mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
680 lines
26 KiB
C++
680 lines
26 KiB
C++
/*
|
|
* Copyright (c) 2014, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/g1/g1Allocator.inline.hpp"
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1CollectionSet.hpp"
|
|
#include "gc/g1/g1OopClosures.inline.hpp"
|
|
#include "gc/g1/g1ParScanThreadState.inline.hpp"
|
|
#include "gc/g1/g1RootClosures.hpp"
|
|
#include "gc/g1/g1StringDedup.hpp"
|
|
#include "gc/g1/g1Trace.hpp"
|
|
#include "gc/shared/partialArrayTaskStepper.inline.hpp"
|
|
#include "gc/shared/stringdedup/stringDedup.hpp"
|
|
#include "gc/shared/taskqueue.inline.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "oops/access.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/prefetch.inline.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/macros.hpp"
|
|
|
|
// In fastdebug builds the code size can get out of hand, potentially
|
|
// tripping over compiler limits (which may be bugs, but nevertheless
|
|
// need to be taken into consideration). A side benefit of limiting
|
|
// inlining is that we get more call frames that might aid debugging.
|
|
// And the fastdebug compile time for this file is much reduced.
|
|
// Explicit NOINLINE to block ATTRIBUTE_FLATTENing.
|
|
#define MAYBE_INLINE_EVACUATION NOT_DEBUG(inline) DEBUG_ONLY(NOINLINE)
|
|
|
|
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
|
|
G1RedirtyCardsQueueSet* rdcqs,
|
|
uint worker_id,
|
|
uint n_workers,
|
|
size_t young_cset_length,
|
|
size_t optional_cset_length)
|
|
: _g1h(g1h),
|
|
_task_queue(g1h->task_queue(worker_id)),
|
|
_rdc_local_qset(rdcqs),
|
|
_ct(g1h->card_table()),
|
|
_closures(NULL),
|
|
_plab_allocator(NULL),
|
|
_age_table(false),
|
|
_tenuring_threshold(g1h->policy()->tenuring_threshold()),
|
|
_scanner(g1h, this),
|
|
_worker_id(worker_id),
|
|
_last_enqueued_card(SIZE_MAX),
|
|
_stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
|
|
_stack_trim_lower_threshold(GCDrainStackTargetSize),
|
|
_trim_ticks(),
|
|
_surviving_young_words_base(NULL),
|
|
_surviving_young_words(NULL),
|
|
_surviving_words_length(young_cset_length + 1),
|
|
_old_gen_is_full(false),
|
|
_partial_objarray_chunk_size(ParGCArrayScanChunk),
|
|
_partial_array_stepper(n_workers),
|
|
_string_dedup_requests(),
|
|
_num_optional_regions(optional_cset_length),
|
|
_numa(g1h->numa()),
|
|
_obj_alloc_stat(NULL)
|
|
{
|
|
// We allocate number of young gen regions in the collection set plus one
|
|
// entries, since entry 0 keeps track of surviving bytes for non-young regions.
|
|
// We also add a few elements at the beginning and at the end in
|
|
// an attempt to eliminate cache contention
|
|
const size_t padding_elem_num = (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t));
|
|
size_t array_length = padding_elem_num + _surviving_words_length + padding_elem_num;
|
|
|
|
_surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
|
|
_surviving_young_words = _surviving_young_words_base + padding_elem_num;
|
|
memset(_surviving_young_words, 0, _surviving_words_length * sizeof(size_t));
|
|
|
|
_plab_allocator = new G1PLABAllocator(_g1h->allocator());
|
|
|
|
// The dest for Young is used when the objects are aged enough to
|
|
// need to be moved to the next space.
|
|
_dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old;
|
|
_dest[G1HeapRegionAttr::Old] = G1HeapRegionAttr::Old;
|
|
|
|
_closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
|
|
|
|
_oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions];
|
|
|
|
initialize_numa_stats();
|
|
}
|
|
|
|
size_t G1ParScanThreadState::flush(size_t* surviving_young_words) {
|
|
_rdc_local_qset.flush();
|
|
flush_numa_stats();
|
|
// Update allocation statistics.
|
|
_plab_allocator->flush_and_retire_stats();
|
|
_g1h->policy()->record_age_table(&_age_table);
|
|
|
|
size_t sum = 0;
|
|
for (uint i = 0; i < _surviving_words_length; i++) {
|
|
surviving_young_words[i] += _surviving_young_words[i];
|
|
sum += _surviving_young_words[i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
G1ParScanThreadState::~G1ParScanThreadState() {
|
|
delete _plab_allocator;
|
|
delete _closures;
|
|
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
|
|
delete[] _oops_into_optional_regions;
|
|
FREE_C_HEAP_ARRAY(size_t, _obj_alloc_stat);
|
|
}
|
|
|
|
size_t G1ParScanThreadState::lab_waste_words() const {
|
|
return _plab_allocator->waste();
|
|
}
|
|
|
|
size_t G1ParScanThreadState::lab_undo_waste_words() const {
|
|
return _plab_allocator->undo_waste();
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void G1ParScanThreadState::verify_task(narrowOop* task) const {
|
|
assert(task != NULL, "invariant");
|
|
assert(UseCompressedOops, "sanity");
|
|
oop p = RawAccess<>::oop_load(task);
|
|
assert(_g1h->is_in_reserved(p),
|
|
"task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
|
|
}
|
|
|
|
void G1ParScanThreadState::verify_task(oop* task) const {
|
|
assert(task != NULL, "invariant");
|
|
oop p = RawAccess<>::oop_load(task);
|
|
assert(_g1h->is_in_reserved(p),
|
|
"task=" PTR_FORMAT " p=" PTR_FORMAT, p2i(task), p2i(p));
|
|
}
|
|
|
|
void G1ParScanThreadState::verify_task(PartialArrayScanTask task) const {
|
|
// Must be in the collection set--it's already been copied.
|
|
oop p = task.to_source_array();
|
|
assert(_g1h->is_in_cset(p), "p=" PTR_FORMAT, p2i(p));
|
|
}
|
|
|
|
void G1ParScanThreadState::verify_task(ScannerTask task) const {
|
|
if (task.is_narrow_oop_ptr()) {
|
|
verify_task(task.to_narrow_oop_ptr());
|
|
} else if (task.is_oop_ptr()) {
|
|
verify_task(task.to_oop_ptr());
|
|
} else if (task.is_partial_array_task()) {
|
|
verify_task(task.to_partial_array_task());
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
template <class T>
|
|
MAYBE_INLINE_EVACUATION
|
|
void G1ParScanThreadState::do_oop_evac(T* p) {
|
|
// Reference should not be NULL here as such are never pushed to the task queue.
|
|
oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
|
|
|
|
// Although we never intentionally push references outside of the collection
|
|
// set, due to (benign) races in the claim mechanism during RSet scanning more
|
|
// than one thread might claim the same card. So the same card may be
|
|
// processed multiple times, and so we might get references into old gen here.
|
|
// So we need to redo this check.
|
|
const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
|
|
// References pushed onto the work stack should never point to a humongous region
|
|
// as they are not added to the collection set due to above precondition.
|
|
assert(!region_attr.is_humongous(),
|
|
"Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
|
|
p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p));
|
|
|
|
if (!region_attr.is_in_cset()) {
|
|
// In this case somebody else already did all the work.
|
|
return;
|
|
}
|
|
|
|
markWord m = obj->mark();
|
|
if (m.is_marked()) {
|
|
obj = cast_to_oop(m.decode_pointer());
|
|
} else {
|
|
obj = do_copy_to_survivor_space(region_attr, obj, m);
|
|
}
|
|
RawAccess<IS_NOT_NULL>::oop_store(p, obj);
|
|
|
|
assert(obj != NULL, "Must be");
|
|
if (HeapRegion::is_in_same_region(p, obj)) {
|
|
return;
|
|
}
|
|
HeapRegion* from = _g1h->heap_region_containing(p);
|
|
if (!from->is_young()) {
|
|
enqueue_card_if_tracked(_g1h->region_attr(obj), p, obj);
|
|
}
|
|
}
|
|
|
|
MAYBE_INLINE_EVACUATION
|
|
void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
|
|
oop from_obj = task.to_source_array();
|
|
|
|
assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
|
|
assert(from_obj->is_objArray(), "must be obj array");
|
|
assert(from_obj->is_forwarded(), "must be forwarded");
|
|
|
|
oop to_obj = from_obj->forwardee();
|
|
assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
|
|
assert(to_obj->is_objArray(), "must be obj array");
|
|
objArrayOop to_array = objArrayOop(to_obj);
|
|
|
|
PartialArrayTaskStepper::Step step
|
|
= _partial_array_stepper.next(objArrayOop(from_obj),
|
|
to_array,
|
|
_partial_objarray_chunk_size);
|
|
for (uint i = 0; i < step._ncreate; ++i) {
|
|
push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
|
|
}
|
|
|
|
HeapRegion* hr = _g1h->heap_region_containing(to_array);
|
|
G1ScanInYoungSetter x(&_scanner, hr->is_young());
|
|
// Process claimed task. The length of to_array is not correct, but
|
|
// fortunately the iteration ignores the length field and just relies
|
|
// on start/end.
|
|
to_array->oop_iterate_range(&_scanner,
|
|
step._index,
|
|
step._index + _partial_objarray_chunk_size);
|
|
}
|
|
|
|
MAYBE_INLINE_EVACUATION
|
|
void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
|
|
oop from_obj,
|
|
oop to_obj) {
|
|
assert(from_obj->is_objArray(), "precondition");
|
|
assert(from_obj->is_forwarded(), "precondition");
|
|
assert(from_obj->forwardee() == to_obj, "precondition");
|
|
assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
|
|
assert(to_obj->is_objArray(), "precondition");
|
|
|
|
objArrayOop to_array = objArrayOop(to_obj);
|
|
|
|
PartialArrayTaskStepper::Step step
|
|
= _partial_array_stepper.start(objArrayOop(from_obj),
|
|
to_array,
|
|
_partial_objarray_chunk_size);
|
|
|
|
// Push any needed partial scan tasks. Pushed before processing the
|
|
// intitial chunk to allow other workers to steal while we're processing.
|
|
for (uint i = 0; i < step._ncreate; ++i) {
|
|
push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
|
|
}
|
|
|
|
G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
|
|
// Process the initial chunk. No need to process the type in the
|
|
// klass, as it will already be handled by processing the built-in
|
|
// module. The length of to_array is not correct, but fortunately
|
|
// the iteration ignores that length field and relies on start/end.
|
|
to_array->oop_iterate_range(&_scanner, 0, step._index);
|
|
}
|
|
|
|
MAYBE_INLINE_EVACUATION
|
|
void G1ParScanThreadState::dispatch_task(ScannerTask task) {
|
|
verify_task(task);
|
|
if (task.is_narrow_oop_ptr()) {
|
|
do_oop_evac(task.to_narrow_oop_ptr());
|
|
} else if (task.is_oop_ptr()) {
|
|
do_oop_evac(task.to_oop_ptr());
|
|
} else {
|
|
do_partial_array(task.to_partial_array_task());
|
|
}
|
|
}
|
|
|
|
// Process tasks until overflow queue is empty and local queue
|
|
// contains no more than threshold entries. NOINLINE to prevent
|
|
// inlining into steal_and_trim_queue.
|
|
ATTRIBUTE_FLATTEN NOINLINE
|
|
void G1ParScanThreadState::trim_queue_to_threshold(uint threshold) {
|
|
ScannerTask task;
|
|
do {
|
|
while (_task_queue->pop_overflow(task)) {
|
|
if (!_task_queue->try_push_to_taskqueue(task)) {
|
|
dispatch_task(task);
|
|
}
|
|
}
|
|
while (_task_queue->pop_local(task, threshold)) {
|
|
dispatch_task(task);
|
|
}
|
|
} while (!_task_queue->overflow_empty());
|
|
}
|
|
|
|
ATTRIBUTE_FLATTEN
|
|
void G1ParScanThreadState::steal_and_trim_queue(G1ScannerTasksQueueSet* task_queues) {
|
|
ScannerTask stolen_task;
|
|
while (task_queues->steal(_worker_id, stolen_task)) {
|
|
dispatch_task(stolen_task);
|
|
// Processing stolen task may have added tasks to our queue.
|
|
trim_queue();
|
|
}
|
|
}
|
|
|
|
HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest,
|
|
size_t word_sz,
|
|
bool previous_plab_refill_failed,
|
|
uint node_index) {
|
|
|
|
assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
|
|
|
|
// Right now we only have two types of regions (young / old) so
|
|
// let's keep the logic here simple. We can generalize it when necessary.
|
|
if (dest->is_young()) {
|
|
bool plab_refill_in_old_failed = false;
|
|
HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
|
|
word_sz,
|
|
&plab_refill_in_old_failed,
|
|
node_index);
|
|
// Make sure that we won't attempt to copy any other objects out
|
|
// of a survivor region (given that apparently we cannot allocate
|
|
// any new ones) to avoid coming into this slow path again and again.
|
|
// Only consider failed PLAB refill here: failed inline allocations are
|
|
// typically large, so not indicative of remaining space.
|
|
if (previous_plab_refill_failed) {
|
|
_tenuring_threshold = 0;
|
|
}
|
|
|
|
if (obj_ptr != NULL) {
|
|
dest->set_old();
|
|
} else {
|
|
// We just failed to allocate in old gen. The same idea as explained above
|
|
// for making survivor gen unavailable for allocation applies for old gen.
|
|
_old_gen_is_full = plab_refill_in_old_failed;
|
|
}
|
|
return obj_ptr;
|
|
} else {
|
|
_old_gen_is_full = previous_plab_refill_failed;
|
|
assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
|
|
// no other space to try.
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
|
|
if (region_attr.is_young()) {
|
|
age = !m.has_displaced_mark_helper() ? m.age()
|
|
: m.displaced_mark_helper().age();
|
|
if (age < _tenuring_threshold) {
|
|
return region_attr;
|
|
}
|
|
}
|
|
return dest(region_attr);
|
|
}
|
|
|
|
void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
|
|
oop const old, size_t word_sz, uint age,
|
|
HeapWord * const obj_ptr, uint node_index) const {
|
|
PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
|
|
if (alloc_buf->contains(obj_ptr)) {
|
|
_g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
|
|
dest_attr.type() == G1HeapRegionAttr::Old,
|
|
alloc_buf->word_sz() * HeapWordSize);
|
|
} else {
|
|
_g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
|
|
dest_attr.type() == G1HeapRegionAttr::Old);
|
|
}
|
|
}
|
|
|
|
NOINLINE
|
|
HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
|
|
oop old,
|
|
size_t word_sz,
|
|
uint age,
|
|
uint node_index) {
|
|
HeapWord* obj_ptr = NULL;
|
|
// Try slow-path allocation unless we're allocating old and old is already full.
|
|
if (!(dest_attr->is_old() && _old_gen_is_full)) {
|
|
bool plab_refill_failed = false;
|
|
obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
|
|
word_sz,
|
|
&plab_refill_failed,
|
|
node_index);
|
|
if (obj_ptr == NULL) {
|
|
obj_ptr = allocate_in_next_plab(dest_attr,
|
|
word_sz,
|
|
plab_refill_failed,
|
|
node_index);
|
|
}
|
|
}
|
|
if (obj_ptr != NULL) {
|
|
update_numa_stats(node_index);
|
|
if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
|
|
// The events are checked individually as part of the actual commit
|
|
report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index);
|
|
}
|
|
}
|
|
return obj_ptr;
|
|
}
|
|
|
|
NOINLINE
|
|
void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
|
|
HeapWord* obj_ptr,
|
|
size_t word_sz,
|
|
uint node_index) {
|
|
_plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
|
|
}
|
|
|
|
// Private inline function, for direct internal use and providing the
|
|
// implementation of the public not-inline function.
|
|
MAYBE_INLINE_EVACUATION
|
|
oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
|
|
oop const old,
|
|
markWord const old_mark) {
|
|
assert(region_attr.is_in_cset(),
|
|
"Unexpected region attr type: %s", region_attr.get_type_str());
|
|
|
|
// Get the klass once. We'll need it again later, and this avoids
|
|
// re-decoding when it's compressed.
|
|
Klass* klass = old->klass();
|
|
const size_t word_sz = old->size_given_klass(klass);
|
|
|
|
uint age = 0;
|
|
G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
|
|
HeapRegion* const from_region = _g1h->heap_region_containing(old);
|
|
uint node_index = from_region->node_index();
|
|
|
|
HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
|
|
|
|
// PLAB allocations should succeed most of the time, so we'll
|
|
// normally check against NULL once and that's it.
|
|
if (obj_ptr == NULL) {
|
|
obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
|
|
if (obj_ptr == NULL) {
|
|
// This will either forward-to-self, or detect that someone else has
|
|
// installed a forwarding pointer.
|
|
return handle_evacuation_failure_par(old, old_mark);
|
|
}
|
|
}
|
|
|
|
assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
|
|
assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
|
|
|
|
#ifndef PRODUCT
|
|
// Should this evacuation fail?
|
|
if (_g1h->evacuation_should_fail()) {
|
|
// Doing this after all the allocation attempts also tests the
|
|
// undo_allocation() method too.
|
|
undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
|
|
return handle_evacuation_failure_par(old, old_mark);
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
// We're going to allocate linearly, so might as well prefetch ahead.
|
|
Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
|
|
|
|
const oop obj = cast_to_oop(obj_ptr);
|
|
const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
|
|
if (forward_ptr == NULL) {
|
|
Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), obj_ptr, word_sz);
|
|
|
|
{
|
|
const uint young_index = from_region->young_index_in_cset();
|
|
assert((from_region->is_young() && young_index > 0) ||
|
|
(!from_region->is_young() && young_index == 0), "invariant" );
|
|
_surviving_young_words[young_index] += word_sz;
|
|
}
|
|
|
|
if (dest_attr.is_young()) {
|
|
if (age < markWord::max_age) {
|
|
age++;
|
|
}
|
|
if (old_mark.has_displaced_mark_helper()) {
|
|
// In this case, we have to install the old mark word containing the
|
|
// displacement tag, and update the age in the displaced mark word.
|
|
markWord new_mark = old_mark.displaced_mark_helper().set_age(age);
|
|
old_mark.set_displaced_mark_helper(new_mark);
|
|
obj->set_mark(old_mark);
|
|
} else {
|
|
obj->set_mark(old_mark.set_age(age));
|
|
}
|
|
_age_table.add(age, word_sz);
|
|
} else {
|
|
obj->set_mark(old_mark);
|
|
}
|
|
|
|
// Most objects are not arrays, so do one array check rather than
|
|
// checking for each array category for each object.
|
|
if (klass->is_array_klass()) {
|
|
if (klass->is_objArray_klass()) {
|
|
start_partial_objarray(dest_attr, old, obj);
|
|
} else {
|
|
// Nothing needs to be done for typeArrays. Body doesn't contain
|
|
// any oops to scan, and the type in the klass will already be handled
|
|
// by processing the built-in module.
|
|
assert(klass->is_typeArray_klass(), "invariant");
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
// Check for deduplicating young Strings.
|
|
if (G1StringDedup::is_candidate_from_evacuation(klass,
|
|
region_attr,
|
|
dest_attr,
|
|
age)) {
|
|
// Record old; request adds a new weak reference, which reference
|
|
// processing expects to refer to a from-space object.
|
|
_string_dedup_requests.add(old);
|
|
}
|
|
|
|
G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
|
|
obj->oop_iterate_backwards(&_scanner, klass);
|
|
return obj;
|
|
|
|
} else {
|
|
_plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
|
|
return forward_ptr;
|
|
}
|
|
}
|
|
|
|
// Public not-inline entry point.
|
|
ATTRIBUTE_FLATTEN
|
|
oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr region_attr,
|
|
oop old,
|
|
markWord old_mark) {
|
|
return do_copy_to_survivor_space(region_attr, old, old_mark);
|
|
}
|
|
|
|
G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
|
|
assert(worker_id < _n_workers, "out of bounds access");
|
|
if (_states[worker_id] == NULL) {
|
|
_states[worker_id] =
|
|
new G1ParScanThreadState(_g1h, _rdcqs,
|
|
worker_id, _n_workers,
|
|
_young_cset_length, _optional_cset_length);
|
|
}
|
|
return _states[worker_id];
|
|
}
|
|
|
|
const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
|
|
assert(_flushed, "thread local state from the per thread states should have been flushed");
|
|
return _surviving_young_words_total;
|
|
}
|
|
|
|
void G1ParScanThreadStateSet::flush() {
|
|
assert(!_flushed, "thread local state from the per thread states should be flushed once");
|
|
|
|
for (uint worker_id = 0; worker_id < _n_workers; ++worker_id) {
|
|
G1ParScanThreadState* pss = _states[worker_id];
|
|
|
|
if (pss == NULL) {
|
|
continue;
|
|
}
|
|
|
|
G1GCPhaseTimes* p = _g1h->phase_times();
|
|
|
|
// Need to get the following two before the call to G1ParThreadScanState::flush()
|
|
// because it resets the PLAB allocator where we get this info from.
|
|
size_t lab_waste_bytes = pss->lab_waste_words() * HeapWordSize;
|
|
size_t lab_undo_waste_bytes = pss->lab_undo_waste_words() * HeapWordSize;
|
|
size_t copied_bytes = pss->flush(_surviving_young_words_total) * HeapWordSize;
|
|
|
|
p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, copied_bytes, G1GCPhaseTimes::MergePSSCopiedBytes);
|
|
p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_waste_bytes, G1GCPhaseTimes::MergePSSLABWasteBytes);
|
|
p->record_or_add_thread_work_item(G1GCPhaseTimes::MergePSS, worker_id, lab_undo_waste_bytes, G1GCPhaseTimes::MergePSSLABUndoWasteBytes);
|
|
|
|
delete pss;
|
|
_states[worker_id] = NULL;
|
|
}
|
|
_flushed = true;
|
|
}
|
|
|
|
void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
|
|
for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
|
|
G1ParScanThreadState* pss = _states[worker_index];
|
|
|
|
if (pss == NULL) {
|
|
continue;
|
|
}
|
|
|
|
size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
|
|
_g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
|
|
}
|
|
}
|
|
|
|
NOINLINE
|
|
oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
|
|
assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
|
|
|
|
oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
|
|
if (forward_ptr == NULL) {
|
|
// Forward-to-self succeeded. We are the "owner" of the object.
|
|
HeapRegion* r = _g1h->heap_region_containing(old);
|
|
|
|
if (_g1h->notify_region_failed_evacuation(r->hrm_index())) {
|
|
_g1h->hr_printer()->evac_failure(r);
|
|
}
|
|
|
|
_g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
|
|
|
|
G1ScanInYoungSetter x(&_scanner, r->is_young());
|
|
old->oop_iterate_backwards(&_scanner);
|
|
|
|
return old;
|
|
} else {
|
|
// Forward-to-self failed. Either someone else managed to allocate
|
|
// space for this object (old != forward_ptr) or they beat us in
|
|
// self-forwarding it (old == forward_ptr).
|
|
assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
|
|
"Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
|
|
"should not be in the CSet",
|
|
p2i(old), p2i(forward_ptr));
|
|
return forward_ptr;
|
|
}
|
|
}
|
|
|
|
void G1ParScanThreadState::initialize_numa_stats() {
|
|
if (_numa->is_enabled()) {
|
|
LogTarget(Info, gc, heap, numa) lt;
|
|
|
|
if (lt.is_enabled()) {
|
|
uint num_nodes = _numa->num_active_nodes();
|
|
// Record only if there are multiple active nodes.
|
|
_obj_alloc_stat = NEW_C_HEAP_ARRAY(size_t, num_nodes, mtGC);
|
|
memset(_obj_alloc_stat, 0, sizeof(size_t) * num_nodes);
|
|
}
|
|
}
|
|
}
|
|
|
|
void G1ParScanThreadState::flush_numa_stats() {
|
|
if (_obj_alloc_stat != NULL) {
|
|
uint node_index = _numa->index_of_current_thread();
|
|
_numa->copy_statistics(G1NUMAStats::LocalObjProcessAtCopyToSurv, node_index, _obj_alloc_stat);
|
|
}
|
|
}
|
|
|
|
void G1ParScanThreadState::update_numa_stats(uint node_index) {
|
|
if (_obj_alloc_stat != NULL) {
|
|
_obj_alloc_stat[node_index]++;
|
|
}
|
|
}
|
|
|
|
G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
|
|
G1RedirtyCardsQueueSet* rdcqs,
|
|
uint n_workers,
|
|
size_t young_cset_length,
|
|
size_t optional_cset_length) :
|
|
_g1h(g1h),
|
|
_rdcqs(rdcqs),
|
|
_states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
|
|
_surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)),
|
|
_young_cset_length(young_cset_length),
|
|
_optional_cset_length(optional_cset_length),
|
|
_n_workers(n_workers),
|
|
_flushed(false) {
|
|
for (uint i = 0; i < n_workers; ++i) {
|
|
_states[i] = NULL;
|
|
}
|
|
memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t));
|
|
}
|
|
|
|
G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
|
|
assert(_flushed, "thread local state from the per thread states should have been flushed");
|
|
FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
|
|
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
|
|
}
|