jdk/src/hotspot/share/gc/g1/g1CollectionSetChooser.cpp
Thomas Schatzl 5f8cb30fc0 8375626: G1: Convert G1CollectionSetChooser to use Atomic<T>
Reviewed-by: kbarrett, shade
2026-01-20 18:16:39 +00:00

297 lines
10 KiB
C++

/*
* Copyright (c) 2001, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectionSetCandidates.hpp"
#include "gc/g1/g1CollectionSetChooser.hpp"
#include "gc/g1/g1HeapRegionRemSet.inline.hpp"
#include "gc/shared/space.hpp"
#include "runtime/atomic.hpp"
#include "utilities/quickSort.hpp"
// Determine collection set candidates (from marking): For all regions determine
// whether they should be a collection set candidate. Calculate their efficiency,
// sort, and put them into the collection set candidates.
//
// Threads calculate the GC efficiency of the regions they get to process, and
// put them into some work area without sorting. At the end that array is sorted and
// moved to the destination.
class G1BuildCandidateRegionsTask : public WorkerTask {
// Work area for building the set of collection set candidates. Contains references
// to heap regions with their GC efficiencies calculated. To reduce contention
// on claiming array elements, worker threads claim parts of this array in chunks;
// Array elements may be null as threads might not get enough regions to fill
// up their chunks completely.
// Final sorting will remove them.
class G1BuildCandidateArray : public StackObj {
uint const _max_size;
uint const _chunk_size;
G1HeapRegion** _data;
Atomic<uint> _cur_claim_idx;
static int compare_region_gc_efficiency(G1HeapRegion** rr1, G1HeapRegion** rr2) {
G1HeapRegion* r1 = *rr1;
G1HeapRegion* r2 = *rr2;
// Make sure that null entries are moved to the end.
if (r1 == nullptr) {
if (r2 == nullptr) {
return 0;
} else {
return 1;
}
} else if (r2 == nullptr) {
return -1;
}
G1Policy* p = G1CollectedHeap::heap()->policy();
double gc_efficiency1 = p->predict_gc_efficiency(r1);
double gc_efficiency2 = p->predict_gc_efficiency(r2);
if (gc_efficiency1 > gc_efficiency2) {
return -1;
} else if (gc_efficiency1 < gc_efficiency2) {
return 1;
} else {
return 0;
}
}
// Calculates the maximum array size that will be used.
static uint required_array_size(uint num_regions, uint chunk_size, uint num_workers) {
uint const max_waste = num_workers * chunk_size;
// The array should be aligned with respect to chunk_size.
uint const aligned_num_regions = ((num_regions + chunk_size - 1) / chunk_size) * chunk_size;
return aligned_num_regions + max_waste;
}
public:
G1BuildCandidateArray(uint max_num_regions, uint chunk_size, uint num_workers) :
_max_size(required_array_size(max_num_regions, chunk_size, num_workers)),
_chunk_size(chunk_size),
_data(NEW_C_HEAP_ARRAY(G1HeapRegion*, _max_size, mtGC)),
_cur_claim_idx(0) {
for (uint i = 0; i < _max_size; i++) {
_data[i] = nullptr;
}
}
~G1BuildCandidateArray() {
FREE_C_HEAP_ARRAY(G1HeapRegion*, _data);
}
// Claim a new chunk, returning its bounds [from, to[.
void claim_chunk(uint& from, uint& to) {
uint result = _cur_claim_idx.add_then_fetch(_chunk_size);
assert(_max_size > result - 1,
"Array too small, is %u should be %u with chunk size %u.",
_max_size, result, _chunk_size);
from = result - _chunk_size;
to = result;
}
// Set element in array.
void set(uint idx, G1HeapRegion* hr) {
assert(idx < _max_size, "Index %u out of bounds %u", idx, _max_size);
assert(_data[idx] == nullptr, "Value must not have been set.");
_data[idx] = hr;
}
void sort_by_gc_efficiency() {
uint length = _cur_claim_idx.load_relaxed();
if (length == 0) {
return;
}
for (uint i = length; i < _max_size; i++) {
assert(_data[i] == nullptr, "must be");
}
qsort(_data, length, sizeof(_data[0]), (_sort_Fn)compare_region_gc_efficiency);
for (uint i = length; i < _max_size; i++) {
assert(_data[i] == nullptr, "must be");
}
}
G1HeapRegion** array() const { return _data; }
};
// Per-region closure. In addition to determining whether a region should be
// added to the candidates, and calculating those regions' gc efficiencies, also
// gather additional statistics.
class G1BuildCandidateRegionsClosure : public G1HeapRegionClosure {
G1BuildCandidateArray* _array;
uint _cur_chunk_idx;
uint _cur_chunk_end;
uint _regions_added;
void add_region(G1HeapRegion* hr) {
if (_cur_chunk_idx == _cur_chunk_end) {
_array->claim_chunk(_cur_chunk_idx, _cur_chunk_end);
}
assert(_cur_chunk_idx < _cur_chunk_end, "Must be");
_array->set(_cur_chunk_idx, hr);
_cur_chunk_idx++;
_regions_added++;
}
public:
G1BuildCandidateRegionsClosure(G1BuildCandidateArray* array) :
_array(array),
_cur_chunk_idx(0),
_cur_chunk_end(0),
_regions_added(0) { }
bool do_heap_region(G1HeapRegion* r) {
// Candidates from marking are always old; also keep regions that are already
// collection set candidates (some retained regions) in that list.
if (!r->is_old() || r->is_collection_set_candidate()) {
// Keep remembered sets and everything for these regions.
return false;
}
// Can not add a region without a remembered set to the candidates.
if (!r->rem_set()->is_tracked()) {
return false;
}
// Skip any region that is currently used as an old GC alloc region. We should
// not consider those for collection before we fill them up as the effective
// gain from them is small. I.e. we only actually reclaim from the filled part,
// as the remainder is still eligible for allocation. These objects are also
// likely to have already survived a few collections, so they might be longer
// lived anyway.
// Otherwise the Old region must satisfy the liveness condition.
bool should_add = !G1CollectedHeap::heap()->is_old_gc_alloc_region(r) &&
G1CollectionSetChooser::region_occupancy_low_enough_for_evac(r->live_bytes());
if (should_add) {
add_region(r);
} else {
r->rem_set()->clear(true /* only_cardset */);
}
return false;
}
uint regions_added() const { return _regions_added; }
};
G1CollectedHeap* _g1h;
G1HeapRegionClaimer _hrclaimer;
uint volatile _num_regions_added;
G1BuildCandidateArray _result;
void update_totals(uint num_regions) {
if (num_regions > 0) {
AtomicAccess::add(&_num_regions_added, num_regions);
}
}
// Early prune (remove) regions meeting the G1HeapWastePercent criteria. That
// is, either until only the minimum amount of old collection set regions are
// available (for forward progress in evacuation) or the waste accumulated by the
// removed regions is above the maximum allowed waste.
// Updates number of candidates and reclaimable bytes given.
void prune(G1HeapRegion** data) {
G1Policy* p = G1CollectedHeap::heap()->policy();
uint num_candidates = AtomicAccess::load(&_num_regions_added);
uint min_old_cset_length = p->calc_min_old_cset_length(num_candidates);
uint num_pruned = 0;
size_t wasted_bytes = 0;
if (min_old_cset_length >= num_candidates) {
// We take all of the candidate regions to provide some forward progress.
return;
}
size_t allowed_waste = p->allowed_waste_in_collection_set();
uint max_to_prune = num_candidates - min_old_cset_length;
while (true) {
G1HeapRegion* r = data[num_candidates - num_pruned - 1];
size_t const reclaimable = r->reclaimable_bytes();
if (num_pruned >= max_to_prune ||
wasted_bytes + reclaimable > allowed_waste) {
break;
}
r->rem_set()->clear(true /* cardset_only */);
wasted_bytes += reclaimable;
num_pruned++;
}
log_debug(gc, ergo, cset)("Pruned %u regions out of %u, leaving %zu bytes waste (allowed %zu)",
num_pruned,
num_candidates,
wasted_bytes,
allowed_waste);
AtomicAccess::sub(&_num_regions_added, num_pruned, memory_order_relaxed);
}
public:
G1BuildCandidateRegionsTask(uint max_num_regions, uint chunk_size, uint num_workers) :
WorkerTask("G1 Build Candidate Regions"),
_g1h(G1CollectedHeap::heap()),
_hrclaimer(num_workers),
_num_regions_added(0),
_result(max_num_regions, chunk_size, num_workers) { }
void work(uint worker_id) {
G1BuildCandidateRegionsClosure cl(&_result);
_g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
update_totals(cl.regions_added());
}
void sort_and_prune_into(G1CollectionSetCandidates* candidates) {
_result.sort_by_gc_efficiency();
prune(_result.array());
candidates->set_candidates_from_marking(_result.array(),
_num_regions_added);
}
};
uint G1CollectionSetChooser::calculate_work_chunk_size(uint num_workers, uint num_regions) {
assert(num_workers > 0, "Active gc workers should be greater than 0");
return MAX2(num_regions / num_workers, 1U);
}
void G1CollectionSetChooser::build(WorkerThreads* workers, uint max_num_regions, G1CollectionSetCandidates* candidates) {
uint num_workers = workers->active_workers();
uint chunk_size = calculate_work_chunk_size(num_workers, max_num_regions);
G1BuildCandidateRegionsTask cl(max_num_regions, chunk_size, num_workers);
workers->run_task(&cl, num_workers);
cl.sort_and_prune_into(candidates);
candidates->verify();
}