jdk/test/hotspot/jtreg/compiler/loopopts/superword/TestAutoVectorizationOverrideProfitability.java
2025-05-26 18:31:19 +00:00

165 lines
6.1 KiB
Java

/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 8357530
* @summary Test the effect of AutoVectorizationOverrideProfitability.
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestAutoVectorizationOverrideProfitability
*/
package compiler.loopopts.superword;
import compiler.lib.ir_framework.*;
import compiler.lib.verify.*;
import compiler.lib.generators.Generator;
import static compiler.lib.generators.Generators.G;
public class TestAutoVectorizationOverrideProfitability {
public static final Generator<Integer> GEN_I = G.ints();
public static final Generator<Float> GEN_F = G.floats();
public static int[] aI = new int[10_000];
public static int[] rI = new int[10_000];
public static float[] aF = new float[10_000];
public static float[] rF = new float[10_000];
static {
G.fill(GEN_I, aI);
G.fill(GEN_F, aF);
}
public static void main(String[] args) throws Exception {
// Do not vectorize, even if profitable.
TestFramework.runWithFlags("-XX:+UnlockDiagnosticVMOptions", "-XX:AutoVectorizationOverrideProfitability=0");
// Normal run, i.e. with normal heuristic. In some cases this vectorizes, in some not.
// By default, we have AutoVectorizationOverrideProfitability=1
TestFramework.run();
// Vectorize even if not profitable.
TestFramework.runWithFlags("-XX:+UnlockDiagnosticVMOptions", "-XX:AutoVectorizationOverrideProfitability=2");
}
public static final float GOLD_SIMPLE_FLOAT_REDUCTION = simpleFloatReduction();
@Test
@Warmup(10)
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "= 2"},
counts = {IRNode.ADD_REDUCTION_VF, "> 0"})
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "< 2"},
counts = {IRNode.ADD_REDUCTION_VF, "= 0"})
// The simple float reduction is not profitable. We need to sequentially
// add up the values, and so we cannot move the reduction out of the loop.
private static float simpleFloatReduction() {
float sum = 0;
for (int i = 0; i < aF.length; i++) {
sum += aF[i];
}
return sum;
}
@Check(test="simpleFloatReduction")
public static void checkSimpleFloatReduction(float result) {
Verify.checkEQ(GOLD_SIMPLE_FLOAT_REDUCTION, result);
}
static { simpleFloatCopy(); }
public static final float[] GOLD_SIMPLE_FLOAT_COPY = rF.clone();
@Test
@Warmup(10)
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "> 0"},
counts = {IRNode.LOAD_VECTOR_F, "> 0"})
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "= 0"},
counts = {IRNode.LOAD_VECTOR_F, "= 0"})
// The simple float copy is always profitable.
private static void simpleFloatCopy() {
for (int i = 0; i < aF.length; i++) {
rF[i] = aF[i];
}
}
@Check(test="simpleFloatCopy")
public static void checkSimpleFloatCopy() {
Verify.checkEQ(GOLD_SIMPLE_FLOAT_COPY, rF);
}
public static final int GOLD_SIMPLE_INT_REDUCTION = simpleIntReduction();
@Test
@Warmup(10)
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "= 2"},
counts = {IRNode.ADD_REDUCTION_VI, "> 0", IRNode.ADD_VI, "> 0"})
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "< 2"},
counts = {IRNode.ADD_REDUCTION_VI, "= 0", IRNode.ADD_VI, "= 0"})
// Current heuristics say that this simple int reduction is not profitable.
// But it would actually be profitable, since we are able to move the
// reduction out of the loop (we can reorder the reduction). When moving
// the reduction out of the loop, we instead accumulate with a simple
// ADD_VI inside the loop.
// See: JDK-8307516 JDK-8345044
private static int simpleIntReduction() {
int sum = 0;
for (int i = 0; i < aI.length; i++) {
sum += aI[i];
}
return sum;
}
@Check(test="simpleIntReduction")
public static void checkSimpleIntReduction(int result) {
Verify.checkEQ(GOLD_SIMPLE_INT_REDUCTION, result);
}
static { simpleIntCopy(); }
public static final int[] GOLD_SIMPLE_INT_COPY = rI.clone();
@Test
@Warmup(10)
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "> 0"},
counts = {IRNode.LOAD_VECTOR_I, "> 0"})
@IR(applyIfCPUFeatureOr = {"avx", "true"},
applyIf = {"AutoVectorizationOverrideProfitability", "= 0"},
counts = {IRNode.LOAD_VECTOR_I, "= 0"})
// The simple int copy is always profitable.
private static void simpleIntCopy() {
for (int i = 0; i < aI.length; i++) {
rI[i] = aI[i];
}
}
@Check(test="simpleIntCopy")
public static void checkSimpleIntCopy() {
Verify.checkEQ(GOLD_SIMPLE_INT_COPY, rI);
}
}