mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
791 lines
28 KiB
C++
791 lines
28 KiB
C++
/*
|
|
* Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "compiler/oopMap.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/markWord.hpp"
|
|
#include "oops/method.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "prims/methodHandles.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/monitorChunk.hpp"
|
|
#include "runtime/os.inline.hpp"
|
|
#include "runtime/signature.hpp"
|
|
#include "runtime/stackWatermarkSet.hpp"
|
|
#include "runtime/stubCodeGenerator.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "vmreg_aarch64.inline.hpp"
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#include "runtime/vframeArray.hpp"
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
void RegisterMap::check_location_valid() {
|
|
}
|
|
#endif
|
|
|
|
|
|
// Profiling/safepoint support
|
|
|
|
bool frame::safe_for_sender(JavaThread *thread) {
|
|
if (is_heap_frame()) {
|
|
return true;
|
|
}
|
|
address sp = (address)_sp;
|
|
address fp = (address)_fp;
|
|
address unextended_sp = (address)_unextended_sp;
|
|
|
|
// consider stack guards when trying to determine "safe" stack pointers
|
|
// sp must be within the usable part of the stack (not in guards)
|
|
if (!thread->is_in_usable_stack(sp)) {
|
|
return false;
|
|
}
|
|
|
|
// When we are running interpreted code the machine stack pointer, SP, is
|
|
// set low enough so that the Java expression stack can grow and shrink
|
|
// without ever exceeding the machine stack bounds. So, ESP >= SP.
|
|
|
|
// When we call out of an interpreted method, SP is incremented so that
|
|
// the space between SP and ESP is removed. The SP saved in the callee's
|
|
// frame is the SP *before* this increment. So, when we walk a stack of
|
|
// interpreter frames the sender's SP saved in a frame might be less than
|
|
// the SP at the point of call.
|
|
|
|
// So unextended sp must be within the stack but we need not to check
|
|
// that unextended sp >= sp
|
|
if (!thread->is_in_full_stack_checked(unextended_sp)) {
|
|
return false;
|
|
}
|
|
|
|
// an fp must be within the stack and above (but not equal) sp
|
|
// second evaluation on fp+ is added to handle situation where fp is -1
|
|
bool fp_safe = thread->is_in_stack_range_excl(fp, sp) &&
|
|
thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*)));
|
|
|
|
// We know sp/unextended_sp are safe only fp is questionable here
|
|
|
|
// If the current frame is known to the code cache then we can attempt to
|
|
// to construct the sender and do some validation of it. This goes a long way
|
|
// toward eliminating issues when we get in frame construction code
|
|
|
|
if (_cb != nullptr ) {
|
|
|
|
// First check if frame is complete and tester is reliable
|
|
// Unfortunately we can only check frame complete for runtime stubs and nmethod
|
|
// other generic buffer blobs are more problematic so we just assume they are
|
|
// ok. adapter blobs never have a frame complete and are never ok.
|
|
|
|
if (!_cb->is_frame_complete_at(_pc)) {
|
|
if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Could just be some random pointer within the codeBlob
|
|
if (!_cb->code_contains(_pc)) {
|
|
return false;
|
|
}
|
|
|
|
// Entry frame checks
|
|
if (is_entry_frame()) {
|
|
// an entry frame must have a valid fp.
|
|
return fp_safe && is_entry_frame_valid(thread);
|
|
} else if (is_upcall_stub_frame()) {
|
|
return fp_safe;
|
|
}
|
|
|
|
intptr_t* sender_sp = nullptr;
|
|
intptr_t* sender_unextended_sp = nullptr;
|
|
address sender_pc = nullptr;
|
|
intptr_t* saved_fp = nullptr;
|
|
|
|
if (is_interpreted_frame()) {
|
|
// fp must be safe
|
|
if (!fp_safe) {
|
|
return false;
|
|
}
|
|
|
|
// for interpreted frames, the value below is the sender "raw" sp,
|
|
// which can be different from the sender unextended sp (the sp seen
|
|
// by the sender) because of current frame local variables
|
|
sender_sp = (intptr_t*) addr_at(sender_sp_offset);
|
|
sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
|
|
saved_fp = (intptr_t*) this->fp()[link_offset];
|
|
sender_pc = pauth_strip_verifiable((address) this->fp()[return_addr_offset]);
|
|
} else {
|
|
// must be some sort of compiled/runtime frame
|
|
// fp does not have to be safe (although it could be check for c1?)
|
|
|
|
// check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
|
|
if (_cb->frame_size() <= 0) {
|
|
return false;
|
|
}
|
|
|
|
sender_sp = _unextended_sp + _cb->frame_size();
|
|
// Is sender_sp safe?
|
|
if (!thread->is_in_full_stack_checked((address)sender_sp)) {
|
|
return false;
|
|
}
|
|
sender_unextended_sp = sender_sp;
|
|
// Note: frame::sender_sp_offset is only valid for compiled frame
|
|
saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
|
|
// Note: PAC authentication may fail in case broken frame is passed in.
|
|
// Just strip it for now.
|
|
sender_pc = pauth_strip_pointer((address) *(sender_sp - 1));
|
|
}
|
|
|
|
if (Continuation::is_return_barrier_entry(sender_pc)) {
|
|
// sender_pc might be invalid so check that the frame
|
|
// actually belongs to a Continuation.
|
|
if (!Continuation::is_frame_in_continuation(thread, *this)) {
|
|
return false;
|
|
}
|
|
// If our sender_pc is the return barrier, then our "real" sender is the continuation entry
|
|
frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp);
|
|
sender_sp = s.sp();
|
|
sender_pc = s.pc();
|
|
}
|
|
|
|
// If the potential sender is the interpreter then we can do some more checking
|
|
if (Interpreter::contains(sender_pc)) {
|
|
|
|
// fp is always saved in a recognizable place in any code we generate. However
|
|
// only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp
|
|
// is really a frame pointer.
|
|
|
|
if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
|
|
return false;
|
|
}
|
|
|
|
// construct the potential sender
|
|
|
|
frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
|
|
|
|
return sender.is_interpreted_frame_valid(thread);
|
|
|
|
}
|
|
|
|
// We must always be able to find a recognizable pc
|
|
CodeBlob* sender_blob = CodeCache::find_blob(sender_pc);
|
|
if (sender_pc == nullptr || sender_blob == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// Could just be some random pointer within the codeBlob
|
|
if (!sender_blob->code_contains(sender_pc)) {
|
|
return false;
|
|
}
|
|
|
|
// We should never be able to see an adapter if the current frame is something from code cache
|
|
if (sender_blob->is_adapter_blob()) {
|
|
return false;
|
|
}
|
|
|
|
// Could be the call_stub
|
|
if (StubRoutines::returns_to_call_stub(sender_pc)) {
|
|
if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
|
|
return false;
|
|
}
|
|
|
|
// construct the potential sender
|
|
|
|
frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
|
|
|
|
// Validate the JavaCallWrapper an entry frame must have
|
|
address jcw = (address)sender.entry_frame_call_wrapper();
|
|
|
|
return thread->is_in_stack_range_excl(jcw, (address)sender.fp());
|
|
} else if (sender_blob->is_upcall_stub()) {
|
|
return false;
|
|
}
|
|
|
|
nmethod* nm = sender_blob->as_nmethod_or_null();
|
|
if (nm != nullptr) {
|
|
if (nm->is_deopt_entry(sender_pc) || nm->method()->is_method_handle_intrinsic()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
|
|
// because the return address counts against the callee's frame.
|
|
|
|
if (sender_blob->frame_size() <= 0) {
|
|
assert(!sender_blob->is_nmethod(), "should count return address at least");
|
|
return false;
|
|
}
|
|
|
|
// We should never be able to see anything here except an nmethod. If something in the
|
|
// code cache (current frame) is called by an entity within the code cache that entity
|
|
// should not be anything but the call stub (already covered), the interpreter (already covered)
|
|
// or an nmethod.
|
|
|
|
if (!sender_blob->is_nmethod()) {
|
|
return false;
|
|
}
|
|
|
|
// Could put some more validation for the potential non-interpreted sender
|
|
// frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
|
|
|
|
// One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
|
|
|
|
// We've validated the potential sender that would be created
|
|
return true;
|
|
}
|
|
|
|
// Must be native-compiled frame. Since sender will try and use fp to find
|
|
// linkages it must be safe
|
|
|
|
if (!fp_safe) {
|
|
return false;
|
|
}
|
|
|
|
// Will the pc we fetch be non-zero (which we'll find at the oldest frame)
|
|
|
|
if ( (address) this->fp()[return_addr_offset] == nullptr) return false;
|
|
|
|
|
|
// could try and do some more potential verification of native frame if we could think of some...
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
void frame::patch_pc(Thread* thread, address pc) {
|
|
assert(_cb == CodeCache::find_blob(pc), "unexpected pc");
|
|
address* pc_addr = &(((address*) sp())[-1]);
|
|
address signed_pc = pauth_sign_return_address(pc);
|
|
address pc_old = pauth_strip_verifiable(*pc_addr);
|
|
|
|
if (TracePcPatching) {
|
|
tty->print("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
|
|
p2i(pc_addr), p2i(pc_old), p2i(pc));
|
|
if (VM_Version::use_rop_protection()) {
|
|
tty->print(" [signed " INTPTR_FORMAT " -> " INTPTR_FORMAT "]", p2i(*pc_addr), p2i(signed_pc));
|
|
}
|
|
tty->print_cr("");
|
|
}
|
|
|
|
assert(!Continuation::is_return_barrier_entry(pc_old), "return barrier");
|
|
|
|
// Either the return address is the original one or we are going to
|
|
// patch in the same address that's already there.
|
|
assert(_pc == pc_old || pc == pc_old || pc_old == nullptr, "");
|
|
DEBUG_ONLY(address old_pc = _pc;)
|
|
*pc_addr = signed_pc;
|
|
_pc = pc; // must be set before call to get_deopt_original_pc
|
|
address original_pc = get_deopt_original_pc();
|
|
if (original_pc != nullptr) {
|
|
assert(original_pc == old_pc, "expected original PC to be stored before patching");
|
|
_deopt_state = is_deoptimized;
|
|
_pc = original_pc;
|
|
} else {
|
|
_deopt_state = not_deoptimized;
|
|
}
|
|
}
|
|
|
|
intptr_t* frame::entry_frame_argument_at(int offset) const {
|
|
// convert offset to index to deal with tsi
|
|
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
|
|
// Entry frame's arguments are always in relation to unextended_sp()
|
|
return &unextended_sp()[index];
|
|
}
|
|
|
|
// locals
|
|
|
|
void frame::interpreter_frame_set_locals(intptr_t* locs) {
|
|
assert(is_interpreted_frame(), "interpreted frame expected");
|
|
// set relativized locals
|
|
ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp()));
|
|
}
|
|
|
|
// sender_sp
|
|
|
|
intptr_t* frame::interpreter_frame_sender_sp() const {
|
|
assert(is_interpreted_frame(), "interpreted frame expected");
|
|
return (intptr_t*) at(interpreter_frame_sender_sp_offset);
|
|
}
|
|
|
|
void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
|
|
assert(is_interpreted_frame(), "interpreted frame expected");
|
|
ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
|
|
}
|
|
|
|
|
|
// monitor elements
|
|
|
|
BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
|
|
return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
|
|
}
|
|
|
|
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
|
|
BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset);
|
|
// make sure the pointer points inside the frame
|
|
assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
|
|
assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer");
|
|
return result;
|
|
}
|
|
|
|
void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
|
|
assert(is_interpreted_frame(), "interpreted frame expected");
|
|
// set relativized monitor_block_top
|
|
ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp());
|
|
assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, "");
|
|
}
|
|
|
|
// Used by template based interpreter deoptimization
|
|
void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
|
|
assert(is_interpreted_frame(), "interpreted frame expected");
|
|
// set relativized last_sp
|
|
ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0);
|
|
}
|
|
|
|
// Used by template based interpreter deoptimization
|
|
void frame::interpreter_frame_set_extended_sp(intptr_t* sp) {
|
|
assert(is_interpreted_frame(), "interpreted frame expected");
|
|
// set relativized extended_sp
|
|
ptr_at_put(interpreter_frame_extended_sp_offset, (sp - fp()));
|
|
}
|
|
|
|
frame frame::sender_for_entry_frame(RegisterMap* map) const {
|
|
assert(map != nullptr, "map must be set");
|
|
// Java frame called from C; skip all C frames and return top C
|
|
// frame of that chunk as the sender
|
|
JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
|
|
assert(!entry_frame_is_first(), "next Java fp must be non zero");
|
|
assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
|
|
// Since we are walking the stack now this nested anchor is obviously walkable
|
|
// even if it wasn't when it was stacked.
|
|
jfa->make_walkable();
|
|
map->clear();
|
|
assert(map->include_argument_oops(), "should be set by clear");
|
|
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
|
|
fr.set_sp_is_trusted();
|
|
|
|
return fr;
|
|
}
|
|
|
|
UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const {
|
|
assert(frame.is_upcall_stub_frame(), "wrong frame");
|
|
// need unextended_sp here, since normal sp is wrong for interpreter callees
|
|
return reinterpret_cast<UpcallStub::FrameData*>(
|
|
reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset));
|
|
}
|
|
|
|
bool frame::upcall_stub_frame_is_first() const {
|
|
assert(is_upcall_stub_frame(), "must be optimzed entry frame");
|
|
UpcallStub* blob = _cb->as_upcall_stub();
|
|
JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
|
|
return jfa->last_Java_sp() == nullptr;
|
|
}
|
|
|
|
frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const {
|
|
assert(map != nullptr, "map must be set");
|
|
UpcallStub* blob = _cb->as_upcall_stub();
|
|
// Java frame called from C; skip all C frames and return top C
|
|
// frame of that chunk as the sender
|
|
JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
|
|
assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to");
|
|
assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
|
|
// Since we are walking the stack now this nested anchor is obviously walkable
|
|
// even if it wasn't when it was stacked.
|
|
jfa->make_walkable();
|
|
map->clear();
|
|
assert(map->include_argument_oops(), "should be set by clear");
|
|
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
|
|
|
|
return fr;
|
|
}
|
|
|
|
#if defined(ASSERT)
|
|
static address get_register_address_in_stub(const frame& stub_fr, VMReg reg) {
|
|
RegisterMap map(nullptr,
|
|
RegisterMap::UpdateMap::include,
|
|
RegisterMap::ProcessFrames::skip,
|
|
RegisterMap::WalkContinuation::skip);
|
|
stub_fr.oop_map()->update_register_map(&stub_fr, &map);
|
|
return map.location(reg, stub_fr.sp());
|
|
}
|
|
#endif
|
|
|
|
JavaThread** frame::saved_thread_address(const frame& f) {
|
|
CodeBlob* cb = f.cb();
|
|
assert(cb != nullptr && cb->is_runtime_stub(), "invalid frame");
|
|
|
|
JavaThread** thread_addr;
|
|
#ifdef COMPILER1
|
|
if (cb == Runtime1::blob_for(StubId::c1_monitorenter_id) ||
|
|
cb == Runtime1::blob_for(StubId::c1_monitorenter_nofpu_id)) {
|
|
thread_addr = (JavaThread**)(f.sp() + Runtime1::runtime_blob_current_thread_offset(f));
|
|
} else
|
|
#endif
|
|
{
|
|
// c2 only saves rbp in the stub frame so nothing to do.
|
|
thread_addr = nullptr;
|
|
}
|
|
assert(get_register_address_in_stub(f, SharedRuntime::thread_register()) == (address)thread_addr, "wrong thread address");
|
|
return thread_addr;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// frame::sender_for_interpreter_frame
|
|
frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
|
|
// SP is the raw SP from the sender after adapter or interpreter
|
|
// extension.
|
|
intptr_t* sender_sp = this->sender_sp();
|
|
|
|
// This is the sp before any possible extension (adapter/locals).
|
|
intptr_t* unextended_sp = interpreter_frame_sender_sp();
|
|
intptr_t* sender_fp = link();
|
|
|
|
#if defined(COMPILER1) || COMPILER2_OR_JVMCI
|
|
if (map->update_map()) {
|
|
update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
|
|
}
|
|
#endif // defined(COMPILER1) || COMPILER1_OR_COMPILER2
|
|
|
|
// For ROP protection, Interpreter will have signed the sender_pc,
|
|
// but there is no requirement to authenticate it here.
|
|
address sender_pc = pauth_strip_verifiable(sender_pc_maybe_signed());
|
|
|
|
if (Continuation::is_return_barrier_entry(sender_pc)) {
|
|
if (map->walk_cont()) { // about to walk into an h-stack
|
|
return Continuation::top_frame(*this, map);
|
|
} else {
|
|
return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp);
|
|
}
|
|
}
|
|
|
|
return frame(sender_sp, unextended_sp, sender_fp, sender_pc);
|
|
}
|
|
|
|
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
|
|
assert(is_interpreted_frame(), "Not an interpreted frame");
|
|
// These are reasonable sanity checks
|
|
if (fp() == nullptr || (intptr_t(fp()) & (wordSize-1)) != 0) {
|
|
return false;
|
|
}
|
|
if (sp() == nullptr || (intptr_t(sp()) & (wordSize-1)) != 0) {
|
|
return false;
|
|
}
|
|
if (fp() + interpreter_frame_initial_sp_offset < sp()) {
|
|
return false;
|
|
}
|
|
// These are hacks to keep us out of trouble.
|
|
// The problem with these is that they mask other problems
|
|
if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
|
|
return false;
|
|
}
|
|
|
|
// do some validation of frame elements
|
|
|
|
// first the method
|
|
|
|
Method* m = safe_interpreter_frame_method();
|
|
|
|
// validate the method we'd find in this potential sender
|
|
if (!Method::is_valid_method(m)) return false;
|
|
|
|
// stack frames shouldn't be much larger than max_stack elements
|
|
// this test requires the use of unextended_sp which is the sp as seen by
|
|
// the current frame, and not sp which is the "raw" pc which could point
|
|
// further because of local variables of the callee method inserted after
|
|
// method arguments
|
|
if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
|
|
return false;
|
|
}
|
|
|
|
// validate bci/bcx
|
|
|
|
address bcp = interpreter_frame_bcp();
|
|
if (m->validate_bci_from_bcp(bcp) < 0) {
|
|
return false;
|
|
}
|
|
|
|
// validate constantPoolCache*
|
|
ConstantPoolCache* cp = *interpreter_frame_cache_addr();
|
|
if (MetaspaceObj::is_valid(cp) == false) return false;
|
|
|
|
// validate locals
|
|
|
|
address locals = (address)interpreter_frame_locals();
|
|
return thread->is_in_stack_range_incl(locals, (address)fp());
|
|
}
|
|
|
|
BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
|
|
assert(is_interpreted_frame(), "interpreted frame expected");
|
|
Method* method = interpreter_frame_method();
|
|
BasicType type = method->result_type();
|
|
|
|
intptr_t* tos_addr;
|
|
if (method->is_native()) {
|
|
// TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0
|
|
// Prior to calling into the runtime to report the method_exit the possible
|
|
// return value is pushed to the native stack. If the result is a jfloat/jdouble
|
|
// then ST0 is saved before EAX/EDX. See the note in generate_native_result
|
|
tos_addr = (intptr_t*)sp();
|
|
if (type == T_FLOAT || type == T_DOUBLE) {
|
|
// This is times two because we do a push(ltos) after pushing XMM0
|
|
// and that takes two interpreter stack slots.
|
|
tos_addr += 2 * Interpreter::stackElementWords;
|
|
}
|
|
} else {
|
|
tos_addr = (intptr_t*)interpreter_frame_tos_address();
|
|
}
|
|
|
|
switch (type) {
|
|
case T_OBJECT :
|
|
case T_ARRAY : {
|
|
oop obj;
|
|
if (method->is_native()) {
|
|
obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
|
|
} else {
|
|
oop* obj_p = (oop*)tos_addr;
|
|
obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p;
|
|
}
|
|
assert(Universe::is_in_heap_or_null(obj), "sanity check");
|
|
*oop_result = obj;
|
|
break;
|
|
}
|
|
case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
|
|
case T_BYTE : value_result->b = *(jbyte*)tos_addr; break;
|
|
case T_CHAR : value_result->c = *(jchar*)tos_addr; break;
|
|
case T_SHORT : value_result->s = *(jshort*)tos_addr; break;
|
|
case T_INT : value_result->i = *(jint*)tos_addr; break;
|
|
case T_LONG : value_result->j = *(jlong*)tos_addr; break;
|
|
case T_FLOAT : {
|
|
value_result->f = *(jfloat*)tos_addr;
|
|
break;
|
|
}
|
|
case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
|
|
case T_VOID : /* Nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
|
|
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
|
|
return &interpreter_frame_tos_address()[index];
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
#define DESCRIBE_FP_OFFSET(name) \
|
|
values.describe(frame_no, fp() + frame::name##_offset, #name)
|
|
|
|
void frame::describe_pd(FrameValues& values, int frame_no) {
|
|
if (is_interpreted_frame()) {
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_method);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_locals);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
|
|
}
|
|
|
|
if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) {
|
|
intptr_t* ret_pc_loc;
|
|
intptr_t* fp_loc;
|
|
if (is_interpreted_frame()) {
|
|
ret_pc_loc = fp() + return_addr_offset;
|
|
fp_loc = fp();
|
|
} else {
|
|
ret_pc_loc = real_fp() - return_addr_offset;
|
|
fp_loc = real_fp() - sender_sp_offset;
|
|
}
|
|
address ret_pc = *(address*)ret_pc_loc;
|
|
values.describe(frame_no, ret_pc_loc,
|
|
Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address");
|
|
values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender
|
|
}
|
|
}
|
|
#endif
|
|
|
|
intptr_t *frame::initial_deoptimization_info() {
|
|
// Not used on aarch64, but we must return something.
|
|
return nullptr;
|
|
}
|
|
|
|
#undef DESCRIBE_FP_OFFSET
|
|
|
|
#define DESCRIBE_FP_OFFSET(name) \
|
|
{ \
|
|
uintptr_t *p = (uintptr_t *)fp; \
|
|
printf(INTPTR_FORMAT " " INTPTR_FORMAT " %s\n", \
|
|
(uintptr_t)(p + frame::name##_offset), \
|
|
p[frame::name##_offset], #name); \
|
|
}
|
|
|
|
static THREAD_LOCAL uintptr_t nextfp;
|
|
static THREAD_LOCAL uintptr_t nextpc;
|
|
static THREAD_LOCAL uintptr_t nextsp;
|
|
static THREAD_LOCAL RegisterMap *reg_map;
|
|
|
|
static void printbc(Method *m, intptr_t bcx) {
|
|
const char *name;
|
|
char buf[16];
|
|
if (m->validate_bci_from_bcp((address)bcx) < 0
|
|
|| !m->contains((address)bcx)) {
|
|
name = "???";
|
|
os::snprintf_checked(buf, sizeof buf, "(bad)");
|
|
} else {
|
|
int bci = m->bci_from((address)bcx);
|
|
os::snprintf_checked(buf, sizeof buf, "%d", bci);
|
|
name = Bytecodes::name(m->code_at(bci));
|
|
}
|
|
ResourceMark rm;
|
|
printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name);
|
|
}
|
|
|
|
static void internal_pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, uintptr_t bcx) {
|
|
if (! fp)
|
|
return;
|
|
|
|
DESCRIBE_FP_OFFSET(return_addr);
|
|
DESCRIBE_FP_OFFSET(link);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_method);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_locals);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
|
|
uintptr_t *p = (uintptr_t *)fp;
|
|
|
|
// We want to see all frames, native and Java. For compiled and
|
|
// interpreted frames we have special information that allows us to
|
|
// unwind them; for everything else we assume that the native frame
|
|
// pointer chain is intact.
|
|
frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc);
|
|
if (this_frame.is_compiled_frame() ||
|
|
this_frame.is_interpreted_frame()) {
|
|
frame sender = this_frame.sender(reg_map);
|
|
nextfp = (uintptr_t)sender.fp();
|
|
nextpc = (uintptr_t)sender.pc();
|
|
nextsp = (uintptr_t)sender.unextended_sp();
|
|
} else {
|
|
nextfp = p[frame::link_offset];
|
|
nextpc = p[frame::return_addr_offset];
|
|
nextsp = (uintptr_t)&p[frame::sender_sp_offset];
|
|
}
|
|
|
|
if (bcx == -1ULL)
|
|
bcx = p[frame::interpreter_frame_bcp_offset];
|
|
|
|
if (Interpreter::contains((address)pc)) {
|
|
Method* m = (Method*)p[frame::interpreter_frame_method_offset];
|
|
if(m && m->is_method()) {
|
|
printbc(m, bcx);
|
|
} else
|
|
printf("not a Method\n");
|
|
} else {
|
|
CodeBlob *cb = CodeCache::find_blob((address)pc);
|
|
if (cb != nullptr) {
|
|
if (cb->is_nmethod()) {
|
|
ResourceMark rm;
|
|
nmethod* nm = (nmethod*)cb;
|
|
printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string());
|
|
} else if (cb->name()) {
|
|
printf("CodeBlob %s\n", cb->name());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" void npf() {
|
|
CodeBlob *cb = CodeCache::find_blob((address)nextpc);
|
|
// C2 does not always chain the frame pointers when it can, instead
|
|
// preferring to use fixed offsets from SP, so a simple leave() does
|
|
// not work. Instead, it adds the frame size to SP then pops FP and
|
|
// LR. We have to do the same thing to get a good call chain.
|
|
if (cb && cb->frame_size())
|
|
nextfp = nextsp + wordSize * (cb->frame_size() - 2);
|
|
internal_pf (nextsp, nextfp, nextpc, -1);
|
|
}
|
|
|
|
extern "C" void pf(uintptr_t sp, uintptr_t fp, uintptr_t pc,
|
|
uintptr_t bcx, uintptr_t thread) {
|
|
if (!reg_map) {
|
|
reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtInternal);
|
|
::new (reg_map) RegisterMap(reinterpret_cast<JavaThread*>(thread),
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
} else {
|
|
*reg_map = RegisterMap(reinterpret_cast<JavaThread*>(thread),
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
}
|
|
|
|
{
|
|
CodeBlob *cb = CodeCache::find_blob((address)pc);
|
|
if (cb && cb->frame_size())
|
|
fp = sp + wordSize * (cb->frame_size() - 2);
|
|
}
|
|
internal_pf(sp, fp, pc, bcx);
|
|
}
|
|
|
|
// support for printing out where we are in a Java method
|
|
// needs to be passed current fp and bcp register values
|
|
// prints method name, bc index and bytecode name
|
|
extern "C" void pm(uintptr_t fp, uintptr_t bcx) {
|
|
DESCRIBE_FP_OFFSET(interpreter_frame_method);
|
|
uintptr_t *p = (uintptr_t *)fp;
|
|
Method* m = (Method*)p[frame::interpreter_frame_method_offset];
|
|
printbc(m, bcx);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// This is a generic constructor which is only used by pns() in debug.cpp.
|
|
frame::frame(void* sp, void* fp, void* pc) {
|
|
init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
|
|
}
|
|
|
|
#endif
|
|
|
|
void JavaFrameAnchor::make_walkable() {
|
|
// last frame set?
|
|
if (last_Java_sp() == nullptr) return;
|
|
// already walkable?
|
|
if (walkable()) return;
|
|
vmassert(last_Java_sp() != nullptr, "not called from Java code?");
|
|
_last_Java_pc = (address)_last_Java_sp[-1];
|
|
vmassert(walkable(), "something went wrong");
|
|
}
|