jdk/src/hotspot/os_cpu/linux_x86/os_linux_x86.cpp
Anton Seoane Ampudia 795bf9f6d1 8351159: Remaining cleanups in cpu/x86 after 32-bit x86 removal
Reviewed-by: stefank, kvn
2025-10-30 11:31:29 +00:00

483 lines
17 KiB
C++

/*
* Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "asm/macroAssembler.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm.h"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "nmt/memTracker.hpp"
#include "os_linux.hpp"
#include "os_posix.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/timer.hpp"
#include "signals_posix.hpp"
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <pthread.h>
# include <signal.h>
# include <errno.h>
# include <dlfcn.h>
# include <stdlib.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/resource.h>
# include <pthread.h>
# include <sys/stat.h>
# include <sys/time.h>
# include <sys/utsname.h>
# include <sys/socket.h>
# include <sys/wait.h>
# include <pwd.h>
# include <poll.h>
# include <ucontext.h>
#define REG_SP REG_RSP
#define REG_PC REG_RIP
#define REG_FP REG_RBP
#define REG_BCP REG_R13
#define SPELL_REG_SP "rsp"
#define SPELL_REG_FP "rbp"
address os::current_stack_pointer() {
return (address)__builtin_frame_address(0);
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
return (char*) -1;
}
address os::Posix::ucontext_get_pc(const ucontext_t * uc) {
return (address)uc->uc_mcontext.gregs[REG_PC];
}
void os::Posix::ucontext_set_pc(ucontext_t * uc, address pc) {
uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
}
intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
}
intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
}
address os::fetch_frame_from_context(const void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
address epc;
const ucontext_t* uc = (const ucontext_t*)ucVoid;
if (uc != nullptr) {
epc = os::Posix::ucontext_get_pc(uc);
if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
} else {
epc = nullptr;
if (ret_sp) *ret_sp = (intptr_t *)nullptr;
if (ret_fp) *ret_fp = (intptr_t *)nullptr;
}
return epc;
}
frame os::fetch_frame_from_context(const void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
address epc = fetch_frame_from_context(ucVoid, &sp, &fp);
if (!is_readable_pointer(epc)) {
// Try to recover from calling into bad memory
// Assume new frame has not been set up, the same as
// compiled frame stack bang
return fetch_compiled_frame_from_context(ucVoid);
}
return frame(sp, fp, epc);
}
frame os::fetch_compiled_frame_from_context(const void* ucVoid) {
const ucontext_t* uc = (const ucontext_t*)ucVoid;
intptr_t* fp = os::Linux::ucontext_get_fp(uc);
intptr_t* sp = os::Linux::ucontext_get_sp(uc);
return frame(sp + 1, fp, (address)*sp);
}
intptr_t* os::fetch_bcp_from_context(const void* ucVoid) {
assert(ucVoid != nullptr, "invariant");
const ucontext_t* uc = (const ucontext_t*)ucVoid;
assert(os::Posix::ucontext_is_interpreter(uc), "invariant");
return reinterpret_cast<intptr_t*>(uc->uc_mcontext.gregs[REG_BCP]);
}
// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
// turned off by -fomit-frame-pointer,
frame os::get_sender_for_C_frame(frame* fr) {
return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
}
static intptr_t* _get_previous_fp() {
#if defined(__clang__)
intptr_t **ebp;
__asm__ __volatile__ ("mov %%" SPELL_REG_FP ", %0":"=r"(ebp):);
#else
register intptr_t **ebp __asm__ (SPELL_REG_FP);
#endif
// ebp is for this frame (_get_previous_fp). We want the ebp for the
// caller of os::current_frame*(), so go up two frames. However, for
// optimized builds, _get_previous_fp() will be inlined, so only go
// up 1 frame in that case.
#ifdef _NMT_NOINLINE_
return **(intptr_t***)ebp;
#else
return *ebp;
#endif
}
frame os::current_frame() {
intptr_t* fp = _get_previous_fp();
frame myframe((intptr_t*)os::current_stack_pointer(),
(intptr_t*)fp,
CAST_FROM_FN_PTR(address, os::current_frame));
if (os::is_first_C_frame(&myframe)) {
// stack is not walkable
return frame();
} else {
return os::get_sender_for_C_frame(&myframe);
}
}
// Utility functions
// From IA32 System Programming Guide
enum {
trap_page_fault = 0xE
};
bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info,
ucontext_t* uc, JavaThread* thread) {
/*
NOTE: does not seem to work on linux.
if (info == nullptr || info->si_code <= 0 || info->si_code == SI_NOINFO) {
// can't decode this kind of signal
info = nullptr;
} else {
assert(sig == info->si_signo, "bad siginfo");
}
*/
// decide if this trap can be handled by a stub
address stub = nullptr;
address pc = nullptr;
//%note os_trap_1
if (info != nullptr && uc != nullptr && thread != nullptr) {
pc = (address) os::Posix::ucontext_get_pc(uc);
if (sig == SIGSEGV && info->si_addr == nullptr && info->si_code == SI_KERNEL) {
// An irrecoverable SI_KERNEL SIGSEGV has occurred.
// It's likely caused by dereferencing an address larger than TASK_SIZE.
return false;
}
// Handle ALL stack overflow variations here
if (sig == SIGSEGV) {
address addr = (address) info->si_addr;
// check if fault address is within thread stack
if (thread->is_in_full_stack(addr)) {
// stack overflow
if (os::Posix::handle_stack_overflow(thread, addr, pc, uc, &stub)) {
return true; // continue
}
}
}
if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
// Verify that OS save/restore AVX registers.
stub = VM_Version::cpuinfo_cont_addr();
}
if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr_apx(pc)) {
// Verify that OS save/restore APX registers.
stub = VM_Version::cpuinfo_cont_addr_apx();
VM_Version::clear_apx_test_state();
}
if (thread->thread_state() == _thread_in_Java) {
// Java thread running in Java code => find exception handler if any
// a fault inside compiled code, the interpreter, or a stub
if (sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) {
stub = SharedRuntime::get_poll_stub(pc);
} else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
// BugId 4454115: A read from a MappedByteBuffer can fault
// here if the underlying file has been truncated.
// Do not crash the VM in such a case.
CodeBlob* cb = CodeCache::find_blob(pc);
nmethod* nm = (cb != nullptr) ? cb->as_nmethod_or_null() : nullptr;
bool is_unsafe_memory_access = thread->doing_unsafe_access() && UnsafeMemoryAccess::contains_pc(pc);
if ((nm != nullptr && nm->has_unsafe_access()) || is_unsafe_memory_access) {
address next_pc = Assembler::locate_next_instruction(pc);
if (is_unsafe_memory_access) {
next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc);
}
stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
}
} else if (sig == SIGFPE &&
(info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
stub =
SharedRuntime::
continuation_for_implicit_exception(thread,
pc,
SharedRuntime::
IMPLICIT_DIVIDE_BY_ZERO);
} else if (sig == SIGSEGV &&
MacroAssembler::uses_implicit_null_check(info->si_addr)) {
// Determination of interpreter/vtable stub/compiled code null exception
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
} else if ((thread->thread_state() == _thread_in_vm ||
thread->thread_state() == _thread_in_native) &&
(sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
thread->doing_unsafe_access())) {
address next_pc = Assembler::locate_next_instruction(pc);
if (UnsafeMemoryAccess::contains_pc(pc)) {
next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc);
}
stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
}
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
// and the heap gets shrunk before the field access.
if ((sig == SIGSEGV) || (sig == SIGBUS)) {
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
stub = addr;
}
}
}
if (stub != nullptr) {
// save all thread context in case we need to restore it
if (thread != nullptr) thread->set_saved_exception_pc(pc);
os::Posix::ucontext_set_pc(uc, stub);
return true;
}
return false;
}
void os::Linux::init_thread_fpu_state(void) {
}
int os::Linux::get_fpu_control_word(void) {
return 0;
}
void os::Linux::set_fpu_control_word(int fpu_control) {
}
juint os::cpu_microcode_revision() {
// Note: this code runs on startup, and therefore should not be slow,
// see JDK-8283200.
juint result = 0;
// Attempt 1 (faster): Read the microcode version off the sysfs.
FILE *fp = os::fopen("/sys/devices/system/cpu/cpu0/microcode/version", "r");
if (fp) {
int read = fscanf(fp, "%x", &result);
fclose(fp);
if (read > 0) {
return result;
}
}
// Attempt 2 (slower): Read the microcode version off the procfs.
fp = os::fopen("/proc/cpuinfo", "r");
if (fp) {
char data[2048] = {0}; // lines should fit in 2K buf
int len = (int)sizeof(data);
while (!feof(fp)) {
if (fgets(data, len, fp)) {
if (strstr(data, "microcode") != nullptr) {
char* rev = strchr(data, ':');
if (rev != nullptr) sscanf(rev + 1, "%x", &result);
break;
}
}
}
fclose(fp);
}
return result;
}
////////////////////////////////////////////////////////////////////////////////
// thread stack
// Minimum usable stack sizes required to get to user code. Space for
// HotSpot guard pages is added later.
size_t os::_compiler_thread_min_stack_allowed = 48 * K;
size_t os::_java_thread_min_stack_allowed = 40 * K;
size_t os::_vm_internal_thread_min_stack_allowed = 64 * K;
// return default stack size for thr_type
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
// default stack size (compiler thread needs larger stack)
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
return s;
}
/////////////////////////////////////////////////////////////////////////////
// helper functions for fatal error handler
void os::print_context(outputStream *st, const void *context) {
if (context == nullptr) return;
const ucontext_t *uc = (const ucontext_t*)context;
st->print_cr("Registers:");
st->print( "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
st->cr();
st->print( "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
st->cr();
st->print( "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
st->cr();
st->print( "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
st->cr();
st->print( "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
st->cr();
st->print(" TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
// Add XMM registers + MXCSR. Note that C2 uses XMM to spill GPR values including pointers.
st->cr();
st->cr();
// Sanity check: fpregs should point into the context.
if ((address)uc->uc_mcontext.fpregs < (address)uc ||
pointer_delta(uc->uc_mcontext.fpregs, uc, 1) >= sizeof(ucontext_t)) {
st->print_cr("bad uc->uc_mcontext.fpregs: " INTPTR_FORMAT " (uc: " INTPTR_FORMAT ")",
p2i(uc->uc_mcontext.fpregs), p2i(uc));
} else {
for (int i = 0; i < 16; ++i) {
const int64_t* xmm_val_addr = (int64_t*)&(uc->uc_mcontext.fpregs->_xmm[i]);
st->print_cr("XMM[%d]=" INTPTR_FORMAT " " INTPTR_FORMAT, i, xmm_val_addr[1], xmm_val_addr[0]);
}
st->print(" MXCSR=" UINT32_FORMAT_X_0, uc->uc_mcontext.fpregs->mxcsr);
}
st->cr();
st->cr();
}
void os::print_register_info(outputStream *st, const void *context, int& continuation) {
const int register_count = 16;
int n = continuation;
assert(n >= 0 && n <= register_count, "Invalid continuation value");
if (context == nullptr || n == register_count) {
return;
}
const ucontext_t *uc = (const ucontext_t*)context;
while (n < register_count) {
// Update continuation with next index before printing location
continuation = n + 1;
# define CASE_PRINT_REG(n, str, id) case n: st->print(str); print_location(st, uc->uc_mcontext.gregs[REG_##id]);
switch (n) {
CASE_PRINT_REG( 0, "RAX=", RAX); break;
CASE_PRINT_REG( 1, "RBX=", RBX); break;
CASE_PRINT_REG( 2, "RCX=", RCX); break;
CASE_PRINT_REG( 3, "RDX=", RDX); break;
CASE_PRINT_REG( 4, "RSP=", RSP); break;
CASE_PRINT_REG( 5, "RBP=", RBP); break;
CASE_PRINT_REG( 6, "RSI=", RSI); break;
CASE_PRINT_REG( 7, "RDI=", RDI); break;
CASE_PRINT_REG( 8, "R8 =", R8); break;
CASE_PRINT_REG( 9, "R9 =", R9); break;
CASE_PRINT_REG(10, "R10=", R10); break;
CASE_PRINT_REG(11, "R11=", R11); break;
CASE_PRINT_REG(12, "R12=", R12); break;
CASE_PRINT_REG(13, "R13=", R13); break;
CASE_PRINT_REG(14, "R14=", R14); break;
CASE_PRINT_REG(15, "R15=", R15); break;
}
# undef CASE_PRINT_REG
++n;
}
}
void os::setup_fpu() {
}
#ifndef PRODUCT
void os::verify_stack_alignment() {
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
}
#endif
int os::extra_bang_size_in_bytes() {
// JDK-8050147 requires the full cache line bang for x86.
return VM_Version::L1_line_size();
}