mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-30 13:08:24 +00:00
205 lines
6.4 KiB
Java
205 lines
6.4 KiB
Java
/*
|
|
* Copyright (c) 1996, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package sun.security.provider;
|
|
|
|
import java.util.Objects;
|
|
|
|
import static sun.security.provider.ByteArrayAccess.*;
|
|
import jdk.internal.HotSpotIntrinsicCandidate;
|
|
|
|
/**
|
|
* This class implements the Secure Hash Algorithm (SHA) developed by
|
|
* the National Institute of Standards and Technology along with the
|
|
* National Security Agency. This is the updated version of SHA
|
|
* fip-180 as superseded by fip-180-1.
|
|
*
|
|
* <p>It implement JavaSecurity MessageDigest, and can be used by in
|
|
* the Java Security framework, as a pluggable implementation, as a
|
|
* filter for the digest stream classes.
|
|
*
|
|
* @author Roger Riggs
|
|
* @author Benjamin Renaud
|
|
* @author Andreas Sterbenz
|
|
*/
|
|
public final class SHA extends DigestBase {
|
|
|
|
// Buffer of int's and count of characters accumulated
|
|
// 64 bytes are included in each hash block so the low order
|
|
// bits of count are used to know how to pack the bytes into ints
|
|
// and to know when to compute the block and start the next one.
|
|
private int[] W;
|
|
|
|
// state of this
|
|
private int[] state;
|
|
|
|
/**
|
|
* Creates a new SHA object.
|
|
*/
|
|
public SHA() {
|
|
super("SHA-1", 20, 64);
|
|
state = new int[5];
|
|
W = new int[80];
|
|
implReset();
|
|
}
|
|
|
|
/*
|
|
* Clones this object.
|
|
*/
|
|
public Object clone() throws CloneNotSupportedException {
|
|
SHA copy = (SHA) super.clone();
|
|
copy.state = copy.state.clone();
|
|
copy.W = new int[80];
|
|
return copy;
|
|
}
|
|
|
|
/**
|
|
* Resets the buffers and hash value to start a new hash.
|
|
*/
|
|
void implReset() {
|
|
state[0] = 0x67452301;
|
|
state[1] = 0xefcdab89;
|
|
state[2] = 0x98badcfe;
|
|
state[3] = 0x10325476;
|
|
state[4] = 0xc3d2e1f0;
|
|
}
|
|
|
|
/**
|
|
* Computes the final hash and copies the 20 bytes to the output array.
|
|
*/
|
|
void implDigest(byte[] out, int ofs) {
|
|
long bitsProcessed = bytesProcessed << 3;
|
|
|
|
int index = (int)bytesProcessed & 0x3f;
|
|
int padLen = (index < 56) ? (56 - index) : (120 - index);
|
|
engineUpdate(padding, 0, padLen);
|
|
|
|
i2bBig4((int)(bitsProcessed >>> 32), buffer, 56);
|
|
i2bBig4((int)bitsProcessed, buffer, 60);
|
|
implCompress(buffer, 0);
|
|
|
|
i2bBig(state, 0, out, ofs, 20);
|
|
}
|
|
|
|
// Constants for each round
|
|
private static final int round1_kt = 0x5a827999;
|
|
private static final int round2_kt = 0x6ed9eba1;
|
|
private static final int round3_kt = 0x8f1bbcdc;
|
|
private static final int round4_kt = 0xca62c1d6;
|
|
|
|
/**
|
|
* Compute a the hash for the current block.
|
|
*
|
|
* This is in the same vein as Peter Gutmann's algorithm listed in
|
|
* the back of Applied Cryptography, Compact implementation of
|
|
* "old" NIST Secure Hash Algorithm.
|
|
*/
|
|
void implCompress(byte[] buf, int ofs) {
|
|
implCompressCheck(buf, ofs);
|
|
implCompress0(buf, ofs);
|
|
}
|
|
|
|
private void implCompressCheck(byte[] buf, int ofs) {
|
|
Objects.requireNonNull(buf);
|
|
|
|
// The checks performed by the method 'b2iBig64'
|
|
// are sufficient for the case when the method
|
|
// 'implCompressImpl' is replaced with a compiler
|
|
// intrinsic.
|
|
b2iBig64(buf, ofs, W);
|
|
}
|
|
|
|
// The method 'implCompressImpl seems not to use its parameters.
|
|
// The method can, however, be replaced with a compiler intrinsic
|
|
// that operates directly on the array 'buf' (starting from
|
|
// offset 'ofs') and not on array 'W', therefore 'buf' and 'ofs'
|
|
// must be passed as parameter to the method.
|
|
@HotSpotIntrinsicCandidate
|
|
private void implCompress0(byte[] buf, int ofs) {
|
|
// The first 16 ints have the byte stream, compute the rest of
|
|
// the buffer
|
|
for (int t = 16; t <= 79; t++) {
|
|
int temp = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
|
|
W[t] = (temp << 1) | (temp >>> 31);
|
|
}
|
|
|
|
int a = state[0];
|
|
int b = state[1];
|
|
int c = state[2];
|
|
int d = state[3];
|
|
int e = state[4];
|
|
|
|
// Round 1
|
|
for (int i = 0; i < 20; i++) {
|
|
int temp = ((a<<5) | (a>>>(32-5))) +
|
|
((b&c)|((~b)&d))+ e + W[i] + round1_kt;
|
|
e = d;
|
|
d = c;
|
|
c = ((b<<30) | (b>>>(32-30)));
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
|
|
// Round 2
|
|
for (int i = 20; i < 40; i++) {
|
|
int temp = ((a<<5) | (a>>>(32-5))) +
|
|
(b ^ c ^ d) + e + W[i] + round2_kt;
|
|
e = d;
|
|
d = c;
|
|
c = ((b<<30) | (b>>>(32-30)));
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
|
|
// Round 3
|
|
for (int i = 40; i < 60; i++) {
|
|
int temp = ((a<<5) | (a>>>(32-5))) +
|
|
((b&c)|(b&d)|(c&d)) + e + W[i] + round3_kt;
|
|
e = d;
|
|
d = c;
|
|
c = ((b<<30) | (b>>>(32-30)));
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
|
|
// Round 4
|
|
for (int i = 60; i < 80; i++) {
|
|
int temp = ((a<<5) | (a>>>(32-5))) +
|
|
(b ^ c ^ d) + e + W[i] + round4_kt;
|
|
e = d;
|
|
d = c;
|
|
c = ((b<<30) | (b>>>(32-30)));
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
state[4] += e;
|
|
}
|
|
|
|
}
|