jdk/src/hotspot/cpu/riscv/c1_Runtime1_riscv.cpp
Coleen Phillimore 0cfd08f55a 8339112: Move JVM Klass flags out of AccessFlags
Reviewed-by: matsaave, cjplummer, dlong, thartmann, yzheng
2024-09-04 15:48:32 +00:00

1068 lines
36 KiB
C++

/*
* Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "c1/c1_CodeStubs.hpp"
#include "c1/c1_Defs.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "compiler/disassembler.hpp"
#include "compiler/oopMap.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/universe.hpp"
#include "nativeInst_riscv.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "register_riscv.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/vframe.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/powerOfTwo.hpp"
#include "vmreg_riscv.inline.hpp"
// Implementation of StubAssembler
int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, int args_size) {
// setup registers
assert(!(oop_result->is_valid() || metadata_result->is_valid()) || oop_result != metadata_result,
"registers must be different");
assert(oop_result != xthread && metadata_result != xthread, "registers must be different");
assert(args_size >= 0, "illegal args_size");
bool align_stack = false;
mv(c_rarg0, xthread);
set_num_rt_args(0); // Nothing on stack
Label retaddr;
set_last_Java_frame(sp, fp, retaddr, t0);
// do the call
rt_call(entry);
bind(retaddr);
int call_offset = offset();
// verify callee-saved register
#ifdef ASSERT
push_reg(x10, sp);
{ Label L;
get_thread(x10);
beq(xthread, x10, L);
stop("StubAssembler::call_RT: xthread not callee saved?");
bind(L);
}
pop_reg(x10, sp);
#endif
reset_last_Java_frame(true);
// check for pending exceptions
{ Label L;
// check for pending exceptions (java_thread is set upon return)
ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
beqz(t0, L);
// exception pending => remove activation and forward to exception handler
// make sure that the vm_results are cleared
if (oop_result->is_valid()) {
sd(zr, Address(xthread, JavaThread::vm_result_offset()));
}
if (metadata_result->is_valid()) {
sd(zr, Address(xthread, JavaThread::vm_result_2_offset()));
}
if (frame_size() == no_frame_size) {
leave();
far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
} else if (_stub_id == Runtime1::forward_exception_id) {
should_not_reach_here();
} else {
far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
}
bind(L);
}
// get oop results if there are any and reset the values in the thread
if (oop_result->is_valid()) {
get_vm_result(oop_result, xthread);
}
if (metadata_result->is_valid()) {
get_vm_result_2(metadata_result, xthread);
}
return call_offset;
}
int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, Register arg1) {
mv(c_rarg1, arg1);
return call_RT(oop_result, metadata_result, entry, 1);
}
int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, Register arg1, Register arg2) {
const int arg_num = 2;
if (c_rarg1 == arg2) {
if (c_rarg2 == arg1) {
xorr(arg1, arg1, arg2);
xorr(arg2, arg1, arg2);
xorr(arg1, arg1, arg2);
} else {
mv(c_rarg2, arg2);
mv(c_rarg1, arg1);
}
} else {
mv(c_rarg1, arg1);
mv(c_rarg2, arg2);
}
return call_RT(oop_result, metadata_result, entry, arg_num);
}
int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
const int arg_num = 3;
// if there is any conflict use the stack
if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
arg2 == c_rarg1 || arg2 == c_rarg3 ||
arg3 == c_rarg1 || arg3 == c_rarg2) {
const int arg1_sp_offset = 0;
const int arg2_sp_offset = 1;
const int arg3_sp_offset = 2;
addi(sp, sp, -(arg_num + 1) * wordSize);
sd(arg1, Address(sp, arg1_sp_offset * wordSize));
sd(arg2, Address(sp, arg2_sp_offset * wordSize));
sd(arg3, Address(sp, arg3_sp_offset * wordSize));
ld(c_rarg1, Address(sp, arg1_sp_offset * wordSize));
ld(c_rarg2, Address(sp, arg2_sp_offset * wordSize));
ld(c_rarg3, Address(sp, arg3_sp_offset * wordSize));
addi(sp, sp, (arg_num + 1) * wordSize);
} else {
mv(c_rarg1, arg1);
mv(c_rarg2, arg2);
mv(c_rarg3, arg3);
}
return call_RT(oop_result, metadata_result, entry, arg_num);
}
enum return_state_t {
does_not_return, requires_return
};
// Implementation of StubFrame
class StubFrame: public StackObj {
private:
StubAssembler* _sasm;
bool _return_state;
public:
StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments, return_state_t return_state=requires_return);
void load_argument(int offset_in_words, Register reg);
~StubFrame();
};;
void StubAssembler::prologue(const char* name, bool must_gc_arguments) {
set_info(name, must_gc_arguments);
enter();
}
void StubAssembler::epilogue() {
leave();
ret();
}
#define __ _sasm->
StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments, return_state_t return_state) {
_sasm = sasm;
_return_state = return_state;
__ prologue(name, must_gc_arguments);
}
// load parameters that were stored with LIR_Assembler::store_parameter
// Note: offsets for store_parameter and load_argument must match
void StubFrame::load_argument(int offset_in_words, Register reg) {
__ load_parameter(offset_in_words, reg);
}
StubFrame::~StubFrame() {
if (_return_state == requires_return) {
__ epilogue();
} else {
__ should_not_reach_here();
}
_sasm = nullptr;
}
#undef __
// Implementation of Runtime1
#define __ sasm->
// Stack layout for saving/restoring all the registers needed during a runtime
// call (this includes deoptimization)
// Note: note that users of this frame may well have arguments to some runtime
// while these values are on the stack. These positions neglect those arguments
// but the code in save_live_registers will take the argument count into
// account.
//
enum reg_save_layout {
reg_save_frame_size = 32 /* float */ + 30 /* integer excluding x3, x4 */
};
// Save off registers which might be killed by calls into the runtime.
// Tries to smart of about FPU registers. In particular we separate
// saving and describing the FPU registers for deoptimization since we
// have to save the FPU registers twice if we describe them. The
// deopt blob is the only thing which needs to describe FPU registers.
// In all other cases it should be sufficient to simply save their
// current value.
static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs];
static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs];
static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) {
int frame_size_in_bytes = reg_save_frame_size * BytesPerWord;
sasm->set_frame_size(frame_size_in_bytes / BytesPerWord);
int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
assert_cond(oop_map != nullptr);
// caller save registers only, see FrameMap::initialize
// in c1_FrameMap_riscv.cpp for detail.
const static Register caller_save_cpu_regs[FrameMap::max_nof_caller_save_cpu_regs] = {
x7, x10, x11, x12, x13, x14, x15, x16, x17, x28, x29, x30, x31
};
for (int i = 0; i < FrameMap::max_nof_caller_save_cpu_regs; i++) {
Register r = caller_save_cpu_regs[i];
int sp_offset = cpu_reg_save_offsets[r->encoding()];
oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
r->as_VMReg());
}
// fpu_regs
if (save_fpu_registers) {
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
FloatRegister r = as_FloatRegister(i);
int sp_offset = fpu_reg_save_offsets[i];
oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
r->as_VMReg());
}
}
return oop_map;
}
static OopMap* save_live_registers(StubAssembler* sasm,
bool save_fpu_registers = true) {
__ block_comment("save_live_registers");
// if the number of pushed regs is odd, one slot will be reserved for alignment
__ push_reg(RegSet::range(x5, x31), sp); // integer registers except ra(x1) & sp(x2) & gp(x3) & tp(x4)
if (save_fpu_registers) {
// float registers
__ addi(sp, sp, -(FrameMap::nof_fpu_regs * wordSize));
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
__ fsd(as_FloatRegister(i), Address(sp, i * wordSize));
}
} else {
// we define reg_save_layout = 62 as the fixed frame size,
// we should also sub 32 * wordSize to sp when save_fpu_registers == false
__ addi(sp, sp, -32 * wordSize);
}
return generate_oop_map(sasm, save_fpu_registers);
}
static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
if (restore_fpu_registers) {
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
__ fld(as_FloatRegister(i), Address(sp, i * wordSize));
}
__ addi(sp, sp, FrameMap::nof_fpu_regs * wordSize);
} else {
// we define reg_save_layout = 64 as the fixed frame size,
// we should also add 32 * wordSize to sp when save_fpu_registers == false
__ addi(sp, sp, 32 * wordSize);
}
// if the number of popped regs is odd, the reserved slot for alignment will be removed
__ pop_reg(RegSet::range(x5, x31), sp); // integer registers except ra(x1) & sp(x2) & gp(x3) & tp(x4)
}
static void restore_live_registers_except_r10(StubAssembler* sasm, bool restore_fpu_registers = true) {
if (restore_fpu_registers) {
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
__ fld(as_FloatRegister(i), Address(sp, i * wordSize));
}
__ addi(sp, sp, FrameMap::nof_fpu_regs * wordSize);
} else {
// we define reg_save_layout = 64 as the fixed frame size,
// we should also add 32 * wordSize to sp when save_fpu_registers == false
__ addi(sp, sp, 32 * wordSize);
}
// pop integer registers except ra(x1) & sp(x2) & gp(x3) & tp(x4) & x10
// there is one reserved slot for alignment on the stack in save_live_registers().
__ pop_reg(RegSet::range(x5, x9), sp); // pop x5 ~ x9 with the reserved slot for alignment
__ pop_reg(RegSet::range(x11, x31), sp); // pop x11 ~ x31; x10 will be automatically skipped here
}
void Runtime1::initialize_pd() {
int i = 0;
int sp_offset = 0;
const int step = 2; // SP offsets are in halfwords
// all float registers are saved explicitly
for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
fpu_reg_save_offsets[i] = sp_offset;
sp_offset += step;
}
// a slot reserved for stack 16-byte alignment, see MacroAssembler::push_reg
sp_offset += step;
// we save x5 ~ x31, except x0 ~ x4: loop starts from x5
for (i = 5; i < FrameMap::nof_cpu_regs; i++) {
cpu_reg_save_offsets[i] = sp_offset;
sp_offset += step;
}
}
// target: the entry point of the method that creates and posts the exception oop
// has_argument: true if the exception needs arguments (passed in t0 and t1)
OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
// make a frame and preserve the caller's caller-save registers
OopMap* oop_map = save_live_registers(sasm);
assert_cond(oop_map != nullptr);
int call_offset = 0;
if (!has_argument) {
call_offset = __ call_RT(noreg, noreg, target);
} else {
__ mv(c_rarg1, t0);
__ mv(c_rarg2, t1);
call_offset = __ call_RT(noreg, noreg, target);
}
OopMapSet* oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, oop_map);
return oop_maps;
}
OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
__ block_comment("generate_handle_exception");
// incoming parameters
const Register exception_oop = x10;
const Register exception_pc = x13;
OopMapSet* oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
OopMap* oop_map = nullptr;
switch (id) {
case forward_exception_id:
// We're handling an exception in the context of a compiled frame.
// The registers have been saved in the standard places. Perform
// an exception lookup in the caller and dispatch to the handler
// if found. Otherwise unwind and dispatch to the callers
// exception handler.
oop_map = generate_oop_map(sasm, 1 /* thread */);
// load and clear pending exception oop into x10
__ ld(exception_oop, Address(xthread, Thread::pending_exception_offset()));
__ sd(zr, Address(xthread, Thread::pending_exception_offset()));
// load issuing PC (the return address for this stub) into x13
__ ld(exception_pc, Address(fp, frame::return_addr_offset * BytesPerWord));
// make sure that the vm_results are cleared (may be unnecessary)
__ sd(zr, Address(xthread, JavaThread::vm_result_offset()));
__ sd(zr, Address(xthread, JavaThread::vm_result_2_offset()));
break;
case handle_exception_nofpu_id:
case handle_exception_id:
// At this point all registers MAY be live.
oop_map = save_live_registers(sasm, id != handle_exception_nofpu_id);
break;
case handle_exception_from_callee_id: {
// At this point all registers except exception oop (x10) and
// exception pc (ra) are dead.
const int frame_size = 2 /* fp, return address */;
oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
sasm->set_frame_size(frame_size);
break;
}
default: ShouldNotReachHere();
}
// verify that only x10 and x13 are valid at this time
__ invalidate_registers(false, true, true, false, true, true);
// verify that x10 contains a valid exception
__ verify_not_null_oop(exception_oop);
#ifdef ASSERT
// check that fields in JavaThread for exception oop and issuing pc are
// empty before writing to them
Label oop_empty;
__ ld(t0, Address(xthread, JavaThread::exception_oop_offset()));
__ beqz(t0, oop_empty);
__ stop("exception oop already set");
__ bind(oop_empty);
Label pc_empty;
__ ld(t0, Address(xthread, JavaThread::exception_pc_offset()));
__ beqz(t0, pc_empty);
__ stop("exception pc already set");
__ bind(pc_empty);
#endif
// save exception oop and issuing pc into JavaThread
// (exception handler will load it from here)
__ sd(exception_oop, Address(xthread, JavaThread::exception_oop_offset()));
__ sd(exception_pc, Address(xthread, JavaThread::exception_pc_offset()));
// patch throwing pc into return address (has bci & oop map)
__ sd(exception_pc, Address(fp, frame::return_addr_offset * BytesPerWord));
// compute the exception handler.
// the exception oop and the throwing pc are read from the fields in JavaThread
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
guarantee(oop_map != nullptr, "null oop_map!");
oop_maps->add_gc_map(call_offset, oop_map);
// x10: handler address
// will be the deopt blob if nmethod was deoptimized while we looked up
// handler regardless of whether handler existed in the nmethod.
// only x10 is valid at this time, all other registers have been destroyed by the runtime call
__ invalidate_registers(false, true, true, true, true, true);
// patch the return address, this stub will directly return to the exception handler
__ sd(x10, Address(fp, frame::return_addr_offset * BytesPerWord));
switch (id) {
case forward_exception_id:
case handle_exception_nofpu_id:
case handle_exception_id:
// Restore the registers that were saved at the beginning.
restore_live_registers(sasm, id != handle_exception_nofpu_id);
break;
case handle_exception_from_callee_id:
break;
default: ShouldNotReachHere();
}
return oop_maps;
}
void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
// incoming parameters
const Register exception_oop = x10;
// other registers used in this stub
const Register handler_addr = x11;
if (AbortVMOnException) {
__ enter();
save_live_registers(sasm);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, check_abort_on_vm_exception), x10);
restore_live_registers(sasm);
__ leave();
}
// verify that only x10, is valid at this time
__ invalidate_registers(false, true, true, true, true, true);
#ifdef ASSERT
// check that fields in JavaThread for exception oop and issuing pc are empty
Label oop_empty;
__ ld(t0, Address(xthread, JavaThread::exception_oop_offset()));
__ beqz(t0, oop_empty);
__ stop("exception oop must be empty");
__ bind(oop_empty);
Label pc_empty;
__ ld(t0, Address(xthread, JavaThread::exception_pc_offset()));
__ beqz(t0, pc_empty);
__ stop("exception pc must be empty");
__ bind(pc_empty);
#endif
// Save our return address because
// exception_handler_for_return_address will destroy it. We also
// save exception_oop
__ addi(sp, sp, -2 * wordSize);
__ sd(exception_oop, Address(sp, wordSize));
__ sd(ra, Address(sp));
// search the exception handler address of the caller (using the return address)
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, ra);
// x10: exception handler address of the caller
// Only x10 is valid at this time; all other registers have been
// destroyed by the call.
__ invalidate_registers(false, true, true, true, false, true);
// move result of call into correct register
__ mv(handler_addr, x10);
// get throwing pc (= return address).
// ra has been destroyed by the call
__ ld(ra, Address(sp));
__ ld(exception_oop, Address(sp, wordSize));
__ addi(sp, sp, 2 * wordSize);
__ mv(x13, ra);
__ verify_not_null_oop(exception_oop);
// continue at exception handler (return address removed)
// note: do *not* remove arguments when unwinding the
// activation since the caller assumes having
// all arguments on the stack when entering the
// runtime to determine the exception handler
// (GC happens at call site with arguments!)
// x10: exception oop
// x13: throwing pc
// x11: exception handler
__ jr(handler_addr);
}
OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
// use the maximum number of runtime-arguments here because it is difficult to
// distinguish each RT-Call.
// Note: This number affects also the RT-Call in generate_handle_exception because
// the oop-map is shared for all calls.
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != nullptr, "deoptimization blob must have been created");
OopMap* oop_map = save_live_registers(sasm);
assert_cond(oop_map != nullptr);
__ mv(c_rarg0, xthread);
Label retaddr;
__ set_last_Java_frame(sp, fp, retaddr, t0);
// do the call
__ rt_call(target);
__ bind(retaddr);
OopMapSet* oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(__ offset(), oop_map);
// verify callee-saved register
#ifdef ASSERT
{ Label L;
__ get_thread(t0);
__ beq(xthread, t0, L);
__ stop("StubAssembler::call_RT: xthread not callee saved?");
__ bind(L);
}
#endif
__ reset_last_Java_frame(true);
#ifdef ASSERT
// Check that fields in JavaThread for exception oop and issuing pc are empty
Label oop_empty;
__ ld(t0, Address(xthread, Thread::pending_exception_offset()));
__ beqz(t0, oop_empty);
__ stop("exception oop must be empty");
__ bind(oop_empty);
Label pc_empty;
__ ld(t0, Address(xthread, JavaThread::exception_pc_offset()));
__ beqz(t0, pc_empty);
__ stop("exception pc must be empty");
__ bind(pc_empty);
#endif
// Runtime will return true if the nmethod has been deoptimized, this is the
// expected scenario and anything else is an error. Note that we maintain a
// check on the result purely as a defensive measure.
Label no_deopt;
__ beqz(x10, no_deopt); // Have we deoptimized?
// Perform a re-execute. The proper return address is already on the stack,
// we just need to restore registers, pop all of our frames but the return
// address and jump to the deopt blob.
restore_live_registers(sasm);
__ leave();
__ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
__ bind(no_deopt);
__ stop("deopt not performed");
return oop_maps;
}
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
// for better readability
const bool dont_gc_arguments = false;
// default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
bool save_fpu_registers = true;
// stub code & info for the different stubs
OopMapSet* oop_maps = nullptr;
switch (id) {
{
case forward_exception_id:
{
oop_maps = generate_handle_exception(id, sasm);
__ leave();
__ ret();
}
break;
case throw_div0_exception_id:
{
StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments, does_not_return);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
}
break;
case throw_null_pointer_exception_id:
{ StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments, does_not_return);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
}
break;
case new_instance_id:
case fast_new_instance_id:
case fast_new_instance_init_check_id:
{
Register klass = x13; // Incoming
Register obj = x10; // Result
if (id == new_instance_id) {
__ set_info("new_instance", dont_gc_arguments);
} else if (id == fast_new_instance_id) {
__ set_info("fast new_instance", dont_gc_arguments);
} else {
assert(id == fast_new_instance_init_check_id, "bad StubID");
__ set_info("fast new_instance init check", dont_gc_arguments);
}
__ enter();
OopMap* map = save_live_registers(sasm);
assert_cond(map != nullptr);
int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_r10(sasm);
__ verify_oop(obj);
__ leave();
__ ret();
// x10: new instance
}
break;
case counter_overflow_id:
{
Register bci = x10;
Register method = x11;
__ enter();
OopMap* map = save_live_registers(sasm);
assert_cond(map != nullptr);
const int bci_off = 0;
const int method_off = 1;
// Retrieve bci
__ lw(bci, Address(fp, bci_off * BytesPerWord));
// And a pointer to the Method*
__ ld(method, Address(fp, method_off * BytesPerWord));
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
__ leave();
__ ret();
}
break;
case new_type_array_id:
case new_object_array_id:
{
Register length = x9; // Incoming
Register klass = x13; // Incoming
Register obj = x10; // Result
if (id == new_type_array_id) {
__ set_info("new_type_array", dont_gc_arguments);
} else {
__ set_info("new_object_array", dont_gc_arguments);
}
#ifdef ASSERT
// assert object type is really an array of the proper kind
{
Label ok;
Register tmp = obj;
__ lwu(tmp, Address(klass, Klass::layout_helper_offset()));
__ sraiw(tmp, tmp, Klass::_lh_array_tag_shift);
int tag = ((id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value);
__ mv(t0, tag);
__ beq(t0, tmp, ok);
__ stop("assert(is an array klass)");
__ should_not_reach_here();
__ bind(ok);
}
#endif // ASSERT
__ enter();
OopMap* map = save_live_registers(sasm);
assert_cond(map != nullptr);
int call_offset = 0;
if (id == new_type_array_id) {
call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
} else {
call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
}
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_r10(sasm);
__ verify_oop(obj);
__ leave();
__ ret();
// x10: new array
}
break;
case new_multi_array_id:
{
StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
// x10: klass
// x9: rank
// x12: address of 1st dimension
OopMap* map = save_live_registers(sasm);
assert_cond(map != nullptr);
__ mv(c_rarg1, x10);
__ mv(c_rarg3, x12);
__ mv(c_rarg2, x9);
int call_offset = __ call_RT(x10, noreg, CAST_FROM_FN_PTR(address, new_multi_array), x11, x12, x13);
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_r10(sasm);
// x10: new multi array
__ verify_oop(x10);
}
break;
case register_finalizer_id:
{
__ set_info("register_finalizer", dont_gc_arguments);
// This is called via call_runtime so the arguments
// will be place in C abi locations
__ verify_oop(c_rarg0);
// load the klass and check the has finalizer flag
Label register_finalizer;
Register t = x15;
__ load_klass(t, x10);
__ lbu(t, Address(t, Klass::misc_flags_offset()));
__ test_bit(t0, t, exact_log2(KlassFlags::_misc_has_finalizer));
__ bnez(t0, register_finalizer);
__ ret();
__ bind(register_finalizer);
__ enter();
OopMap* oop_map = save_live_registers(sasm);
assert_cond(oop_map != nullptr);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), x10);
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, oop_map);
// Now restore all the live registers
restore_live_registers(sasm);
__ leave();
__ ret();
}
break;
case throw_class_cast_exception_id:
{
StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments, does_not_return);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
}
break;
case throw_incompatible_class_change_error_id:
{
StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments, does_not_return);
oop_maps = generate_exception_throw(sasm,
CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
}
break;
case slow_subtype_check_id:
{
// Typical calling sequence:
// push klass_RInfo (object klass or other subclass)
// push sup_k_RInfo (array element klass or other superclass)
// jump to slow_subtype_check
// Note that the subclass is pushed first, and is therefore deepest.
enum layout {
x10_off, x10_off_hi,
x12_off, x12_off_hi,
x14_off, x14_off_hi,
x15_off, x15_off_hi,
sup_k_off, sup_k_off_hi,
klass_off, klass_off_hi,
framesize,
result_off = sup_k_off
};
__ set_info("slow_subtype_check", dont_gc_arguments);
__ push_reg(RegSet::of(x10, x12, x14, x15), sp);
__ ld(x14, Address(sp, (klass_off) * VMRegImpl::stack_slot_size)); // sub klass
__ ld(x10, Address(sp, (sup_k_off) * VMRegImpl::stack_slot_size)); // super klass
Label miss;
__ check_klass_subtype_slow_path(x14, x10, x12, x15, nullptr, &miss);
// fallthrough on success:
__ mv(t0, 1);
__ sd(t0, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
__ pop_reg(RegSet::of(x10, x12, x14, x15), sp);
__ ret();
__ bind(miss);
__ sd(zr, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
__ pop_reg(RegSet::of(x10, x12, x14, x15), sp);
__ ret();
}
break;
case monitorenter_nofpu_id:
save_fpu_registers = false;
// fall through
case monitorenter_id:
{
StubFrame f(sasm, "monitorenter", dont_gc_arguments);
OopMap* map = save_live_registers(sasm, save_fpu_registers);
assert_cond(map != nullptr);
// Called with store_parameter and not C abi
f.load_argument(1, x10); // x10: object
f.load_argument(0, x11); // x11: lock address
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), x10, x11);
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm, save_fpu_registers);
}
break;
case monitorexit_nofpu_id:
save_fpu_registers = false;
// fall through
case monitorexit_id:
{
StubFrame f(sasm, "monitorexit", dont_gc_arguments);
OopMap* map = save_live_registers(sasm, save_fpu_registers);
assert_cond(map != nullptr);
// Called with store_parameter and not C abi
f.load_argument(0, x10); // x10: lock address
// note: really a leaf routine but must setup last java sp
// => use call_RT for now (speed can be improved by
// doing last java sp setup manually)
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), x10);
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm, save_fpu_registers);
}
break;
case deoptimize_id:
{
StubFrame f(sasm, "deoptimize", dont_gc_arguments, does_not_return);
OopMap* oop_map = save_live_registers(sasm);
assert_cond(oop_map != nullptr);
f.load_argument(0, c_rarg1);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), c_rarg1);
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != nullptr, "deoptimization blob must have been created");
__ leave();
__ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
}
break;
case throw_range_check_failed_id:
{
StubFrame f(sasm, "range_check_failed", dont_gc_arguments, does_not_return);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
}
break;
case unwind_exception_id:
{
__ set_info("unwind_exception", dont_gc_arguments);
// note: no stubframe since we are about to leave the current
// activation and we are calling a leaf VM function only.
generate_unwind_exception(sasm);
}
break;
case access_field_patching_id:
{
StubFrame f(sasm, "access_field_patching", dont_gc_arguments, does_not_return);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
}
break;
case load_klass_patching_id:
{
StubFrame f(sasm, "load_klass_patching", dont_gc_arguments, does_not_return);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
}
break;
case load_mirror_patching_id:
{
StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments, does_not_return);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
}
break;
case load_appendix_patching_id:
{
StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments, does_not_return);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
case handle_exception_nofpu_id:
case handle_exception_id:
{
StubFrame f(sasm, "handle_exception", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case handle_exception_from_callee_id:
{
StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case throw_index_exception_id:
{
StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments, does_not_return);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
}
break;
case throw_array_store_exception_id:
{
StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments, does_not_return);
// tos + 0: link
// + 1: return address
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
}
break;
case predicate_failed_trap_id:
{
StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments, does_not_return);
OopMap* map = save_live_registers(sasm);
assert_cond(map != nullptr);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
assert_cond(oop_maps != nullptr);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
__ leave();
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != nullptr, "deoptimization blob must have been created");
__ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
}
break;
case dtrace_object_alloc_id:
{ // c_rarg0: object
StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
save_live_registers(sasm);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), c_rarg0);
restore_live_registers(sasm);
}
break;
default:
{
StubFrame f(sasm, "unimplemented entry", dont_gc_arguments, does_not_return);
__ mv(x10, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), x10);
__ should_not_reach_here();
}
break;
}
}
return oop_maps;
}
#undef __
const char *Runtime1::pd_name_for_address(address entry) { Unimplemented(); }