mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-20 07:15:31 +00:00
1915 lines
68 KiB
C++
1915 lines
68 KiB
C++
/*
|
|
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "jvm.h"
|
|
#include "asm/macroAssembler.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "code/codeBlob.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "logging/logStream.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/stubCodeGenerator.hpp"
|
|
#include "runtime/vm_version.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
#include "utilities/virtualizationSupport.hpp"
|
|
|
|
#include OS_HEADER_INLINE(os)
|
|
|
|
int VM_Version::_cpu;
|
|
int VM_Version::_model;
|
|
int VM_Version::_stepping;
|
|
bool VM_Version::_has_intel_jcc_erratum;
|
|
VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
|
|
|
|
#define DECLARE_CPU_FEATURE_NAME(id, name, bit) name,
|
|
const char* VM_Version::_features_names[] = { CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_NAME)};
|
|
#undef DECLARE_CPU_FEATURE_FLAG
|
|
|
|
// Address of instruction which causes SEGV
|
|
address VM_Version::_cpuinfo_segv_addr = 0;
|
|
// Address of instruction after the one which causes SEGV
|
|
address VM_Version::_cpuinfo_cont_addr = 0;
|
|
|
|
static BufferBlob* stub_blob;
|
|
static const int stub_size = 2000;
|
|
|
|
extern "C" {
|
|
typedef void (*get_cpu_info_stub_t)(void*);
|
|
typedef void (*detect_virt_stub_t)(uint32_t, uint32_t*);
|
|
}
|
|
static get_cpu_info_stub_t get_cpu_info_stub = NULL;
|
|
static detect_virt_stub_t detect_virt_stub = NULL;
|
|
|
|
#ifdef _LP64
|
|
|
|
bool VM_Version::supports_clflush() {
|
|
// clflush should always be available on x86_64
|
|
// if not we are in real trouble because we rely on it
|
|
// to flush the code cache.
|
|
// Unfortunately, Assembler::clflush is currently called as part
|
|
// of generation of the code cache flush routine. This happens
|
|
// under Universe::init before the processor features are set
|
|
// up. Assembler::flush calls this routine to check that clflush
|
|
// is allowed. So, we give the caller a free pass if Universe init
|
|
// is still in progress.
|
|
assert ((!Universe::is_fully_initialized() || (_features & CPU_FLUSH) != 0), "clflush should be available");
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
class VM_Version_StubGenerator: public StubCodeGenerator {
|
|
public:
|
|
|
|
VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
|
|
|
|
address generate_get_cpu_info() {
|
|
// Flags to test CPU type.
|
|
const uint32_t HS_EFL_AC = 0x40000;
|
|
const uint32_t HS_EFL_ID = 0x200000;
|
|
// Values for when we don't have a CPUID instruction.
|
|
const int CPU_FAMILY_SHIFT = 8;
|
|
const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
|
|
const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
|
|
bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2);
|
|
|
|
Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
|
|
Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, ext_cpuid8, done, wrapup;
|
|
Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
|
|
|
|
StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
|
|
# define __ _masm->
|
|
|
|
address start = __ pc();
|
|
|
|
//
|
|
// void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
|
|
//
|
|
// LP64: rcx and rdx are first and second argument registers on windows
|
|
|
|
__ push(rbp);
|
|
#ifdef _LP64
|
|
__ mov(rbp, c_rarg0); // cpuid_info address
|
|
#else
|
|
__ movptr(rbp, Address(rsp, 8)); // cpuid_info address
|
|
#endif
|
|
__ push(rbx);
|
|
__ push(rsi);
|
|
__ pushf(); // preserve rbx, and flags
|
|
__ pop(rax);
|
|
__ push(rax);
|
|
__ mov(rcx, rax);
|
|
//
|
|
// if we are unable to change the AC flag, we have a 386
|
|
//
|
|
__ xorl(rax, HS_EFL_AC);
|
|
__ push(rax);
|
|
__ popf();
|
|
__ pushf();
|
|
__ pop(rax);
|
|
__ cmpptr(rax, rcx);
|
|
__ jccb(Assembler::notEqual, detect_486);
|
|
|
|
__ movl(rax, CPU_FAMILY_386);
|
|
__ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
|
|
__ jmp(done);
|
|
|
|
//
|
|
// If we are unable to change the ID flag, we have a 486 which does
|
|
// not support the "cpuid" instruction.
|
|
//
|
|
__ bind(detect_486);
|
|
__ mov(rax, rcx);
|
|
__ xorl(rax, HS_EFL_ID);
|
|
__ push(rax);
|
|
__ popf();
|
|
__ pushf();
|
|
__ pop(rax);
|
|
__ cmpptr(rcx, rax);
|
|
__ jccb(Assembler::notEqual, detect_586);
|
|
|
|
__ bind(cpu486);
|
|
__ movl(rax, CPU_FAMILY_486);
|
|
__ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
|
|
__ jmp(done);
|
|
|
|
//
|
|
// At this point, we have a chip which supports the "cpuid" instruction
|
|
//
|
|
__ bind(detect_586);
|
|
__ xorl(rax, rax);
|
|
__ cpuid();
|
|
__ orl(rax, rax);
|
|
__ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input
|
|
// value of at least 1, we give up and
|
|
// assume a 486
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
__ cmpl(rax, 0xa); // Is cpuid(0xB) supported?
|
|
__ jccb(Assembler::belowEqual, std_cpuid4);
|
|
|
|
//
|
|
// cpuid(0xB) Processor Topology
|
|
//
|
|
__ movl(rax, 0xb);
|
|
__ xorl(rcx, rcx); // Threads level
|
|
__ cpuid();
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
__ movl(rax, 0xb);
|
|
__ movl(rcx, 1); // Cores level
|
|
__ cpuid();
|
|
__ push(rax);
|
|
__ andl(rax, 0x1f); // Determine if valid topology level
|
|
__ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
|
|
__ andl(rax, 0xffff);
|
|
__ pop(rax);
|
|
__ jccb(Assembler::equal, std_cpuid4);
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
__ movl(rax, 0xb);
|
|
__ movl(rcx, 2); // Packages level
|
|
__ cpuid();
|
|
__ push(rax);
|
|
__ andl(rax, 0x1f); // Determine if valid topology level
|
|
__ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
|
|
__ andl(rax, 0xffff);
|
|
__ pop(rax);
|
|
__ jccb(Assembler::equal, std_cpuid4);
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// cpuid(0x4) Deterministic cache params
|
|
//
|
|
__ bind(std_cpuid4);
|
|
__ movl(rax, 4);
|
|
__ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
|
|
__ jccb(Assembler::greater, std_cpuid1);
|
|
|
|
__ xorl(rcx, rcx); // L1 cache
|
|
__ cpuid();
|
|
__ push(rax);
|
|
__ andl(rax, 0x1f); // Determine if valid cache parameters used
|
|
__ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache
|
|
__ pop(rax);
|
|
__ jccb(Assembler::equal, std_cpuid1);
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Standard cpuid(0x1)
|
|
//
|
|
__ bind(std_cpuid1);
|
|
__ movl(rax, 1);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Check if OS has enabled XGETBV instruction to access XCR0
|
|
// (OSXSAVE feature flag) and CPU supports AVX
|
|
//
|
|
__ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
|
|
__ cmpl(rcx, 0x18000000);
|
|
__ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
|
|
|
|
//
|
|
// XCR0, XFEATURE_ENABLED_MASK register
|
|
//
|
|
__ xorl(rcx, rcx); // zero for XCR0 register
|
|
__ xgetbv();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rdx);
|
|
|
|
//
|
|
// cpuid(0x7) Structured Extended Features
|
|
//
|
|
__ bind(sef_cpuid);
|
|
__ movl(rax, 7);
|
|
__ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
|
|
__ jccb(Assembler::greater, ext_cpuid);
|
|
|
|
__ xorl(rcx, rcx);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi, 12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000000)
|
|
//
|
|
__ bind(ext_cpuid);
|
|
__ movl(rax, 0x80000000);
|
|
__ cpuid();
|
|
__ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported?
|
|
__ jcc(Assembler::belowEqual, done);
|
|
__ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported?
|
|
__ jcc(Assembler::belowEqual, ext_cpuid1);
|
|
__ cmpl(rax, 0x80000006); // Is cpuid(0x80000007) supported?
|
|
__ jccb(Assembler::belowEqual, ext_cpuid5);
|
|
__ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported?
|
|
__ jccb(Assembler::belowEqual, ext_cpuid7);
|
|
__ cmpl(rax, 0x80000008); // Is cpuid(0x80000009 and above) supported?
|
|
__ jccb(Assembler::belowEqual, ext_cpuid8);
|
|
__ cmpl(rax, 0x8000001E); // Is cpuid(0x8000001E) supported?
|
|
__ jccb(Assembler::below, ext_cpuid8);
|
|
//
|
|
// Extended cpuid(0x8000001E)
|
|
//
|
|
__ movl(rax, 0x8000001E);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1E_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000008)
|
|
//
|
|
__ bind(ext_cpuid8);
|
|
__ movl(rax, 0x80000008);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000007)
|
|
//
|
|
__ bind(ext_cpuid7);
|
|
__ movl(rax, 0x80000007);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000005)
|
|
//
|
|
__ bind(ext_cpuid5);
|
|
__ movl(rax, 0x80000005);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000001)
|
|
//
|
|
__ bind(ext_cpuid1);
|
|
__ movl(rax, 0x80000001);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Check if OS has enabled XGETBV instruction to access XCR0
|
|
// (OSXSAVE feature flag) and CPU supports AVX
|
|
//
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
|
|
__ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
|
|
__ cmpl(rcx, 0x18000000);
|
|
__ jccb(Assembler::notEqual, done); // jump if AVX is not supported
|
|
|
|
__ movl(rax, 0x6);
|
|
__ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0x6);
|
|
__ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
|
|
|
|
// we need to bridge farther than imm8, so we use this island as a thunk
|
|
__ bind(done);
|
|
__ jmp(wrapup);
|
|
|
|
__ bind(start_simd_check);
|
|
//
|
|
// Some OSs have a bug when upper 128/256bits of YMM/ZMM
|
|
// registers are not restored after a signal processing.
|
|
// Generate SEGV here (reference through NULL)
|
|
// and check upper YMM/ZMM bits after it.
|
|
//
|
|
intx saved_useavx = UseAVX;
|
|
intx saved_usesse = UseSSE;
|
|
|
|
// If UseAVX is unitialized or is set by the user to include EVEX
|
|
if (use_evex) {
|
|
// check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
|
|
__ movl(rax, 0x10000);
|
|
__ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0x10000);
|
|
__ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
|
|
// check _cpuid_info.xem_xcr0_eax.bits.opmask
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm512
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm32
|
|
__ movl(rax, 0xE0);
|
|
__ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0xE0);
|
|
__ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
|
|
|
|
if (FLAG_IS_DEFAULT(UseAVX)) {
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(rax, Address(rsi, 0));
|
|
__ cmpl(rax, 0x50654); // If it is Skylake
|
|
__ jcc(Assembler::equal, legacy_setup);
|
|
}
|
|
// EVEX setup: run in lowest evex mode
|
|
VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 3;
|
|
UseSSE = 2;
|
|
#ifdef _WINDOWS
|
|
// xmm5-xmm15 are not preserved by caller on windows
|
|
// https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
|
|
__ subptr(rsp, 64);
|
|
__ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit);
|
|
#ifdef _LP64
|
|
__ subptr(rsp, 64);
|
|
__ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit);
|
|
__ subptr(rsp, 64);
|
|
__ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit);
|
|
#endif // _LP64
|
|
#endif // _WINDOWS
|
|
|
|
// load value into all 64 bytes of zmm7 register
|
|
__ movl(rcx, VM_Version::ymm_test_value());
|
|
__ movdl(xmm0, rcx);
|
|
__ vpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
|
|
__ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
|
|
#ifdef _LP64
|
|
__ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
|
|
__ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
|
|
#endif
|
|
VM_Version::clean_cpuFeatures();
|
|
__ jmp(save_restore_except);
|
|
}
|
|
|
|
__ bind(legacy_setup);
|
|
// AVX setup
|
|
VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 1;
|
|
UseSSE = 2;
|
|
#ifdef _WINDOWS
|
|
__ subptr(rsp, 32);
|
|
__ vmovdqu(Address(rsp, 0), xmm7);
|
|
#ifdef _LP64
|
|
__ subptr(rsp, 32);
|
|
__ vmovdqu(Address(rsp, 0), xmm8);
|
|
__ subptr(rsp, 32);
|
|
__ vmovdqu(Address(rsp, 0), xmm15);
|
|
#endif // _LP64
|
|
#endif // _WINDOWS
|
|
|
|
// load value into all 32 bytes of ymm7 register
|
|
__ movl(rcx, VM_Version::ymm_test_value());
|
|
|
|
__ movdl(xmm0, rcx);
|
|
__ pshufd(xmm0, xmm0, 0x00);
|
|
__ vinsertf128_high(xmm0, xmm0);
|
|
__ vmovdqu(xmm7, xmm0);
|
|
#ifdef _LP64
|
|
__ vmovdqu(xmm8, xmm0);
|
|
__ vmovdqu(xmm15, xmm0);
|
|
#endif
|
|
VM_Version::clean_cpuFeatures();
|
|
|
|
__ bind(save_restore_except);
|
|
__ xorl(rsi, rsi);
|
|
VM_Version::set_cpuinfo_segv_addr(__ pc());
|
|
// Generate SEGV
|
|
__ movl(rax, Address(rsi, 0));
|
|
|
|
VM_Version::set_cpuinfo_cont_addr(__ pc());
|
|
// Returns here after signal. Save xmm0 to check it later.
|
|
|
|
// If UseAVX is unitialized or is set by the user to include EVEX
|
|
if (use_evex) {
|
|
// check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
|
|
__ movl(rax, 0x10000);
|
|
__ andl(rax, Address(rsi, 4));
|
|
__ cmpl(rax, 0x10000);
|
|
__ jcc(Assembler::notEqual, legacy_save_restore);
|
|
// check _cpuid_info.xem_xcr0_eax.bits.opmask
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm512
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm32
|
|
__ movl(rax, 0xE0);
|
|
__ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0xE0);
|
|
__ jcc(Assembler::notEqual, legacy_save_restore);
|
|
|
|
if (FLAG_IS_DEFAULT(UseAVX)) {
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(rax, Address(rsi, 0));
|
|
__ cmpl(rax, 0x50654); // If it is Skylake
|
|
__ jcc(Assembler::equal, legacy_save_restore);
|
|
}
|
|
// EVEX check: run in lowest evex mode
|
|
VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 3;
|
|
UseSSE = 2;
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
|
|
__ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
|
|
__ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
|
|
#ifdef _LP64
|
|
__ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
|
|
__ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
|
|
#endif
|
|
|
|
#ifdef _WINDOWS
|
|
#ifdef _LP64
|
|
__ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit);
|
|
__ addptr(rsp, 64);
|
|
__ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit);
|
|
__ addptr(rsp, 64);
|
|
#endif // _LP64
|
|
__ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit);
|
|
__ addptr(rsp, 64);
|
|
#endif // _WINDOWS
|
|
generate_vzeroupper(wrapup);
|
|
VM_Version::clean_cpuFeatures();
|
|
UseAVX = saved_useavx;
|
|
UseSSE = saved_usesse;
|
|
__ jmp(wrapup);
|
|
}
|
|
|
|
__ bind(legacy_save_restore);
|
|
// AVX check
|
|
VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 1;
|
|
UseSSE = 2;
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
|
|
__ vmovdqu(Address(rsi, 0), xmm0);
|
|
__ vmovdqu(Address(rsi, 32), xmm7);
|
|
#ifdef _LP64
|
|
__ vmovdqu(Address(rsi, 64), xmm8);
|
|
__ vmovdqu(Address(rsi, 96), xmm15);
|
|
#endif
|
|
|
|
#ifdef _WINDOWS
|
|
#ifdef _LP64
|
|
__ vmovdqu(xmm15, Address(rsp, 0));
|
|
__ addptr(rsp, 32);
|
|
__ vmovdqu(xmm8, Address(rsp, 0));
|
|
__ addptr(rsp, 32);
|
|
#endif // _LP64
|
|
__ vmovdqu(xmm7, Address(rsp, 0));
|
|
__ addptr(rsp, 32);
|
|
#endif // _WINDOWS
|
|
generate_vzeroupper(wrapup);
|
|
VM_Version::clean_cpuFeatures();
|
|
UseAVX = saved_useavx;
|
|
UseSSE = saved_usesse;
|
|
|
|
__ bind(wrapup);
|
|
__ popf();
|
|
__ pop(rsi);
|
|
__ pop(rbx);
|
|
__ pop(rbp);
|
|
__ ret(0);
|
|
|
|
# undef __
|
|
|
|
return start;
|
|
};
|
|
void generate_vzeroupper(Label& L_wrapup) {
|
|
# define __ _masm->
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
|
|
__ cmpl(Address(rsi, 4), 0x756e6547); // 'uneG'
|
|
__ jcc(Assembler::notEqual, L_wrapup);
|
|
__ movl(rcx, 0x0FFF0FF0);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ andl(rcx, Address(rsi, 0));
|
|
__ cmpl(rcx, 0x00050670); // If it is Xeon Phi 3200/5200/7200
|
|
__ jcc(Assembler::equal, L_wrapup);
|
|
__ cmpl(rcx, 0x00080650); // If it is Future Xeon Phi
|
|
__ jcc(Assembler::equal, L_wrapup);
|
|
// vzeroupper() will use a pre-computed instruction sequence that we
|
|
// can't compute until after we've determined CPU capabilities. Use
|
|
// uncached variant here directly to be able to bootstrap correctly
|
|
__ vzeroupper_uncached();
|
|
# undef __
|
|
}
|
|
address generate_detect_virt() {
|
|
StubCodeMark mark(this, "VM_Version", "detect_virt_stub");
|
|
# define __ _masm->
|
|
|
|
address start = __ pc();
|
|
|
|
// Evacuate callee-saved registers
|
|
__ push(rbp);
|
|
__ push(rbx);
|
|
__ push(rsi); // for Windows
|
|
|
|
#ifdef _LP64
|
|
__ mov(rax, c_rarg0); // CPUID leaf
|
|
__ mov(rsi, c_rarg1); // register array address (eax, ebx, ecx, edx)
|
|
#else
|
|
__ movptr(rax, Address(rsp, 16)); // CPUID leaf
|
|
__ movptr(rsi, Address(rsp, 20)); // register array address
|
|
#endif
|
|
|
|
__ cpuid();
|
|
|
|
// Store result to register array
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi, 12), rdx);
|
|
|
|
// Epilogue
|
|
__ pop(rsi);
|
|
__ pop(rbx);
|
|
__ pop(rbp);
|
|
__ ret(0);
|
|
|
|
# undef __
|
|
|
|
return start;
|
|
};
|
|
};
|
|
|
|
void VM_Version::get_processor_features() {
|
|
|
|
_cpu = 4; // 486 by default
|
|
_model = 0;
|
|
_stepping = 0;
|
|
_features = 0;
|
|
_logical_processors_per_package = 1;
|
|
// i486 internal cache is both I&D and has a 16-byte line size
|
|
_L1_data_cache_line_size = 16;
|
|
|
|
// Get raw processor info
|
|
|
|
get_cpu_info_stub(&_cpuid_info);
|
|
|
|
assert_is_initialized();
|
|
_cpu = extended_cpu_family();
|
|
_model = extended_cpu_model();
|
|
_stepping = cpu_stepping();
|
|
|
|
if (cpu_family() > 4) { // it supports CPUID
|
|
_features = feature_flags();
|
|
// Logical processors are only available on P4s and above,
|
|
// and only if hyperthreading is available.
|
|
_logical_processors_per_package = logical_processor_count();
|
|
_L1_data_cache_line_size = L1_line_size();
|
|
}
|
|
|
|
_supports_cx8 = supports_cmpxchg8();
|
|
// xchg and xadd instructions
|
|
_supports_atomic_getset4 = true;
|
|
_supports_atomic_getadd4 = true;
|
|
LP64_ONLY(_supports_atomic_getset8 = true);
|
|
LP64_ONLY(_supports_atomic_getadd8 = true);
|
|
|
|
#ifdef _LP64
|
|
// OS should support SSE for x64 and hardware should support at least SSE2.
|
|
if (!VM_Version::supports_sse2()) {
|
|
vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
|
|
}
|
|
// in 64 bit the use of SSE2 is the minimum
|
|
if (UseSSE < 2) UseSSE = 2;
|
|
#endif
|
|
|
|
#ifdef AMD64
|
|
// flush_icache_stub have to be generated first.
|
|
// That is why Icache line size is hard coded in ICache class,
|
|
// see icache_x86.hpp. It is also the reason why we can't use
|
|
// clflush instruction in 32-bit VM since it could be running
|
|
// on CPU which does not support it.
|
|
//
|
|
// The only thing we can do is to verify that flushed
|
|
// ICache::line_size has correct value.
|
|
guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
|
|
// clflush_size is size in quadwords (8 bytes).
|
|
guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
|
|
#endif
|
|
|
|
#ifdef _LP64
|
|
// assigning this field effectively enables Unsafe.writebackMemory()
|
|
// by initing UnsafeConstant.DATA_CACHE_LINE_FLUSH_SIZE to non-zero
|
|
// that is only implemented on x86_64 and only if the OS plays ball
|
|
if (os::supports_map_sync()) {
|
|
// publish data cache line flush size to generic field, otherwise
|
|
// let if default to zero thereby disabling writeback
|
|
_data_cache_line_flush_size = _cpuid_info.std_cpuid1_ebx.bits.clflush_size * 8;
|
|
}
|
|
#endif
|
|
// If the OS doesn't support SSE, we can't use this feature even if the HW does
|
|
if (!os::supports_sse())
|
|
_features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
|
|
|
|
if (UseSSE < 4) {
|
|
_features &= ~CPU_SSE4_1;
|
|
_features &= ~CPU_SSE4_2;
|
|
}
|
|
|
|
if (UseSSE < 3) {
|
|
_features &= ~CPU_SSE3;
|
|
_features &= ~CPU_SSSE3;
|
|
_features &= ~CPU_SSE4A;
|
|
}
|
|
|
|
if (UseSSE < 2)
|
|
_features &= ~CPU_SSE2;
|
|
|
|
if (UseSSE < 1)
|
|
_features &= ~CPU_SSE;
|
|
|
|
//since AVX instructions is slower than SSE in some ZX cpus, force USEAVX=0.
|
|
if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7))) {
|
|
UseAVX = 0;
|
|
}
|
|
|
|
// first try initial setting and detect what we can support
|
|
int use_avx_limit = 0;
|
|
if (UseAVX > 0) {
|
|
if (UseAVX > 2 && supports_evex()) {
|
|
use_avx_limit = 3;
|
|
} else if (UseAVX > 1 && supports_avx2()) {
|
|
use_avx_limit = 2;
|
|
} else if (UseAVX > 0 && supports_avx()) {
|
|
use_avx_limit = 1;
|
|
} else {
|
|
use_avx_limit = 0;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseAVX)) {
|
|
// Don't use AVX-512 on older Skylakes unless explicitly requested.
|
|
if (use_avx_limit > 2 && is_intel_skylake() && _stepping < 5) {
|
|
FLAG_SET_DEFAULT(UseAVX, 2);
|
|
} else {
|
|
FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
|
|
}
|
|
}
|
|
if (UseAVX > use_avx_limit) {
|
|
warning("UseAVX=%d is not supported on this CPU, setting it to UseAVX=%d", (int) UseAVX, use_avx_limit);
|
|
FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
|
|
} else if (UseAVX < 0) {
|
|
warning("UseAVX=%d is not valid, setting it to UseAVX=0", (int) UseAVX);
|
|
FLAG_SET_DEFAULT(UseAVX, 0);
|
|
}
|
|
|
|
if (UseAVX < 3) {
|
|
_features &= ~CPU_AVX512F;
|
|
_features &= ~CPU_AVX512DQ;
|
|
_features &= ~CPU_AVX512CD;
|
|
_features &= ~CPU_AVX512BW;
|
|
_features &= ~CPU_AVX512VL;
|
|
_features &= ~CPU_AVX512_VPOPCNTDQ;
|
|
_features &= ~CPU_AVX512_VPCLMULQDQ;
|
|
_features &= ~CPU_AVX512_VAES;
|
|
_features &= ~CPU_AVX512_VNNI;
|
|
_features &= ~CPU_AVX512_VBMI;
|
|
_features &= ~CPU_AVX512_VBMI2;
|
|
}
|
|
|
|
if (UseAVX < 2)
|
|
_features &= ~CPU_AVX2;
|
|
|
|
if (UseAVX < 1) {
|
|
_features &= ~CPU_AVX;
|
|
_features &= ~CPU_VZEROUPPER;
|
|
}
|
|
|
|
if (logical_processors_per_package() == 1) {
|
|
// HT processor could be installed on a system which doesn't support HT.
|
|
_features &= ~CPU_HT;
|
|
}
|
|
|
|
if (is_intel()) { // Intel cpus specific settings
|
|
if (is_knights_family()) {
|
|
_features &= ~CPU_VZEROUPPER;
|
|
_features &= ~CPU_AVX512BW;
|
|
_features &= ~CPU_AVX512VL;
|
|
_features &= ~CPU_AVX512DQ;
|
|
_features &= ~CPU_AVX512_VNNI;
|
|
_features &= ~CPU_AVX512_VAES;
|
|
_features &= ~CPU_AVX512_VPOPCNTDQ;
|
|
_features &= ~CPU_AVX512_VPCLMULQDQ;
|
|
_features &= ~CPU_AVX512_VBMI;
|
|
_features &= ~CPU_AVX512_VBMI2;
|
|
_features &= ~CPU_CLWB;
|
|
_features &= ~CPU_FLUSHOPT;
|
|
}
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(IntelJccErratumMitigation)) {
|
|
_has_intel_jcc_erratum = compute_has_intel_jcc_erratum();
|
|
} else {
|
|
_has_intel_jcc_erratum = IntelJccErratumMitigation;
|
|
}
|
|
|
|
char buf[512];
|
|
int res = jio_snprintf(
|
|
buf, sizeof(buf),
|
|
"(%u cores per cpu, %u threads per core) family %d model %d stepping %d microcode 0x%x",
|
|
cores_per_cpu(), threads_per_core(),
|
|
cpu_family(), _model, _stepping, os::cpu_microcode_revision());
|
|
assert(res > 0, "not enough temporary space allocated");
|
|
insert_features_names(buf + res, sizeof(buf) - res, _features_names);
|
|
|
|
_features_string = os::strdup(buf);
|
|
|
|
// UseSSE is set to the smaller of what hardware supports and what
|
|
// the command line requires. I.e., you cannot set UseSSE to 2 on
|
|
// older Pentiums which do not support it.
|
|
int use_sse_limit = 0;
|
|
if (UseSSE > 0) {
|
|
if (UseSSE > 3 && supports_sse4_1()) {
|
|
use_sse_limit = 4;
|
|
} else if (UseSSE > 2 && supports_sse3()) {
|
|
use_sse_limit = 3;
|
|
} else if (UseSSE > 1 && supports_sse2()) {
|
|
use_sse_limit = 2;
|
|
} else if (UseSSE > 0 && supports_sse()) {
|
|
use_sse_limit = 1;
|
|
} else {
|
|
use_sse_limit = 0;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseSSE)) {
|
|
FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
|
|
} else if (UseSSE > use_sse_limit) {
|
|
warning("UseSSE=%d is not supported on this CPU, setting it to UseSSE=%d", (int) UseSSE, use_sse_limit);
|
|
FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
|
|
} else if (UseSSE < 0) {
|
|
warning("UseSSE=%d is not valid, setting it to UseSSE=0", (int) UseSSE);
|
|
FLAG_SET_DEFAULT(UseSSE, 0);
|
|
}
|
|
|
|
// Use AES instructions if available.
|
|
if (supports_aes()) {
|
|
if (FLAG_IS_DEFAULT(UseAES)) {
|
|
FLAG_SET_DEFAULT(UseAES, true);
|
|
}
|
|
if (!UseAES) {
|
|
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
|
|
} else {
|
|
if (UseSSE > 2) {
|
|
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, true);
|
|
}
|
|
} else {
|
|
// The AES intrinsic stubs require AES instruction support (of course)
|
|
// but also require sse3 mode or higher for instructions it use.
|
|
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
|
|
}
|
|
|
|
// --AES-CTR begins--
|
|
if (!UseAESIntrinsics) {
|
|
if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
|
|
}
|
|
} else {
|
|
if (supports_sse4_1()) {
|
|
if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
|
|
}
|
|
} else {
|
|
// The AES-CTR intrinsic stubs require AES instruction support (of course)
|
|
// but also require sse4.1 mode or higher for instructions it use.
|
|
if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
|
|
}
|
|
}
|
|
// --AES-CTR ends--
|
|
}
|
|
} else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
|
|
if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
|
|
warning("AES instructions are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseAES, false);
|
|
}
|
|
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("AES intrinsics are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
|
|
}
|
|
if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
warning("AES-CTR intrinsics are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
|
|
}
|
|
}
|
|
|
|
// Use CLMUL instructions if available.
|
|
if (supports_clmul()) {
|
|
if (FLAG_IS_DEFAULT(UseCLMUL)) {
|
|
UseCLMUL = true;
|
|
}
|
|
} else if (UseCLMUL) {
|
|
if (!FLAG_IS_DEFAULT(UseCLMUL))
|
|
warning("CLMUL instructions not available on this CPU (AVX may also be required)");
|
|
FLAG_SET_DEFAULT(UseCLMUL, false);
|
|
}
|
|
|
|
if (UseCLMUL && (UseSSE > 2)) {
|
|
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
|
|
UseCRC32Intrinsics = true;
|
|
}
|
|
} else if (UseCRC32Intrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
|
|
warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
|
|
FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
|
|
}
|
|
|
|
#ifdef _LP64
|
|
if (supports_avx2()) {
|
|
if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) {
|
|
UseAdler32Intrinsics = true;
|
|
}
|
|
} else if (UseAdler32Intrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseAdler32Intrinsics)) {
|
|
warning("Adler32 Intrinsics requires avx2 instructions (not available on this CPU)");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
|
|
}
|
|
#else
|
|
if (UseAdler32Intrinsics) {
|
|
warning("Adler32Intrinsics not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
|
|
}
|
|
#endif
|
|
|
|
if (supports_sse4_2() && supports_clmul()) {
|
|
if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
|
|
UseCRC32CIntrinsics = true;
|
|
}
|
|
} else if (UseCRC32CIntrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
|
|
warning("CRC32C intrinsics are not available on this CPU");
|
|
}
|
|
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
|
|
}
|
|
|
|
// GHASH/GCM intrinsics
|
|
if (UseCLMUL && (UseSSE > 2)) {
|
|
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
|
|
UseGHASHIntrinsics = true;
|
|
}
|
|
} else if (UseGHASHIntrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
|
|
warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
|
|
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
|
|
}
|
|
|
|
// Base64 Intrinsics (Check the condition for which the intrinsic will be active)
|
|
if ((UseAVX > 2) && supports_avx512vl() && supports_avx512bw()) {
|
|
if (FLAG_IS_DEFAULT(UseBASE64Intrinsics)) {
|
|
UseBASE64Intrinsics = true;
|
|
}
|
|
} else if (UseBASE64Intrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseBASE64Intrinsics))
|
|
warning("Base64 intrinsic requires EVEX instructions on this CPU");
|
|
FLAG_SET_DEFAULT(UseBASE64Intrinsics, false);
|
|
}
|
|
|
|
if (supports_fma() && UseSSE >= 2) { // Check UseSSE since FMA code uses SSE instructions
|
|
if (FLAG_IS_DEFAULT(UseFMA)) {
|
|
UseFMA = true;
|
|
}
|
|
} else if (UseFMA) {
|
|
warning("FMA instructions are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseFMA, false);
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(UseMD5Intrinsics)) {
|
|
UseMD5Intrinsics = true;
|
|
}
|
|
|
|
if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
|
|
if (FLAG_IS_DEFAULT(UseSHA)) {
|
|
UseSHA = true;
|
|
}
|
|
} else if (UseSHA) {
|
|
warning("SHA instructions are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseSHA, false);
|
|
}
|
|
|
|
if (supports_sha() && supports_sse4_1() && UseSHA) {
|
|
if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
|
|
}
|
|
} else if (UseSHA1Intrinsics) {
|
|
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
|
|
}
|
|
|
|
if (supports_sse4_1() && UseSHA) {
|
|
if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
|
|
}
|
|
} else if (UseSHA256Intrinsics) {
|
|
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// These are only supported on 64-bit
|
|
if (UseSHA && supports_avx2() && supports_bmi2()) {
|
|
if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
|
|
}
|
|
} else
|
|
#endif
|
|
if (UseSHA512Intrinsics) {
|
|
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
|
|
}
|
|
|
|
if (UseSHA3Intrinsics) {
|
|
warning("Intrinsics for SHA3-224, SHA3-256, SHA3-384 and SHA3-512 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA3Intrinsics, false);
|
|
}
|
|
|
|
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA, false);
|
|
}
|
|
|
|
if (!supports_rtm() && UseRTMLocking) {
|
|
vm_exit_during_initialization("RTM instructions are not available on this CPU");
|
|
}
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
if (UseRTMLocking) {
|
|
if (!CompilerConfig::is_c2_enabled()) {
|
|
// Only C2 does RTM locking optimization.
|
|
vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
|
|
}
|
|
if (is_intel_family_core()) {
|
|
if ((_model == CPU_MODEL_HASWELL_E3) ||
|
|
(_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
|
|
(_model == CPU_MODEL_BROADWELL && _stepping < 4)) {
|
|
// currently a collision between SKL and HSW_E3
|
|
if (!UnlockExperimentalVMOptions && UseAVX < 3) {
|
|
vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this "
|
|
"platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
|
|
} else {
|
|
warning("UseRTMLocking is only available as experimental option on this platform.");
|
|
}
|
|
}
|
|
}
|
|
if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
|
|
// RTM locking should be used only for applications with
|
|
// high lock contention. For now we do not use it by default.
|
|
vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
|
|
}
|
|
} else { // !UseRTMLocking
|
|
if (UseRTMForStackLocks) {
|
|
if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
|
|
warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
|
|
}
|
|
FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
|
|
}
|
|
if (UseRTMDeopt) {
|
|
FLAG_SET_DEFAULT(UseRTMDeopt, false);
|
|
}
|
|
if (PrintPreciseRTMLockingStatistics) {
|
|
FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
|
|
}
|
|
}
|
|
#else
|
|
if (UseRTMLocking) {
|
|
// Only C2 does RTM locking optimization.
|
|
vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
|
|
}
|
|
#endif
|
|
|
|
#ifdef COMPILER2
|
|
if (UseFPUForSpilling) {
|
|
if (UseSSE < 2) {
|
|
// Only supported with SSE2+
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, false);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if COMPILER2_OR_JVMCI
|
|
int max_vector_size = 0;
|
|
if (UseSSE < 2) {
|
|
// Vectors (in XMM) are only supported with SSE2+
|
|
// SSE is always 2 on x64.
|
|
max_vector_size = 0;
|
|
} else if (UseAVX == 0 || !os_supports_avx_vectors()) {
|
|
// 16 byte vectors (in XMM) are supported with SSE2+
|
|
max_vector_size = 16;
|
|
} else if (UseAVX == 1 || UseAVX == 2) {
|
|
// 32 bytes vectors (in YMM) are only supported with AVX+
|
|
max_vector_size = 32;
|
|
} else if (UseAVX > 2) {
|
|
// 64 bytes vectors (in ZMM) are only supported with AVX 3
|
|
max_vector_size = 64;
|
|
}
|
|
|
|
#ifdef _LP64
|
|
int min_vector_size = 4; // We require MaxVectorSize to be at least 4 on 64bit
|
|
#else
|
|
int min_vector_size = 0;
|
|
#endif
|
|
|
|
if (!FLAG_IS_DEFAULT(MaxVectorSize)) {
|
|
if (MaxVectorSize < min_vector_size) {
|
|
warning("MaxVectorSize must be at least %i on this platform", min_vector_size);
|
|
FLAG_SET_DEFAULT(MaxVectorSize, min_vector_size);
|
|
}
|
|
if (MaxVectorSize > max_vector_size) {
|
|
warning("MaxVectorSize must be at most %i on this platform", max_vector_size);
|
|
FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
|
|
}
|
|
if (!is_power_of_2(MaxVectorSize)) {
|
|
warning("MaxVectorSize must be a power of 2, setting to default: %i", max_vector_size);
|
|
FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
|
|
}
|
|
} else {
|
|
// If default, use highest supported configuration
|
|
FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
|
|
}
|
|
|
|
#if defined(COMPILER2) && defined(ASSERT)
|
|
if (MaxVectorSize > 0) {
|
|
if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
|
|
tty->print_cr("State of YMM registers after signal handle:");
|
|
int nreg = 2 LP64_ONLY(+2);
|
|
const char* ymm_name[4] = {"0", "7", "8", "15"};
|
|
for (int i = 0; i < nreg; i++) {
|
|
tty->print("YMM%s:", ymm_name[i]);
|
|
for (int j = 7; j >=0; j--) {
|
|
tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
|
|
}
|
|
tty->cr();
|
|
}
|
|
}
|
|
}
|
|
#endif // COMPILER2 && ASSERT
|
|
|
|
#ifdef _LP64
|
|
if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
|
|
UseMultiplyToLenIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
|
|
UseSquareToLenIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
|
|
UseMulAddIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
|
|
UseMontgomeryMultiplyIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
|
|
UseMontgomerySquareIntrinsic = true;
|
|
}
|
|
#else
|
|
if (UseMultiplyToLenIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
|
|
warning("multiplyToLen intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
|
|
}
|
|
if (UseMontgomeryMultiplyIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
|
|
warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
|
|
}
|
|
if (UseMontgomerySquareIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
|
|
warning("montgomerySquare intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
|
|
}
|
|
if (UseSquareToLenIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
|
|
warning("squareToLen intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
|
|
}
|
|
if (UseMulAddIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
|
|
warning("mulAdd intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
|
|
}
|
|
#endif // _LP64
|
|
#endif // COMPILER2_OR_JVMCI
|
|
|
|
// On new cpus instructions which update whole XMM register should be used
|
|
// to prevent partial register stall due to dependencies on high half.
|
|
//
|
|
// UseXmmLoadAndClearUpper == true --> movsd(xmm, mem)
|
|
// UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
|
|
// UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm).
|
|
// UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm).
|
|
|
|
|
|
if (is_zx()) { // ZX cpus specific settings
|
|
if (FLAG_IS_DEFAULT(UseStoreImmI16)) {
|
|
UseStoreImmI16 = false; // don't use it on ZX cpus
|
|
}
|
|
if ((cpu_family() == 6) || (cpu_family() == 7)) {
|
|
if (FLAG_IS_DEFAULT(UseAddressNop)) {
|
|
// Use it on all ZX cpus
|
|
UseAddressNop = true;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
|
|
UseXmmLoadAndClearUpper = true; // use movsd on all ZX cpus
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
|
|
if (supports_sse3()) {
|
|
UseXmmRegToRegMoveAll = true; // use movaps, movapd on new ZX cpus
|
|
} else {
|
|
UseXmmRegToRegMoveAll = false;
|
|
}
|
|
}
|
|
if (((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse3()) { // new ZX cpus
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(MaxLoopPad)) {
|
|
// For new ZX cpus do the next optimization:
|
|
// don't align the beginning of a loop if there are enough instructions
|
|
// left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
|
|
// in current fetch line (OptoLoopAlignment) or the padding
|
|
// is big (> MaxLoopPad).
|
|
// Set MaxLoopPad to 11 for new ZX cpus to reduce number of
|
|
// generated NOP instructions. 11 is the largest size of one
|
|
// address NOP instruction '0F 1F' (see Assembler::nop(i)).
|
|
MaxLoopPad = 11;
|
|
}
|
|
#endif // COMPILER2
|
|
if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
UseXMMForArrayCopy = true; // use SSE2 movq on new ZX cpus
|
|
}
|
|
if (supports_sse4_2()) { // new ZX cpus
|
|
if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
UseUnalignedLoadStores = true; // use movdqu on newest ZX cpus
|
|
}
|
|
}
|
|
if (supports_sse4_2()) {
|
|
if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
|
|
}
|
|
} else {
|
|
if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
|
|
}
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
}
|
|
|
|
if (is_amd_family()) { // AMD cpus specific settings
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop)) {
|
|
// Use it on new AMD cpus starting from Opteron.
|
|
UseAddressNop = true;
|
|
}
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift)) {
|
|
// Use it on new AMD cpus starting from Opteron.
|
|
UseNewLongLShift = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
|
|
} else {
|
|
UseXmmLoadAndClearUpper = false;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
|
|
} else {
|
|
UseXmmRegToRegMoveAll = false;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmI2F)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmI2F = true;
|
|
} else {
|
|
UseXmmI2F = false;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmI2D)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmI2D = true;
|
|
} else {
|
|
UseXmmI2D = false;
|
|
}
|
|
}
|
|
if (supports_sse4_2()) {
|
|
if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
|
|
}
|
|
} else {
|
|
if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
|
|
}
|
|
|
|
// some defaults for AMD family 15h
|
|
if (cpu_family() == 0x15) {
|
|
// On family 15h processors default is no sw prefetch
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
|
|
}
|
|
// Also, if some other prefetch style is specified, default instruction type is PREFETCHW
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
// On family 15h processors use XMM and UnalignedLoadStores for Array Copy
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
|
|
}
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
|
|
}
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (cpu_family() < 0x17 && MaxVectorSize > 16) {
|
|
// Limit vectors size to 16 bytes on AMD cpus < 17h.
|
|
FLAG_SET_DEFAULT(MaxVectorSize, 16);
|
|
}
|
|
#endif // COMPILER2
|
|
|
|
// Some defaults for AMD family >= 17h && Hygon family 18h
|
|
if (cpu_family() >= 0x17) {
|
|
// On family >=17h processors use XMM and UnalignedLoadStores
|
|
// for Array Copy
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
|
|
}
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
|
|
}
|
|
#ifdef COMPILER2
|
|
if (supports_sse4_2() && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (is_intel()) { // Intel cpus specific settings
|
|
if (FLAG_IS_DEFAULT(UseStoreImmI16)) {
|
|
UseStoreImmI16 = false; // don't use it on Intel cpus
|
|
}
|
|
if (cpu_family() == 6 || cpu_family() == 15) {
|
|
if (FLAG_IS_DEFAULT(UseAddressNop)) {
|
|
// Use it on all Intel cpus starting from PentiumPro
|
|
UseAddressNop = true;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
|
|
UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
|
|
if (supports_sse3()) {
|
|
UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
|
|
} else {
|
|
UseXmmRegToRegMoveAll = false;
|
|
}
|
|
}
|
|
if (cpu_family() == 6 && supports_sse3()) { // New Intel cpus
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(MaxLoopPad)) {
|
|
// For new Intel cpus do the next optimization:
|
|
// don't align the beginning of a loop if there are enough instructions
|
|
// left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
|
|
// in current fetch line (OptoLoopAlignment) or the padding
|
|
// is big (> MaxLoopPad).
|
|
// Set MaxLoopPad to 11 for new Intel cpus to reduce number of
|
|
// generated NOP instructions. 11 is the largest size of one
|
|
// address NOP instruction '0F 1F' (see Assembler::nop(i)).
|
|
MaxLoopPad = 11;
|
|
}
|
|
#endif // COMPILER2
|
|
|
|
if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
|
|
}
|
|
if ((supports_sse4_2() && supports_ht()) || supports_avx()) { // Newest Intel cpus
|
|
if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
|
|
}
|
|
}
|
|
if (supports_sse4_2()) {
|
|
if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
|
|
}
|
|
} else {
|
|
if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
|
|
}
|
|
}
|
|
if (is_atom_family() || is_knights_family()) {
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(OptoScheduling)) {
|
|
OptoScheduling = true;
|
|
}
|
|
#endif
|
|
if (supports_sse4_2()) { // Silvermont
|
|
if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseIncDec)) {
|
|
FLAG_SET_DEFAULT(UseIncDec, false);
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
#ifdef COMPILER2
|
|
if (UseAVX > 2) {
|
|
if (FLAG_IS_DEFAULT(ArrayOperationPartialInlineSize) ||
|
|
(!FLAG_IS_DEFAULT(ArrayOperationPartialInlineSize) &&
|
|
ArrayOperationPartialInlineSize != 0 &&
|
|
ArrayOperationPartialInlineSize != 16 &&
|
|
ArrayOperationPartialInlineSize != 32 &&
|
|
ArrayOperationPartialInlineSize != 64)) {
|
|
int inline_size = 0;
|
|
if (MaxVectorSize >= 64 && AVX3Threshold == 0) {
|
|
inline_size = 64;
|
|
} else if (MaxVectorSize >= 32) {
|
|
inline_size = 32;
|
|
} else if (MaxVectorSize >= 16) {
|
|
inline_size = 16;
|
|
}
|
|
if(!FLAG_IS_DEFAULT(ArrayOperationPartialInlineSize)) {
|
|
warning("Setting ArrayOperationPartialInlineSize as %d", inline_size);
|
|
}
|
|
ArrayOperationPartialInlineSize = inline_size;
|
|
}
|
|
|
|
if (ArrayOperationPartialInlineSize > MaxVectorSize) {
|
|
ArrayOperationPartialInlineSize = MaxVectorSize >= 16 ? MaxVectorSize : 0;
|
|
if (ArrayOperationPartialInlineSize) {
|
|
warning("Setting ArrayOperationPartialInlineSize as MaxVectorSize" INTX_FORMAT ")", MaxVectorSize);
|
|
} else {
|
|
warning("Setting ArrayOperationPartialInlineSize as " INTX_FORMAT, ArrayOperationPartialInlineSize);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(OptimizeFill)) {
|
|
if (MaxVectorSize < 32 || !VM_Version::supports_avx512vlbw()) {
|
|
OptimizeFill = false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _LP64
|
|
if (UseSSE42Intrinsics) {
|
|
if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
|
|
UseVectorizedMismatchIntrinsic = true;
|
|
}
|
|
} else if (UseVectorizedMismatchIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
|
|
warning("vectorizedMismatch intrinsics are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
|
|
}
|
|
#else
|
|
if (UseVectorizedMismatchIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
|
|
warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
|
|
}
|
|
#endif // _LP64
|
|
|
|
// Use count leading zeros count instruction if available.
|
|
if (supports_lzcnt()) {
|
|
if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
|
|
UseCountLeadingZerosInstruction = true;
|
|
}
|
|
} else if (UseCountLeadingZerosInstruction) {
|
|
warning("lzcnt instruction is not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
|
|
}
|
|
|
|
// Use count trailing zeros instruction if available
|
|
if (supports_bmi1()) {
|
|
// tzcnt does not require VEX prefix
|
|
if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
|
|
if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
|
|
// Don't use tzcnt if BMI1 is switched off on command line.
|
|
UseCountTrailingZerosInstruction = false;
|
|
} else {
|
|
UseCountTrailingZerosInstruction = true;
|
|
}
|
|
}
|
|
} else if (UseCountTrailingZerosInstruction) {
|
|
warning("tzcnt instruction is not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
|
|
}
|
|
|
|
// BMI instructions (except tzcnt) use an encoding with VEX prefix.
|
|
// VEX prefix is generated only when AVX > 0.
|
|
if (supports_bmi1() && supports_avx()) {
|
|
if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
|
|
UseBMI1Instructions = true;
|
|
}
|
|
} else if (UseBMI1Instructions) {
|
|
warning("BMI1 instructions are not available on this CPU (AVX is also required)");
|
|
FLAG_SET_DEFAULT(UseBMI1Instructions, false);
|
|
}
|
|
|
|
if (supports_bmi2() && supports_avx()) {
|
|
if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
|
|
UseBMI2Instructions = true;
|
|
}
|
|
} else if (UseBMI2Instructions) {
|
|
warning("BMI2 instructions are not available on this CPU (AVX is also required)");
|
|
FLAG_SET_DEFAULT(UseBMI2Instructions, false);
|
|
}
|
|
|
|
// Use population count instruction if available.
|
|
if (supports_popcnt()) {
|
|
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
|
|
UsePopCountInstruction = true;
|
|
}
|
|
} else if (UsePopCountInstruction) {
|
|
warning("POPCNT instruction is not available on this CPU");
|
|
FLAG_SET_DEFAULT(UsePopCountInstruction, false);
|
|
}
|
|
|
|
// Use fast-string operations if available.
|
|
if (supports_erms()) {
|
|
if (FLAG_IS_DEFAULT(UseFastStosb)) {
|
|
UseFastStosb = true;
|
|
}
|
|
} else if (UseFastStosb) {
|
|
warning("fast-string operations are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseFastStosb, false);
|
|
}
|
|
|
|
// For AMD Processors use XMM/YMM MOVDQU instructions
|
|
// for Object Initialization as default
|
|
if (is_amd() && cpu_family() >= 0x19) {
|
|
if (FLAG_IS_DEFAULT(UseFastStosb)) {
|
|
UseFastStosb = false;
|
|
}
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (is_intel() && MaxVectorSize > 16) {
|
|
if (FLAG_IS_DEFAULT(UseFastStosb)) {
|
|
UseFastStosb = false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Use XMM/YMM MOVDQU instruction for Object Initialization
|
|
if (!UseFastStosb && UseSSE >= 2 && UseUnalignedLoadStores) {
|
|
if (FLAG_IS_DEFAULT(UseXMMForObjInit)) {
|
|
UseXMMForObjInit = true;
|
|
}
|
|
} else if (UseXMMForObjInit) {
|
|
warning("UseXMMForObjInit requires SSE2 and unaligned load/stores. Feature is switched off.");
|
|
FLAG_SET_DEFAULT(UseXMMForObjInit, false);
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(AlignVector)) {
|
|
// Modern processors allow misaligned memory operations for vectors.
|
|
AlignVector = !UseUnalignedLoadStores;
|
|
}
|
|
#endif // COMPILER2
|
|
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
|
|
if (AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
|
|
} else if (!supports_sse() && supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
}
|
|
|
|
// Allocation prefetch settings
|
|
intx cache_line_size = prefetch_data_size();
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize) &&
|
|
(cache_line_size > AllocatePrefetchStepSize)) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
|
|
}
|
|
|
|
if ((AllocatePrefetchDistance == 0) && (AllocatePrefetchStyle != 0)) {
|
|
assert(!FLAG_IS_DEFAULT(AllocatePrefetchDistance), "default value should not be 0");
|
|
if (!FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
|
|
warning("AllocatePrefetchDistance is set to 0 which disable prefetching. Ignoring AllocatePrefetchStyle flag.");
|
|
}
|
|
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
|
|
bool use_watermark_prefetch = (AllocatePrefetchStyle == 2);
|
|
FLAG_SET_DEFAULT(AllocatePrefetchDistance, allocate_prefetch_distance(use_watermark_prefetch));
|
|
}
|
|
|
|
if (is_intel() && cpu_family() == 6 && supports_sse3()) {
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchLines) &&
|
|
supports_sse4_2() && supports_ht()) { // Nehalem based cpus
|
|
FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
|
|
}
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(UseFPUForSpilling) && supports_sse4_2()) {
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse4_2()) {
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// Prefetch settings
|
|
|
|
// Prefetch interval for gc copy/scan == 9 dcache lines. Derived from
|
|
// 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
|
|
// Tested intervals from 128 to 2048 in increments of 64 == one cache line.
|
|
// 256 bytes (4 dcache lines) was the nearest runner-up to 576.
|
|
|
|
// gc copy/scan is disabled if prefetchw isn't supported, because
|
|
// Prefetch::write emits an inlined prefetchw on Linux.
|
|
// Do not use the 3dnow prefetchw instruction. It isn't supported on em64t.
|
|
// The used prefetcht0 instruction works for both amd64 and em64t.
|
|
|
|
if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes)) {
|
|
FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 576);
|
|
}
|
|
if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes)) {
|
|
FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 576);
|
|
}
|
|
if (FLAG_IS_DEFAULT(PrefetchFieldsAhead)) {
|
|
FLAG_SET_DEFAULT(PrefetchFieldsAhead, 1);
|
|
}
|
|
#endif
|
|
|
|
if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
|
|
(cache_line_size > ContendedPaddingWidth))
|
|
ContendedPaddingWidth = cache_line_size;
|
|
|
|
// This machine allows unaligned memory accesses
|
|
if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
|
|
FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (log_is_enabled(Info, os, cpu)) {
|
|
LogStream ls(Log(os, cpu)::info());
|
|
outputStream* log = &ls;
|
|
log->print_cr("Logical CPUs per core: %u",
|
|
logical_processors_per_package());
|
|
log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
|
|
log->print("UseSSE=%d", (int) UseSSE);
|
|
if (UseAVX > 0) {
|
|
log->print(" UseAVX=%d", (int) UseAVX);
|
|
}
|
|
if (UseAES) {
|
|
log->print(" UseAES=1");
|
|
}
|
|
#ifdef COMPILER2
|
|
if (MaxVectorSize > 0) {
|
|
log->print(" MaxVectorSize=%d", (int) MaxVectorSize);
|
|
}
|
|
#endif
|
|
log->cr();
|
|
log->print("Allocation");
|
|
if (AllocatePrefetchStyle <= 0 || (UseSSE == 0 && !supports_3dnow_prefetch())) {
|
|
log->print_cr(": no prefetching");
|
|
} else {
|
|
log->print(" prefetching: ");
|
|
if (UseSSE == 0 && supports_3dnow_prefetch()) {
|
|
log->print("PREFETCHW");
|
|
} else if (UseSSE >= 1) {
|
|
if (AllocatePrefetchInstr == 0) {
|
|
log->print("PREFETCHNTA");
|
|
} else if (AllocatePrefetchInstr == 1) {
|
|
log->print("PREFETCHT0");
|
|
} else if (AllocatePrefetchInstr == 2) {
|
|
log->print("PREFETCHT2");
|
|
} else if (AllocatePrefetchInstr == 3) {
|
|
log->print("PREFETCHW");
|
|
}
|
|
}
|
|
if (AllocatePrefetchLines > 1) {
|
|
log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
|
|
} else {
|
|
log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
|
|
}
|
|
}
|
|
|
|
if (PrefetchCopyIntervalInBytes > 0) {
|
|
log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
|
|
}
|
|
if (PrefetchScanIntervalInBytes > 0) {
|
|
log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
|
|
}
|
|
if (PrefetchFieldsAhead > 0) {
|
|
log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
|
|
}
|
|
if (ContendedPaddingWidth > 0) {
|
|
log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
|
|
}
|
|
}
|
|
#endif // !PRODUCT
|
|
if (FLAG_IS_DEFAULT(UseSignumIntrinsic)) {
|
|
FLAG_SET_DEFAULT(UseSignumIntrinsic, true);
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseCopySignIntrinsic)) {
|
|
FLAG_SET_DEFAULT(UseCopySignIntrinsic, true);
|
|
}
|
|
}
|
|
|
|
void VM_Version::print_platform_virtualization_info(outputStream* st) {
|
|
VirtualizationType vrt = VM_Version::get_detected_virtualization();
|
|
if (vrt == XenHVM) {
|
|
st->print_cr("Xen hardware-assisted virtualization detected");
|
|
} else if (vrt == KVM) {
|
|
st->print_cr("KVM virtualization detected");
|
|
} else if (vrt == VMWare) {
|
|
st->print_cr("VMWare virtualization detected");
|
|
VirtualizationSupport::print_virtualization_info(st);
|
|
} else if (vrt == HyperV) {
|
|
st->print_cr("Hyper-V virtualization detected");
|
|
} else if (vrt == HyperVRole) {
|
|
st->print_cr("Hyper-V role detected");
|
|
}
|
|
}
|
|
|
|
bool VM_Version::compute_has_intel_jcc_erratum() {
|
|
if (!is_intel_family_core()) {
|
|
// Only Intel CPUs are affected.
|
|
return false;
|
|
}
|
|
// The following table of affected CPUs is based on the following document released by Intel:
|
|
// https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf
|
|
switch (_model) {
|
|
case 0x8E:
|
|
// 06_8EH | 9 | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Amber Lake Y
|
|
// 06_8EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake U
|
|
// 06_8EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake U 23e
|
|
// 06_8EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake Y
|
|
// 06_8EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake U43e
|
|
// 06_8EH | B | 8th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Whiskey Lake U
|
|
// 06_8EH | C | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Amber Lake Y
|
|
// 06_8EH | C | 10th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Comet Lake U42
|
|
// 06_8EH | C | 8th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Whiskey Lake U
|
|
return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xC;
|
|
case 0x4E:
|
|
// 06_4E | 3 | 6th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Skylake U
|
|
// 06_4E | 3 | 6th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Skylake U23e
|
|
// 06_4E | 3 | 6th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Skylake Y
|
|
return _stepping == 0x3;
|
|
case 0x55:
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Processor D Family based on microarchitecture code name Skylake D, Bakerville
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Scalable Processors based on microarchitecture code name Skylake Server
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Processor W Family based on microarchitecture code name Skylake W
|
|
// 06_55H | 4 | Intel(R) Core(TM) X-series Processors based on microarchitecture code name Skylake X
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Processor E3 v5 Family based on microarchitecture code name Skylake Xeon E3
|
|
// 06_55 | 7 | 2nd Generation Intel(R) Xeon(R) Scalable Processors based on microarchitecture code name Cascade Lake (server)
|
|
return _stepping == 0x4 || _stepping == 0x7;
|
|
case 0x5E:
|
|
// 06_5E | 3 | 6th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Skylake H
|
|
// 06_5E | 3 | 6th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Skylake S
|
|
return _stepping == 0x3;
|
|
case 0x9E:
|
|
// 06_9EH | 9 | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake G
|
|
// 06_9EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake H
|
|
// 06_9EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake S
|
|
// 06_9EH | 9 | Intel(R) Core(TM) X-series Processors based on microarchitecture code name Kaby Lake X
|
|
// 06_9EH | 9 | Intel(R) Xeon(R) Processor E3 v6 Family Kaby Lake Xeon E3
|
|
// 06_9EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake H
|
|
// 06_9EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S
|
|
// 06_9EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S (6+2) x/KBP
|
|
// 06_9EH | A | Intel(R) Xeon(R) Processor E Family based on microarchitecture code name Coffee Lake S (6+2)
|
|
// 06_9EH | A | Intel(R) Xeon(R) Processor E Family based on microarchitecture code name Coffee Lake S (4+2)
|
|
// 06_9EH | B | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S (4+2)
|
|
// 06_9EH | B | Intel(R) Celeron(R) Processor G Series based on microarchitecture code name Coffee Lake S (4+2)
|
|
// 06_9EH | D | 9th Generation Intel(R) Core(TM) Processor Family based on microarchitecturecode name Coffee Lake H (8+2)
|
|
// 06_9EH | D | 9th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S (8+2)
|
|
return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xD;
|
|
case 0xA5:
|
|
// Not in Intel documentation.
|
|
// 06_A5H | | 10th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Comet Lake S/H
|
|
return true;
|
|
case 0xA6:
|
|
// 06_A6H | 0 | 10th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Comet Lake U62
|
|
return _stepping == 0x0;
|
|
case 0xAE:
|
|
// 06_AEH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake Refresh U (4+2)
|
|
return _stepping == 0xA;
|
|
default:
|
|
// If we are running on another intel machine not recognized in the table, we are okay.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// On Xen, the cpuid instruction returns
|
|
// eax / registers[0]: Version of Xen
|
|
// ebx / registers[1]: chars 'XenV'
|
|
// ecx / registers[2]: chars 'MMXe'
|
|
// edx / registers[3]: chars 'nVMM'
|
|
//
|
|
// On KVM / VMWare / MS Hyper-V, the cpuid instruction returns
|
|
// ebx / registers[1]: chars 'KVMK' / 'VMwa' / 'Micr'
|
|
// ecx / registers[2]: chars 'VMKV' / 'reVM' / 'osof'
|
|
// edx / registers[3]: chars 'M' / 'ware' / 't Hv'
|
|
//
|
|
// more information :
|
|
// https://kb.vmware.com/s/article/1009458
|
|
//
|
|
void VM_Version::check_virtualizations() {
|
|
uint32_t registers[4] = {0};
|
|
char signature[13] = {0};
|
|
|
|
// Xen cpuid leaves can be found 0x100 aligned boundary starting
|
|
// from 0x40000000 until 0x40010000.
|
|
// https://lists.linuxfoundation.org/pipermail/virtualization/2012-May/019974.html
|
|
for (int leaf = 0x40000000; leaf < 0x40010000; leaf += 0x100) {
|
|
detect_virt_stub(leaf, registers);
|
|
memcpy(signature, ®isters[1], 12);
|
|
|
|
if (strncmp("VMwareVMware", signature, 12) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = VMWare;
|
|
// check for extended metrics from guestlib
|
|
VirtualizationSupport::initialize();
|
|
} else if (strncmp("Microsoft Hv", signature, 12) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = HyperV;
|
|
#ifdef _WINDOWS
|
|
// CPUID leaf 0x40000007 is available to the root partition only.
|
|
// See Hypervisor Top Level Functional Specification section 2.4.8 for more details.
|
|
// https://github.com/MicrosoftDocs/Virtualization-Documentation/raw/master/tlfs/Hypervisor%20Top%20Level%20Functional%20Specification%20v6.0b.pdf
|
|
detect_virt_stub(0x40000007, registers);
|
|
if ((registers[0] != 0x0) ||
|
|
(registers[1] != 0x0) ||
|
|
(registers[2] != 0x0) ||
|
|
(registers[3] != 0x0)) {
|
|
Abstract_VM_Version::_detected_virtualization = HyperVRole;
|
|
}
|
|
#endif
|
|
} else if (strncmp("KVMKVMKVM", signature, 9) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = KVM;
|
|
} else if (strncmp("XenVMMXenVMM", signature, 12) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = XenHVM;
|
|
}
|
|
}
|
|
}
|
|
|
|
// avx3_threshold() sets the threshold at which 64-byte instructions are used
|
|
// for implementing the array copy and clear operations.
|
|
// The Intel platforms that supports the serialize instruction
|
|
// has improved implementation of 64-byte load/stores and so the default
|
|
// threshold is set to 0 for these platforms.
|
|
int VM_Version::avx3_threshold() {
|
|
return (is_intel_family_core() &&
|
|
supports_serialize() &&
|
|
FLAG_IS_DEFAULT(AVX3Threshold)) ? 0 : AVX3Threshold;
|
|
}
|
|
|
|
void VM_Version::initialize() {
|
|
ResourceMark rm;
|
|
// Making this stub must be FIRST use of assembler
|
|
stub_blob = BufferBlob::create("VM_Version stub", stub_size);
|
|
if (stub_blob == NULL) {
|
|
vm_exit_during_initialization("Unable to allocate stub for VM_Version");
|
|
}
|
|
CodeBuffer c(stub_blob);
|
|
VM_Version_StubGenerator g(&c);
|
|
|
|
get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
|
|
g.generate_get_cpu_info());
|
|
detect_virt_stub = CAST_TO_FN_PTR(detect_virt_stub_t,
|
|
g.generate_detect_virt());
|
|
|
|
get_processor_features();
|
|
|
|
LP64_ONLY(Assembler::precompute_instructions();)
|
|
|
|
if (VM_Version::supports_hv()) { // Supports hypervisor
|
|
check_virtualizations();
|
|
}
|
|
}
|