mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-02 22:48:35 +00:00
1138 lines
48 KiB
C++
1138 lines
48 KiB
C++
/*
|
|
* Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2023, Arm Limited. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/vectorization.hpp"
|
|
|
|
bool VLoop::check_preconditions() {
|
|
#ifndef PRODUCT
|
|
if (is_trace_preconditions()) {
|
|
tty->print_cr("\nVLoop::check_preconditions");
|
|
lpt()->dump_head();
|
|
lpt()->head()->dump();
|
|
}
|
|
#endif
|
|
|
|
VStatus status = check_preconditions_helper();
|
|
if (!status.is_success()) {
|
|
#ifndef PRODUCT
|
|
if (is_trace_preconditions()) {
|
|
tty->print_cr("VLoop::check_preconditions: failed: %s", status.failure_reason());
|
|
}
|
|
#endif
|
|
return false; // failure
|
|
}
|
|
return true; // success
|
|
}
|
|
|
|
VStatus VLoop::check_preconditions_helper() {
|
|
// Only accept vector width that is power of 2
|
|
int vector_width = Matcher::vector_width_in_bytes(T_BYTE);
|
|
if (vector_width < 2 || !is_power_of_2(vector_width)) {
|
|
return VStatus::make_failure(VLoop::FAILURE_VECTOR_WIDTH);
|
|
}
|
|
|
|
// Only accept valid counted loops (int)
|
|
if (!_lpt->_head->as_Loop()->is_valid_counted_loop(T_INT)) {
|
|
return VStatus::make_failure(VLoop::FAILURE_VALID_COUNTED_LOOP);
|
|
}
|
|
_cl = _lpt->_head->as_CountedLoop();
|
|
_iv = _cl->phi()->as_Phi();
|
|
|
|
if (_cl->is_vectorized_loop()) {
|
|
return VStatus::make_failure(VLoop::FAILURE_ALREADY_VECTORIZED);
|
|
}
|
|
|
|
if (_cl->is_unroll_only()) {
|
|
return VStatus::make_failure(VLoop::FAILURE_UNROLL_ONLY);
|
|
}
|
|
|
|
// Check for control flow in the body
|
|
_cl_exit = _cl->loopexit();
|
|
bool has_cfg = _cl_exit->in(0) != _cl;
|
|
if (has_cfg && !is_allow_cfg()) {
|
|
#ifndef PRODUCT
|
|
if (is_trace_preconditions()) {
|
|
tty->print_cr("VLoop::check_preconditions: fails because of control flow.");
|
|
tty->print(" cl_exit %d", _cl_exit->_idx); _cl_exit->dump();
|
|
tty->print(" cl_exit->in(0) %d", _cl_exit->in(0)->_idx); _cl_exit->in(0)->dump();
|
|
tty->print(" lpt->_head %d", _cl->_idx); _cl->dump();
|
|
_lpt->dump_head();
|
|
}
|
|
#endif
|
|
return VStatus::make_failure(VLoop::FAILURE_CONTROL_FLOW);
|
|
}
|
|
|
|
// Make sure the are no extra control users of the loop backedge
|
|
if (_cl->back_control()->outcnt() != 1) {
|
|
return VStatus::make_failure(VLoop::FAILURE_BACKEDGE);
|
|
}
|
|
|
|
if (_cl->is_main_loop()) {
|
|
// To align vector memory accesses in the main-loop, we will have to adjust
|
|
// the pre-loop limit.
|
|
CountedLoopEndNode* pre_end = _cl->find_pre_loop_end();
|
|
if (pre_end == nullptr) {
|
|
return VStatus::make_failure(VLoop::FAILURE_PRE_LOOP_LIMIT);
|
|
}
|
|
Node* pre_opaq1 = pre_end->limit();
|
|
if (pre_opaq1->Opcode() != Op_Opaque1) {
|
|
return VStatus::make_failure(VLoop::FAILURE_PRE_LOOP_LIMIT);
|
|
}
|
|
_pre_loop_end = pre_end;
|
|
|
|
// See if we find the infrastructure for speculative runtime-checks.
|
|
// (1) Auto Vectorization Parse Predicate
|
|
Node* pre_ctrl = pre_loop_head()->in(LoopNode::EntryControl);
|
|
const Predicates predicates(pre_ctrl);
|
|
const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block();
|
|
if (predicate_block->has_parse_predicate()) {
|
|
_auto_vectorization_parse_predicate_proj = predicate_block->parse_predicate_success_proj();
|
|
}
|
|
|
|
// (2) Multiversioning fast-loop projection
|
|
IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue();
|
|
if (before_predicates != nullptr &&
|
|
before_predicates->in(0)->is_If() &&
|
|
before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) {
|
|
_multiversioning_fast_proj = before_predicates;
|
|
}
|
|
#ifndef PRODUCT
|
|
if (is_trace_preconditions() || is_trace_speculative_runtime_checks()) {
|
|
tty->print_cr(" Infrastructure for speculative runtime-checks:");
|
|
if (_auto_vectorization_parse_predicate_proj != nullptr) {
|
|
tty->print_cr(" auto_vectorization_parse_predicate_proj: speculate and trap");
|
|
_auto_vectorization_parse_predicate_proj->dump_bfs(5,0,"");
|
|
} else if (_multiversioning_fast_proj != nullptr) {
|
|
tty->print_cr(" multiversioning_fast_proj: speculate and multiversion");
|
|
_multiversioning_fast_proj->dump_bfs(5,0,"");
|
|
} else {
|
|
tty->print_cr(" Not found.");
|
|
}
|
|
}
|
|
#endif
|
|
assert(_auto_vectorization_parse_predicate_proj == nullptr ||
|
|
_multiversioning_fast_proj == nullptr, "we should only have at most one of these");
|
|
assert(_cl->is_multiversion_fast_loop() == (_multiversioning_fast_proj != nullptr),
|
|
"must find the multiversion selector IFF loop is a multiversion fast loop");
|
|
}
|
|
|
|
return VStatus::make_success();
|
|
}
|
|
|
|
// Return true iff all submodules are loaded successfully
|
|
bool VLoopAnalyzer::setup_submodules() {
|
|
#ifndef PRODUCT
|
|
if (_vloop.is_trace_loop_analyzer()) {
|
|
tty->print_cr("\nVLoopAnalyzer::setup_submodules");
|
|
_vloop.lpt()->dump_head();
|
|
_vloop.cl()->dump();
|
|
}
|
|
#endif
|
|
|
|
VStatus status = setup_submodules_helper();
|
|
if (!status.is_success()) {
|
|
#ifndef PRODUCT
|
|
if (_vloop.is_trace_loop_analyzer()) {
|
|
tty->print_cr("\nVLoopAnalyze::setup_submodules: failed: %s", status.failure_reason());
|
|
}
|
|
#endif
|
|
return false; // failed
|
|
}
|
|
return true; // success
|
|
}
|
|
|
|
VStatus VLoopAnalyzer::setup_submodules_helper() {
|
|
// Skip any loop that has not been assigned max unroll by analysis.
|
|
if (SuperWordLoopUnrollAnalysis && _vloop.cl()->slp_max_unroll() == 0) {
|
|
return VStatus::make_failure(VLoopAnalyzer::FAILURE_NO_MAX_UNROLL);
|
|
}
|
|
|
|
if (SuperWordReductions) {
|
|
_reductions.mark_reductions();
|
|
}
|
|
|
|
_memory_slices.find_memory_slices();
|
|
|
|
// If there is no memory slice detected, it means there is no store.
|
|
// If there is no reduction and no store, then we give up, because
|
|
// vectorization is not possible anyway (given current limitations).
|
|
if (!_reductions.is_marked_reduction_loop() &&
|
|
_memory_slices.heads().is_empty()) {
|
|
return VStatus::make_failure(VLoopAnalyzer::FAILURE_NO_REDUCTION_OR_STORE);
|
|
}
|
|
|
|
VStatus body_status = _body.construct();
|
|
if (!body_status.is_success()) {
|
|
return body_status;
|
|
}
|
|
|
|
_types.compute_vector_element_type();
|
|
|
|
_vpointers.compute_vpointers();
|
|
|
|
_dependency_graph.construct();
|
|
|
|
return VStatus::make_success();
|
|
}
|
|
|
|
void VLoopVPointers::compute_vpointers() {
|
|
count_vpointers();
|
|
allocate_vpointers_array();
|
|
compute_and_cache_vpointers();
|
|
NOT_PRODUCT( if (_vloop.is_trace_vpointers()) { print(); } )
|
|
}
|
|
|
|
void VLoopVPointers::count_vpointers() {
|
|
_vpointers_length = 0;
|
|
_body.for_each_mem([&] (const MemNode* mem, int bb_idx) {
|
|
_vpointers_length++;
|
|
});
|
|
}
|
|
|
|
void VLoopVPointers::allocate_vpointers_array() {
|
|
uint bytes = _vpointers_length * sizeof(VPointer);
|
|
_vpointers = (VPointer*)_arena->Amalloc(bytes);
|
|
}
|
|
|
|
void VLoopVPointers::compute_and_cache_vpointers() {
|
|
int pointers_idx = 0;
|
|
_body.for_each_mem([&] (MemNode* const mem, int bb_idx) {
|
|
// Placement new: construct directly into the array.
|
|
::new (&_vpointers[pointers_idx]) VPointer(mem, _vloop);
|
|
_bb_idx_to_vpointer.at_put(bb_idx, pointers_idx);
|
|
pointers_idx++;
|
|
});
|
|
}
|
|
|
|
const VPointer& VLoopVPointers::vpointer(const MemNode* mem) const {
|
|
assert(mem != nullptr && _vloop.in_bb(mem), "only mem in loop");
|
|
int bb_idx = _body.bb_idx(mem);
|
|
int pointers_idx = _bb_idx_to_vpointer.at(bb_idx);
|
|
assert(0 <= pointers_idx && pointers_idx < _vpointers_length, "valid range");
|
|
return _vpointers[pointers_idx];
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void VLoopVPointers::print() const {
|
|
tty->print_cr("\nVLoopVPointers::print:");
|
|
|
|
_body.for_each_mem([&] (const MemNode* mem, int bb_idx) {
|
|
const VPointer& p = vpointer(mem);
|
|
tty->print(" ");
|
|
p.print_on(tty);
|
|
});
|
|
}
|
|
#endif
|
|
|
|
// Construct the dependency graph:
|
|
// - Data-dependencies: implicit (taken from C2 node inputs).
|
|
// - Memory-dependencies:
|
|
// - No edges between different slices.
|
|
// - No Load-Load edges.
|
|
// - Inside a slice, add all Store-Load, Load-Store, Store-Store edges,
|
|
// except if we can prove that the memory does not overlap.
|
|
void VLoopDependencyGraph::construct() {
|
|
const GrowableArray<PhiNode*>& mem_slice_heads = _memory_slices.heads();
|
|
const GrowableArray<MemNode*>& mem_slice_tails = _memory_slices.tails();
|
|
|
|
ResourceMark rm;
|
|
GrowableArray<MemNode*> slice_nodes;
|
|
GrowableArray<int> memory_pred_edges;
|
|
|
|
// For each memory slice, create the memory subgraph
|
|
for (int i = 0; i < mem_slice_heads.length(); i++) {
|
|
PhiNode* head = mem_slice_heads.at(i);
|
|
MemNode* tail = mem_slice_tails.at(i);
|
|
|
|
_memory_slices.get_slice_in_reverse_order(head, tail, slice_nodes);
|
|
|
|
// In forward order (reverse of reverse), visit all memory nodes in the slice.
|
|
for (int j = slice_nodes.length() - 1; j >= 0 ; j--) {
|
|
MemNode* n1 = slice_nodes.at(j);
|
|
memory_pred_edges.clear();
|
|
|
|
const VPointer& p1 = _vpointers.vpointer(n1);
|
|
// For all memory nodes before it, check if we need to add a memory edge.
|
|
for (int k = slice_nodes.length() - 1; k > j; k--) {
|
|
MemNode* n2 = slice_nodes.at(k);
|
|
|
|
// Ignore Load-Load dependencies:
|
|
if (n1->is_Load() && n2->is_Load()) { continue; }
|
|
|
|
const VPointer& p2 = _vpointers.vpointer(n2);
|
|
if (!p1.never_overlaps_with(p2)) {
|
|
// Possibly overlapping memory
|
|
memory_pred_edges.append(_body.bb_idx(n2));
|
|
}
|
|
}
|
|
if (memory_pred_edges.is_nonempty()) {
|
|
// Data edges are taken implicitly from the C2 graph, thus we only add
|
|
// a dependency node if we have memory edges.
|
|
add_node(n1, memory_pred_edges);
|
|
}
|
|
}
|
|
slice_nodes.clear();
|
|
}
|
|
|
|
compute_depth();
|
|
|
|
NOT_PRODUCT( if (_vloop.is_trace_dependency_graph()) { print(); } )
|
|
}
|
|
|
|
void VLoopDependencyGraph::add_node(MemNode* n, GrowableArray<int>& memory_pred_edges) {
|
|
assert(_dependency_nodes.at_grow(_body.bb_idx(n), nullptr) == nullptr, "not yet created");
|
|
assert(!memory_pred_edges.is_empty(), "no need to create a node without edges");
|
|
DependencyNode* dn = new (_arena) DependencyNode(n, memory_pred_edges, _arena);
|
|
_dependency_nodes.at_put_grow(_body.bb_idx(n), dn, nullptr);
|
|
}
|
|
|
|
int VLoopDependencyGraph::find_max_pred_depth(const Node* n) const {
|
|
int max_pred_depth = 0;
|
|
if (!n->is_Phi()) { // ignore backedge
|
|
for (PredsIterator it(*this, n); !it.done(); it.next()) {
|
|
Node* pred = it.current();
|
|
if (_vloop.in_bb(pred)) {
|
|
max_pred_depth = MAX2(max_pred_depth, depth(pred));
|
|
}
|
|
}
|
|
}
|
|
return max_pred_depth;
|
|
}
|
|
|
|
// We iterate over the body, which is already ordered by the dependencies, i.e. pred comes
|
|
// before use. With a single pass, we can compute the depth of every node, since we can
|
|
// assume that the depth of all preds is already computed when we compute the depth of use.
|
|
void VLoopDependencyGraph::compute_depth() {
|
|
for (int i = 0; i < _body.body().length(); i++) {
|
|
Node* n = _body.body().at(i);
|
|
set_depth(n, find_max_pred_depth(n) + 1);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
for (int i = 0; i < _body.body().length(); i++) {
|
|
Node* n = _body.body().at(i);
|
|
int max_pred_depth = find_max_pred_depth(n);
|
|
if (depth(n) != max_pred_depth + 1) {
|
|
print();
|
|
tty->print_cr("Incorrect depth: %d vs %d", depth(n), max_pred_depth + 1);
|
|
n->dump();
|
|
}
|
|
assert(depth(n) == max_pred_depth + 1, "must have correct depth");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void VLoopDependencyGraph::print() const {
|
|
tty->print_cr("\nVLoopDependencyGraph::print:");
|
|
|
|
tty->print_cr(" Memory pred edges:");
|
|
for (int i = 0; i < _body.body().length(); i++) {
|
|
Node* n = _body.body().at(i);
|
|
const DependencyNode* dn = dependency_node(n);
|
|
if (dn != nullptr) {
|
|
tty->print(" DependencyNode[%d %s:", n->_idx, n->Name());
|
|
for (uint j = 0; j < dn->memory_pred_edges_length(); j++) {
|
|
Node* pred = _body.body().at(dn->memory_pred_edge(j));
|
|
tty->print(" %d %s", pred->_idx, pred->Name());
|
|
}
|
|
tty->print_cr("]");
|
|
}
|
|
}
|
|
tty->cr();
|
|
|
|
tty->print_cr(" Complete dependency graph:");
|
|
for (int i = 0; i < _body.body().length(); i++) {
|
|
Node* n = _body.body().at(i);
|
|
tty->print(" d%02d Dependencies[%d %s:", depth(n), n->_idx, n->Name());
|
|
for (PredsIterator it(*this, n); !it.done(); it.next()) {
|
|
Node* pred = it.current();
|
|
tty->print(" %d %s", pred->_idx, pred->Name());
|
|
}
|
|
tty->print_cr("]");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
VLoopDependencyGraph::DependencyNode::DependencyNode(MemNode* n,
|
|
GrowableArray<int>& memory_pred_edges,
|
|
Arena* arena) :
|
|
_node(n),
|
|
_memory_pred_edges_length(memory_pred_edges.length()),
|
|
_memory_pred_edges(nullptr)
|
|
{
|
|
assert(memory_pred_edges.is_nonempty(), "not empty");
|
|
uint bytes = memory_pred_edges.length() * sizeof(int);
|
|
_memory_pred_edges = (int*)arena->Amalloc(bytes);
|
|
memcpy(_memory_pred_edges, memory_pred_edges.adr_at(0), bytes);
|
|
}
|
|
|
|
VLoopDependencyGraph::PredsIterator::PredsIterator(const VLoopDependencyGraph& dependency_graph,
|
|
const Node* node) :
|
|
_dependency_graph(dependency_graph),
|
|
_node(node),
|
|
_dependency_node(dependency_graph.dependency_node(node)),
|
|
_current(nullptr),
|
|
_is_current_memory_edge(false),
|
|
_next_pred(0),
|
|
_end_pred(node->req()),
|
|
_next_memory_pred(0),
|
|
_end_memory_pred((_dependency_node != nullptr) ? _dependency_node->memory_pred_edges_length() : 0)
|
|
{
|
|
if (_node->is_Store() || _node->is_Load()) {
|
|
// Load: address
|
|
// Store: address, value
|
|
_next_pred = MemNode::Address;
|
|
} else {
|
|
assert(!_node->is_Mem(), "only loads and stores are expected mem nodes");
|
|
_next_pred = 1; // skip control
|
|
}
|
|
next();
|
|
}
|
|
|
|
void VLoopDependencyGraph::PredsIterator::next() {
|
|
if (_next_pred < _end_pred) {
|
|
_current = _node->in(_next_pred++);
|
|
_is_current_memory_edge = false;
|
|
} else if (_next_memory_pred < _end_memory_pred) {
|
|
int pred_bb_idx = _dependency_node->memory_pred_edge(_next_memory_pred++);
|
|
_current = _dependency_graph._body.body().at(pred_bb_idx);
|
|
_is_current_memory_edge = true;
|
|
} else {
|
|
_current = nullptr; // done
|
|
_is_current_memory_edge = false;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void VPointer::print_on(outputStream* st, bool end_with_cr) const {
|
|
st->print("VPointer[");
|
|
|
|
if (!is_valid()) {
|
|
st->print_cr("invalid]");
|
|
return;
|
|
}
|
|
|
|
st->print("size: %2d, %s, ", size(),
|
|
_mem_pointer.base().is_object() ? "object" : "native");
|
|
|
|
Node* base = _mem_pointer.base().object_or_native();
|
|
tty->print("base(%d %s) + con(%3d) + iv_scale(%3d) * iv + invar(",
|
|
base->_idx, base->Name(),
|
|
_mem_pointer.con().value(),
|
|
_iv_scale);
|
|
|
|
int count = 0;
|
|
for_each_invar_summand([&] (const MemPointerSummand& s) {
|
|
if (count > 0) {
|
|
st->print(" + ");
|
|
}
|
|
s.print_on(tty);
|
|
count++;
|
|
});
|
|
if (count == 0) {
|
|
st->print("0");
|
|
}
|
|
st->print(")]");
|
|
if (end_with_cr) { st->cr(); }
|
|
}
|
|
#endif
|
|
|
|
AlignmentSolution* AlignmentSolver::solve() const {
|
|
DEBUG_ONLY( trace_start_solve(); )
|
|
|
|
// Out of simplicity: non power-of-2 stride not supported.
|
|
if (!is_power_of_2(abs(_pre_stride))) {
|
|
return new EmptyAlignmentSolution("non power-of-2 stride not supported");
|
|
}
|
|
assert(is_power_of_2(abs(_main_stride)), "main_stride is power of 2");
|
|
assert(_aw > 0 && is_power_of_2(_aw), "aw must be power of 2");
|
|
|
|
// Out of simplicity: non power-of-2 iv_scale not supported.
|
|
if (abs(iv_scale()) == 0 || !is_power_of_2(abs(iv_scale()))) {
|
|
return new EmptyAlignmentSolution("non power-of-2 iv_scale not supported");
|
|
}
|
|
|
|
// We analyze the address of mem_ref. The idea is to disassemble it into a linear
|
|
// expression, where we can use the constant factors as the basis for ensuring the
|
|
// alignment of vector memory accesses.
|
|
//
|
|
// The Simple form of the address is disassembled by VPointer into:
|
|
//
|
|
// adr = base + invar + iv_scale * iv + con
|
|
//
|
|
// Where the iv can be written as:
|
|
//
|
|
// iv = init + pre_stride * pre_iter + main_stride * main_iter
|
|
//
|
|
// init: value before pre-loop
|
|
// pre_stride: increment per pre-loop iteration
|
|
// pre_iter: number of pre-loop iterations (adjustable via pre-loop limit)
|
|
// main_stride: increment per main-loop iteration (= pre_stride * unroll_factor)
|
|
// main_iter: number of main-loop iterations (main_iter >= 0)
|
|
//
|
|
// In the following, we restate the Simple form of the address expression, by first
|
|
// expanding the iv variable. In a second step, we reshape the expression again, and
|
|
// state it as a linear expression, consisting of 6 terms.
|
|
//
|
|
// Simple form Expansion of iv variable Reshaped with constants Comments for terms
|
|
// ----------- ------------------------ ----------------------- ------------------
|
|
// adr = base = base = base (assume: base % aw = 0)
|
|
// + invar + invar_factor * var_invar + C_invar * var_invar (term for invariant)
|
|
// / + iv_scale * init + C_init * var_init (term for variable init)
|
|
// + iv_scale * iv -> | + iv_scale * pre_stride * pre_iter + C_pre * pre_iter (adjustable pre-loop term)
|
|
// \ + iv_scale * main_stride * main_iter + C_main * main_iter (main-loop term)
|
|
// + con + con + C_const (sum of constant terms)
|
|
//
|
|
// We describe the 6 terms:
|
|
// 1) The "base" of the address:
|
|
// - For heap objects, this is the base of the object, and as such
|
|
// ObjectAlignmentInBytes (a power of 2) aligned.
|
|
// - For off-heap / native memory, the "base" has no alignment
|
|
// gurantees. To ensure alignment we can do either of these:
|
|
// - Add a runtime check to verify ObjectAlignmentInBytes alignment,
|
|
// i.e. we can speculatively compile with an alignment assumption.
|
|
// If we pass the check, we can go into the loop with the alignment
|
|
// assumption, if we fail we have to trap/deopt or take the other
|
|
// loop version without alignment assumptions.
|
|
// - If runtime checks are not possible, then we return an empty
|
|
// solution, i.e. we do not vectorize the corresponding pack.
|
|
//
|
|
// Let us assume we have an object "base", or passed the alignment
|
|
// runtime check for native "bases", hence we know:
|
|
//
|
|
// base % ObjectAlignmentInBytes = 0
|
|
//
|
|
// We defined aw = MIN(vector_width, ObjectAlignmentInBytes), which is
|
|
// a power of 2. And hence we know that "base" is thus also aw-aligned:
|
|
//
|
|
// base % ObjectAlignmentInBytes = 0 ==> base % aw = 0 (BASE_ALIGNED)
|
|
//
|
|
// 2) The "C_const" term is the sum of all constant terms. This is "con",
|
|
// plus "iv_scale * init" if it is constant.
|
|
// 3) The "C_invar * var_invar" is the factorization of "invar" into a constant
|
|
// and variable term. If there is no invariant, then "C_invar" is zero.
|
|
//
|
|
// invar = C_invar * var_invar (FAC_INVAR)
|
|
//
|
|
// 4) The "C_init * var_init" is the factorization of "iv_scale * init" into a
|
|
// constant and a variable term. If "init" is constant, then "C_init" is
|
|
// zero, and "C_const" accounts for "init" instead.
|
|
//
|
|
// iv_scale * init = C_init * var_init + iv_scale * C_const_init (FAC_INIT)
|
|
// C_init = (init is constant) ? 0 : iv_scale
|
|
// C_const_init = (init is constant) ? init : 0
|
|
//
|
|
// 5) The "C_pre * pre_iter" term represents how much the iv is incremented
|
|
// during the "pre_iter" pre-loop iterations. This term can be adjusted
|
|
// by changing the pre-loop limit, which defines how many pre-loop iterations
|
|
// are executed. This allows us to adjust the alignment of the main-loop
|
|
// memory reference.
|
|
// 6) The "C_main * main_iter" term represents how much the iv is increased
|
|
// during "main_iter" main-loop iterations.
|
|
|
|
// For native memory, we must add a runtime-check that "base % ObjectAlignmentInBytes = ",
|
|
// to ensure (BASE_ALIGNED). If we cannot add this runtime-check, we have no guarantee on
|
|
// its alignment.
|
|
if (!_vpointer.mem_pointer().base().is_object() && !_are_speculative_checks_possible) {
|
|
return new EmptyAlignmentSolution("Cannot add speculative check for native memory alignment.");
|
|
}
|
|
|
|
// Attribute init (i.e. _init_node) either to C_const or to C_init term.
|
|
const int C_const_init = _init_node->is_ConI() ? _init_node->as_ConI()->get_int() : 0;
|
|
const int C_const = _vpointer.con() + C_const_init * iv_scale();
|
|
|
|
// Set C_invar depending on if invar is present
|
|
const int C_invar = _vpointer.compute_invar_factor();
|
|
|
|
const int C_init = _init_node->is_ConI() ? 0 : iv_scale();
|
|
const int C_pre = iv_scale() * _pre_stride;
|
|
const int C_main = iv_scale() * _main_stride;
|
|
|
|
DEBUG_ONLY( trace_reshaped_form(C_const, C_const_init, C_invar, C_init, C_pre, C_main); )
|
|
|
|
// We must find a pre_iter, such that adr is aw aligned: adr % aw = 0. Note, that we are defining the
|
|
// modulo operator "%" such that the remainder is always positive, see AlignmentSolution::mod(i, q).
|
|
//
|
|
// Since "base % aw = 0" (BASE_ALIGNED), we only need to ensure alignment of the other 5 terms:
|
|
//
|
|
// (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter + C_main * main_iter) % aw = 0 (1)
|
|
//
|
|
// Alignment must be maintained over all main-loop iterations, i.e. for any main_iter >= 0, we require:
|
|
//
|
|
// C_main % aw = 0 (2)
|
|
//
|
|
const int C_main_mod_aw = AlignmentSolution::mod(C_main, _aw);
|
|
|
|
DEBUG_ONLY( trace_main_iteration_alignment(C_const, C_invar, C_init, C_pre, C_main, C_main_mod_aw); )
|
|
|
|
if (C_main_mod_aw != 0) {
|
|
return new EmptyAlignmentSolution("EQ(2) not satisfied (cannot align across main-loop iterations)");
|
|
}
|
|
|
|
// In what follows, we need to show that the C_const, init and invar terms can be aligned by
|
|
// adjusting the pre-loop iteration count (pre_iter), which is controlled by the pre-loop
|
|
// limit.
|
|
//
|
|
// (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw = 0 (3)
|
|
//
|
|
// We strengthen the constraints by splitting the equation into 3 equations, where we
|
|
// want to find integer solutions for pre_iter_C_const, pre_iter_C_invar, and
|
|
// pre_iter_C_init, which means that the C_const, init and invar terms can be aligned
|
|
// independently:
|
|
//
|
|
// (C_const + C_pre * pre_iter_C_const) % aw = 0 (4a)
|
|
// (C_invar * var_invar + C_pre * pre_iter_C_invar) % aw = 0 (4b)
|
|
// (C_init * var_init + C_pre * pre_iter_C_init ) % aw = 0 (4c)
|
|
//
|
|
// We now prove that (4a, b, c) are sufficient as well as necessary to guarantee (3)
|
|
// for any runtime value of var_invar and var_init (i.e. for any invar and init).
|
|
// This tells us that the "strengthening" does not restrict the algorithm more than
|
|
// necessary.
|
|
//
|
|
// Sufficient (i.e (4a, b, c) imply (3)):
|
|
//
|
|
// pre_iter = pre_iter_C_const + pre_iter_C_invar + pre_iter_C_init
|
|
//
|
|
// Adding up (4a, b, c):
|
|
//
|
|
// 0 = ( C_const + C_pre * pre_iter_C_const
|
|
// + C_invar * var_invar + C_pre * pre_iter_C_invar
|
|
// + C_init * var_init + C_pre * pre_iter_C_init ) % aw
|
|
//
|
|
// = ( C_const + C_invar * var_invar + C_init * var_init
|
|
// + C_pre * (pre_iter_C_const + pre_iter_C_invar + pre_iter_C_init)) % aw
|
|
//
|
|
// = ( C_const + C_invar * var_invar + C_init * var_init
|
|
// + C_pre * pre_iter) % aw
|
|
//
|
|
// Necessary (i.e. (3) implies (4a, b, c)):
|
|
// (4a): Set var_invar = var_init = 0 at runtime. Applying this to (3), we get:
|
|
//
|
|
// 0 =
|
|
// = (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw
|
|
// = (C_const + C_invar * 0 + C_init * 0 + C_pre * pre_iter) % aw
|
|
// = (C_const + C_pre * pre_iter) % aw
|
|
//
|
|
// This is of the same form as (4a), and we have a solution:
|
|
// pre_iter_C_const = pre_iter
|
|
//
|
|
// (4b): Set var_init = 0, and assume (4a), which we just proved is implied by (3).
|
|
// Subtract (4a) from (3):
|
|
//
|
|
// 0 =
|
|
// = (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw
|
|
// - (C_const + C_pre * pre_iter_C_const) % aw
|
|
// = (C_invar * var_invar + C_init * var_init + C_pre * pre_iter - C_pre * pre_iter_C_const) % aw
|
|
// = (C_invar * var_invar + C_init * 0 + C_pre * (pre_iter - pre_iter_C_const)) % aw
|
|
// = (C_invar * var_invar + + C_pre * (pre_iter - pre_iter_C_const)) % aw
|
|
//
|
|
// This is of the same form as (4b), and we have a solution:
|
|
// pre_iter_C_invar = pre_iter - pre_iter_C_const
|
|
//
|
|
// (4c): Set var_invar = 0, and assume (4a), which we just proved is implied by (3).
|
|
// Subtract (4a) from (3):
|
|
//
|
|
// 0 =
|
|
// = (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw
|
|
// - (C_const + C_pre * pre_iter_C_const) % aw
|
|
// = (C_invar * var_invar + C_init * var_init + C_pre * pre_iter - C_pre * pre_iter_C_const) % aw
|
|
// = (C_invar * 0 + C_init * var_init + C_pre * (pre_iter - pre_iter_C_const)) % aw
|
|
// = ( + C_init * var_init + C_pre * (pre_iter - pre_iter_C_const)) % aw
|
|
//
|
|
// This is of the same form as (4c), and we have a solution:
|
|
// pre_iter_C_invar = pre_iter - pre_iter_C_const
|
|
//
|
|
// The solutions of Equations (4a, b, c) for pre_iter_C_const, pre_iter_C_invar, and pre_iter_C_init
|
|
// respectively, can have one of these states:
|
|
//
|
|
// trivial: The solution can be any integer.
|
|
// constrained: There is a (periodic) solution, but it is not trivial.
|
|
// empty: Statically we cannot guarantee a solution for all var_invar and var_init.
|
|
//
|
|
// We look at (4a):
|
|
//
|
|
// abs(C_pre) >= aw
|
|
// -> Since abs(C_pre) is a power of two, we have C_pre % aw = 0. Therefore:
|
|
//
|
|
// For any pre_iter_C_const: (C_pre * pre_iter_C_const) % aw = 0
|
|
//
|
|
// (C_const + C_pre * pre_iter_C_const) % aw = 0
|
|
// C_const % aw = 0
|
|
//
|
|
// Hence, we can only satisfy (4a) if C_Const is aw aligned:
|
|
//
|
|
// C_const % aw == 0:
|
|
// -> (4a) has a trivial solution since we can choose any value for pre_iter_C_const.
|
|
//
|
|
// C_const % aw != 0:
|
|
// -> (4a) has an empty solution since no pre_iter_C_const can achieve aw alignment.
|
|
//
|
|
// abs(C_pre) < aw:
|
|
// -> Since both abs(C_pre) and aw are powers of two, we know:
|
|
//
|
|
// There exists integer x > 1: aw = abs(C_pre) * x
|
|
//
|
|
// C_const % abs(C_pre) == 0:
|
|
// -> There exists integer z: C_const = C_pre * z
|
|
//
|
|
// (C_const + C_pre * pre_iter_C_const) % aw = 0
|
|
// ==>
|
|
// (C_pre * z + C_pre * pre_iter_C_const) % aw = 0
|
|
// ==>
|
|
// (C_pre * z + C_pre * pre_iter_C_const) % (abs(C_pre) * x) = 0
|
|
// ==>
|
|
// ( z + pre_iter_C_const) % x = 0
|
|
// ==>
|
|
// for any m: pre_iter_C_const = m * x - z
|
|
//
|
|
// Hence, pre_iter_C_const has a non-trivial (because x > 1) periodic (periodicity x)
|
|
// solution, i.e. it has a constrained solution.
|
|
//
|
|
// C_const % abs(C_pre) != 0:
|
|
// There exists integer x > 1: aw = abs(C_pre) * x
|
|
//
|
|
// C_const % abs(C_pre) != 0
|
|
// ==>
|
|
// (C_const + C_pre * pre_iter_C_const) % abs(C_pre) != 0
|
|
// ==>
|
|
// (C_const + C_pre * pre_iter_C_const) % (abs(C_pre) * x) != 0
|
|
// ==>
|
|
// (C_const + C_pre * pre_iter_C_const) % aw != 0
|
|
//
|
|
// This is in contradiction with (4a), and therefore there cannot be any solution,
|
|
// i.e. we have an empty solution.
|
|
//
|
|
// In summary, for (4a):
|
|
//
|
|
// abs(C_pre) >= aw AND C_const % aw == 0 -> trivial
|
|
// abs(C_pre) >= aw AND C_const % aw != 0 -> empty
|
|
// abs(C_pre) < aw AND C_const % abs(C_pre) == 0 -> constrained
|
|
// abs(C_pre) < aw AND C_const % abs(C_pre) != 0 -> empty
|
|
//
|
|
// With analogue argumentation for (4b):
|
|
//
|
|
// abs(C_pre) >= aw AND C_invar % aw == 0 -> trivial
|
|
// abs(C_pre) >= aw AND C_invar % aw != 0 -> empty
|
|
// abs(C_pre) < aw AND C_invar % abs(C_pre) == 0 -> constrained
|
|
// abs(C_pre) < aw AND C_invar % abs(C_pre) != 0 -> empty
|
|
//
|
|
// With analogue argumentation for (4c):
|
|
//
|
|
// abs(C_pre) >= aw AND C_init % aw == 0 -> trivial
|
|
// abs(C_pre) >= aw AND C_init % aw != 0 -> empty
|
|
// abs(C_pre) < aw AND C_init % abs(C_pre) == 0 -> constrained
|
|
// abs(C_pre) < aw AND C_init % abs(C_pre) != 0 -> empty
|
|
//
|
|
// Out of these states follows the state for the solution of pre_iter:
|
|
//
|
|
// Trivial: If (4a, b, c) are all trivial.
|
|
// Empty: If any of (4a, b, c) is empty, because then we cannot guarantee a solution
|
|
// for pre_iter, for all possible invar and init values.
|
|
// Constrained: Else. Incidentally, (4a, b, c) are all constrained themselves, as we argue below.
|
|
|
|
const EQ4 eq4(C_const, C_invar, C_init, C_pre, _aw);
|
|
const EQ4::State eq4a_state = eq4.eq4a_state();
|
|
const EQ4::State eq4b_state = eq4.eq4b_state();
|
|
const EQ4::State eq4c_state = eq4.eq4c_state();
|
|
|
|
#ifdef ASSERT
|
|
if (is_trace()) {
|
|
eq4.trace();
|
|
}
|
|
#endif
|
|
|
|
// If (4a, b, c) are all trivial, then also the solution for pre_iter is trivial:
|
|
if (eq4a_state == EQ4::State::TRIVIAL &&
|
|
eq4b_state == EQ4::State::TRIVIAL &&
|
|
eq4c_state == EQ4::State::TRIVIAL) {
|
|
return new TrivialAlignmentSolution();
|
|
}
|
|
|
|
// If any of (4a, b, c) is empty, then we also cannot guarantee a solution for pre_iter, for
|
|
// any init and invar, hence the solution for pre_iter is empty:
|
|
if (eq4a_state == EQ4::State::EMPTY ||
|
|
eq4b_state == EQ4::State::EMPTY ||
|
|
eq4c_state == EQ4::State::EMPTY) {
|
|
return new EmptyAlignmentSolution("EQ(4a, b, c) not all non-empty: cannot align const, invar and init terms individually");
|
|
}
|
|
|
|
// If abs(C_pre) >= aw, then the solutions to (4a, b, c) are all either trivial or empty, and
|
|
// hence we would have found the solution to pre_iter above as either trivial or empty. Thus
|
|
// we now know that:
|
|
//
|
|
// abs(C_pre) < aw
|
|
//
|
|
assert(abs(C_pre) < _aw, "implied by constrained case");
|
|
|
|
// And since abs(C_pre) < aw, the solutions of (4a, b, c) can now only be constrained or empty.
|
|
// But since we already handled the empty case, the solutions are now all constrained.
|
|
assert(eq4a_state == EQ4::State::CONSTRAINED &&
|
|
eq4a_state == EQ4::State::CONSTRAINED &&
|
|
eq4a_state == EQ4::State::CONSTRAINED, "all must be constrained now");
|
|
|
|
// And since they are all constrained, we must have:
|
|
//
|
|
// C_const % abs(C_pre) = 0 (5a)
|
|
// C_invar % abs(C_pre) = 0 (5b)
|
|
// C_init % abs(C_pre) = 0 (5c)
|
|
//
|
|
assert(AlignmentSolution::mod(C_const, abs(C_pre)) == 0, "EQ(5a): C_const must be alignable");
|
|
assert(AlignmentSolution::mod(C_invar, abs(C_pre)) == 0, "EQ(5b): C_invar must be alignable");
|
|
assert(AlignmentSolution::mod(C_init, abs(C_pre)) == 0, "EQ(5c): C_init must be alignable");
|
|
|
|
// With (5a, b, c), we know that there are integers X, Y, Z:
|
|
//
|
|
// C_const = X * abs(C_pre) ==> X = C_const / abs(C_pre) (6a)
|
|
// C_invar = Y * abs(C_pre) ==> Y = C_invar / abs(C_pre) (6b)
|
|
// C_init = Z * abs(C_pre) ==> Z = C_init / abs(C_pre) (6c)
|
|
//
|
|
// Further, we define:
|
|
//
|
|
// sign(C_pre) = C_pre / abs(C_pre) = (C_pre > 0) ? 1 : -1, (7)
|
|
//
|
|
// We know that abs(C_pre) as well as aw are powers of 2, and since (5) we can define integer q:
|
|
//
|
|
// q = aw / abs(C_pre) (8)
|
|
//
|
|
const int q = _aw / abs(C_pre);
|
|
|
|
assert(q >= 2, "implied by constrained solution");
|
|
|
|
// We now know that all terms in (4a, b, c) are divisible by abs(C_pre):
|
|
//
|
|
// (C_const / abs(C_pre) + C_pre * pre_iter_C_const / abs(C_pre)) % (aw / abs(C_pre)) =
|
|
// (X * abs(C_pre) / abs(C_pre) + C_pre * pre_iter_C_const / abs(C_pre)) % (aw / abs(C_pre)) =
|
|
// (X + pre_iter_C_const * sign(C_pre)) % q = 0 (9a)
|
|
//
|
|
// -> pre_iter_C_const * sign(C_pre) = mx1 * q - X
|
|
// -> pre_iter_C_const = mx2 * q - sign(C_pre) * X (10a)
|
|
// (for any integers mx1, mx2)
|
|
//
|
|
// (C_invar * var_invar / abs(C_pre) + C_pre * pre_iter_C_invar / abs(C_pre)) % (aw / abs(C_pre)) =
|
|
// (Y * abs(C_pre) * var_invar / abs(C_pre) + C_pre * pre_iter_C_invar / abs(C_pre)) % (aw / abs(C_pre)) =
|
|
// (Y * var_invar + pre_iter_C_invar * sign(C_pre)) % q = 0 (9b)
|
|
//
|
|
// -> pre_iter_C_invar * sign(C_pre) = my1 * q - Y * var_invar
|
|
// -> pre_iter_C_invar = my2 * q - sign(C_pre) * Y * var_invar (10b)
|
|
// (for any integers my1, my2)
|
|
//
|
|
// (C_init * var_init / abs(C_pre) + C_pre * pre_iter_C_init / abs(C_pre)) % (aw / abs(C_pre)) =
|
|
// (Z * abs(C_pre) * var_init / abs(C_pre) + C_pre * pre_iter_C_init / abs(C_pre)) % (aw / abs(C_pre)) =
|
|
// (Z * var_init + pre_iter_C_init * sign(C_pre)) % q = 0 (9c)
|
|
//
|
|
// -> pre_iter_C_init * sign(C_pre) = mz1 * q - Z * var_init
|
|
// -> pre_iter_C_init = mz2 * q - sign(C_pre) * Z * var_init (10c)
|
|
// (for any integers mz1, mz2)
|
|
//
|
|
//
|
|
// Having solved the equations using the division, we can re-substitute X, Y, and Z, and apply (FAC_INVAR) as
|
|
// well as (FAC_INIT). We use the fact that sign(x) == 1 / sign(x) and sign(x) * abs(x) == x:
|
|
//
|
|
// pre_iter_C_const = mx2 * q - sign(C_pre) * X
|
|
// = mx2 * q - sign(C_pre) * C_const / abs(C_pre)
|
|
// = mx2 * q - C_const / C_pre
|
|
// = mx2 * q - C_const / (iv_scale * pre_stride) (11a)
|
|
//
|
|
// If there is an invariant:
|
|
//
|
|
// pre_iter_C_invar = my2 * q - sign(C_pre) * Y * var_invar
|
|
// = my2 * q - sign(C_pre) * C_invar * var_invar / abs(C_pre)
|
|
// = my2 * q - sign(C_pre) * invar / abs(C_pre)
|
|
// = my2 * q - invar / C_pre
|
|
// = my2 * q - invar / (iv_scale * pre_stride) (11b, with invar)
|
|
//
|
|
// If there is no invariant (i.e. C_invar = 0 ==> Y = 0):
|
|
//
|
|
// pre_iter_C_invar = my2 * q (11b, no invar)
|
|
//
|
|
// If init is variable (i.e. C_init = iv_scale, init = var_init):
|
|
//
|
|
// pre_iter_C_init = mz2 * q - sign(C_pre) * Z * var_init
|
|
// = mz2 * q - sign(C_pre) * C_init * var_init / abs(C_pre)
|
|
// = mz2 * q - sign(C_pre) * iv_scale * init / abs(C_pre)
|
|
// = mz2 * q - iv_scale * init / C_pre
|
|
// = mz2 * q - iv_scale * init / (iv_scale * pre_stride)
|
|
// = mz2 * q - init / pre_stride (11c, variable init)
|
|
//
|
|
// If init is constant (i.e. C_init = 0 ==> Z = 0):
|
|
//
|
|
// pre_iter_C_init = mz2 * q (11c, constant init)
|
|
//
|
|
// Note, that the solutions found by (11a, b, c) are all periodic with periodicity q. We combine them,
|
|
// with m = mx2 + my2 + mz2:
|
|
//
|
|
// pre_iter = pre_iter_C_const + pre_iter_C_invar + pre_iter_C_init
|
|
// = mx2 * q - C_const / (iv_scale * pre_stride)
|
|
// + my2 * q [- invar / (iv_scale * pre_stride) ]
|
|
// + mz2 * q [- init / pre_stride ]
|
|
//
|
|
// = m * q (periodic part)
|
|
// - C_const / (iv_scale * pre_stride) (align constant term)
|
|
// [- invar / (iv_scale * pre_stride) ] (align invariant term, if present)
|
|
// [- init / pre_stride ] (align variable init term, if present) (12)
|
|
//
|
|
// We can further simplify this solution by introducing integer 0 <= r < q:
|
|
//
|
|
// r = (-C_const / (iv_scale * pre_stride)) % q (13)
|
|
//
|
|
const int r = AlignmentSolution::mod(-C_const / (iv_scale() * _pre_stride), q);
|
|
//
|
|
// pre_iter = m * q + r
|
|
// [- invar / (iv_scale * pre_stride) ]
|
|
// [- init / pre_stride ] (14)
|
|
//
|
|
// We thus get a solution that can be stated in terms of:
|
|
//
|
|
// q (periodicity), r (constant alignment), invar, iv_scale, pre_stride, init
|
|
//
|
|
// However, pre_stride and init are shared by all mem_ref in the loop, hence we do not need to provide
|
|
// them in the solution description.
|
|
|
|
DEBUG_ONLY( trace_constrained_solution(C_const, C_invar, C_init, C_pre, q, r); )
|
|
|
|
return new ConstrainedAlignmentSolution(_mem_ref, q, r, _vpointer /* holds invar and iv_scale */);
|
|
|
|
// APPENDIX:
|
|
// We can now verify the success of the solution given by (12):
|
|
//
|
|
// adr % aw =
|
|
//
|
|
// -> Simple form
|
|
// (base + invar + iv_scale * iv + con) % aw =
|
|
//
|
|
// -> Expand iv
|
|
// (base + con + invar + iv_scale * (init + pre_stride * pre_iter + main_stride * main_iter)) % aw =
|
|
//
|
|
// -> Reshape
|
|
// (base + con + invar
|
|
// + iv_scale * init
|
|
// + iv_scale * pre_stride * pre_iter
|
|
// + iv_scale * main_stride * main_iter)) % aw =
|
|
//
|
|
// -> apply (BASE_ALIGNED): base % aw = 0
|
|
// -> main-loop iterations aligned (2): C_main % aw = (iv_scale * main_stride) % aw = 0
|
|
// (con + invar + iv_scale * init + iv_scale * pre_stride * pre_iter) % aw =
|
|
//
|
|
// -> apply (12)
|
|
// (con + invar + iv_scale * init
|
|
// + iv_scale * pre_stride * (m * q - C_const / (iv_scale * pre_stride)
|
|
// [- invar / (iv_scale * pre_stride) ]
|
|
// [- init / pre_stride ]
|
|
// )
|
|
// ) % aw =
|
|
//
|
|
// -> expand C_const = con [+ init * iv_scale] (if init const)
|
|
// (con + invar + iv_scale * init
|
|
// + iv_scale * pre_stride * (m * q - con / (iv_scale * pre_stride)
|
|
// [- init / pre_stride ] (if init constant)
|
|
// [- invar / (iv_scale * pre_stride) ] (if invar present)
|
|
// [- init / pre_stride ] (if init variable)
|
|
// )
|
|
// ) % aw =
|
|
//
|
|
// -> assuming invar = 0 if it is not present
|
|
// -> merge the two init terms (variable or constant)
|
|
// -> apply (8): q = aw / (abs(C_pre)) = aw / abs(iv_scale * pre_stride)
|
|
// -> and hence: (iv_scale * pre_stride * q) % aw = 0
|
|
// -> all terms are canceled out
|
|
// (con + invar + iv_scale * init
|
|
// + iv_scale * pre_stride * m * q -> aw aligned
|
|
// - iv_scale * pre_stride * con / (iv_scale * pre_stride) -> = con
|
|
// - iv_scale * pre_stride * init / pre_stride -> = iv_scale * init
|
|
// - iv_scale * pre_stride * invar / (iv_scale * pre_stride) -> = invar
|
|
// ) % aw = 0
|
|
//
|
|
// The solution given by (12) does indeed guarantee alignment.
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void AlignmentSolver::trace_start_solve() const {
|
|
if (is_trace()) {
|
|
tty->print(" vector mem_ref:");
|
|
_mem_ref->dump();
|
|
tty->print(" VPointer: ");
|
|
_vpointer.print_on(tty);
|
|
tty->print_cr(" vector_width = %d", _vector_width);
|
|
tty->print_cr(" aw = alignment_width = min(vector_width(%d), ObjectAlignmentInBytes(%d)) = %d",
|
|
_vector_width, ObjectAlignmentInBytes, _aw);
|
|
|
|
if (!_init_node->is_ConI()) {
|
|
tty->print(" init:");
|
|
_init_node->dump();
|
|
}
|
|
|
|
tty->print_cr(" invar = SUM(invar_summands), invar_summands:");
|
|
int invar_count = 0;
|
|
_vpointer.for_each_invar_summand([&] (const MemPointerSummand& s) {
|
|
tty->print(" ");
|
|
s.print_on(tty);
|
|
tty->print(" -> ");
|
|
s.variable()->dump();
|
|
invar_count++;
|
|
});
|
|
if (invar_count == 0) {
|
|
tty->print_cr(" No invar_summands.");
|
|
}
|
|
|
|
const jint invar_factor = _vpointer.compute_invar_factor();
|
|
tty->print_cr(" invar_factor = %d", invar_factor);
|
|
|
|
// iv = init + pre_iter * pre_stride + main_iter * main_stride
|
|
tty->print(" iv = init");
|
|
if (_init_node->is_ConI()) {
|
|
tty->print("(%4d)", _init_node->as_ConI()->get_int());
|
|
} else {
|
|
tty->print("[%4d]", _init_node->_idx);
|
|
}
|
|
tty->print_cr(" + pre_iter * pre_stride(%d) + main_iter * main_stride(%d)",
|
|
_pre_stride, _main_stride);
|
|
// adr = base + con + invar + iv_scale * iv
|
|
tty->print(" adr = base[%d]", base().object_or_native()->_idx);
|
|
tty->print_cr(" + invar + iv_scale(%d) * iv + con(%d)", iv_scale(), _vpointer.con());
|
|
}
|
|
}
|
|
|
|
void AlignmentSolver::trace_reshaped_form(const int C_const,
|
|
const int C_const_init,
|
|
const int C_invar,
|
|
const int C_init,
|
|
const int C_pre,
|
|
const int C_main) const
|
|
{
|
|
if (is_trace()) {
|
|
tty->print(" = base[%d] + ", base().object_or_native()->_idx);
|
|
tty->print_cr("C_const(%d) + C_invar(%d) * var_invar + C_init(%d) * var_init + C_pre(%d) * pre_iter + C_main(%d) * main_iter",
|
|
C_const, C_invar, C_init, C_pre, C_main);
|
|
if (_init_node->is_ConI()) {
|
|
tty->print_cr(" init is constant:");
|
|
tty->print_cr(" C_const_init = %d", C_const_init);
|
|
tty->print_cr(" C_init = %d", C_init);
|
|
} else {
|
|
tty->print_cr(" init is variable:");
|
|
tty->print_cr(" C_const_init = %d", C_const_init);
|
|
tty->print_cr(" C_init = abs(iv_scale)= %d", C_init);
|
|
}
|
|
if (C_invar != 0) {
|
|
tty->print_cr(" invariant present:");
|
|
tty->print_cr(" C_invar = invar_factor = %d", C_invar);
|
|
} else {
|
|
tty->print_cr(" no invariant:");
|
|
tty->print_cr(" C_invar = %d", C_invar);
|
|
}
|
|
tty->print_cr(" C_const = con(%d) + iv_scale(%d) * C_const_init(%d) = %d",
|
|
_vpointer.con(), iv_scale(), C_const_init, C_const);
|
|
tty->print_cr(" C_pre = iv_scale(%d) * pre_stride(%d) = %d",
|
|
iv_scale(), _pre_stride, C_pre);
|
|
tty->print_cr(" C_main = iv_scale(%d) * main_stride(%d) = %d",
|
|
iv_scale(), _main_stride, C_main);
|
|
}
|
|
}
|
|
|
|
void AlignmentSolver::trace_main_iteration_alignment(const int C_const,
|
|
const int C_invar,
|
|
const int C_init,
|
|
const int C_pre,
|
|
const int C_main,
|
|
const int C_main_mod_aw) const
|
|
{
|
|
if (is_trace()) {
|
|
tty->print(" EQ(1 ): (C_const(%d) + C_invar(%d) * var_invar + C_init(%d) * var_init",
|
|
C_const, C_invar, C_init);
|
|
tty->print(" + C_pre(%d) * pre_iter + C_main(%d) * main_iter) %% aw(%d) = 0",
|
|
C_pre, C_main, _aw);
|
|
tty->print_cr(" (given base aligned -> align rest)");
|
|
tty->print(" EQ(2 ): C_main(%d) %% aw(%d) = %d = 0",
|
|
C_main, _aw, C_main_mod_aw);
|
|
tty->print_cr(" (alignment across iterations)");
|
|
}
|
|
}
|
|
|
|
void AlignmentSolver::EQ4::trace() const {
|
|
tty->print_cr(" EQ(4a): (C_const(%3d) + C_pre(%d) * pre_iter_C_const) %% aw(%d) = 0 (align const term individually)",
|
|
_C_const, _C_pre, _aw);
|
|
tty->print_cr(" -> %s", state_to_str(eq4a_state()));
|
|
|
|
tty->print_cr(" EQ(4b): (C_invar(%3d) * var_invar + C_pre(%d) * pre_iter_C_invar) %% aw(%d) = 0 (align invar term individually)",
|
|
_C_invar, _C_pre, _aw);
|
|
tty->print_cr(" -> %s", state_to_str(eq4b_state()));
|
|
|
|
tty->print_cr(" EQ(4c): (C_init( %3d) * var_init + C_pre(%d) * pre_iter_C_init ) %% aw(%d) = 0 (align init term individually)",
|
|
_C_init, _C_pre, _aw);
|
|
tty->print_cr(" -> %s", state_to_str(eq4c_state()));
|
|
}
|
|
|
|
void AlignmentSolver::trace_constrained_solution(const int C_const,
|
|
const int C_invar,
|
|
const int C_init,
|
|
const int C_pre,
|
|
const int q,
|
|
const int r) const
|
|
{
|
|
if (is_trace()) {
|
|
tty->print_cr(" EQ(4a, b, c) all constrained, hence:");
|
|
tty->print_cr(" EQ(5a): C_const(%3d) %% abs(C_pre(%d)) = 0", C_const, C_pre);
|
|
tty->print_cr(" EQ(5b): C_invar(%3d) %% abs(C_pre(%d)) = 0", C_invar, C_pre);
|
|
tty->print_cr(" EQ(5c): C_init( %3d) %% abs(C_pre(%d)) = 0", C_init, C_pre);
|
|
|
|
tty->print_cr(" All terms in EQ(4a, b, c) are divisible by abs(C_pre(%d)).", C_pre);
|
|
const int X = C_const / abs(C_pre);
|
|
const int Y = C_invar / abs(C_pre);
|
|
const int Z = C_init / abs(C_pre);
|
|
const int sign = (C_pre > 0) ? 1 : -1;
|
|
tty->print_cr(" X = C_const(%3d) / abs(C_pre(%d)) = %d (6a)", C_const, C_pre, X);
|
|
tty->print_cr(" Y = C_invar(%3d) / abs(C_pre(%d)) = %d (6b)", C_invar, C_pre, Y);
|
|
tty->print_cr(" Z = C_init( %3d) / abs(C_pre(%d)) = %d (6c)", C_init , C_pre, Z);
|
|
tty->print_cr(" q = aw( %3d) / abs(C_pre(%d)) = %d (8)", _aw, C_pre, q);
|
|
tty->print_cr(" sign(C_pre) = (C_pre(%d) > 0) ? 1 : -1 = %d (7)", C_pre, sign);
|
|
|
|
tty->print_cr(" EQ(9a): (X(%3d) + pre_iter_C_const * sign(C_pre)) %% q(%d) = 0", X, q);
|
|
tty->print_cr(" EQ(9b): (Y(%3d) * var_invar + pre_iter_C_invar * sign(C_pre)) %% q(%d) = 0", Y, q);
|
|
tty->print_cr(" EQ(9c): (Z(%3d) * var_init + pre_iter_C_init * sign(C_pre)) %% q(%d) = 0", Z, q);
|
|
|
|
tty->print_cr(" EQ(10a): pre_iter_C_const = mx2 * q(%d) - sign(C_pre) * X(%d)", q, X);
|
|
tty->print_cr(" EQ(10b): pre_iter_C_invar = my2 * q(%d) - sign(C_pre) * Y(%d) * var_invar", q, Y);
|
|
tty->print_cr(" EQ(10c): pre_iter_C_init = mz2 * q(%d) - sign(C_pre) * Z(%d) * var_init ", q, Z);
|
|
|
|
tty->print_cr(" r = (-C_const(%d) / (iv_scale(%d) * pre_stride(%d)) %% q(%d) = %d",
|
|
C_const, iv_scale(), _pre_stride, q, r);
|
|
|
|
tty->print_cr(" EQ(14): pre_iter = m * q(%3d) - r(%d)", q, r);
|
|
if (C_invar != 0) {
|
|
tty->print_cr(" - invar / (iv_scale(%d) * pre_stride(%d))",
|
|
iv_scale(), _pre_stride);
|
|
}
|
|
if (!_init_node->is_ConI()) {
|
|
tty->print_cr(" - init / pre_stride(%d)",
|
|
_pre_stride);
|
|
}
|
|
}
|
|
}
|
|
#endif
|