|
|
|
// Check for recursion.
|
|
subi(t, top, oopSize);
|
|
ldx(t, R16_thread, t);
|
|
cmpd(CCR0, obj, t);
|
|
beq(CCR0, push);
|
|
|
|
// Check header for monitor (0b10) or locked (0b00).
|
|
ld(mark, oopDesc::mark_offset_in_bytes(), obj);
|
|
xori(t, mark, markWord::unlocked_value);
|
|
andi_(t, t, markWord::lock_mask_in_place);
|
|
bne(CCR0, slow);
|
|
|
|
// Try to lock. Transition lock bits 0b00 => 0b01
|
|
atomically_flip_locked_state(/* is_unlock */ false, obj, mark, slow, MacroAssembler::MemBarAcq);
|
|
|
|
bind(push);
|
|
// After successful lock, push object on lock-stack
|
|
stdx(obj, R16_thread, top);
|
|
addi(top, top, oopSize);
|
|
stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
}
|
|
|
|
// Implements lightweight-unlocking.
|
|
//
|
|
// - obj: the object to be unlocked
|
|
// - t1: temporary register
|
|
void MacroAssembler::lightweight_unlock(Register obj, Register t1, Label& slow) {
|
|
assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
|
|
assert_different_registers(obj, t1);
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
// The following checks rely on the fact that LockStack is only ever modified by
|
|
// its owning thread, even if the lock got inflated concurrently; removal of LockStack
|
|
// entries after inflation will happen delayed in that case.
|
|
|
|
// Check for lock-stack underflow.
|
|
Label stack_ok;
|
|
lwz(t1, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
cmplwi(CCR0, t1, LockStack::start_offset());
|
|
bge(CCR0, stack_ok);
|
|
stop("Lock-stack underflow");
|
|
bind(stack_ok);
|
|
}
|
|
#endif
|
|
|
|
Label unlocked, push_and_slow;
|
|
const Register top = t1;
|
|
const Register mark = R0;
|
|
Register t = R0;
|
|
|
|
// Check if obj is top of lock-stack.
|
|
lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
subi(top, top, oopSize);
|
|
ldx(t, R16_thread, top);
|
|
cmpd(CCR0, obj, t);
|
|
bne(CCR0, slow);
|
|
|
|
// Pop lock-stack.
|
|
DEBUG_ONLY(li(t, 0);)
|
|
DEBUG_ONLY(stdx(t, R16_thread, top);)
|
|
stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
|
|
// The underflow check is elided. The recursive check will always fail
|
|
// when the lock stack is empty because of the _bad_oop_sentinel field.
|
|
|
|
// Check if recursive.
|
|
subi(t, top, oopSize);
|
|
ldx(t, R16_thread, t);
|
|
cmpd(CCR0, obj, t);
|
|
beq(CCR0, unlocked);
|
|
|
|
// Use top as tmp
|
|
t = top;
|
|
|
|
// Not recursive. Check header for monitor (0b10).
|
|
ld(mark, oopDesc::mark_offset_in_bytes(), obj);
|
|
andi_(t, mark, markWord::monitor_value);
|
|
bne(CCR0, push_and_slow);
|
|
|
|
#ifdef ASSERT
|
|
// Check header not unlocked (0b01).
|
|
Label not_unlocked;
|
|
andi_(t, mark, markWord::unlocked_value);
|
|
beq(CCR0, not_unlocked);
|
|
stop("lightweight_unlock already unlocked");
|
|
bind(not_unlocked);
|
|
#endif
|
|
|
|
// Try to unlock. Transition lock bits 0b00 => 0b01
|
|
atomically_flip_locked_state(/* is_unlock */ true, obj, t, push_and_slow, MacroAssembler::MemBarRel);
|
|
b(unlocked);
|
|
|
|
bind(push_and_slow);
|
|
|
|
// Restore lock-stack and handle the unlock in runtime.
|
|
lwz(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
DEBUG_ONLY(stdx(obj, R16_thread, top);)
|
|
addi(top, top, oopSize);
|
|
stw(top, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread);
|
|
b(slow);
|
|
|
|
bind(unlocked);
|
|
}
|