jdk/src/java.base/share/classes/sun/security/ssl/KAKeyDerivation.java
2026-01-22 21:48:28 +00:00

234 lines
9.2 KiB
Java

/*
* Copyright (c) 2019, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.ssl;
import sun.security.util.RawKeySpec;
import javax.crypto.KDF;
import javax.crypto.KEM;
import javax.crypto.KeyAgreement;
import javax.crypto.SecretKey;
import javax.crypto.spec.HKDFParameterSpec;
import javax.net.ssl.SSLHandshakeException;
import java.io.IOException;
import java.security.GeneralSecurityException;
import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.Provider;
import java.security.PublicKey;
import java.security.SecureRandom;
import sun.security.util.KeyUtil;
/**
* A common class for creating various KeyDerivation types.
*/
public class KAKeyDerivation implements SSLKeyDerivation {
private final String algorithmName;
private final HandshakeContext context;
private final PrivateKey localPrivateKey;
private final PublicKey peerPublicKey;
private final byte[] keyshare;
private final Provider provider;
// Constructor called by Key Agreement
KAKeyDerivation(String algorithmName,
HandshakeContext context,
PrivateKey localPrivateKey,
PublicKey peerPublicKey) {
this(algorithmName, null, context, localPrivateKey,
peerPublicKey, null);
}
// When the constructor called by KEM: store the client's public key or the
// encapsulated message in keyshare.
KAKeyDerivation(String algorithmName,
NamedGroup namedGroup,
HandshakeContext context,
PrivateKey localPrivateKey,
PublicKey peerPublicKey,
byte[] keyshare) {
this.algorithmName = algorithmName;
this.context = context;
this.localPrivateKey = localPrivateKey;
this.peerPublicKey = peerPublicKey;
this.keyshare = keyshare;
this.provider = (namedGroup != null) ? namedGroup.getProvider() : null;
}
@Override
public SecretKey deriveKey(String type) throws IOException {
if (!context.negotiatedProtocol.useTLS13PlusSpec()) {
return t12DeriveKey();
} else {
return t13DeriveKey(type);
}
}
/**
* Handle the TLSv1-1.2 objects, which don't use the HKDF algorithms.
*/
private SecretKey t12DeriveKey() throws IOException {
SecretKey preMasterSecret = null;
try {
KeyAgreement ka = KeyAgreement.getInstance(algorithmName);
ka.init(localPrivateKey);
ka.doPhase(peerPublicKey, true);
preMasterSecret = ka.generateSecret("TlsPremasterSecret");
SSLMasterKeyDerivation mskd =
SSLMasterKeyDerivation.valueOf(context.negotiatedProtocol);
if (mskd == null) {
// unlikely
throw new SSLHandshakeException(
"No expected master key derivation for protocol: "
+ context.negotiatedProtocol.name);
}
SSLKeyDerivation kd = mskd.createKeyDerivation(
context, preMasterSecret);
return kd.deriveKey("MasterSecret");
} catch (GeneralSecurityException gse) {
throw new SSLHandshakeException("Could not generate secret", gse);
} finally {
KeyUtil.destroySecretKeys(preMasterSecret);
}
}
private SecretKey deriveHandshakeSecret(String label,
SecretKey sharedSecret)
throws GeneralSecurityException, IOException {
SecretKey earlySecret = null;
SecretKey saltSecret = null;
CipherSuite.HashAlg hashAlg = context.negotiatedCipherSuite.hashAlg;
SSLKeyDerivation kd = context.handshakeKeyDerivation;
try {
if (kd == null) { // No PSK is in use.
// If PSK is not in use, Early Secret will still be
// HKDF-Extract(0, 0).
byte[] zeros = new byte[hashAlg.hashLength];
KDF hkdf = KDF.getInstance(hashAlg.hkdfAlgorithm);
earlySecret = hkdf.deriveKey("TlsEarlySecret",
HKDFParameterSpec.ofExtract().addSalt(zeros)
.addIKM(zeros).extractOnly());
kd = new SSLSecretDerivation(context, earlySecret);
}
// derive salt secret
saltSecret = kd.deriveKey("TlsSaltSecret");
// derive handshake secret
// NOTE: do not reuse the HKDF object for "TlsEarlySecret" for
// the handshake secret key derivation (below) as it may not
// work with the "sharedSecret" obj.
KDF hkdf = KDF.getInstance(hashAlg.hkdfAlgorithm);
var spec = HKDFParameterSpec.ofExtract().addSalt(saltSecret);
if (sharedSecret instanceof Hybrid.SecretKeyImpl hsk) {
spec = spec.addIKM(hsk.k1()).addIKM(hsk.k2());
} else {
spec = spec.addIKM(sharedSecret);
}
return hkdf.deriveKey(label, spec.extractOnly());
} finally {
KeyUtil.destroySecretKeys(earlySecret, saltSecret);
}
}
/**
* This method is called by the server to perform KEM encapsulation.
* It uses the client's public key (sent by the client as a keyshare)
* to encapsulate a shared secret and returns the encapsulated message.
*
* Package-private, used from KeyShareExtension.SHKeyShareProducer::
* produce().
*/
KEM.Encapsulated encapsulate(String algorithm, SecureRandom random)
throws IOException {
SecretKey sharedSecret = null;
if (keyshare == null) {
throw new IOException("No keyshare available for KEM " +
"encapsulation");
}
try {
KeyFactory kf = (provider != null) ?
KeyFactory.getInstance(algorithmName, provider) :
KeyFactory.getInstance(algorithmName);
var pk = kf.generatePublic(new RawKeySpec(keyshare));
KEM kem = (provider != null) ?
KEM.getInstance(algorithmName, provider) :
KEM.getInstance(algorithmName);
KEM.Encapsulator e = kem.newEncapsulator(pk, random);
KEM.Encapsulated enc = e.encapsulate();
sharedSecret = enc.key();
SecretKey derived = deriveHandshakeSecret(algorithm, sharedSecret);
return new KEM.Encapsulated(derived, enc.encapsulation(), null);
} catch (GeneralSecurityException gse) {
throw new SSLHandshakeException("Could not generate secret", gse);
} finally {
KeyUtil.destroySecretKeys(sharedSecret);
}
}
/**
* Handle the TLSv1.3 objects, which use the HKDF algorithms.
*/
private SecretKey t13DeriveKey(String type)
throws IOException {
SecretKey sharedSecret = null;
try {
if (keyshare != null) {
// Using KEM: called by the client after receiving the KEM
// ciphertext (keyshare) from the server in ServerHello.
// The client decapsulates it using its private key.
KEM kem = (provider != null)
? KEM.getInstance(algorithmName, provider)
: KEM.getInstance(algorithmName);
var decapsulator = kem.newDecapsulator(localPrivateKey);
sharedSecret = decapsulator.decapsulate(
keyshare, 0, decapsulator.secretSize(),
"Generic");
} else {
// Using traditional DH-style Key Agreement
KeyAgreement ka = KeyAgreement.getInstance(algorithmName);
ka.init(localPrivateKey);
ka.doPhase(peerPublicKey, true);
sharedSecret = ka.generateSecret("Generic");
}
return deriveHandshakeSecret(type, sharedSecret);
} catch (GeneralSecurityException gse) {
throw new SSLHandshakeException("Could not generate secret", gse);
} finally {
KeyUtil.destroySecretKeys(sharedSecret);
}
}
}