mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
448 lines
12 KiB
C++
448 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2023, 2026, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "cppstdlib/cstdlib.hpp"
|
|
#include "immediate_aarch64.hpp"
|
|
#include "metaprogramming/primitiveConversions.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
|
|
#include <stdint.h>
|
|
|
|
// there are at most 2^13 possible logical immediate encodings
|
|
// however, some combinations of immr and imms are invalid
|
|
static const unsigned LI_TABLE_SIZE = (1 << 13);
|
|
|
|
static int li_table_entry_count;
|
|
|
|
// for forward lookup we just use a direct array lookup
|
|
// and assume that the cient has supplied a valid encoding
|
|
// table[encoding] = immediate
|
|
static uint64_t LITable[LI_TABLE_SIZE];
|
|
|
|
// for reverse lookup we need a sparse map so we store a table of
|
|
// immediate and encoding pairs sorted by immediate value
|
|
|
|
struct li_pair {
|
|
uint64_t immediate;
|
|
uint32_t encoding;
|
|
};
|
|
|
|
static struct li_pair InverseLITable[LI_TABLE_SIZE];
|
|
|
|
// comparator to sort entries in the inverse table
|
|
static int compare_immediate_pair(const void *i1, const void *i2)
|
|
{
|
|
struct li_pair *li1 = (struct li_pair *)i1;
|
|
struct li_pair *li2 = (struct li_pair *)i2;
|
|
if (li1->immediate < li2->immediate) {
|
|
return -1;
|
|
}
|
|
if (li1->immediate > li2->immediate) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// helper functions used by expandLogicalImmediate
|
|
|
|
// for i = 1, ... N result<i-1> = 1 other bits are zero
|
|
static inline uint64_t ones(int N)
|
|
{
|
|
return (N == 64 ? -1ULL : (1ULL << N) - 1);
|
|
}
|
|
|
|
/*
|
|
* bit twiddling helpers for instruction decode
|
|
*/
|
|
|
|
// 32 bit mask with bits [hi,...,lo] set
|
|
static inline uint32_t mask32(int hi = 31, int lo = 0)
|
|
{
|
|
int nbits = (hi + 1) - lo;
|
|
return ((1 << nbits) - 1) << lo;
|
|
}
|
|
|
|
static inline uint64_t mask64(int hi = 63, int lo = 0)
|
|
{
|
|
int nbits = (hi + 1) - lo;
|
|
return ((1L << nbits) - 1) << lo;
|
|
}
|
|
|
|
// pick bits [hi,...,lo] from val
|
|
static inline uint32_t pick32(uint32_t val, int hi = 31, int lo = 0)
|
|
{
|
|
return (val & mask32(hi, lo));
|
|
}
|
|
|
|
// pick bits [hi,...,lo] from val
|
|
static inline uint64_t pick64(uint64_t val, int hi = 31, int lo = 0)
|
|
{
|
|
return (val & mask64(hi, lo));
|
|
}
|
|
|
|
// mask [hi,lo] and shift down to start at bit 0
|
|
static inline uint32_t pickbits32(uint32_t val, int hi = 31, int lo = 0)
|
|
{
|
|
return (pick32(val, hi, lo) >> lo);
|
|
}
|
|
|
|
// mask [hi,lo] and shift down to start at bit 0
|
|
static inline uint64_t pickbits64(uint64_t val, int hi = 63, int lo = 0)
|
|
{
|
|
return (pick64(val, hi, lo) >> lo);
|
|
}
|
|
|
|
// result<0> to val<N>
|
|
static inline uint64_t pickbit(uint64_t val, int N)
|
|
{
|
|
return pickbits64(val, N, N);
|
|
}
|
|
|
|
static inline uint32_t uimm(uint32_t val, int hi, int lo)
|
|
{
|
|
return pickbits32(val, hi, lo);
|
|
}
|
|
|
|
// SPEC
|
|
//
|
|
// bits(M*N) Replicate(bits(M) B, integer N);
|
|
//
|
|
// given bit string B of width M (M > 0) and count N (N > 0)
|
|
// concatenate N copies of B to generate a bit string of width N * M
|
|
// (N * M <= 64)
|
|
//
|
|
// inputs
|
|
// bits : bit string to be replicated starting from bit 0
|
|
// nbits : width of the bit string string passed in bits
|
|
// count : number of copies of bit string to be concatenated
|
|
//
|
|
// result
|
|
// a bit string containing count copies of input bit string
|
|
//
|
|
static uint64_t replicate(uint64_t bits, int nbits, int count)
|
|
{
|
|
assert(count > 0, "must be");
|
|
assert(nbits > 0, "must be");
|
|
assert(count * nbits <= 64, "must be");
|
|
|
|
// Special case nbits == 64 since the shift below with that nbits value
|
|
// would result in undefined behavior.
|
|
if (nbits == 64) {
|
|
return bits;
|
|
}
|
|
|
|
uint64_t result = 0;
|
|
uint64_t mask = ones(nbits);
|
|
for (int i = 0; i < count ; i++) {
|
|
result <<= nbits;
|
|
result |= (bits & mask);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// construct a 64 bit immediate value for a logical immediate operation
|
|
//
|
|
// SPEC:
|
|
//
|
|
// {(0,_), (1, uint64)} = expandLogicalImmediate(immN, immr, imms)
|
|
//
|
|
// For valid combinations of immN, immr and imms, this function
|
|
// replicates a derived bit string, whose width is a power of 2, into
|
|
// a 64 bit result and returns 1.
|
|
//
|
|
// for invalid combinations it fails and returns 0
|
|
//
|
|
// - immN and imms together define
|
|
//
|
|
// 1) the size, 2^k, of the bit string to be replicated (0 < k <= 6)
|
|
//
|
|
// 2) the number of bits, p, to set in the string (0 < p < 2^k)
|
|
//
|
|
// - immr defines a right rotation on the bit string determined by
|
|
// immN and imms
|
|
//
|
|
// bit field construction:
|
|
//
|
|
// create a bit string of width 2^k
|
|
//
|
|
// set the bottom p bits to 1
|
|
//
|
|
// rotate the bit string right by immr bits
|
|
//
|
|
// replicate the 2^k bit string into 64 bits
|
|
//
|
|
// derivation of k and p and validity checks:
|
|
//
|
|
// when immN is 1 then k == 6 and immr/imms are masked to 6 bit
|
|
// integers
|
|
//
|
|
// when immN is 0 then k is the index of the first 0 bit in imms and
|
|
// immr/imms are masked to k-bit integers (i.e. any leading 1s and the
|
|
// first 0 in imms determine dead bits of imms/immr)
|
|
//
|
|
// if (pre-masking) immr >= 2^k then fail and return 0 (this is a
|
|
// uniqueness constraint that ensures each output bit string is only
|
|
// generated by one valid combination of immN, imms and immr).
|
|
//
|
|
// if k == 0 then fail and return 0. Note that this means that
|
|
// 2^k > 1 or equivalently 2^k - 1 > 0
|
|
//
|
|
// If imms == all 1s (modulo 2^k) then fail and return 0. Note that
|
|
// this means that 0 <= imms < 2^k - 1
|
|
//
|
|
// set p = imms + 1. Consequently, 0 < p < 2^k which is the condition
|
|
// that an all 0s or all 1s bit pattern is never generated.
|
|
//
|
|
// example output:
|
|
//
|
|
// 11001111_11001111_11001111_11001111_11001111_11001111_11001111_11001111
|
|
//
|
|
// which corresponds to the inputs
|
|
//
|
|
// immN = 0, imms = 110101, immr = 000010
|
|
//
|
|
// For these inputs k = 3, 2^k = 8, p = 6, rotation = 2
|
|
//
|
|
// implementation note:
|
|
//
|
|
// For historical reasons the implementation of this function is much
|
|
// more convoluted than is really necessary.
|
|
|
|
static int expandLogicalImmediate(uint32_t immN, uint32_t immr,
|
|
uint32_t imms, uint64_t &bimm)
|
|
{
|
|
int len; // ought to be <= 6
|
|
uint32_t levels; // 6 bits
|
|
uint32_t tmask_and; // 6 bits
|
|
uint32_t wmask_and; // 6 bits
|
|
uint32_t tmask_or; // 6 bits
|
|
uint32_t wmask_or; // 6 bits
|
|
uint64_t imm64; // 64 bits
|
|
uint64_t tmask, wmask; // 64 bits
|
|
uint32_t S, R, diff; // 6 bits?
|
|
|
|
if (immN == 1) {
|
|
len = 6; // looks like 7 given the spec above but this cannot be!
|
|
} else {
|
|
len = 0;
|
|
uint32_t val = (~imms & 0x3f);
|
|
for (int i = 5; i > 0; i--) {
|
|
if (val & (1 << i)) {
|
|
len = i;
|
|
break;
|
|
}
|
|
}
|
|
if (len < 1) {
|
|
return 0;
|
|
}
|
|
// for valid inputs leading 1s in immr must be less than leading
|
|
// zeros in imms
|
|
int len2 = 0; // ought to be < len
|
|
uint32_t val2 = (~immr & 0x3f);
|
|
for (int i = 5; i > 0; i--) {
|
|
if (!(val2 & (1 << i))) {
|
|
len2 = i;
|
|
break;
|
|
}
|
|
}
|
|
if (len2 >= len) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
levels = (1 << len) - 1;
|
|
|
|
if ((imms & levels) == levels) {
|
|
return 0;
|
|
}
|
|
|
|
S = imms & levels;
|
|
R = immr & levels;
|
|
|
|
// 6 bit arithmetic!
|
|
diff = S - R;
|
|
tmask_and = (diff | ~levels) & 0x3f;
|
|
tmask_or = (diff & levels) & 0x3f;
|
|
tmask = 0xffffffffffffffffULL;
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
int nbits = 1 << i;
|
|
uint64_t and_bit = pickbit(tmask_and, i);
|
|
uint64_t or_bit = pickbit(tmask_or, i);
|
|
uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
|
|
uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
|
|
uint64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
|
|
uint64_t or_bits_top = (UCONST64(0) << nbits) | or_bits_sub;
|
|
|
|
tmask = ((tmask
|
|
& (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
|
|
| replicate(or_bits_top, 2 * nbits, 32 / nbits));
|
|
}
|
|
|
|
wmask_and = (immr | ~levels) & 0x3f;
|
|
wmask_or = (immr & levels) & 0x3f;
|
|
|
|
wmask = 0;
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
int nbits = 1 << i;
|
|
uint64_t and_bit = pickbit(wmask_and, i);
|
|
uint64_t or_bit = pickbit(wmask_or, i);
|
|
uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
|
|
uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
|
|
uint64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
|
|
uint64_t or_bits_top = (or_bits_sub << nbits) | 0;
|
|
|
|
wmask = ((wmask
|
|
& (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
|
|
| replicate(or_bits_top, 2 * nbits, 32 / nbits));
|
|
}
|
|
|
|
if (diff & (1U << 6)) {
|
|
imm64 = tmask & wmask;
|
|
} else {
|
|
imm64 = tmask | wmask;
|
|
}
|
|
|
|
|
|
bimm = imm64;
|
|
return 1;
|
|
}
|
|
|
|
// constructor to initialise the lookup tables
|
|
|
|
static void initLITables();
|
|
// Use an empty struct with a constructor as MSVC doesn't support `__attribute__ ((constructor))`
|
|
// See https://stackoverflow.com/questions/1113409/attribute-constructor-equivalent-in-vc
|
|
static struct initLITables_t { initLITables_t(void) { initLITables(); } } _initLITables;
|
|
static void initLITables()
|
|
{
|
|
li_table_entry_count = 0;
|
|
for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
|
|
uint32_t N = uimm(index, 12, 12);
|
|
uint32_t immr = uimm(index, 11, 6);
|
|
uint32_t imms = uimm(index, 5, 0);
|
|
if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
|
|
InverseLITable[li_table_entry_count].immediate = LITable[index];
|
|
InverseLITable[li_table_entry_count].encoding = index;
|
|
li_table_entry_count++;
|
|
}
|
|
}
|
|
// now sort the inverse table
|
|
qsort(InverseLITable, li_table_entry_count,
|
|
sizeof(InverseLITable[0]), compare_immediate_pair);
|
|
}
|
|
|
|
// public APIs provided for logical immediate lookup and reverse lookup
|
|
|
|
uint64_t logical_immediate_for_encoding(uint32_t encoding)
|
|
{
|
|
return LITable[encoding];
|
|
}
|
|
|
|
uint32_t encoding_for_logical_immediate(uint64_t immediate)
|
|
{
|
|
struct li_pair pair;
|
|
struct li_pair *result;
|
|
|
|
pair.immediate = immediate;
|
|
|
|
result = (struct li_pair *)
|
|
bsearch(&pair, InverseLITable, li_table_entry_count,
|
|
sizeof(InverseLITable[0]), compare_immediate_pair);
|
|
|
|
if (result) {
|
|
return result->encoding;
|
|
}
|
|
|
|
return 0xffffffff;
|
|
}
|
|
|
|
// floating point immediates are encoded in 8 bits
|
|
// fpimm[7] = sign bit
|
|
// fpimm[6:4] = signed exponent
|
|
// fpimm[3:0] = fraction (assuming leading 1)
|
|
// i.e. F = s * 1.f * 2^(e - b)
|
|
|
|
uint64_t fp_immediate_for_encoding(uint32_t imm8, int is_dp)
|
|
{
|
|
union {
|
|
float fpval;
|
|
double dpval;
|
|
uint64_t val;
|
|
};
|
|
|
|
uint32_t s, e, f;
|
|
s = (imm8 >> 7 ) & 0x1;
|
|
e = (imm8 >> 4) & 0x7;
|
|
f = imm8 & 0xf;
|
|
// the fp value is s * n/16 * 2r where n is 16+e
|
|
fpval = (16.0 + f) / 16.0;
|
|
// n.b. exponent is signed
|
|
if (e < 4) {
|
|
int epos = e;
|
|
for (int i = 0; i <= epos; i++) {
|
|
fpval *= 2.0;
|
|
}
|
|
} else {
|
|
int eneg = 7 - e;
|
|
for (int i = 0; i < eneg; i++) {
|
|
fpval /= 2.0;
|
|
}
|
|
}
|
|
|
|
if (s) {
|
|
fpval = -fpval;
|
|
}
|
|
if (is_dp) {
|
|
dpval = (double)fpval;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t encoding_for_fp_immediate(float immediate)
|
|
{
|
|
// given a float which is of the form
|
|
//
|
|
// s * n/16 * 2r
|
|
//
|
|
// where n is 16+f and imm1:s, imm4:f, simm3:r
|
|
// return the imm8 result [s:r:f]
|
|
//
|
|
|
|
uint32_t val = PrimitiveConversions::cast<uint32_t>(immediate);
|
|
uint32_t s, r, f, res;
|
|
// sign bit is 31
|
|
s = (val >> 31) & 0x1;
|
|
// exponent is bits 30-23 but we only want the bottom 3 bits
|
|
// strictly we ought to check that the bits bits 30-25 are
|
|
// either all 1s or all 0s
|
|
r = (val >> 23) & 0x7;
|
|
// fraction is bits 22-0
|
|
f = (val >> 19) & 0xf;
|
|
res = (s << 7) | (r << 4) | f;
|
|
return res;
|
|
}
|