mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
1813 lines
59 KiB
C++
1813 lines
59 KiB
C++
/*
|
|
* Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "nmt/memTracker.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "os_windows.inline.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/perfMemory.hpp"
|
|
#include "utilities/exceptions.hpp"
|
|
#include "utilities/formatBuffer.hpp"
|
|
|
|
#include <windows.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <errno.h>
|
|
#include <lmcons.h>
|
|
|
|
typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
|
|
IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
|
|
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
|
|
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
|
|
|
|
// Standard Memory Implementation Details
|
|
|
|
// create the PerfData memory region in standard memory.
|
|
//
|
|
static char* create_standard_memory(size_t size) {
|
|
|
|
// allocate an aligned chuck of memory
|
|
char* mapAddress = os::reserve_memory(size);
|
|
|
|
if (mapAddress == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// commit memory
|
|
if (!os::commit_memory(mapAddress, size, !ExecMem)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("Could not commit PerfData memory\n");
|
|
}
|
|
os::release_memory(mapAddress, size);
|
|
return nullptr;
|
|
}
|
|
|
|
return mapAddress;
|
|
}
|
|
|
|
// delete the PerfData memory region
|
|
//
|
|
static void delete_standard_memory(char* addr, size_t size) {
|
|
|
|
// there are no persistent external resources to cleanup for standard
|
|
// memory. since DestroyJavaVM does not support unloading of the JVM,
|
|
// cleanup of the memory resource is not performed. The memory will be
|
|
// reclaimed by the OS upon termination of the process.
|
|
//
|
|
return;
|
|
|
|
}
|
|
|
|
// save the specified memory region to the given file
|
|
//
|
|
static void save_memory_to_file(char* addr, size_t size) {
|
|
|
|
const char* destfile = PerfMemory::get_perfdata_file_path();
|
|
assert(destfile[0] != '\0', "invalid Perfdata file path");
|
|
|
|
int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
|
|
_S_IREAD|_S_IWRITE);
|
|
|
|
if (fd == OS_ERR) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("Could not create Perfdata save file: %s: %s\n",
|
|
destfile, os::strerror(errno));
|
|
}
|
|
} else {
|
|
for (size_t remaining = size; remaining > 0;) {
|
|
|
|
int nbytes = ::_write(fd, addr, (unsigned int)remaining);
|
|
if (nbytes == OS_ERR) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("Could not write Perfdata save file: %s: %s\n",
|
|
destfile, os::strerror(errno));
|
|
}
|
|
break;
|
|
}
|
|
|
|
remaining -= (size_t)nbytes;
|
|
addr += nbytes;
|
|
}
|
|
|
|
int result = ::_close(fd);
|
|
if (PrintMiscellaneous && Verbose) {
|
|
if (result == OS_ERR) {
|
|
warning("Could not close %s: %s\n", destfile, os::strerror(errno));
|
|
}
|
|
}
|
|
}
|
|
|
|
FREE_C_HEAP_ARRAY(char, destfile);
|
|
}
|
|
|
|
// Shared Memory Implementation Details
|
|
|
|
// Note: the win32 shared memory implementation uses two objects to represent
|
|
// the shared memory: a windows kernel based file mapping object and a backing
|
|
// store file. On windows, the name space for shared memory is a kernel
|
|
// based name space that is disjoint from other win32 name spaces. Since Java
|
|
// is unaware of this name space, a parallel file system based name space is
|
|
// maintained, which provides a common file system based shared memory name
|
|
// space across the supported platforms and one that Java apps can deal with
|
|
// through simple file apis.
|
|
//
|
|
// For performance and resource cleanup reasons, it is recommended that the
|
|
// user specific directory and the backing store file be stored in either a
|
|
// RAM based file system or a local disk based file system. Network based
|
|
// file systems are not recommended for performance reasons. In addition,
|
|
// use of SMB network based file systems may result in unsuccessful cleanup
|
|
// of the disk based resource on exit of the VM. The Windows TMP and TEMP
|
|
// environment variables, as used by the GetTempPath() Win32 API (see
|
|
// os::get_temp_directory() in os_win32.cpp), control the location of the
|
|
// user specific directory and the shared memory backing store file.
|
|
|
|
static HANDLE sharedmem_fileMapHandle = nullptr;
|
|
static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
|
|
static char* sharedmem_fileName = nullptr;
|
|
|
|
// return the user specific temporary directory name.
|
|
//
|
|
// the caller is expected to free the allocated memory.
|
|
//
|
|
static char* get_user_tmp_dir(const char* user) {
|
|
|
|
const char* tmpdir = os::get_temp_directory();
|
|
const char* perfdir = PERFDATA_NAME;
|
|
size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
|
|
char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
|
|
|
|
// construct the path name to user specific tmp directory
|
|
_snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
|
|
|
|
return dirname;
|
|
}
|
|
|
|
// convert the given file name into a process id. if the file
|
|
// does not meet the file naming constraints, return 0.
|
|
//
|
|
static int filename_to_pid(const char* filename) {
|
|
|
|
// a filename that doesn't begin with a digit is not a
|
|
// candidate for conversion.
|
|
//
|
|
if (!isdigit(*filename)) {
|
|
return 0;
|
|
}
|
|
|
|
// check if file name can be converted to an integer without
|
|
// any leftover characters.
|
|
//
|
|
char* remainder = nullptr;
|
|
errno = 0;
|
|
int pid = (int)strtol(filename, &remainder, 10);
|
|
|
|
if (errno != 0) {
|
|
return 0;
|
|
}
|
|
|
|
// check for left over characters. If any, then the filename is
|
|
// not a candidate for conversion.
|
|
//
|
|
if (remainder != nullptr && *remainder != '\0') {
|
|
return 0;
|
|
}
|
|
|
|
// successful conversion, return the pid
|
|
return pid;
|
|
}
|
|
|
|
// check if the given path is considered a secure directory for
|
|
// the backing store files. Returns true if the directory exists
|
|
// and is considered a secure location. Returns false if the path
|
|
// is a symbolic link or if an error occurred.
|
|
//
|
|
static bool is_directory_secure(const char* path) {
|
|
|
|
DWORD fa;
|
|
|
|
fa = GetFileAttributes(path);
|
|
if (fa == 0xFFFFFFFF) {
|
|
DWORD lasterror = GetLastError();
|
|
if (lasterror == ERROR_FILE_NOT_FOUND) {
|
|
return false;
|
|
}
|
|
else {
|
|
// unexpected error, declare the path insecure
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("could not get attributes for file %s: "
|
|
" lasterror = %d\n", path, lasterror);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
|
|
// we don't accept any redirection for the user specific directory
|
|
// so declare the path insecure. This may be too conservative,
|
|
// as some types of reparse points might be acceptable, but it
|
|
// is probably more secure to avoid these conditions.
|
|
//
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("%s is a reparse point\n", path);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (fa & FILE_ATTRIBUTE_DIRECTORY) {
|
|
// this is the expected case. Since windows supports symbolic
|
|
// links to directories only, not to files, there is no need
|
|
// to check for open write permissions on the directory. If the
|
|
// directory has open write permissions, any files deposited that
|
|
// are not expected will be removed by the cleanup code.
|
|
//
|
|
return true;
|
|
}
|
|
else {
|
|
// this is either a regular file or some other type of file,
|
|
// any of which are unexpected and therefore insecure.
|
|
//
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("%s is not a directory, file attributes = "
|
|
INTPTR_FORMAT "\n", path, fa);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// return the user name for the owner of this process
|
|
//
|
|
// the caller is expected to free the allocated memory.
|
|
//
|
|
static char* get_user_name() {
|
|
|
|
/* get the user name. This code is adapted from code found in
|
|
* the jdk in src/windows/native/java/lang/java_props_md.c
|
|
* java_props_md.c 1.29 02/02/06. According to the original
|
|
* source, the call to GetUserName is avoided because of a resulting
|
|
* increase in footprint of 100K.
|
|
*/
|
|
char* user = getenv("USERNAME");
|
|
char buf[UNLEN+1];
|
|
DWORD buflen = sizeof(buf);
|
|
if (user == nullptr || strlen(user) == 0) {
|
|
if (GetUserName(buf, &buflen)) {
|
|
user = buf;
|
|
}
|
|
else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
|
|
strcpy(user_name, user);
|
|
|
|
return user_name;
|
|
}
|
|
|
|
// return the name of the user that owns the process identified by vmid.
|
|
//
|
|
// This method uses a slow directory search algorithm to find the backing
|
|
// store file for the specified vmid and returns the user name, as determined
|
|
// by the user name suffix of the hsperfdata_<username> directory name.
|
|
//
|
|
// the caller is expected to free the allocated memory.
|
|
//
|
|
static char* get_user_name_slow(int vmid) {
|
|
|
|
// directory search
|
|
char* latest_user = nullptr;
|
|
time_t latest_ctime = 0;
|
|
|
|
const char* tmpdirname = os::get_temp_directory();
|
|
|
|
DIR* tmpdirp = os::opendir(tmpdirname);
|
|
|
|
if (tmpdirp == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// for each entry in the directory that matches the pattern hsperfdata_*,
|
|
// open the directory and check if the file for the given vmid exists.
|
|
// The file with the expected name and the latest creation date is used
|
|
// to determine the user name for the process id.
|
|
//
|
|
struct dirent* dentry;
|
|
errno = 0;
|
|
while ((dentry = os::readdir(tmpdirp)) != nullptr) {
|
|
|
|
// check if the directory entry is a hsperfdata file
|
|
if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
|
|
continue;
|
|
}
|
|
|
|
char* usrdir_name = NEW_C_HEAP_ARRAY(char,
|
|
strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
|
|
strcpy(usrdir_name, tmpdirname);
|
|
strcat(usrdir_name, "\\");
|
|
strcat(usrdir_name, dentry->d_name);
|
|
|
|
DIR* subdirp = os::opendir(usrdir_name);
|
|
|
|
if (subdirp == nullptr) {
|
|
FREE_C_HEAP_ARRAY(char, usrdir_name);
|
|
continue;
|
|
}
|
|
|
|
// Since we don't create the backing store files in directories
|
|
// pointed to by symbolic links, we also don't follow them when
|
|
// looking for the files. We check for a symbolic link after the
|
|
// call to opendir in order to eliminate a small window where the
|
|
// symlink can be exploited.
|
|
//
|
|
if (!is_directory_secure(usrdir_name)) {
|
|
FREE_C_HEAP_ARRAY(char, usrdir_name);
|
|
os::closedir(subdirp);
|
|
continue;
|
|
}
|
|
|
|
struct dirent* udentry;
|
|
errno = 0;
|
|
while ((udentry = os::readdir(subdirp)) != nullptr) {
|
|
|
|
if (filename_to_pid(udentry->d_name) == vmid) {
|
|
struct stat statbuf;
|
|
|
|
char* filename = NEW_C_HEAP_ARRAY(char,
|
|
strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
|
|
|
|
strcpy(filename, usrdir_name);
|
|
strcat(filename, "\\");
|
|
strcat(filename, udentry->d_name);
|
|
|
|
if (::stat(filename, &statbuf) == OS_ERR) {
|
|
FREE_C_HEAP_ARRAY(char, filename);
|
|
continue;
|
|
}
|
|
|
|
// skip over files that are not regular files.
|
|
if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
|
|
FREE_C_HEAP_ARRAY(char, filename);
|
|
continue;
|
|
}
|
|
|
|
// If we found a matching file with a newer creation time, then
|
|
// save the user name. The newer creation time indicates that
|
|
// we found a newer incarnation of the process associated with
|
|
// vmid. Due to the way that Windows recycles pids and the fact
|
|
// that we can't delete the file from the file system namespace
|
|
// until last close, it is possible for there to be more than
|
|
// one hsperfdata file with a name matching vmid (diff users).
|
|
//
|
|
// We no longer ignore hsperfdata files where (st_size == 0).
|
|
// In this function, all we're trying to do is determine the
|
|
// name of the user that owns the process associated with vmid
|
|
// so the size doesn't matter. Very rarely, we have observed
|
|
// hsperfdata files where (st_size == 0) and the st_size field
|
|
// later becomes the expected value.
|
|
//
|
|
if (statbuf.st_ctime > latest_ctime) {
|
|
char* user = strchr(dentry->d_name, '_') + 1;
|
|
|
|
FREE_C_HEAP_ARRAY(char, latest_user);
|
|
latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
|
|
|
|
strcpy(latest_user, user);
|
|
latest_ctime = statbuf.st_ctime;
|
|
}
|
|
|
|
FREE_C_HEAP_ARRAY(char, filename);
|
|
}
|
|
}
|
|
os::closedir(subdirp);
|
|
FREE_C_HEAP_ARRAY(char, usrdir_name);
|
|
}
|
|
os::closedir(tmpdirp);
|
|
|
|
return(latest_user);
|
|
}
|
|
|
|
// return the name of the user that owns the process identified by vmid.
|
|
//
|
|
// note: this method should only be used via the Perf native methods.
|
|
// There are various costs to this method and limiting its use to the
|
|
// Perf native methods limits the impact to monitoring applications only.
|
|
//
|
|
static char* get_user_name(int vmid) {
|
|
|
|
// A fast implementation is not provided at this time. It's possible
|
|
// to provide a fast process id to user name mapping function using
|
|
// the win32 apis, but the default ACL for the process object only
|
|
// allows processes with the same owner SID to acquire the process
|
|
// handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
|
|
// to have the JVM change the ACL for the process object to allow arbitrary
|
|
// users to access the process handle and the process security token.
|
|
// The security ramifications need to be studied before providing this
|
|
// mechanism.
|
|
//
|
|
return get_user_name_slow(vmid);
|
|
}
|
|
|
|
// return the name of the shared memory file mapping object for the
|
|
// named shared memory region for the given user name and vmid.
|
|
//
|
|
// The file mapping object's name is not the file name. It is a name
|
|
// in a separate name space.
|
|
//
|
|
// the caller is expected to free the allocated memory.
|
|
//
|
|
static char *get_sharedmem_objectname(const char* user, int vmid) {
|
|
|
|
// construct file mapping object's name, add 3 for two '_' and a
|
|
// null terminator.
|
|
int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
|
|
|
|
// the id is converted to an unsigned value here because win32 allows
|
|
// negative process ids. However, OpenFileMapping API complains
|
|
// about a name containing a '-' characters.
|
|
//
|
|
nbytes += UINT_CHARS;
|
|
char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
|
|
_snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
|
|
|
|
return name;
|
|
}
|
|
|
|
// return the file name of the backing store file for the named
|
|
// shared memory region for the given user name and vmid.
|
|
//
|
|
// the caller is expected to free the allocated memory.
|
|
//
|
|
static char* get_sharedmem_filename(const char* dirname, int vmid) {
|
|
|
|
// add 2 for the file separator and a null terminator.
|
|
size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
|
|
|
|
char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
|
|
_snprintf(name, nbytes, "%s\\%d", dirname, vmid);
|
|
|
|
return name;
|
|
}
|
|
|
|
// remove file
|
|
//
|
|
// this method removes the file with the given file name.
|
|
//
|
|
// Note: if the indicated file is on an SMB network file system, this
|
|
// method may be unsuccessful in removing the file.
|
|
//
|
|
static void remove_file(const char* dirname, const char* filename) {
|
|
|
|
size_t nbytes = strlen(dirname) + strlen(filename) + 2;
|
|
char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
|
|
|
|
strcpy(path, dirname);
|
|
strcat(path, "\\");
|
|
strcat(path, filename);
|
|
|
|
if (::unlink(path) == OS_ERR) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
if (errno != ENOENT) {
|
|
warning("Could not unlink shared memory backing"
|
|
" store file %s : %s\n", path, os::strerror(errno));
|
|
}
|
|
}
|
|
}
|
|
|
|
FREE_C_HEAP_ARRAY(char, path);
|
|
}
|
|
|
|
// returns true if the process represented by pid is alive, otherwise
|
|
// returns false. the validity of the result is only accurate if the
|
|
// target process is owned by the same principal that owns this process.
|
|
// this method should not be used if to test the status of an otherwise
|
|
// arbitrary process unless it is know that this process has the appropriate
|
|
// privileges to guarantee a result valid.
|
|
//
|
|
static bool is_alive(int pid) {
|
|
|
|
HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
|
|
if (ph == nullptr) {
|
|
// the process does not exist.
|
|
if (PrintMiscellaneous && Verbose) {
|
|
DWORD lastError = GetLastError();
|
|
if (lastError != ERROR_INVALID_PARAMETER) {
|
|
warning("OpenProcess failed: %d\n", GetLastError());
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
DWORD exit_status;
|
|
if (!GetExitCodeProcess(ph, &exit_status)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("GetExitCodeProcess failed: %d\n", GetLastError());
|
|
}
|
|
CloseHandle(ph);
|
|
return false;
|
|
}
|
|
|
|
CloseHandle(ph);
|
|
return (exit_status == STILL_ACTIVE) ? true : false;
|
|
}
|
|
|
|
// check if the file system is considered secure for the backing store files
|
|
//
|
|
static bool is_filesystem_secure(const char* path) {
|
|
|
|
char root_path[MAX_PATH];
|
|
char fs_type[MAX_PATH];
|
|
|
|
if (PerfBypassFileSystemCheck) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("bypassing file system criteria checks for %s\n", path);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
char* first_colon = strchr((char *)path, ':');
|
|
if (first_colon == nullptr) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("expected device specifier in path: %s\n", path);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
size_t len = (size_t)(first_colon - path);
|
|
assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
|
|
strncpy(root_path, path, len + 1);
|
|
root_path[len + 1] = '\\';
|
|
root_path[len + 2] = '\0';
|
|
|
|
// check that we have something like "C:\" or "AA:\"
|
|
assert(strlen(root_path) >= 3, "device specifier too short");
|
|
assert(strchr(root_path, ':') != nullptr, "bad device specifier format");
|
|
assert(strchr(root_path, '\\') != nullptr, "bad device specifier format");
|
|
|
|
DWORD maxpath;
|
|
DWORD flags;
|
|
|
|
if (!GetVolumeInformation(root_path, nullptr, 0, nullptr, &maxpath,
|
|
&flags, fs_type, MAX_PATH)) {
|
|
// we can't get information about the volume, so assume unsafe.
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("could not get device information for %s: "
|
|
" path = %s: lasterror = %d\n",
|
|
root_path, path, GetLastError());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if ((flags & FS_PERSISTENT_ACLS) == 0) {
|
|
// file system doesn't support ACLs, declare file system unsafe
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("file system type %s on device %s does not support"
|
|
" ACLs\n", fs_type, root_path);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
|
|
// file system is compressed, declare file system unsafe
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("file system type %s on device %s is compressed\n",
|
|
fs_type, root_path);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// cleanup stale shared memory resources
|
|
//
|
|
// This method attempts to remove all stale shared memory files in
|
|
// the named user temporary directory. It scans the named directory
|
|
// for files matching the pattern ^$[0-9]*$. For each file found, the
|
|
// process id is extracted from the file name and a test is run to
|
|
// determine if the process is alive. If the process is not alive,
|
|
// any stale file resources are removed.
|
|
//
|
|
static void cleanup_sharedmem_resources(const char* dirname) {
|
|
|
|
// open the user temp directory
|
|
DIR* dirp = os::opendir(dirname);
|
|
|
|
if (dirp == nullptr) {
|
|
// directory doesn't exist, so there is nothing to cleanup
|
|
return;
|
|
}
|
|
|
|
if (!is_directory_secure(dirname)) {
|
|
// the directory is not secure, don't attempt any cleanup
|
|
os::closedir(dirp);
|
|
return;
|
|
}
|
|
|
|
// for each entry in the directory that matches the expected file
|
|
// name pattern, determine if the file resources are stale and if
|
|
// so, remove the file resources. Note, instrumented HotSpot processes
|
|
// for this user may start and/or terminate during this search and
|
|
// remove or create new files in this directory. The behavior of this
|
|
// loop under these conditions is dependent upon the implementation of
|
|
// opendir/readdir.
|
|
//
|
|
struct dirent* entry;
|
|
errno = 0;
|
|
while ((entry = os::readdir(dirp)) != nullptr) {
|
|
|
|
int pid = filename_to_pid(entry->d_name);
|
|
|
|
if (pid == 0) {
|
|
|
|
if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
|
|
|
|
// attempt to remove all unexpected files, except "." and ".."
|
|
remove_file(dirname, entry->d_name);
|
|
}
|
|
|
|
errno = 0;
|
|
continue;
|
|
}
|
|
|
|
// we now have a file name that converts to a valid integer
|
|
// that could represent a process id . if this process id
|
|
// matches the current process id or the process is not running,
|
|
// then remove the stale file resources.
|
|
//
|
|
// process liveness is detected by checking the exit status
|
|
// of the process. if the process id is valid and the exit status
|
|
// indicates that it is still running, the file file resources
|
|
// are not removed. If the process id is invalid, or if we don't
|
|
// have permissions to check the process status, or if the process
|
|
// id is valid and the process has terminated, the file resources
|
|
// are assumed to be stale and are removed.
|
|
//
|
|
if (pid == os::current_process_id() || !is_alive(pid)) {
|
|
|
|
// we can only remove the file resources. Any mapped views
|
|
// of the file can only be unmapped by the processes that
|
|
// opened those views and the file mapping object will not
|
|
// get removed until all views are unmapped.
|
|
//
|
|
remove_file(dirname, entry->d_name);
|
|
}
|
|
errno = 0;
|
|
}
|
|
os::closedir(dirp);
|
|
}
|
|
|
|
// create a file mapping object with the requested name, and size
|
|
// from the file represented by the given Handle object
|
|
//
|
|
static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
|
|
|
|
DWORD lowSize = (DWORD)size;
|
|
DWORD highSize = 0;
|
|
HANDLE fmh = nullptr;
|
|
|
|
// Create a file mapping object with the given name. This function
|
|
// will grow the file to the specified size.
|
|
//
|
|
fmh = CreateFileMapping(
|
|
fh, /* HANDLE file handle for backing store */
|
|
fsa, /* LPSECURITY_ATTRIBUTES Not inheritable */
|
|
PAGE_READWRITE, /* DWORD protections */
|
|
highSize, /* DWORD High word of max size */
|
|
lowSize, /* DWORD Low word of max size */
|
|
name); /* LPCTSTR name for object */
|
|
|
|
if (fmh == nullptr) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
if (GetLastError() == ERROR_ALREADY_EXISTS) {
|
|
|
|
// a stale file mapping object was encountered. This object may be
|
|
// owned by this or some other user and cannot be removed until
|
|
// the other processes either exit or close their mapping objects
|
|
// and/or mapped views of this mapping object.
|
|
//
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("file mapping already exists, lasterror = %d\n", GetLastError());
|
|
}
|
|
|
|
CloseHandle(fmh);
|
|
return nullptr;
|
|
}
|
|
|
|
return fmh;
|
|
}
|
|
|
|
|
|
// method to free the given security descriptor and the contained
|
|
// access control list.
|
|
//
|
|
static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
|
|
|
|
BOOL success, exists, isdefault;
|
|
PACL pACL;
|
|
|
|
if (pSD != nullptr) {
|
|
|
|
// get the access control list from the security descriptor
|
|
success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
|
|
|
|
// if an ACL existed and it was not a default acl, then it must
|
|
// be an ACL we enlisted. free the resources.
|
|
//
|
|
if (success && exists && pACL != nullptr && !isdefault) {
|
|
FREE_C_HEAP_ARRAY(char, pACL);
|
|
}
|
|
|
|
// free the security descriptor
|
|
FREE_C_HEAP_ARRAY(char, pSD);
|
|
}
|
|
}
|
|
|
|
// method to free up a security attributes structure and any
|
|
// contained security descriptors and ACL
|
|
//
|
|
static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
|
|
|
|
if (lpSA != nullptr) {
|
|
// free the contained security descriptor and the ACL
|
|
free_security_desc(lpSA->lpSecurityDescriptor);
|
|
lpSA->lpSecurityDescriptor = nullptr;
|
|
|
|
// free the security attributes structure
|
|
FREE_C_HEAP_OBJ(lpSA);
|
|
}
|
|
}
|
|
|
|
// get the user SID for the process indicated by the process handle
|
|
//
|
|
static PSID get_user_sid(HANDLE hProcess) {
|
|
|
|
HANDLE hAccessToken;
|
|
PTOKEN_USER token_buf = nullptr;
|
|
DWORD rsize = 0;
|
|
|
|
if (hProcess == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// get the process token
|
|
if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// determine the size of the token structured needed to retrieve
|
|
// the user token information from the access token.
|
|
//
|
|
if (!GetTokenInformation(hAccessToken, TokenUser, nullptr, rsize, &rsize)) {
|
|
DWORD lasterror = GetLastError();
|
|
if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("GetTokenInformation failure: lasterror = %d,"
|
|
" rsize = %d\n", lasterror, rsize);
|
|
}
|
|
CloseHandle(hAccessToken);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
|
|
|
|
// get the user token information
|
|
if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("GetTokenInformation failure: lasterror = %d,"
|
|
" rsize = %d\n", GetLastError(), rsize);
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, token_buf);
|
|
CloseHandle(hAccessToken);
|
|
return nullptr;
|
|
}
|
|
|
|
DWORD nbytes = GetLengthSid(token_buf->User.Sid);
|
|
PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
|
|
|
|
if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("GetTokenInformation failure: lasterror = %d,"
|
|
" rsize = %d\n", GetLastError(), rsize);
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, token_buf);
|
|
FREE_C_HEAP_ARRAY(char, pSID);
|
|
CloseHandle(hAccessToken);
|
|
return nullptr;
|
|
}
|
|
|
|
// close the access token.
|
|
CloseHandle(hAccessToken);
|
|
FREE_C_HEAP_ARRAY(char, token_buf);
|
|
|
|
return pSID;
|
|
}
|
|
|
|
// structure used to consolidate access control entry information
|
|
//
|
|
typedef struct ace_data {
|
|
PSID pSid; // SID of the ACE
|
|
DWORD mask; // mask for the ACE
|
|
} ace_data_t;
|
|
|
|
|
|
// method to add an allow access control entry with the access rights
|
|
// indicated in mask for the principal indicated in SID to the given
|
|
// security descriptor. Much of the DACL handling was adapted from
|
|
// the example provided here:
|
|
// http://support.microsoft.com/kb/102102/EN-US/
|
|
//
|
|
|
|
static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
|
|
ace_data_t aces[], int ace_count) {
|
|
PACL newACL = nullptr;
|
|
PACL oldACL = nullptr;
|
|
|
|
if (pSD == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
BOOL exists, isdefault;
|
|
|
|
// retrieve any existing access control list.
|
|
if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("GetSecurityDescriptor failure: lasterror = %d \n",
|
|
GetLastError());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// get the size of the DACL
|
|
ACL_SIZE_INFORMATION aclinfo;
|
|
|
|
// GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
|
|
// while oldACL is null for some case.
|
|
if (oldACL == nullptr) {
|
|
exists = FALSE;
|
|
}
|
|
|
|
if (exists) {
|
|
if (!GetAclInformation(oldACL, &aclinfo,
|
|
sizeof(ACL_SIZE_INFORMATION),
|
|
AclSizeInformation)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
aclinfo.AceCount = 0; // assume null DACL
|
|
aclinfo.AclBytesFree = 0;
|
|
aclinfo.AclBytesInUse = sizeof(ACL);
|
|
}
|
|
|
|
// compute the size needed for the new ACL
|
|
// initial size of ACL is sum of the following:
|
|
// * size of ACL structure.
|
|
// * size of each ACE structure that ACL is to contain minus the sid
|
|
// sidStart member (DWORD) of the ACE.
|
|
// * length of the SID that each ACE is to contain.
|
|
DWORD newACLsize = aclinfo.AclBytesInUse +
|
|
(sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
|
|
for (int i = 0; i < ace_count; i++) {
|
|
assert(aces[i].pSid != 0, "pSid should not be 0");
|
|
newACLsize += GetLengthSid(aces[i].pSid);
|
|
}
|
|
|
|
// create the new ACL
|
|
newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
|
|
|
|
if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
|
|
unsigned int ace_index = 0;
|
|
// copy any existing ACEs from the old ACL (if any) to the new ACL.
|
|
if (aclinfo.AceCount != 0) {
|
|
while (ace_index < aclinfo.AceCount) {
|
|
LPVOID ace;
|
|
if (!GetAce(oldACL, ace_index, &ace)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
|
|
// this is an inherited, allowed ACE; break from loop so we can
|
|
// add the new access allowed, non-inherited ACE in the correct
|
|
// position, immediately following all non-inherited ACEs.
|
|
break;
|
|
}
|
|
|
|
// determine if the SID of this ACE matches any of the SIDs
|
|
// for which we plan to set ACEs.
|
|
int matches = 0;
|
|
for (int i = 0; i < ace_count; i++) {
|
|
if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
|
|
matches++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// if there are no SID matches, then add this existing ACE to the new ACL
|
|
if (matches == 0) {
|
|
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
|
|
((PACE_HEADER)ace)->AceSize)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("AddAce failure: lasterror = %d \n", GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
}
|
|
ace_index++;
|
|
}
|
|
}
|
|
|
|
// add the passed-in access control entries to the new ACL
|
|
for (int i = 0; i < ace_count; i++) {
|
|
if (!AddAccessAllowedAce(newACL, ACL_REVISION,
|
|
aces[i].mask, aces[i].pSid)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("AddAccessAllowedAce failure: lasterror = %d \n",
|
|
GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// now copy the rest of the inherited ACEs from the old ACL
|
|
if (aclinfo.AceCount != 0) {
|
|
// picking up at ace_index, where we left off in the
|
|
// previous ace_index loop
|
|
while (ace_index < aclinfo.AceCount) {
|
|
LPVOID ace;
|
|
if (!GetAce(oldACL, ace_index, &ace)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
|
|
((PACE_HEADER)ace)->AceSize)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("AddAce failure: lasterror = %d \n", GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
ace_index++;
|
|
}
|
|
}
|
|
|
|
// add the new ACL to the security descriptor.
|
|
if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("SetSecurityDescriptorDacl failure:"
|
|
" lasterror = %d \n", GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
|
|
// if running on windows 2000 or later, set the automatic inheritance
|
|
// control flags.
|
|
SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
|
|
_SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
|
|
GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
|
|
"SetSecurityDescriptorControl");
|
|
|
|
if (_SetSecurityDescriptorControl != nullptr) {
|
|
// We do not want to further propagate inherited DACLs, so making them
|
|
// protected prevents that.
|
|
if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
|
|
SE_DACL_PROTECTED)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("SetSecurityDescriptorControl failure:"
|
|
" lasterror = %d \n", GetLastError());
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, newACL);
|
|
return false;
|
|
}
|
|
}
|
|
// Note, the security descriptor maintains a reference to the newACL, not
|
|
// a copy of it. Therefore, the newACL is not freed here. It is freed when
|
|
// the security descriptor containing its reference is freed.
|
|
//
|
|
return true;
|
|
}
|
|
|
|
// method to create a security attributes structure, which contains a
|
|
// security descriptor and an access control list comprised of 0 or more
|
|
// access control entries. The method take an array of ace_data structures
|
|
// that indicate the ACE to be added to the security descriptor.
|
|
//
|
|
// the caller must free the resources associated with the security
|
|
// attributes structure created by this method by calling the
|
|
// free_security_attr() method.
|
|
//
|
|
static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
|
|
|
|
// allocate space for a security descriptor
|
|
PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
|
|
NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
|
|
|
|
// initialize the security descriptor
|
|
if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("InitializeSecurityDescriptor failure: "
|
|
"lasterror = %d \n", GetLastError());
|
|
}
|
|
free_security_desc(pSD);
|
|
return nullptr;
|
|
}
|
|
|
|
// add the access control entries
|
|
if (!add_allow_aces(pSD, aces, count)) {
|
|
free_security_desc(pSD);
|
|
return nullptr;
|
|
}
|
|
|
|
// allocate and initialize the security attributes structure and
|
|
// return it to the caller.
|
|
//
|
|
LPSECURITY_ATTRIBUTES lpSA =
|
|
NEW_C_HEAP_OBJ(SECURITY_ATTRIBUTES, mtInternal);
|
|
lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
|
|
lpSA->lpSecurityDescriptor = pSD;
|
|
lpSA->bInheritHandle = FALSE;
|
|
|
|
return(lpSA);
|
|
}
|
|
|
|
// method to create a security attributes structure with a restrictive
|
|
// access control list that creates a set access rights for the user/owner
|
|
// of the securable object and a separate set access rights for everyone else.
|
|
// also provides for full access rights for the administrator group.
|
|
//
|
|
// the caller must free the resources associated with the security
|
|
// attributes structure created by this method by calling the
|
|
// free_security_attr() method.
|
|
//
|
|
|
|
static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
|
|
DWORD umask, DWORD emask, DWORD amask) {
|
|
|
|
ace_data_t aces[3];
|
|
|
|
// initialize the user ace data
|
|
aces[0].pSid = get_user_sid(GetCurrentProcess());
|
|
aces[0].mask = umask;
|
|
|
|
if (aces[0].pSid == 0)
|
|
return nullptr;
|
|
|
|
// get the well known SID for BUILTIN\Administrators
|
|
PSID administratorsSid = nullptr;
|
|
SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
|
|
|
|
if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
|
|
SECURITY_BUILTIN_DOMAIN_RID,
|
|
DOMAIN_ALIAS_RID_ADMINS,
|
|
0, 0, 0, 0, 0, 0, &administratorsSid)) {
|
|
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("AllocateAndInitializeSid failure: "
|
|
"lasterror = %d \n", GetLastError());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// initialize the ace data for administrator group
|
|
aces[1].pSid = administratorsSid;
|
|
aces[1].mask = amask;
|
|
|
|
// get the well known SID for the universal Everybody
|
|
PSID everybodySid = nullptr;
|
|
SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
|
|
|
|
if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
|
|
0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
|
|
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("AllocateAndInitializeSid failure: "
|
|
"lasterror = %d \n", GetLastError());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// initialize the ace data for everybody else.
|
|
aces[2].pSid = everybodySid;
|
|
aces[2].mask = emask;
|
|
|
|
// create a security attributes structure with access control
|
|
// entries as initialized above.
|
|
LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
|
|
FREE_C_HEAP_ARRAY(char, aces[0].pSid);
|
|
FreeSid(everybodySid);
|
|
FreeSid(administratorsSid);
|
|
return(lpSA);
|
|
}
|
|
|
|
|
|
// method to create the security attributes structure for restricting
|
|
// access to the user temporary directory.
|
|
//
|
|
// the caller must free the resources associated with the security
|
|
// attributes structure created by this method by calling the
|
|
// free_security_attr() method.
|
|
//
|
|
static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
|
|
|
|
// create full access rights for the user/owner of the directory
|
|
// and read-only access rights for everybody else. This is
|
|
// effectively equivalent to UNIX 755 permissions on a directory.
|
|
//
|
|
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
|
|
DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
|
|
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
|
|
|
|
return make_user_everybody_admin_security_attr(umask, emask, amask);
|
|
}
|
|
|
|
// method to create the security attributes structure for restricting
|
|
// access to the shared memory backing store file.
|
|
//
|
|
// the caller must free the resources associated with the security
|
|
// attributes structure created by this method by calling the
|
|
// free_security_attr() method.
|
|
//
|
|
static LPSECURITY_ATTRIBUTES make_file_security_attr() {
|
|
|
|
// create extensive access rights for the user/owner of the file
|
|
// and attribute read-only access rights for everybody else. This
|
|
// is effectively equivalent to UNIX 600 permissions on a file.
|
|
//
|
|
DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
|
|
DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
|
|
FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
|
|
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
|
|
|
|
return make_user_everybody_admin_security_attr(umask, emask, amask);
|
|
}
|
|
|
|
// method to create the security attributes structure for restricting
|
|
// access to the name shared memory file mapping object.
|
|
//
|
|
// the caller must free the resources associated with the security
|
|
// attributes structure created by this method by calling the
|
|
// free_security_attr() method.
|
|
//
|
|
static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
|
|
|
|
// create extensive access rights for the user/owner of the shared
|
|
// memory object and attribute read-only access rights for everybody
|
|
// else. This is effectively equivalent to UNIX 600 permissions on
|
|
// on the shared memory object.
|
|
//
|
|
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
|
|
DWORD emask = STANDARD_RIGHTS_READ; // attributes only
|
|
DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
|
|
|
|
return make_user_everybody_admin_security_attr(umask, emask, amask);
|
|
}
|
|
|
|
// make the user specific temporary directory
|
|
//
|
|
static bool make_user_tmp_dir(const char* dirname) {
|
|
|
|
|
|
LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
|
|
if (pDirSA == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
|
|
// create the directory with the given security attributes
|
|
if (!CreateDirectory(dirname, pDirSA)) {
|
|
DWORD lasterror = GetLastError();
|
|
if (lasterror == ERROR_ALREADY_EXISTS) {
|
|
// The directory already exists and was probably created by another
|
|
// JVM instance. However, this could also be the result of a
|
|
// deliberate symlink. Verify that the existing directory is safe.
|
|
//
|
|
if (!is_directory_secure(dirname)) {
|
|
// directory is not secure
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("%s directory is insecure\n", dirname);
|
|
}
|
|
free_security_attr(pDirSA);
|
|
return false;
|
|
}
|
|
// The administrator should be able to delete this directory.
|
|
// But the directory created by previous version of JVM may not
|
|
// have permission for administrators to delete this directory.
|
|
// So add full permission to the administrator. Also setting new
|
|
// DACLs might fix the corrupted the DACLs.
|
|
SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
|
|
if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
lasterror = GetLastError();
|
|
warning("SetFileSecurity failed for %s directory. lasterror %d \n",
|
|
dirname, lasterror);
|
|
}
|
|
}
|
|
} else {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("CreateDirectory failed: %d\n", GetLastError());
|
|
}
|
|
free_security_attr(pDirSA);
|
|
return false;
|
|
}
|
|
}
|
|
free_security_attr(pDirSA);
|
|
return true;
|
|
}
|
|
|
|
// create the shared memory resources
|
|
//
|
|
// This function creates the shared memory resources. This includes
|
|
// the backing store file and the file mapping shared memory object.
|
|
//
|
|
static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
|
|
|
|
HANDLE fh = INVALID_HANDLE_VALUE;
|
|
HANDLE fmh = nullptr;
|
|
|
|
|
|
// create the security attributes for the backing store file
|
|
LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
|
|
if (lpFileSA == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// create the security attributes for the shared memory object
|
|
LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
|
|
if (lpSmoSA == nullptr) {
|
|
free_security_attr(lpFileSA);
|
|
return nullptr;
|
|
}
|
|
|
|
// create the user temporary directory
|
|
if (!make_user_tmp_dir(dirname)) {
|
|
// could not make/find the directory or the found directory
|
|
// was not secure
|
|
free_security_attr(lpFileSA);
|
|
free_security_attr(lpSmoSA);
|
|
return nullptr;
|
|
}
|
|
|
|
// Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
|
|
// file to be deleted by the last process that closes its handle to
|
|
// the file. This is important as the apis do not allow a terminating
|
|
// JVM being monitored by another process to remove the file name.
|
|
//
|
|
fh = CreateFile(
|
|
filename, /* LPCTSTR file name */
|
|
|
|
GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
|
|
FILE_SHARE_DELETE|FILE_SHARE_READ, /* DWORD share mode, future READONLY
|
|
* open operations allowed
|
|
*/
|
|
lpFileSA, /* LPSECURITY security attributes */
|
|
CREATE_ALWAYS, /* DWORD creation disposition
|
|
* create file, if it already
|
|
* exists, overwrite it.
|
|
*/
|
|
FILE_FLAG_DELETE_ON_CLOSE, /* DWORD flags and attributes */
|
|
|
|
nullptr); /* HANDLE template file access */
|
|
|
|
free_security_attr(lpFileSA);
|
|
|
|
if (fh == INVALID_HANDLE_VALUE) {
|
|
DWORD lasterror = GetLastError();
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("could not create file %s: %d\n", filename, lasterror);
|
|
}
|
|
free_security_attr(lpSmoSA);
|
|
return nullptr;
|
|
}
|
|
|
|
// try to create the file mapping
|
|
fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
|
|
|
|
free_security_attr(lpSmoSA);
|
|
|
|
if (fmh == nullptr) {
|
|
// closing the file handle here will decrement the reference count
|
|
// on the file. When all processes accessing the file close their
|
|
// handle to it, the reference count will decrement to 0 and the
|
|
// OS will delete the file. These semantics are requested by the
|
|
// FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
|
|
CloseHandle(fh);
|
|
fh = nullptr;
|
|
return nullptr;
|
|
} else {
|
|
// We created the file mapping, but rarely the size of the
|
|
// backing store file is reported as zero (0) which can cause
|
|
// failures when trying to use the hsperfdata file.
|
|
struct stat statbuf;
|
|
int ret_code = ::stat(filename, &statbuf);
|
|
if (ret_code == OS_ERR) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("Could not get status information from file %s: %s\n",
|
|
filename, os::strerror(errno));
|
|
}
|
|
CloseHandle(fmh);
|
|
CloseHandle(fh);
|
|
fh = nullptr;
|
|
fmh = nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
// We could always call FlushFileBuffers() but the Microsoft
|
|
// docs indicate that it is considered expensive so we only
|
|
// call it when we observe the size as zero (0).
|
|
if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
|
|
DWORD lasterror = GetLastError();
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("could not flush file %s: %d\n", filename, lasterror);
|
|
}
|
|
CloseHandle(fmh);
|
|
CloseHandle(fh);
|
|
fh = nullptr;
|
|
fmh = nullptr;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// the file has been successfully created and the file mapping
|
|
// object has been created.
|
|
sharedmem_fileHandle = fh;
|
|
sharedmem_fileName = os::strdup(filename);
|
|
|
|
return fmh;
|
|
}
|
|
|
|
// open the shared memory object for the given vmid.
|
|
//
|
|
static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
|
|
|
|
HANDLE fmh;
|
|
|
|
// open the file mapping with the requested mode
|
|
fmh = OpenFileMapping(
|
|
ofm_access, /* DWORD access mode */
|
|
FALSE, /* BOOL inherit flag - Do not allow inherit */
|
|
objectname); /* name for object */
|
|
|
|
if (fmh == nullptr) {
|
|
DWORD lasterror = GetLastError();
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("OpenFileMapping failed for shared memory object %s:"
|
|
" lasterror = %d\n", objectname, lasterror);
|
|
}
|
|
THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
|
|
err_msg("Could not open PerfMemory, error %d", lasterror),
|
|
INVALID_HANDLE_VALUE);
|
|
}
|
|
|
|
return fmh;;
|
|
}
|
|
|
|
// create a named shared memory region
|
|
//
|
|
// On Win32, a named shared memory object has a name space that
|
|
// is independent of the file system name space. Shared memory object,
|
|
// or more precisely, file mapping objects, provide no mechanism to
|
|
// inquire the size of the memory region. There is also no api to
|
|
// enumerate the memory regions for various processes.
|
|
//
|
|
// This implementation utilizes the shared memory name space in parallel
|
|
// with the file system name space. This allows us to determine the
|
|
// size of the shared memory region from the size of the file and it
|
|
// allows us to provide a common, file system based name space for
|
|
// shared memory across platforms.
|
|
//
|
|
static char* mapping_create_shared(size_t size) {
|
|
|
|
void *mapAddress;
|
|
int vmid = os::current_process_id();
|
|
|
|
// get the name of the user associated with this process
|
|
char* user = get_user_name();
|
|
|
|
if (user == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// construct the name of the user specific temporary directory
|
|
char* dirname = get_user_tmp_dir(user);
|
|
|
|
// check that the file system is secure - i.e. it supports ACLs.
|
|
if (!is_filesystem_secure(dirname)) {
|
|
FREE_C_HEAP_ARRAY(char, dirname);
|
|
FREE_C_HEAP_ARRAY(char, user);
|
|
return nullptr;
|
|
}
|
|
|
|
// create the names of the backing store files and for the
|
|
// share memory object.
|
|
//
|
|
char* filename = get_sharedmem_filename(dirname, vmid);
|
|
char* objectname = get_sharedmem_objectname(user, vmid);
|
|
|
|
// cleanup any stale shared memory resources
|
|
cleanup_sharedmem_resources(dirname);
|
|
|
|
assert(((size != 0) && (size % os::vm_page_size() == 0)),
|
|
"unexpected PerfMemry region size");
|
|
|
|
FREE_C_HEAP_ARRAY(char, user);
|
|
|
|
// create the shared memory resources
|
|
sharedmem_fileMapHandle =
|
|
create_sharedmem_resources(dirname, filename, objectname, size);
|
|
|
|
FREE_C_HEAP_ARRAY(char, filename);
|
|
FREE_C_HEAP_ARRAY(char, objectname);
|
|
FREE_C_HEAP_ARRAY(char, dirname);
|
|
|
|
if (sharedmem_fileMapHandle == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// map the file into the address space
|
|
mapAddress = MapViewOfFile(
|
|
sharedmem_fileMapHandle, /* HANDLE = file mapping object */
|
|
FILE_MAP_ALL_ACCESS, /* DWORD access flags */
|
|
0, /* DWORD High word of offset */
|
|
0, /* DWORD Low word of offset */
|
|
(DWORD)size); /* DWORD Number of bytes to map */
|
|
|
|
if (mapAddress == nullptr) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
|
|
}
|
|
CloseHandle(sharedmem_fileMapHandle);
|
|
sharedmem_fileMapHandle = nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
// clear the shared memory region
|
|
(void)memset(mapAddress, '\0', size);
|
|
|
|
// it does not go through os api, the operation has to record from here
|
|
MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
|
|
size, CURRENT_PC, mtInternal);
|
|
|
|
return (char*) mapAddress;
|
|
}
|
|
|
|
// this method deletes the file mapping object.
|
|
//
|
|
static void delete_file_mapping(char* addr, size_t size) {
|
|
|
|
// cleanup the persistent shared memory resources. since DestroyJavaVM does
|
|
// not support unloading of the JVM, unmapping of the memory resource is not
|
|
// performed. The memory will be reclaimed by the OS upon termination of all
|
|
// processes mapping the resource. The file mapping handle and the file
|
|
// handle are closed here to expedite the remove of the file by the OS. The
|
|
// file is not removed directly because it was created with
|
|
// FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
|
|
// be unsuccessful.
|
|
|
|
// close the fileMapHandle. the file mapping will still be retained
|
|
// by the OS as long as any other JVM processes has an open file mapping
|
|
// handle or a mapped view of the file.
|
|
//
|
|
if (sharedmem_fileMapHandle != nullptr) {
|
|
CloseHandle(sharedmem_fileMapHandle);
|
|
sharedmem_fileMapHandle = nullptr;
|
|
}
|
|
|
|
// close the file handle. This will decrement the reference count on the
|
|
// backing store file. When the reference count decrements to 0, the OS
|
|
// will delete the file. These semantics apply because the file was
|
|
// created with the FILE_FLAG_DELETE_ON_CLOSE flag.
|
|
//
|
|
if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
|
|
CloseHandle(sharedmem_fileHandle);
|
|
sharedmem_fileHandle = INVALID_HANDLE_VALUE;
|
|
}
|
|
}
|
|
|
|
// this method determines the size of the shared memory file
|
|
//
|
|
static size_t sharedmem_filesize(const char* filename, TRAPS) {
|
|
|
|
struct stat statbuf;
|
|
|
|
// get the file size
|
|
//
|
|
// on win95/98/me, _stat returns a file size of 0 bytes, but on
|
|
// winnt/2k the appropriate file size is returned. support for
|
|
// the shareable aspects of performance counters was abandoned
|
|
// on the non-nt win32 platforms due to this and other api
|
|
// inconsistencies
|
|
//
|
|
if (::stat(filename, &statbuf) == OS_ERR) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("stat %s failed: %s\n", filename, os::strerror(errno));
|
|
}
|
|
THROW_MSG_0(vmSymbols::java_io_IOException(),
|
|
"Could not determine PerfMemory size");
|
|
}
|
|
|
|
if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("unexpected file size: size = " SIZE_FORMAT "\n",
|
|
statbuf.st_size);
|
|
}
|
|
THROW_MSG_0(vmSymbols::java_io_IOException(),
|
|
"Invalid PerfMemory size");
|
|
}
|
|
|
|
return statbuf.st_size;
|
|
}
|
|
|
|
// this method opens a file mapping object and maps the object
|
|
// into the address space of the process
|
|
//
|
|
static void open_file_mapping(int vmid, char** addrp, size_t* sizep, TRAPS) {
|
|
|
|
ResourceMark rm;
|
|
DWORD ofm_access = FILE_MAP_READ;
|
|
DWORD mv_access = FILE_MAP_READ;
|
|
const char* luser = get_user_name(vmid);
|
|
|
|
if (luser == nullptr) {
|
|
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
|
|
"Could not map vmid to user name");
|
|
}
|
|
|
|
// get the names for the resources for the target vm
|
|
char* dirname = get_user_tmp_dir(luser);
|
|
|
|
// since we don't follow symbolic links when creating the backing
|
|
// store file, we also don't following them when attaching
|
|
//
|
|
if (!is_directory_secure(dirname)) {
|
|
FREE_C_HEAP_ARRAY(char, dirname);
|
|
FREE_C_HEAP_ARRAY(char, luser);
|
|
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
|
|
"Process not found");
|
|
}
|
|
|
|
char* filename = get_sharedmem_filename(dirname, vmid);
|
|
char* objectname = get_sharedmem_objectname(luser, vmid);
|
|
|
|
// copy heap memory to resource memory. the objectname and
|
|
// filename are passed to methods that may throw exceptions.
|
|
// using resource arrays for these names prevents the leaks
|
|
// that would otherwise occur.
|
|
//
|
|
char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
|
|
char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
|
|
strcpy(rfilename, filename);
|
|
strcpy(robjectname, objectname);
|
|
|
|
// free the c heap resources that are no longer needed
|
|
FREE_C_HEAP_ARRAY(char, luser);
|
|
FREE_C_HEAP_ARRAY(char, dirname);
|
|
FREE_C_HEAP_ARRAY(char, filename);
|
|
FREE_C_HEAP_ARRAY(char, objectname);
|
|
|
|
size_t size;
|
|
if (*sizep == 0) {
|
|
size = sharedmem_filesize(rfilename, CHECK);
|
|
} else {
|
|
size = *sizep;
|
|
}
|
|
|
|
assert(size > 0, "unexpected size <= 0");
|
|
|
|
// Open the file mapping object with the given name
|
|
HANDLE fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
|
|
assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
|
|
|
|
// map the entire file into the address space
|
|
void* mapAddress = MapViewOfFile(
|
|
fmh, /* HANDLE Handle of file mapping object */
|
|
mv_access, /* DWORD access flags */
|
|
0, /* DWORD High word of offset */
|
|
0, /* DWORD Low word of offset */
|
|
size); /* DWORD Number of bytes to map */
|
|
|
|
if (mapAddress == nullptr) {
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
|
|
}
|
|
CloseHandle(fmh);
|
|
THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
|
|
"Could not map PerfMemory");
|
|
}
|
|
|
|
// it does not go through os api, the operation has to record from here
|
|
MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size,
|
|
CURRENT_PC, mtInternal);
|
|
|
|
|
|
*addrp = (char*)mapAddress;
|
|
*sizep = size;
|
|
|
|
// File mapping object can be closed at this time without
|
|
// invalidating the mapped view of the file
|
|
CloseHandle(fmh);
|
|
|
|
log_debug(perf, memops)("mapped " SIZE_FORMAT " bytes for vmid %d at "
|
|
INTPTR_FORMAT, size, vmid, mapAddress);
|
|
}
|
|
|
|
// this method unmaps the mapped view of the
|
|
// file mapping object.
|
|
//
|
|
static void remove_file_mapping(char* addr) {
|
|
|
|
// the file mapping object was closed in open_file_mapping()
|
|
// after the file map view was created. We only need to
|
|
// unmap the file view here.
|
|
UnmapViewOfFile(addr);
|
|
}
|
|
|
|
// create the PerfData memory region in shared memory.
|
|
static char* create_shared_memory(size_t size) {
|
|
|
|
return mapping_create_shared(size);
|
|
}
|
|
|
|
// release a named, shared memory region
|
|
//
|
|
void delete_shared_memory(char* addr, size_t size) {
|
|
|
|
delete_file_mapping(addr, size);
|
|
}
|
|
|
|
|
|
|
|
|
|
// create the PerfData memory region
|
|
//
|
|
// This method creates the memory region used to store performance
|
|
// data for the JVM. The memory may be created in standard or
|
|
// shared memory.
|
|
//
|
|
void PerfMemory::create_memory_region(size_t size) {
|
|
|
|
if (PerfDisableSharedMem) {
|
|
// do not share the memory for the performance data.
|
|
PerfDisableSharedMem = true;
|
|
_start = create_standard_memory(size);
|
|
}
|
|
else {
|
|
_start = create_shared_memory(size);
|
|
if (_start == nullptr) {
|
|
|
|
// creation of the shared memory region failed, attempt
|
|
// to create a contiguous, non-shared memory region instead.
|
|
//
|
|
if (PrintMiscellaneous && Verbose) {
|
|
warning("Reverting to non-shared PerfMemory region.\n");
|
|
}
|
|
FLAG_SET_ERGO(PerfDisableSharedMem, true);
|
|
_start = create_standard_memory(size);
|
|
}
|
|
}
|
|
|
|
if (_start != nullptr) _capacity = size;
|
|
|
|
}
|
|
|
|
// delete the PerfData memory region
|
|
//
|
|
// This method deletes the memory region used to store performance
|
|
// data for the JVM. The memory region indicated by the <address, size>
|
|
// tuple will be inaccessible after a call to this method.
|
|
//
|
|
void PerfMemory::delete_memory_region() {
|
|
|
|
assert((start() != nullptr && capacity() > 0), "verify proper state");
|
|
|
|
// If user specifies PerfDataSaveFile, it will save the performance data
|
|
// to the specified file name no matter whether PerfDataSaveToFile is specified
|
|
// or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
|
|
// -XX:+PerfDataSaveToFile.
|
|
if (PerfDataSaveToFile || PerfDataSaveFile != nullptr) {
|
|
save_memory_to_file(start(), capacity());
|
|
}
|
|
|
|
if (PerfDisableSharedMem) {
|
|
delete_standard_memory(start(), capacity());
|
|
}
|
|
else {
|
|
delete_shared_memory(start(), capacity());
|
|
}
|
|
}
|
|
|
|
// attach to the PerfData memory region for another JVM
|
|
//
|
|
// This method returns an <address, size> tuple that points to
|
|
// a memory buffer that is kept reasonably synchronized with
|
|
// the PerfData memory region for the indicated JVM. This
|
|
// buffer may be kept in synchronization via shared memory
|
|
// or some other mechanism that keeps the buffer updated.
|
|
//
|
|
// If the JVM chooses not to support the attachability feature,
|
|
// this method should throw an UnsupportedOperation exception.
|
|
//
|
|
// This implementation utilizes named shared memory to map
|
|
// the indicated process's PerfData memory region into this JVMs
|
|
// address space.
|
|
//
|
|
void PerfMemory::attach(int vmid, char** addrp, size_t* sizep, TRAPS) {
|
|
|
|
if (vmid == 0 || vmid == os::current_process_id()) {
|
|
*addrp = start();
|
|
*sizep = capacity();
|
|
return;
|
|
}
|
|
|
|
open_file_mapping(vmid, addrp, sizep, CHECK);
|
|
}
|
|
|
|
// detach from the PerfData memory region of another JVM
|
|
//
|
|
// This method detaches the PerfData memory region of another
|
|
// JVM, specified as an <address, size> tuple of a buffer
|
|
// in this process's address space. This method may perform
|
|
// arbitrary actions to accomplish the detachment. The memory
|
|
// region specified by <address, size> will be inaccessible after
|
|
// a call to this method.
|
|
//
|
|
// If the JVM chooses not to support the attachability feature,
|
|
// this method should throw an UnsupportedOperation exception.
|
|
//
|
|
// This implementation utilizes named shared memory to detach
|
|
// the indicated process's PerfData memory region from this
|
|
// process's address space.
|
|
//
|
|
void PerfMemory::detach(char* addr, size_t bytes) {
|
|
|
|
assert(addr != 0, "address sanity check");
|
|
assert(bytes > 0, "capacity sanity check");
|
|
|
|
if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
|
|
// prevent accidental detachment of this process's PerfMemory region
|
|
return;
|
|
}
|
|
|
|
if (MemTracker::enabled()) {
|
|
// it does not go through os api, the operation has to record from here
|
|
Tracker tkr(Tracker::release);
|
|
remove_file_mapping(addr);
|
|
tkr.record((address)addr, bytes);
|
|
} else {
|
|
remove_file_mapping(addr);
|
|
}
|
|
}
|