jdk/src/hotspot/share/runtime/objectMonitor.cpp
2026-01-26 15:37:53 +01:00

2744 lines
109 KiB
C++

/*
* Copyright (c) 1998, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "classfile/vmSymbols.hpp"
#include "gc/shared/oopStorage.hpp"
#include "gc/shared/oopStorageSet.hpp"
#include "jfr/jfrEvents.hpp"
#include "jfr/support/jfrThreadId.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/markWord.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oopHandle.inline.hpp"
#include "oops/weakHandle.inline.hpp"
#include "prims/jvmtiDeferredUpdates.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/atomicAccess.hpp"
#include "runtime/continuationWrapper.inline.hpp"
#include "runtime/globals.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaThread.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.inline.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/osThread.hpp"
#include "runtime/safefetch.hpp"
#include "runtime/safepointMechanism.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/threads.hpp"
#include "services/threadService.hpp"
#include "utilities/debug.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/globalCounter.inline.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/preserveException.hpp"
#include "utilities/spinCriticalSection.hpp"
#if INCLUDE_JFR
#include "jfr/support/jfrFlush.hpp"
#endif
#ifdef DTRACE_ENABLED
// Only bother with this argument setup if dtrace is available
// TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly.
#define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \
char* bytes = nullptr; \
int len = 0; \
jlong jtid = SharedRuntime::get_java_tid(thread); \
Symbol* klassname = obj->klass()->name(); \
if (klassname != nullptr) { \
bytes = (char*)klassname->bytes(); \
len = klassname->utf8_length(); \
}
#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \
{ \
if (DTraceMonitorProbes) { \
DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
HOTSPOT_MONITOR_WAIT(jtid, \
(monitor), bytes, len, (millis)); \
} \
}
#define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
#define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
#define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
#define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
#define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \
{ \
if (DTraceMonitorProbes) { \
DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
HOTSPOT_MONITOR_##probe(jtid, \
(uintptr_t)(monitor), bytes, len); \
} \
}
#else // ndef DTRACE_ENABLED
#define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;}
#define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;}
#endif // ndef DTRACE_ENABLED
DEBUG_ONLY(static volatile bool InitDone = false;)
OopStorage* ObjectMonitor::_oop_storage = nullptr;
OopHandle ObjectMonitor::_vthread_list_head;
ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr;
static const jlong MAX_RECHECK_INTERVAL = 1000;
// -----------------------------------------------------------------------------
// Theory of operations -- Monitors lists, thread residency, etc:
//
// * A thread acquires ownership of a monitor by successfully
// CAS()ing the _owner field from NO_OWNER/DEFLATER_MARKER to
// its owner_id (return value from owner_id_from()).
//
// * Invariant: A thread appears on at most one monitor list --
// entry_list or wait_set -- at any one time.
//
// * Contending threads "push" themselves onto the entry_list with CAS
// and then spin/park.
// If the thread is a virtual thread it will first attempt to
// unmount itself. The virtual thread will first try to freeze
// all frames in the heap. If the operation fails it will just
// follow the regular path for platform threads. If the operation
// succeeds, it will push itself onto the entry_list with CAS and then
// return back to Java to continue the unmount logic.
//
// * After a contending thread eventually acquires the lock it must
// dequeue itself from the entry_list.
//
// * The exiting thread identifies and unparks an "heir presumptive"
// tentative successor thread on the entry_list. In case the successor
// is an unmounted virtual thread, the exiting thread will first try
// to add it to the list of vthreads waiting to be unblocked, and on
// success it will unpark the special unblocker thread instead, which
// will be in charge of submitting the vthread back to the scheduler
// queue. Critically, the exiting thread doesn't unlink the successor
// thread from the entry_list. After having been unparked/re-scheduled,
// the wakee will recontend for ownership of the monitor. The successor
// (wakee) will either acquire the lock or re-park/unmount itself.
//
// Succession is provided for by a policy of competitive handoff.
// The exiting thread does _not_ grant or pass ownership to the
// successor thread. (This is also referred to as "handoff succession").
// Instead the exiting thread releases ownership and possibly wakes
// a successor, so the successor can (re)compete for ownership of the lock.
//
// * The entry_list forms a queue of threads stalled trying to acquire
// the lock. Within the entry_list the next pointers always form a
// consistent singly linked list. At unlock-time when the unlocking
// thread notices that the tail of the entry_list is not known, we
// convert the singly linked entry_list into a doubly linked list by
// assigning the prev pointers and the entry_list_tail pointer.
//
// Example:
//
// The first contending thread that "pushed" itself onto entry_list,
// will be the last thread in the list. Each newly pushed thread in
// entry_list will be linked through its next pointer, and have its
// prev pointer set to null. Thus pushing six threads A-F (in that
// order) onto entry_list, will form a singly linked list, see 1)
// below.
//
// 1) entry_list ->F->E->D->C->B->A->null
// entry_list_tail ->null
//
// Since the successor is chosen in FIFO order, the exiting thread
// needs to find the tail of the entry_list. This is done by walking
// from the entry_list head. While walking the list we also assign
// the prev pointers of each thread, essentially forming a doubly
// linked list, see 2) below.
//
// 2) entry_list ->F<=>E<=>D<=>C<=>B<=>A->null
// entry_list_tail ----------------------^
//
// Once we have formed a doubly linked list it's easy to find the
// successor (A), wake it up, have it remove itself, and update the
// tail pointer, as seen in and 3) below.
//
// 3) entry_list ->F<=>E<=>D<=>C<=>B->null
// entry_list_tail ------------------^
//
// At any time new threads can add themselves to the entry_list, see
// 4) below.
//
// 4) entry_list ->I->H->G->F<=>E<=>D->null
// entry_list_tail -------------------^
//
// At some point in time the thread (F) that wants to remove itself
// from the end of the list, will not have any prev pointer, see 5)
// below.
//
// 5) entry_list ->I->H->G->F->null
// entry_list_tail -----------^
//
// To resolve this we just start walking from the entry_list head
// again, forming a new doubly linked list, before removing the
// thread (F), see 6) and 7) below.
//
// 6) entry_list ->I<=>H<=>G<=>F->null
// entry_list_tail --------------^
//
// 7) entry_list ->I<=>H<=>G->null
// entry_list_tail ----------^
//
// * The monitor itself protects all of the operations on the
// entry_list except for the CAS of a new arrival to the head. Only
// the monitor owner can read or write the prev links (e.g. to
// remove itself) or update the tail.
//
// * The monitor entry list operations avoid locks, but strictly speaking
// they're not lock-free. Enter is lock-free, exit is not.
// For a description of 'Methods and apparatus providing non-blocking access
// to a resource,' see U.S. Pat. No. 7844973.
//
// * The entry_list can have multiple concurrent "pushers" but only
// one concurrent detaching thread. There is no ABA-problem with
// this usage of CAS.
//
// * As long as the entry_list_tail is known the odds are good that we
// should be able to dequeue after acquisition (in the ::enter()
// epilogue) in constant-time. This is good since a key desideratum
// is to minimize queue & monitor metadata manipulation that occurs
// while holding the monitor lock -- that is, we want to minimize
// monitor lock holds times. Note that even a small amount of fixed
// spinning will greatly reduce the # of enqueue-dequeue operations
// on entry_list. That is, spinning relieves contention on the
// "inner" locks and monitor metadata.
//
// Insert and delete operations may not operate in constant-time if
// we have interference because some other thread is adding or
// removing the head element of entry_list or if we need to convert
// the singly linked entry_list into a doubly linked list to find the
// tail.
//
// * The monitor synchronization subsystem avoids the use of native
// synchronization primitives except for the narrow platform-specific
// park-unpark abstraction. See the comments in os_posix.cpp regarding
// the semantics of park-unpark. Put another way, this monitor implementation
// depends only on atomic operations and park-unpark.
//
// * Waiting threads reside on the wait_set list -- wait() puts
// the caller onto the wait_set.
//
// * notify() or notifyAll() simply transfers threads from the wait_set
// to the entry_list. Subsequent exit() operations will
// unpark/re-schedule the notifyee. Unparking/re-scheduling a
// notifyee in notify() is inefficient - it's likely the notifyee
// would simply impale itself on the lock held by the notifier.
// Check that object() and set_object() are called from the right context:
static void check_object_context() {
#ifdef ASSERT
Thread* self = Thread::current();
if (self->is_Java_thread()) {
// Mostly called from JavaThreads so sanity check the thread state.
JavaThread* jt = JavaThread::cast(self);
switch (jt->thread_state()) {
case _thread_in_vm: // the usual case
case _thread_in_Java: // during deopt
break;
default:
fatal("called from an unsafe thread state");
}
assert(jt->is_active_Java_thread(), "must be active JavaThread");
} else {
// However, ThreadService::get_current_contended_monitor()
// can call here via the VMThread so sanity check it.
assert(self->is_VM_thread(), "must be");
}
#endif // ASSERT
}
ObjectMonitor::ObjectMonitor(oop object) :
_metadata(0),
_object(_oop_storage, object),
_owner(NO_OWNER),
_previous_owner_tid(0),
_next_om(nullptr),
_recursions(0),
_entry_list(nullptr),
_entry_list_tail(nullptr),
_succ(NO_OWNER),
_SpinDuration(ObjectMonitor::Knob_SpinLimit),
_contentions(0),
_unmounted_vthreads(0),
_wait_set(nullptr),
_waiters(0),
_wait_set_lock(0)
{ }
ObjectMonitor::~ObjectMonitor() {
_object.release(_oop_storage);
_object_strong.release(JavaThread::thread_oop_storage());
}
oop ObjectMonitor::object() const {
check_object_context();
return _object.resolve();
}
// Keep object protected during ObjectLocker preemption.
void ObjectMonitor::set_object_strong() {
check_object_context();
if (_object_strong.is_empty()) {
if (AtomicAccess::cmpxchg(&_object_strong_lock, 0, 1) == 0) {
if (_object_strong.is_empty()) {
assert(_object.resolve() != nullptr, "");
_object_strong = OopHandle(JavaThread::thread_oop_storage(), _object.resolve());
}
AtomicAccess::release_store(&_object_strong_lock, 0);
}
}
}
void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
if (current->is_suspended()) {
_om->_recursions = 0;
_om->clear_successor();
// Don't need a full fence after clearing successor here because of the call to exit().
_om->exit(current, false /* not_suspended */);
_om_exited = true;
current->set_current_pending_monitor(_om);
}
}
#define assert_mark_word_consistency() \
assert(UseObjectMonitorTable || object()->mark() == markWord::encode(this), \
"object mark must match encoded this: mark=" INTPTR_FORMAT \
", encoded this=" INTPTR_FORMAT, object()->mark().value(), \
markWord::encode(this).value());
// -----------------------------------------------------------------------------
// Enter support
bool ObjectMonitor::enter_is_async_deflating() {
if (is_being_async_deflated()) {
if (!UseObjectMonitorTable) {
const oop l_object = object();
if (l_object != nullptr) {
// Attempt to restore the header/dmw to the object's header so that
// we only retry once if the deflater thread happens to be slow.
install_displaced_markword_in_object(l_object);
}
}
return true;
}
return false;
}
bool ObjectMonitor::try_lock_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) {
assert(contention_mark._monitor == this, "must be");
assert(!is_being_async_deflated(), "must be");
int64_t prev_owner = try_set_owner_from(NO_OWNER, locking_thread);
bool success = false;
if (prev_owner == NO_OWNER) {
assert(_recursions == 0, "invariant");
success = true;
} else if (prev_owner == owner_id_from(locking_thread)) {
_recursions++;
success = true;
} else if (prev_owner == DEFLATER_MARKER) {
// Racing with deflation.
prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
if (prev_owner == DEFLATER_MARKER) {
// We successfully cancelled the in-progress async deflation by
// changing owner from DEFLATER_MARKER to current. We now extend
// the lifetime of the contention_mark (e.g. contentions++) here
// to prevent the deflater thread from winning the last part of
// the 2-part async deflation protocol after the regular
// decrement occurs when the contention_mark goes out of
// scope. ObjectMonitor::deflate_monitor() which is called by
// the deflater thread will decrement contentions after it
// recognizes that the async deflation was cancelled.
contention_mark.extend();
success = true;
} else if (prev_owner == NO_OWNER) {
// At this point we cannot race with deflation as we have both incremented
// contentions, seen contention > 0 and seen a DEFLATER_MARKER.
// success will only be false if this races with something other than
// deflation.
prev_owner = try_set_owner_from(NO_OWNER, locking_thread);
success = prev_owner == NO_OWNER;
}
}
assert(!success || has_owner(locking_thread), "must be");
return success;
}
void ObjectMonitor::enter_for_with_contention_mark(JavaThread* locking_thread, ObjectMonitorContentionMark& contention_mark) {
// Used by ObjectSynchronizer::inflate_and_enter in deoptimization path to enter for another thread.
// The monitor is private to or already owned by locking_thread which must be suspended.
// So this code may only contend with deflation.
assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
bool success = try_lock_with_contention_mark(locking_thread, contention_mark);
assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}",
p2i(locking_thread), p2i(this), owner_raw());
}
bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
// Used by ObjectSynchronizer::enter_for() to enter for another thread.
// The monitor is private to or already owned by locking_thread which must be suspended.
// So this code may only contend with deflation.
assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
// Block out deflation as soon as possible.
ObjectMonitorContentionMark contention_mark(this);
// Check for deflation.
if (enter_is_async_deflating()) {
return false;
}
bool success = try_lock_with_contention_mark(locking_thread, contention_mark);
assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
", this=" INTPTR_FORMAT "{owner=" INT64_FORMAT "}",
p2i(locking_thread), p2i(this), owner_raw());
assert(has_owner(locking_thread), "must be");
return true;
}
bool ObjectMonitor::try_enter(JavaThread* current, bool check_for_recursion) {
// TryLock avoids the CAS and handles deflation.
TryLockResult r = try_lock(current);
if (r == TryLockResult::Success) {
assert(_recursions == 0, "invariant");
return true;
}
// If called from SharedRuntime::monitor_exit_helper(), we know that
// this thread doesn't already own the lock.
if (!check_for_recursion) {
return false;
}
if (r == TryLockResult::HasOwner && has_owner(current)) {
_recursions++;
return true;
}
return false;
}
bool ObjectMonitor::spin_enter(JavaThread* current) {
assert(current == JavaThread::current(), "must be");
// Check for recursion.
if (try_enter(current)) {
return true;
}
// Check for deflation.
if (enter_is_async_deflating()) {
return false;
}
// We've encountered genuine contention.
// Do one round of spinning.
// Note that if we acquire the monitor from an initial spin
// we forgo posting JVMTI events and firing DTRACE probes.
if (try_spin(current)) {
assert(has_owner(current), "must be current: owner=" INT64_FORMAT, owner_raw());
assert(_recursions == 0, "must be 0: recursions=%zd", _recursions);
assert_mark_word_consistency();
return true;
}
return false;
}
bool ObjectMonitor::enter(JavaThread* current, bool post_jvmti_events) {
assert(current == JavaThread::current(), "must be");
if (spin_enter(current)) {
return true;
}
assert(!has_owner(current), "invariant");
assert(!has_successor(current), "invariant");
assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
assert(current->thread_state() != _thread_blocked, "invariant");
// Keep is_being_async_deflated stable across the rest of enter
ObjectMonitorContentionMark contention_mark(this);
// Check for deflation.
if (enter_is_async_deflating()) {
return false;
}
// At this point this ObjectMonitor cannot be deflated, finish contended enter
enter_with_contention_mark(current, contention_mark, post_jvmti_events);
return true;
}
void ObjectMonitor::notify_contended_enter(JavaThread* current, bool post_jvmti_events) {
current->set_current_pending_monitor(this);
DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
if (post_jvmti_events && JvmtiExport::should_post_monitor_contended_enter()) {
JvmtiExport::post_monitor_contended_enter(current, this);
// The current thread does not yet own the monitor and does not
// yet appear on any queues that would get it made the successor.
// This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
// handler cannot accidentally consume an unpark() meant for the
// ParkEvent associated with this ObjectMonitor.
}
}
void ObjectMonitor::enter_with_contention_mark(JavaThread* current, ObjectMonitorContentionMark &cm, bool post_jvmti_events) {
assert(current == JavaThread::current(), "must be");
assert(!has_owner(current), "must be");
assert(cm._monitor == this, "must be");
assert(!is_being_async_deflated(), "must be");
JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
EventJavaMonitorEnter enter_event;
if (enter_event.is_started()) {
enter_event.set_monitorClass(object()->klass());
// Set an address that is 'unique enough', such that events close in
// time and with the same address are likely (but not guaranteed) to
// belong to the same object.
enter_event.set_address((uintptr_t)this);
}
EventVirtualThreadPinned vthread_pinned_event;
freeze_result result;
assert(current->current_pending_monitor() == nullptr, "invariant");
ContinuationEntry* ce = current->last_continuation();
bool is_virtual = ce != nullptr && ce->is_virtual_thread();
if (is_virtual) {
notify_contended_enter(current, post_jvmti_events);
result = Continuation::try_preempt(current, ce->cont_oop(current));
if (result == freeze_ok) {
bool acquired = vthread_monitor_enter(current);
if (acquired) {
// We actually acquired the monitor while trying to add the vthread to the
// _entry_list so cancel preemption. We will still go through the preempt stub
// but instead of unmounting we will call thaw to continue execution.
current->set_preemption_cancelled(true);
if (post_jvmti_events && JvmtiExport::should_post_monitor_contended_entered()) {
// We are going to call thaw again after this and finish the VMTS
// transition so no need to do it here. We will post the event there.
current->set_contended_entered_monitor(this);
}
}
current->set_current_pending_monitor(nullptr);
DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread()));
assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) ||
(!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant");
return;
}
}
{
// Change java thread status to indicate blocked on monitor enter.
JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
if (!is_virtual) { // already notified contended_enter for virtual
notify_contended_enter(current);
}
OSThreadContendState osts(current->osthread());
assert(current->thread_state() == _thread_in_vm, "invariant");
for (;;) {
ExitOnSuspend eos(this);
{
ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
enter_internal(current);
current->set_current_pending_monitor(nullptr);
// We can go to a safepoint at the end of this block. If we
// do a thread dump during that safepoint, then this thread will show
// as having "-locked" the monitor, but the OS and java.lang.Thread
// states will still report that the thread is blocked trying to
// acquire it.
// If there is a suspend request, ExitOnSuspend will exit the OM
// and set the OM as pending, the thread will not be reported as
// having "-locked" the monitor.
}
if (!eos.exited()) {
// ExitOnSuspend did not exit the OM
assert(has_owner(current), "invariant");
break;
}
}
// We've just gotten past the enter-check-for-suspend dance and we now own
// the monitor free and clear.
}
assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
// Must either set _recursions = 0 or ASSERT _recursions == 0.
assert(_recursions == 0, "invariant");
assert(has_owner(current), "invariant");
assert(!has_successor(current), "invariant");
assert_mark_word_consistency();
// The thread -- now the owner -- is back in vm mode.
// Report the glorious news via TI,DTrace and jvmstat.
// The probe effect is non-trivial. All the reportage occurs
// while we hold the monitor, increasing the length of the critical
// section. Amdahl's parallel speedup law comes vividly into play.
//
// Another option might be to aggregate the events (thread local or
// per-monitor aggregation) and defer reporting until a more opportune
// time -- such as next time some thread encounters contention but has
// yet to acquire the lock. While spinning that thread could
// spinning we could increment JVMStat counters, etc.
DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
if (post_jvmti_events && JvmtiExport::should_post_monitor_contended_entered()) {
JvmtiExport::post_monitor_contended_entered(current, this);
// The current thread already owns the monitor and is not going to
// call park() for the remainder of the monitor enter protocol. So
// it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
// event handler consumed an unpark() issued by the thread that
// just exited the monitor.
}
if (enter_event.should_commit()) {
enter_event.set_previousOwner(_previous_owner_tid);
enter_event.commit();
}
if (current->current_waiting_monitor() == nullptr) {
ContinuationEntry* ce = current->last_continuation();
if (ce != nullptr && ce->is_virtual_thread()) {
current->post_vthread_pinned_event(&vthread_pinned_event, "Contended monitor enter", result);
}
}
}
// Caveat: try_lock() is not necessarily serializing if it returns failure.
// Callers must compensate as needed.
ObjectMonitor::TryLockResult ObjectMonitor::try_lock(JavaThread* current) {
int64_t own = owner_raw();
int64_t first_own = own;
for (;;) {
if (own == DEFLATER_MARKER) {
// Block out deflation as soon as possible.
ObjectMonitorContentionMark contention_mark(this);
// Check for deflation.
if (enter_is_async_deflating()) {
// Treat deflation as interference.
return TryLockResult::Interference;
}
if (try_lock_with_contention_mark(current, contention_mark)) {
assert(_recursions == 0, "invariant");
return TryLockResult::Success;
} else {
// Deflation won or change of owner; dont spin
break;
}
} else if (own == NO_OWNER) {
int64_t prev_own = try_set_owner_from(NO_OWNER, current);
if (prev_own == NO_OWNER) {
assert(_recursions == 0, "invariant");
return TryLockResult::Success;
} else {
// The lock had been free momentarily, but we lost the race to the lock.
own = prev_own;
}
} else {
// Retry doesn't make as much sense because the lock was just acquired.
break;
}
}
return first_own == own ? TryLockResult::HasOwner : TryLockResult::Interference;
}
// Push "current" onto the head of the _entry_list. Once on _entry_list,
// current stays on-queue until it acquires the lock.
void ObjectMonitor::add_to_entry_list(JavaThread* current, ObjectWaiter* node) {
node->_prev = nullptr;
node->TState = ObjectWaiter::TS_ENTER;
for (;;) {
ObjectWaiter* head = AtomicAccess::load(&_entry_list);
node->_next = head;
if (AtomicAccess::cmpxchg(&_entry_list, head, node) == head) {
return;
}
}
}
// Push "current" onto the head of the entry_list.
// If the _entry_list was changed during our push operation, we try to
// lock the monitor. Returns true if we locked the monitor, and false
// if we added current to _entry_list. Once on _entry_list, current
// stays on-queue until it acquires the lock.
bool ObjectMonitor::try_lock_or_add_to_entry_list(JavaThread* current, ObjectWaiter* node) {
assert(node->TState == ObjectWaiter::TS_RUN, "");
node->_prev = nullptr;
node->TState = ObjectWaiter::TS_ENTER;
for (;;) {
ObjectWaiter* head = AtomicAccess::load(&_entry_list);
node->_next = head;
if (AtomicAccess::cmpxchg(&_entry_list, head, node) == head) {
return false;
}
// Interference - the CAS failed because _entry_list changed. Before
// retrying the CAS retry taking the lock as it may now be free.
if (try_lock(current) == TryLockResult::Success) {
assert(!has_successor(current), "invariant");
assert(has_owner(current), "invariant");
node->TState = ObjectWaiter::TS_RUN;
return true;
}
}
}
static void post_monitor_deflate_event(EventJavaMonitorDeflate* event,
const oop obj) {
assert(event != nullptr, "invariant");
if (obj == nullptr) {
// Accept the case when obj was already garbage-collected.
// Emit the event anyway, but without details.
event->set_monitorClass(nullptr);
event->set_address(0);
} else {
const Klass* monitor_klass = obj->klass();
if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
return;
}
event->set_monitorClass(monitor_klass);
event->set_address((uintptr_t)(void*)obj);
}
event->commit();
}
// Deflate the specified ObjectMonitor if not in-use. Returns true if it
// was deflated and false otherwise.
//
// The async deflation protocol sets owner to DEFLATER_MARKER and
// makes contentions negative as signals to contending threads that
// an async deflation is in progress. There are a number of checks
// as part of the protocol to make sure that the calling thread has
// not lost the race to a contending thread.
//
// The ObjectMonitor has been successfully async deflated when:
// (contentions < 0)
// Contending threads that see that condition know to retry their operation.
//
bool ObjectMonitor::deflate_monitor(Thread* current) {
if (is_busy()) {
// Easy checks are first - the ObjectMonitor is busy so no deflation.
return false;
}
EventJavaMonitorDeflate event;
const oop obj = object_peek();
if (obj == nullptr) {
// If the object died, we can recycle the monitor without racing with
// Java threads. The GC already broke the association with the object.
set_owner_from_raw(NO_OWNER, DEFLATER_MARKER);
assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
_contentions = INT_MIN; // minimum negative int
} else {
// Attempt async deflation protocol.
// Set a null owner to DEFLATER_MARKER to force any contending thread
// through the slow path. This is just the first part of the async
// deflation dance.
if (try_set_owner_from_raw(NO_OWNER, DEFLATER_MARKER) != NO_OWNER) {
// The owner field is no longer null so we lost the race since the
// ObjectMonitor is now busy.
return false;
}
if (contentions() > 0 || _waiters != 0) {
// Another thread has raced to enter the ObjectMonitor after
// is_busy() above or has already entered and waited on
// it which makes it busy so no deflation. Restore owner to
// null if it is still DEFLATER_MARKER.
if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) {
// Deferred decrement for the JT enter_internal() that cancelled the async deflation.
add_to_contentions(-1);
}
return false;
}
// Make a zero contentions field negative to force any contending threads
// to retry. This is the second part of the async deflation dance.
if (AtomicAccess::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
// Contentions was no longer 0 so we lost the race since the
// ObjectMonitor is now busy. Restore owner to null if it is
// still DEFLATER_MARKER:
if (try_set_owner_from_raw(DEFLATER_MARKER, NO_OWNER) != DEFLATER_MARKER) {
// Deferred decrement for the JT enter_internal() that cancelled the async deflation.
add_to_contentions(-1);
}
return false;
}
}
// Sanity checks for the races:
guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
guarantee(contentions() < 0, "must be negative: contentions=%d",
contentions());
guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
ObjectWaiter* w = AtomicAccess::load(&_entry_list);
guarantee(w == nullptr,
"must be no entering threads: entry_list=" INTPTR_FORMAT,
p2i(w));
if (obj != nullptr) {
if (log_is_enabled(Trace, monitorinflation)) {
ResourceMark rm;
log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
", mark=" INTPTR_FORMAT ", type='%s'",
p2i(obj), obj->mark().value(),
obj->klass()->external_name());
}
}
if (UseObjectMonitorTable) {
ObjectSynchronizer::deflate_monitor(current, obj, this);
} else if (obj != nullptr) {
// Install the old mark word if nobody else has already done it.
install_displaced_markword_in_object(obj);
}
if (event.should_commit()) {
post_monitor_deflate_event(&event, obj);
}
// We leave owner == DEFLATER_MARKER and contentions < 0
// to force any racing threads to retry.
return true; // Success, ObjectMonitor has been deflated.
}
// Install the displaced mark word (dmw) of a deflating ObjectMonitor
// into the header of the object associated with the monitor. This
// idempotent method is called by a thread that is deflating a
// monitor and by other threads that have detected a race with the
// deflation process.
void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
assert(!UseObjectMonitorTable, "ObjectMonitorTable has no dmw");
// This function must only be called when (owner == DEFLATER_MARKER
// && contentions <= 0), but we can't guarantee that here because
// those values could change when the ObjectMonitor gets moved from
// the global free list to a per-thread free list.
guarantee(obj != nullptr, "must be non-null");
// Separate loads in is_being_async_deflated(), which is almost always
// called before this function, from the load of dmw/header below.
// _contentions and dmw/header may get written by different threads.
// Make sure to observe them in the same order when having several observers.
OrderAccess::loadload_for_IRIW();
const oop l_object = object_peek();
if (l_object == nullptr) {
// ObjectMonitor's object ref has already been cleared by async
// deflation or GC so we're done here.
return;
}
assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
INTPTR_FORMAT, p2i(l_object), p2i(obj));
markWord dmw = header();
// The dmw has to be neutral (not null, not locked and not marked).
assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
// Install displaced mark word if the object's header still points
// to this ObjectMonitor. More than one racing caller to this function
// can rarely reach this point, but only one can win.
markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
if (res != markWord::encode(this)) {
// This should be rare so log at the Info level when it happens.
log_info(monitorinflation)("install_displaced_markword_in_object: "
"failed cas_set_mark: new_mark=" INTPTR_FORMAT
", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
dmw.value(), markWord::encode(this).value(),
res.value());
}
// Note: It does not matter which thread restored the header/dmw
// into the object's header. The thread deflating the monitor just
// wanted the object's header restored and it is. The threads that
// detected a race with the deflation process also wanted the
// object's header restored before they retry their operation and
// because it is restored they will only retry once.
}
// Convert the fields used by is_busy() to a string that can be
// used for diagnostic output.
const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
ss->print("is_busy: waiters=%d"
", contentions=%d"
", owner=" INT64_FORMAT
", entry_list=" PTR_FORMAT,
_waiters,
(contentions() > 0 ? contentions() : 0),
owner_is_DEFLATER_MARKER()
// We report null instead of DEFLATER_MARKER here because is_busy()
// ignores DEFLATER_MARKER values.
? NO_OWNER
: owner_raw(),
p2i(_entry_list));
return ss->base();
}
void ObjectMonitor::enter_internal(JavaThread* current) {
assert(current->thread_state() == _thread_blocked, "invariant");
// Try the lock - TATAS
if (try_lock(current) == TryLockResult::Success) {
assert(!has_successor(current), "invariant");
assert(has_owner(current), "invariant");
return;
}
assert(InitDone, "Unexpectedly not initialized");
// We try one round of spinning *before* enqueueing current.
//
// If the _owner is ready but OFFPROC we could use a YieldTo()
// operation to donate the remainder of this thread's quantum
// to the owner. This has subtle but beneficial affinity
// effects.
if (try_spin(current)) {
assert(has_owner(current), "invariant");
assert(!has_successor(current), "invariant");
return;
}
// The Spin failed -- Enqueue and park the thread ...
assert(!has_successor(current), "invariant");
assert(!has_owner(current), "invariant");
// Enqueue "current" on ObjectMonitor's _entry_list.
//
// Node acts as a proxy for current.
// As an aside, if were to ever rewrite the synchronization code mostly
// in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
// Java objects. This would avoid awkward lifecycle and liveness issues,
// as well as eliminate a subset of ABA issues.
// TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
ObjectWaiter node(current);
current->_ParkEvent->reset();
if (try_lock_or_add_to_entry_list(current, &node)) {
return; // We got the lock.
}
// This thread is now added to the _entry_list.
// The lock might have been released while this thread was occupied queueing
// itself onto _entry_list. To close the race and avoid "stranding" and
// progress-liveness failure we must resample-retry _owner before parking.
// Note the Dekker/Lamport duality: ST _entry_list; MEMBAR; LD Owner.
// In this case the ST-MEMBAR is accomplished with CAS().
//
// TODO: Defer all thread state transitions until park-time.
// Since state transitions are heavy and inefficient we'd like
// to defer the state transitions until absolutely necessary,
// and in doing so avoid some transitions ...
// If there are unmounted virtual threads ahead in the _entry_list we want
// to do a timed-park instead to alleviate some deadlock cases where one
// of them is picked as the successor but cannot run due to having run out
// of carriers. This can happen, for example, if this is a pinned virtual
// thread currently loading or initializining a class, and all other carriers
// have a pinned vthread waiting for said class to be loaded/initialized.
// Read counter *after* adding this thread to the _entry_list. Adding to
// _entry_list uses Atomic::cmpxchg() which already provides a fence that
// prevents this load from floating up previous store.
// Note that we can have false positives where timed-park is not necessary.
bool do_timed_parked = has_unmounted_vthreads();
jlong recheck_interval = 1;
for (;;) {
if (try_lock(current) == TryLockResult::Success) {
break;
}
assert(!has_owner(current), "invariant");
// park self
if (do_timed_parked) {
current->_ParkEvent->park(recheck_interval);
// Increase the recheck_interval, but clamp the value.
recheck_interval *= 8;
if (recheck_interval > MAX_RECHECK_INTERVAL) {
recheck_interval = MAX_RECHECK_INTERVAL;
}
} else {
current->_ParkEvent->park();
}
if (try_lock(current) == TryLockResult::Success) {
break;
}
// The lock is still contested.
// Assuming this is not a spurious wakeup we'll normally find _succ == current.
// We can defer clearing _succ until after the spin completes
// try_spin() must tolerate being called with _succ == current.
// Try yet another round of adaptive spinning.
if (try_spin(current)) {
break;
}
// We can find that we were unpark()ed and redesignated _succ while
// we were spinning. That's harmless. If we iterate and call park(),
// park() will consume the event and return immediately and we'll
// just spin again. This pattern can repeat, leaving _succ to simply
// spin on a CPU.
if (has_successor(current)) clear_successor();
// Invariant: after clearing _succ a thread *must* retry _owner before parking.
OrderAccess::fence();
}
// Egress :
// Current has acquired the lock -- Unlink current from the _entry_list.
unlink_after_acquire(current, &node);
if (has_successor(current)) {
clear_successor();
// Note that we don't need to do OrderAccess::fence() after clearing
// _succ here, since we own the lock.
}
// We've acquired ownership with CAS().
// CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
// But since the CAS() this thread may have also stored into _succ
// or entry_list. These meta-data updates must be visible __before
// this thread subsequently drops the lock.
// Consider what could occur if we didn't enforce this constraint --
// STs to monitor meta-data and user-data could reorder with (become
// visible after) the ST in exit that drops ownership of the lock.
// Some other thread could then acquire the lock, but observe inconsistent
// or old monitor meta-data and heap data. That violates the JMM.
// To that end, the exit() operation must have at least STST|LDST
// "release" barrier semantics. Specifically, there must be at least a
// STST|LDST barrier in exit() before the ST of null into _owner that drops
// the lock. The barrier ensures that changes to monitor meta-data and data
// protected by the lock will be visible before we release the lock, and
// therefore before some other thread (CPU) has a chance to acquire the lock.
// See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
//
// Critically, any prior STs to _succ or entry_list must be visible before
// the ST of null into _owner in the *subsequent* (following) corresponding
// monitorexit.
return;
}
// reenter_internal() is a specialized inline form of the latter half of the
// contended slow-path from enter_internal(). We use reenter_internal() only for
// monitor reentry in wait().
//
// In the future we should reconcile enter_internal() and reenter_internal().
void ObjectMonitor::reenter_internal(JavaThread* current, ObjectWaiter* currentNode) {
assert(current != nullptr, "invariant");
assert(current->thread_state() == _thread_blocked, "invariant");
assert(currentNode != nullptr, "invariant");
assert(currentNode->_thread == current, "invariant");
assert(_waiters > 0, "invariant");
// If there are unmounted virtual threads ahead in the _entry_list we want
// to do a timed-park instead to alleviate some deadlock cases where one
// of them is picked as the successor but cannot run due to having run out
// of carriers. This can happen, for example, if a mixed of unmounted and
// pinned vthreads taking up all the carriers are waiting for a class to be
// initialized, and the selected successor is one of the unmounted vthreads.
// Although this method is used for the "notification" case, it could be
// that this thread reached here without been added to the _entry_list yet.
// This can happen if it was interrupted or the wait timed-out at the same
// time. In that case we rely on currentNode->_do_timed_park, which will be
// read on the next loop iteration, after consuming the park permit set by
// the notifier in notify_internal.
// Note that we can have false positives where timed-park is not necessary.
bool do_timed_parked = has_unmounted_vthreads();
jlong recheck_interval = 1;
for (;;) {
ObjectWaiter::TStates v = currentNode->TState;
guarantee(v == ObjectWaiter::TS_ENTER, "invariant");
assert(!has_owner(current), "invariant");
// This thread has been notified so try to reacquire the lock.
if (try_lock(current) == TryLockResult::Success) {
break;
}
// If that fails, spin again. Note that spin count may be zero so the above TryLock
// is necessary.
if (try_spin(current)) {
break;
}
{
OSThreadContendState osts(current->osthread());
if (do_timed_parked) {
current->_ParkEvent->park(recheck_interval);
// Increase the recheck_interval, but clamp the value.
recheck_interval *= 8;
if (recheck_interval > MAX_RECHECK_INTERVAL) {
recheck_interval = MAX_RECHECK_INTERVAL;
}
} else {
current->_ParkEvent->park();
}
}
// Try again, but just so we distinguish between futile wakeups and
// successful wakeups. The following test isn't algorithmically
// necessary, but it helps us maintain sensible statistics.
if (try_lock(current) == TryLockResult::Success) {
break;
}
// The lock is still contested.
// Assuming this is not a spurious wakeup we'll normally
// find that _succ == current.
if (has_successor(current)) clear_successor();
// Invariant: after clearing _succ a contending thread
// *must* retry _owner before parking.
OrderAccess::fence();
// See comment in notify_internal
do_timed_parked |= currentNode->_do_timed_park;
}
// Current has acquired the lock -- Unlink current from the _entry_list.
assert(has_owner(current), "invariant");
unlink_after_acquire(current, currentNode);
if (has_successor(current)) clear_successor();
assert(!has_successor(current), "invariant");
currentNode->TState = ObjectWaiter::TS_RUN;
OrderAccess::fence(); // see comments at the end of enter_internal()
}
// This method is called from two places:
// - On monitorenter contention with a null waiter.
// - After Object.wait() times out or the target is interrupted to reenter the
// monitor, with the existing waiter.
// For the Object.wait() case we do not delete the ObjectWaiter in case we
// succesfully acquire the monitor since we are going to need it on return.
bool ObjectMonitor::vthread_monitor_enter(JavaThread* current, ObjectWaiter* waiter) {
if (try_lock(current) == TryLockResult::Success) {
assert(has_owner(current), "invariant");
assert(!has_successor(current), "invariant");
return true;
}
oop vthread = current->vthread();
ObjectWaiter* node = waiter != nullptr ? waiter : new ObjectWaiter(vthread, this);
// Increment counter *before* adding the vthread to the _entry_list.
// Adding to _entry_list uses Atomic::cmpxchg() which already provides
// a fence that prevents reordering of the stores.
inc_unmounted_vthreads();
if (try_lock_or_add_to_entry_list(current, node)) {
// We got the lock.
if (waiter == nullptr) delete node; // for Object.wait() don't delete yet
dec_unmounted_vthreads();
return true;
}
// This thread is now added to the entry_list.
// We have to try once more since owner could have exited monitor and checked
// _entry_list before we added the node to the queue.
if (try_lock(current) == TryLockResult::Success) {
assert(has_owner(current), "invariant");
unlink_after_acquire(current, node);
if (has_successor(current)) clear_successor();
if (waiter == nullptr) delete node; // for Object.wait() don't delete yet
dec_unmounted_vthreads();
return true;
}
assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
// We didn't succeed in acquiring the monitor so increment _contentions and
// save ObjectWaiter* in the vthread since we will need it when resuming execution.
add_to_contentions(1);
java_lang_VirtualThread::set_objectWaiter(vthread, node);
return false;
}
// Called from thaw code to resume the monitor operation that caused the vthread
// to be unmounted. Method returns true if the monitor is successfully acquired,
// which marks the end of the monitor operation, otherwise it returns false.
bool ObjectMonitor::resume_operation(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) {
assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
assert(!has_owner(current), "");
if (node->is_wait() && !node->at_reenter()) {
bool acquired_monitor = vthread_wait_reenter(current, node, cont);
if (acquired_monitor) return true;
}
// Retry acquiring monitor...
int state = node->TState;
guarantee(state == ObjectWaiter::TS_ENTER, "invariant");
if (try_lock(current) == TryLockResult::Success) {
vthread_epilog(current, node);
return true;
}
oop vthread = current->vthread();
if (has_successor(current)) clear_successor();
// Invariant: after clearing _succ a thread *must* retry acquiring the monitor.
OrderAccess::fence();
if (try_lock(current) == TryLockResult::Success) {
vthread_epilog(current, node);
return true;
}
// We will return to Continuation.run() and unmount so set the right state.
java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
return false;
}
void ObjectMonitor::vthread_epilog(JavaThread* current, ObjectWaiter* node) {
assert(has_owner(current), "invariant");
add_to_contentions(-1);
dec_unmounted_vthreads();
if (has_successor(current)) clear_successor();
guarantee(_recursions == 0, "invariant");
if (node->is_wait()) {
_recursions = node->_recursions; // restore the old recursion count
_waiters--; // decrement the number of waiters
if (node->_interrupted) {
// We will throw at thaw end after finishing the mount transition.
current->set_pending_interrupted_exception(true);
}
}
unlink_after_acquire(current, node);
delete node;
// Clear the ObjectWaiter* from the vthread.
java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr);
if (JvmtiExport::should_post_monitor_contended_entered()) {
// We are going to call thaw again after this and finish the VMTS
// transition so no need to do it here. We will post the event there.
current->set_contended_entered_monitor(this);
}
}
// Convert entry_list into a doubly linked list by assigning the prev
// pointers and the entry_list_tail pointer (if needed). Within the
// entry_list the next pointers always form a consistent singly linked
// list. When this function is called, the entry_list will be either
// singly linked, or starting as singly linked (at the head), but
// ending as doubly linked (at the tail).
void ObjectMonitor::entry_list_build_dll(JavaThread* current) {
assert(has_owner(current), "invariant");
ObjectWaiter* prev = nullptr;
// Need acquire here to match the implicit release of the cmpxchg
// that updated entry_list, so we can access w->prev().
ObjectWaiter* w = AtomicAccess::load_acquire(&_entry_list);
assert(w != nullptr, "should only be called when entry list is not empty");
while (w != nullptr) {
assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
assert(w->prev() == nullptr || w->prev() == prev, "invariant");
if (w->prev() != nullptr) {
break;
}
w->_prev = prev;
prev = w;
w = w->next();
}
if (w == nullptr) {
// We converted the entire entry_list from a singly linked list
// into a doubly linked list. Now we just need to set the tail
// pointer.
assert(prev != nullptr && prev->next() == nullptr, "invariant");
assert(_entry_list_tail == nullptr || _entry_list_tail == prev, "invariant");
_entry_list_tail = prev;
} else {
#ifdef ASSERT
// We stopped iterating through the _entry_list when we found a
// node that had its prev pointer set. I.e. we converted the first
// part of the entry_list from a singly linked list into a doubly
// linked list. Now we just want to make sure the rest of the list
// is doubly linked. But first we check that we have a tail
// pointer, because if the end of the entry_list is doubly linked
// and we don't have the tail pointer, something is broken.
assert(_entry_list_tail != nullptr, "invariant");
while (w != nullptr) {
assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
assert(w->prev() == prev, "invariant");
prev = w;
w = w->next();
}
assert(_entry_list_tail == prev, "invariant");
#endif
}
}
// Return the tail of the _entry_list. If the tail is currently not
// known, it can be found by first calling entry_list_build_dll().
ObjectWaiter* ObjectMonitor::entry_list_tail(JavaThread* current) {
assert(has_owner(current), "invariant");
ObjectWaiter* w = _entry_list_tail;
if (w != nullptr) {
return w;
}
entry_list_build_dll(current);
w = _entry_list_tail;
assert(w != nullptr, "invariant");
return w;
}
// By convention we unlink a contending thread from _entry_list
// immediately after the thread acquires the lock in ::enter().
// The head of _entry_list is volatile but the interior is stable.
// In addition, current.TState is stable.
void ObjectMonitor::unlink_after_acquire(JavaThread* current, ObjectWaiter* currentNode) {
assert(has_owner(current), "invariant");
assert((!currentNode->is_vthread() && currentNode->thread() == current) ||
(currentNode->is_vthread() && currentNode->vthread() == current->vthread()), "invariant");
// Check if we are unlinking the last element in the _entry_list.
// This is by far the most common case.
if (currentNode->next() == nullptr) {
assert(_entry_list_tail == nullptr || _entry_list_tail == currentNode, "invariant");
ObjectWaiter* w = AtomicAccess::load(&_entry_list);
if (w == currentNode) {
// The currentNode is the only element in _entry_list.
if (AtomicAccess::cmpxchg(&_entry_list, w, (ObjectWaiter*)nullptr) == w) {
_entry_list_tail = nullptr;
currentNode->set_bad_pointers();
return;
}
// The CAS above can fail from interference IFF a contending
// thread "pushed" itself onto entry_list. So fall-through to
// building the doubly linked list.
assert(currentNode->prev() == nullptr, "invariant");
}
if (currentNode->prev() == nullptr) {
// Build the doubly linked list to get hold of
// currentNode->prev().
entry_list_build_dll(current);
assert(currentNode->prev() != nullptr, "must be");
assert(_entry_list_tail == currentNode, "must be");
}
// The currentNode is the last element in _entry_list and we know
// which element is the previous one.
assert(_entry_list != currentNode, "invariant");
_entry_list_tail = currentNode->prev();
_entry_list_tail->_next = nullptr;
currentNode->set_bad_pointers();
return;
}
// If we get here it means the current thread enqueued itself on the
// _entry_list but was then able to "steal" the lock before the
// chosen successor was able to. Consequently currentNode must be an
// interior node in the _entry_list, or the head.
assert(currentNode->next() != nullptr, "invariant");
assert(currentNode != _entry_list_tail, "invariant");
// Check if we are in the singly linked portion of the
// _entry_list. If we are the head then we try to remove ourselves,
// else we convert to the doubly linked list.
if (currentNode->prev() == nullptr) {
ObjectWaiter* w = AtomicAccess::load(&_entry_list);
assert(w != nullptr, "invariant");
if (w == currentNode) {
ObjectWaiter* next = currentNode->next();
// currentNode is at the head of _entry_list.
if (AtomicAccess::cmpxchg(&_entry_list, w, next) == w) {
// The CAS above sucsessfully unlinked currentNode from the
// head of the _entry_list.
assert(_entry_list != w, "invariant");
next->_prev = nullptr;
currentNode->set_bad_pointers();
return;
} else {
// The CAS above can fail from interference IFF a contending
// thread "pushed" itself onto _entry_list, in which case
// currentNode must now be in the interior of the
// list. Fall-through to building the doubly linked list.
assert(_entry_list != currentNode, "invariant");
}
}
// Build the doubly linked list to get hold of currentNode->prev().
entry_list_build_dll(current);
assert(currentNode->prev() != nullptr, "must be");
}
// We now know we are unlinking currentNode from the interior of a
// doubly linked list.
assert(currentNode->next() != nullptr, "");
assert(currentNode->prev() != nullptr, "");
assert(currentNode != _entry_list, "");
assert(currentNode != _entry_list_tail, "");
ObjectWaiter* nxt = currentNode->next();
ObjectWaiter* prv = currentNode->prev();
assert(nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
assert(prv->TState == ObjectWaiter::TS_ENTER, "invariant");
nxt->_prev = prv;
prv->_next = nxt;
currentNode->set_bad_pointers();
}
// -----------------------------------------------------------------------------
// Exit support
//
// exit()
// ~~~~~~
// Note that the collector can't reclaim the objectMonitor or deflate
// the object out from underneath the thread calling ::exit() as the
// thread calling ::exit() never transitions to a stable state.
// This inhibits GC, which in turn inhibits asynchronous (and
// inopportune) reclamation of "this".
//
// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
// There's one exception to the claim above, however. enter_internal() can call
// exit() to drop a lock if the acquirer has been externally suspended.
// In that case exit() is called with _thread_state == _thread_blocked,
// but the monitor's _contentions field is > 0, which inhibits reclamation.
//
// This is the exit part of the locking protocol, often implemented in
// C2_MacroAssembler::fast_unlock()
//
// 1. A release barrier ensures that changes to monitor meta-data
// (_succ, _entry_list) and data protected by the lock will be
// visible before we release the lock.
// 2. Release the lock by clearing the owner.
// 3. A storeload MEMBAR is needed between releasing the owner and
// subsequently reading meta-data to safely determine if the lock is
// contended (step 4) without an elected successor (step 5).
// 4. If _entry_list is null, we are done, since there is no
// other thread waiting on the lock to wake up. I.e. there is no
// contention.
// 5. If there is a successor (_succ is non-null), we are done. The
// responsibility for guaranteeing progress-liveness has now implicitly
// been moved from the exiting thread to the successor.
// 6. There are waiters in the entry list (_entry_list is non-null),
// but there is no successor (_succ is null), so we need to
// wake up (unpark) a waiting thread to avoid stranding.
//
// Note that since only the current lock owner can manipulate the
// _entry_list (except for pushing new threads to the head), we need to
// reacquire the lock before we can wake up (unpark) a waiting thread.
//
// The CAS() in enter provides for safety and exclusion, while the
// MEMBAR in exit provides for progress and avoids stranding.
//
// There is also the risk of a futile wake-up. If we drop the lock
// another thread can reacquire the lock immediately, and we can
// then wake a thread unnecessarily. This is benign, and we've
// structured the code so the windows are short and the frequency
// of such futile wakups is low.
void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
if (!has_owner(current)) {
// Apparent unbalanced locking ...
// Naively we'd like to throw IllegalMonitorStateException.
// As a practical matter we can neither allocate nor throw an
// exception as ::exit() can be called from leaf routines.
// see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
// Upon deeper reflection, however, in a properly run JVM the only
// way we should encounter this situation is in the presence of
// unbalanced JNI locking. TODO: CheckJNICalls.
// See also: CR4414101
#ifdef ASSERT
LogStreamHandle(Error, monitorinflation) lsh;
lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
" is exiting an ObjectMonitor it does not own.", p2i(current));
lsh.print_cr("The imbalance is possibly caused by JNI locking.");
print_debug_style_on(&lsh);
assert(false, "Non-balanced monitor enter/exit!");
#endif
return;
}
if (_recursions != 0) {
_recursions--; // this is simple recursive enter
return;
}
#if INCLUDE_JFR
// get the owner's thread id for the MonitorEnter event
// if it is enabled and the thread isn't suspended
if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
_previous_owner_tid = JFR_THREAD_ID(current);
}
#endif
for (;;) {
// If there is a successor we should release the lock as soon as
// possible, so that the successor can acquire the lock. If there is
// no successor, we might need to wake up a waiting thread.
if (!has_successor()) {
ObjectWaiter* w = AtomicAccess::load(&_entry_list);
if (w != nullptr) {
// Other threads are blocked trying to acquire the lock and
// there is no successor, so it appears that an heir-
// presumptive (successor) must be made ready. Since threads
// are woken up in FIFO order, we need to find the tail of the
// entry_list.
w = entry_list_tail(current);
// I'd like to write: guarantee (w->_thread != current).
// But in practice an exiting thread may find itself on the entry_list.
// Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and
// then calls exit(). Exit release the lock by setting O._owner to null.
// Let's say T1 then stalls. T2 acquires O and calls O.notify(). The
// notify() operation moves T1 from O's waitset to O's entry_list. T2 then
// release the lock "O". T1 resumes immediately after the ST of null into
// _owner, above. T1 notices that the entry_list is populated, so it
// reacquires the lock and then finds itself on the entry_list.
// Given all that, we have to tolerate the circumstance where "w" is
// associated with current.
assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
exit_epilog(current, w);
return;
}
}
// Drop the lock.
// release semantics: prior loads and stores from within the critical section
// must not float (reorder) past the following store that drops the lock.
// Uses a storeload to separate release_store(owner) from the
// successor check. The try_set_owner_from() below uses cmpxchg() so
// we get the fence down there.
release_clear_owner(current);
OrderAccess::storeload();
// Normally the exiting thread is responsible for ensuring succession,
// but if this thread observes other successors are ready or other
// entering threads are spinning after it has stored null into _owner
// then it can exit without waking a successor. The existence of
// spinners or ready successors guarantees proper succession (liveness).
// Responsibility passes to the ready or running successors. The exiting
// thread delegates the duty. More precisely, if a successor already
// exists this thread is absolved of the responsibility of waking
// (unparking) one.
// The _succ variable is critical to reducing futile wakeup frequency.
// _succ identifies the "heir presumptive" thread that has been made
// ready (unparked) but that has not yet run. We need only one such
// successor thread to guarantee progress.
// See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
// section 3.3 "Futile Wakeup Throttling" for details.
//
// Note that spinners in Enter() also set _succ non-null.
// In the current implementation spinners opportunistically set
// _succ so that exiting threads might avoid waking a successor.
// Which means that the exiting thread could exit immediately without
// waking a successor, if it observes a successor after it has dropped
// the lock. Note that the dropped lock needs to become visible to the
// spinner.
if (_entry_list == nullptr || has_successor()) {
return;
}
// Only the current lock owner can manipulate the entry_list
// (except for pushing new threads to the head), therefore we need
// to reacquire the lock. If we fail to reacquire the lock the
// responsibility for ensuring succession falls to the new owner.
if (try_lock(current) != TryLockResult::Success) {
// Some other thread acquired the lock (or the monitor was
// deflated). Either way we are done.
return;
}
guarantee(has_owner(current), "invariant");
}
}
void ObjectMonitor::exit_epilog(JavaThread* current, ObjectWaiter* Wakee) {
assert(has_owner(current), "invariant");
// Exit protocol:
// 1. ST _succ = wakee
// 2. membar #loadstore|#storestore;
// 2. ST _owner = nullptr
// 3. unpark(wakee)
oop vthread = nullptr;
ParkEvent * Trigger;
if (!Wakee->is_vthread()) {
JavaThread* t = Wakee->thread();
assert(t != nullptr, "");
Trigger = t->_ParkEvent;
set_successor(t);
} else {
vthread = Wakee->vthread();
assert(vthread != nullptr, "");
Trigger = ObjectMonitor::vthread_unparker_ParkEvent();
set_successor(vthread);
}
// Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
// The thread associated with Wakee may have grabbed the lock and "Wakee" may be
// out-of-scope (non-extant).
Wakee = nullptr;
// Drop the lock.
// Uses a fence to separate release_store(owner) from the LD in unpark().
release_clear_owner(current);
OrderAccess::fence();
DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
if (vthread == nullptr) {
// Platform thread case.
Trigger->unpark();
} else if (java_lang_VirtualThread::set_onWaitingList(vthread, vthread_list_head())) {
// Virtual thread case.
Trigger->unpark();
}
}
// Exits the monitor returning recursion count. _owner should
// be set to current's owner_id, i.e. no ANONYMOUS_OWNER allowed.
intx ObjectMonitor::complete_exit(JavaThread* current) {
assert(InitDone, "Unexpectedly not initialized");
guarantee(has_owner(current), "complete_exit not owner");
intx save = _recursions; // record the old recursion count
_recursions = 0; // set the recursion level to be 0
exit(current); // exit the monitor
guarantee(!has_owner(current), "invariant");
return save;
}
// Checks that the current THREAD owns this monitor and causes an
// immediate return if it doesn't. We don't use the CHECK macro
// because we want the IMSE to be the only exception that is thrown
// from the call site when false is returned. Any other pending
// exception is ignored.
#define CHECK_OWNER() \
do { \
if (!check_owner(THREAD)) { \
assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
return; \
} \
} while (false)
// Returns true if the specified thread owns the ObjectMonitor.
// Otherwise returns false and throws IllegalMonitorStateException
// (IMSE). If there is a pending exception and the specified thread
// is not the owner, that exception will be replaced by the IMSE.
bool ObjectMonitor::check_owner(TRAPS) {
JavaThread* current = THREAD;
int64_t cur = owner_raw();
if (cur == owner_id_from(current)) {
return true;
}
THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
"current thread is not owner", false);
}
static void post_monitor_wait_event(EventJavaMonitorWait* event,
ObjectMonitor* monitor,
uint64_t notifier_tid,
jlong timeout,
bool timedout) {
assert(event != nullptr, "invariant");
assert(monitor != nullptr, "invariant");
const Klass* monitor_klass = monitor->object()->klass();
if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
return;
}
event->set_monitorClass(monitor_klass);
event->set_timeout(timeout);
// Set an address that is 'unique enough', such that events close in
// time and with the same address are likely (but not guaranteed) to
// belong to the same object.
event->set_address((uintptr_t)monitor);
event->set_notifier(notifier_tid);
event->set_timedOut(timedout);
event->commit();
}
static void vthread_monitor_waited_event(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont, EventJavaMonitorWait* event, jboolean timed_out) {
// Since we might safepoint set the anchor so that the stack can we walked.
assert(current->last_continuation() != nullptr, "");
JavaFrameAnchor* anchor = current->frame_anchor();
anchor->set_last_Java_sp(current->last_continuation()->entry_sp());
anchor->set_last_Java_pc(current->last_continuation()->entry_pc());
ContinuationWrapper::SafepointOp so(current, cont);
JRT_BLOCK
if (event->should_commit()) {
long timeout = java_lang_VirtualThread::timeout(current->vthread());
post_monitor_wait_event(event, node->_monitor, node->_notifier_tid, timeout, timed_out);
}
if (JvmtiExport::should_post_monitor_waited()) {
// We mark this call in case of an upcall to Java while posting the event.
// If somebody walks the stack in that case, processing the enterSpecial
// frame should not include processing callee arguments since there is no
// actual callee (see nmethod::preserve_callee_argument_oops()).
ThreadOnMonitorWaitedEvent tmwe(current);
JvmtiExport::vthread_post_monitor_waited(current, node->_monitor, timed_out);
}
JRT_BLOCK_END
current->frame_anchor()->clear();
}
// -----------------------------------------------------------------------------
// Wait/Notify/NotifyAll
//
// Note: a subset of changes to ObjectMonitor::wait()
// will need to be replicated in complete_exit
void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
JavaThread* current = THREAD;
assert(InitDone, "Unexpectedly not initialized");
CHECK_OWNER(); // Throws IMSE if not owner.
EventJavaMonitorWait wait_event;
EventVirtualThreadPinned vthread_pinned_event;
// check for a pending interrupt
if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible);
if (JvmtiExport::should_post_monitor_wait()) {
JvmtiExport::post_monitor_wait(current, object(), millis);
}
// post monitor waited event. Note that this is past-tense, we are done waiting.
if (JvmtiExport::should_post_monitor_waited()) {
// Note: 'false' parameter is passed here because the
// wait was not timed out due to thread interrupt.
JvmtiExport::post_monitor_waited(current, this, false);
// In this short circuit of the monitor wait protocol, the
// current thread never drops ownership of the monitor and
// never gets added to the wait queue so the current thread
// cannot be made the successor. This means that the
// JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
// consume an unpark() meant for the ParkEvent associated with
// this ObjectMonitor.
}
if (wait_event.should_commit()) {
post_monitor_wait_event(&wait_event, this, 0, millis, false);
}
THROW(vmSymbols::java_lang_InterruptedException());
return;
}
freeze_result result;
ContinuationEntry* ce = current->last_continuation();
bool is_virtual = ce != nullptr && ce->is_virtual_thread();
if (is_virtual) {
if (interruptible && JvmtiExport::should_post_monitor_wait()) {
JvmtiExport::post_monitor_wait(current, object(), millis);
}
current->set_current_waiting_monitor(this);
result = Continuation::try_preempt(current, ce->cont_oop(current));
if (result == freeze_ok) {
vthread_wait(current, millis, interruptible);
current->set_current_waiting_monitor(nullptr);
return;
}
}
// The jtiows does nothing for non-interruptible.
JavaThreadInObjectWaitState jtiows(current, millis != 0, interruptible);
if (!is_virtual) { // it was already set for virtual thread
if (interruptible && JvmtiExport::should_post_monitor_wait()) {
JvmtiExport::post_monitor_wait(current, object(), millis);
// The current thread already owns the monitor and it has not yet
// been added to the wait queue so the current thread cannot be
// made the successor. This means that the JVMTI_EVENT_MONITOR_WAIT
// event handler cannot accidentally consume an unpark() meant for
// the ParkEvent associated with this ObjectMonitor.
}
current->set_current_waiting_monitor(this);
}
// create a node to be put into the queue
// Critically, after we reset() the event but prior to park(), we must check
// for a pending interrupt.
ObjectWaiter node(current);
node.TState = ObjectWaiter::TS_WAIT;
current->_ParkEvent->reset();
OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag
// Enter the waiting queue, which is a circular doubly linked list in this case
// but it could be a priority queue or any data structure.
// _wait_set_lock protects the wait queue. Normally the wait queue is accessed only
// by the owner of the monitor *except* in the case where park()
// returns because of a timeout of interrupt. Contention is exceptionally rare
// so we use a simple spin-lock instead of a heavier-weight blocking lock.
{
SpinCriticalSection scs(&_wait_set_lock);
add_waiter(&node);
}
intx save = _recursions; // record the old recursion count
_waiters++; // increment the number of waiters
_recursions = 0; // set the recursion level to be 1
exit(current); // exit the monitor
guarantee(!has_owner(current), "invariant");
// The thread is on the wait_set list - now park() it.
// On MP systems it's conceivable that a brief spin before we park
// could be profitable.
//
// TODO-FIXME: change the following logic to a loop of the form
// while (!timeout && !interrupted && node.TState == TS_WAIT) park()
int ret = OS_OK;
bool was_notified = true;
// Need to check interrupt state whilst still _thread_in_vm
bool interrupted = interruptible && current->is_interrupted(false);
{ // State transition wrappers
OSThread* osthread = current->osthread();
OSThreadWaitState osts(osthread, true);
assert(current->thread_state() == _thread_in_vm, "invariant");
{
ThreadBlockInVM tbivm(current, false /* allow_suspend */);
if (interrupted || HAS_PENDING_EXCEPTION) {
// Intentionally empty
} else if (node.TState == ObjectWaiter::TS_WAIT) {
if (millis <= 0) {
current->_ParkEvent->park();
} else {
ret = current->_ParkEvent->park(millis);
}
}
}
// Node may be on the wait_set, or on the entry_list, or in transition
// from the wait_set to the entry_list.
// See if we need to remove Node from the wait_set.
// We use double-checked locking to avoid grabbing _wait_set_lock
// if the thread is not on the wait queue.
//
// Note that we don't need a fence before the fetch of TState.
// In the worst case we'll fetch a old-stale value of TS_WAIT previously
// written by the is thread. (perhaps the fetch might even be satisfied
// by a look-aside into the processor's own store buffer, although given
// the length of the code path between the prior ST and this load that's
// highly unlikely). If the following LD fetches a stale TS_WAIT value
// then we'll acquire the lock and then re-fetch a fresh TState value.
// That is, we fail toward safety.
if (node.TState == ObjectWaiter::TS_WAIT) {
SpinCriticalSection scs(&_wait_set_lock);
if (node.TState == ObjectWaiter::TS_WAIT) {
dequeue_specific_waiter(&node); // unlink from wait_set
node.TState = ObjectWaiter::TS_RUN;
was_notified = false;
}
}
// The thread is now either off-list (TS_RUN),
// or on the entry_list (TS_ENTER).
// The Node's TState variable is stable from the perspective of this thread.
// No other threads will asynchronously modify TState.
guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
OrderAccess::loadload();
if (has_successor(current)) clear_successor();
// Reentry phase -- reacquire the monitor.
// re-enter contended monitor after object.wait().
// retain OBJECT_WAIT state until re-enter successfully completes
// Thread state is thread_in_vm and oop access is again safe,
// although the raw address of the object may have changed.
// (Don't cache naked oops over safepoints, of course).
// Post monitor waited event. Note that this is past-tense, we are done waiting.
// An event could have been enabled after notification, in this case
// a thread will have TS_ENTER state and posting the event may hit a suspension point.
// From a debugging perspective, it is more important to have no missing events.
if (interruptible && JvmtiExport::should_post_monitor_waited() && node.TState != ObjectWaiter::TS_ENTER) {
// Process suspend requests now if any, before posting the event.
{
ThreadBlockInVM tbvm(current, true);
}
JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
}
if (wait_event.should_commit()) {
post_monitor_wait_event(&wait_event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
}
OrderAccess::fence();
assert(!has_owner(current), "invariant");
ObjectWaiter::TStates v = node.TState;
if (v == ObjectWaiter::TS_RUN) {
// We use the NoPreemptMark for the very rare case where the previous
// preempt attempt failed due to OOM. The preempt on monitor contention
// could succeed but we can't unmount now.
NoPreemptMark npm(current);
enter(current);
} else {
// This means the thread has been un-parked and added to the entry_list
// in notify_internal, i.e. notified while waiting.
guarantee(v == ObjectWaiter::TS_ENTER, "invariant");
ExitOnSuspend eos(this);
{
ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
reenter_internal(current, &node);
// We can go to a safepoint at the end of this block. If we
// do a thread dump during that safepoint, then this thread will show
// as having "-locked" the monitor, but the OS and java.lang.Thread
// states will still report that the thread is blocked trying to
// acquire it.
// If there is a suspend request, ExitOnSuspend will exit the OM
// and set the OM as pending, the thread will not be reported as
// having "-locked" the monitor.
}
if (eos.exited()) {
// ExitOnSuspend exit the OM
assert(!has_owner(current), "invariant");
guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
current->set_current_pending_monitor(nullptr);
enter(current, false /* post_jvmti_events */);
}
assert(has_owner(current), "invariant");
node.wait_reenter_end(this);
}
// current has reacquired the lock.
// Lifecycle - the node representing current must not appear on any queues.
// Node is about to go out-of-scope, but even if it were immortal we wouldn't
// want residual elements associated with this thread left on any lists.
guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
assert(has_owner(current), "invariant");
assert(!has_successor(current), "invariant");
} // OSThreadWaitState()
current->set_current_waiting_monitor(nullptr);
guarantee(_recursions == 0, "invariant");
int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
_recursions = save // restore the old recursion count
+ relock_count; // increased by the deferred relock count
_waiters--; // decrement the number of waiters
// Verify a few postconditions
assert(has_owner(current), "invariant");
assert(!has_successor(current), "invariant");
assert_mark_word_consistency();
if (ce != nullptr && ce->is_virtual_thread()) {
current->post_vthread_pinned_event(&vthread_pinned_event, "Object.wait", result);
}
// check if the notification happened
if (!was_notified) {
// no, it could be timeout or Thread.interrupt() or both
// check for interrupt event, otherwise it is timeout
if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
THROW(vmSymbols::java_lang_InterruptedException());
}
}
// NOTE: Spurious wake up will be consider as timeout.
// Monitor notify has precedence over thread interrupt.
}
// Consider:
// If the lock is cool (entry_list == null && succ == null) and we're on an MP system
// then instead of transferring a thread from the wait_set to the entry_list
// we might just dequeue a thread from the wait_set and directly unpark() it.
bool ObjectMonitor::notify_internal(JavaThread* current) {
bool did_notify = false;
SpinCriticalSection scs(&_wait_set_lock);
ObjectWaiter* iterator = dequeue_waiter();
if (iterator != nullptr) {
guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
iterator->_notifier_tid = JFR_THREAD_ID(current);
did_notify = true;
if (iterator->is_vthread()) {
oop vthread = iterator->vthread();
java_lang_VirtualThread::set_notified(vthread, true);
int old_state = java_lang_VirtualThread::state(vthread);
// If state is not WAIT/TIMED_WAIT then target could still be on
// unmount transition, or wait could have already timed-out or target
// could have been interrupted. In the first case, the target itself
// will set the state to BLOCKED at the end of the unmount transition.
// In the other cases the target would have been already unblocked so
// there is nothing to do.
if (old_state == java_lang_VirtualThread::WAIT ||
old_state == java_lang_VirtualThread::TIMED_WAIT) {
java_lang_VirtualThread::cmpxchg_state(vthread, old_state, java_lang_VirtualThread::BLOCKED);
}
if (!JvmtiExport::should_post_monitor_waited()) {
// Increment counter *before* adding the vthread to the _entry_list.
// Adding to _entry_list uses Atomic::cmpxchg() which already provides
// a fence that prevents reordering of the stores.
inc_unmounted_vthreads();
add_to_entry_list(current, iterator);
} else {
iterator->TState = ObjectWaiter::TS_RUN;
if (java_lang_VirtualThread::set_onWaitingList(vthread, vthread_list_head())) {
ParkEvent* pe = ObjectMonitor::vthread_unparker_ParkEvent();
pe->unpark();
}
}
} else {
if (!JvmtiExport::should_post_monitor_waited()) {
add_to_entry_list(current, iterator);
// Read counter *after* adding the thread to the _entry_list.
// Adding to _entry_list uses Atomic::cmpxchg() which already provides
// a fence that prevents this load from floating up previous store.
if (has_unmounted_vthreads()) {
// Wake up the thread to alleviate some deadlock cases where the successor
// that will be picked up when this thread releases the monitor is an unmounted
// virtual thread that cannot run due to having run out of carriers. Upon waking
// up, the thread will call reenter_internal() which will use timed-park in case
// there is contention and there are still vthreads in the _entry_list.
// If the target was interrupted or the wait timed-out at the same time, it could
// have reached reenter_internal and read a false value of has_unmounted_vthreads()
// before we added it to the _entry_list above. To deal with that case, we set _do_timed_park
// which will be read by the target on the next loop iteration in reenter_internal.
iterator->_do_timed_park = true;
JavaThread* t = iterator->thread();
t->_ParkEvent->unpark();
}
iterator->wait_reenter_begin(this);
} else {
iterator->TState = ObjectWaiter::TS_RUN;
JavaThread* t = iterator->thread();
assert(t != nullptr, "");
t->_ParkEvent->unpark();
}
}
// _wait_set_lock protects the wait queue, not the entry_list. We could
// move the add-to-entry_list operation, above, outside the critical section
// protected by _wait_set_lock. In practice that's not useful. With the
// exception of wait() timeouts and interrupts the monitor owner
// is the only thread that grabs _wait_set_lock. There's almost no contention
// on _wait_set_lock so it's not profitable to reduce the length of the
// critical section.
}
return did_notify;
}
static void post_monitor_notify_event(EventJavaMonitorNotify* event,
ObjectMonitor* monitor,
int notified_count) {
assert(event != nullptr, "invariant");
assert(monitor != nullptr, "invariant");
const Klass* monitor_klass = monitor->object()->klass();
if (ObjectMonitor::is_jfr_excluded(monitor_klass)) {
return;
}
event->set_monitorClass(monitor_klass);
// Set an address that is 'unique enough', such that events close in
// time and with the same address are likely (but not guaranteed) to
// belong to the same object.
event->set_address((uintptr_t)monitor);
event->set_notifiedCount(notified_count);
event->commit();
}
// Consider: a not-uncommon synchronization bug is to use notify() when
// notifyAll() is more appropriate, potentially resulting in stranded
// threads; this is one example of a lost wakeup. A useful diagnostic
// option is to force all notify() operations to behave as notifyAll().
//
// Note: We can also detect many such problems with a "minimum wait".
// When the "minimum wait" is set to a small non-zero timeout value
// and the program does not hang whereas it did absent "minimum wait",
// that suggests a lost wakeup bug.
void ObjectMonitor::notify(TRAPS) {
JavaThread* current = THREAD;
CHECK_OWNER(); // Throws IMSE if not owner.
if (_wait_set == nullptr) {
return;
}
quick_notify(current);
}
void ObjectMonitor::quick_notify(JavaThread* current) {
assert(has_owner(current), "Precondition");
EventJavaMonitorNotify event;
DTRACE_MONITOR_PROBE(notify, this, object(), current);
int tally = notify_internal(current) ? 1 : 0;
if ((tally > 0) && event.should_commit()) {
post_monitor_notify_event(&event, this, /* notified_count = */ tally);
}
}
// notifyAll() transfers the waiters one-at-a-time from the waitset to
// the entry_list. If the waitset is "ABCD" (where A was added first
// and D last) and the entry_list is ->X->Y->Z. After a notifyAll()
// the waitset will be empty and the entry_list will be
// ->D->C->B->A->X->Y->Z, and the next choosen successor will be Z.
void ObjectMonitor::notifyAll(TRAPS) {
JavaThread* current = THREAD;
CHECK_OWNER(); // Throws IMSE if not owner.
if (_wait_set == nullptr) {
return;
}
quick_notifyAll(current);
}
void ObjectMonitor::quick_notifyAll(JavaThread* current) {
assert(has_owner(current), "Precondition");
EventJavaMonitorNotify event;
DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
int tally = 0;
while (_wait_set != nullptr) {
if (notify_internal(current)) {
tally++;
}
}
if ((tally > 0) && event.should_commit()) {
post_monitor_notify_event(&event, this, /* notified_count = */ tally);
}
}
void ObjectMonitor::vthread_wait(JavaThread* current, jlong millis, bool interruptible) {
oop vthread = current->vthread();
ObjectWaiter* node = new ObjectWaiter(vthread, this);
node->_is_wait = true;
node->_interruptible = interruptible;
node->TState = ObjectWaiter::TS_WAIT;
java_lang_VirtualThread::set_notified(vthread, false); // Reset notified flag
java_lang_VirtualThread::set_interruptible_wait(vthread, interruptible);
// Enter the waiting queue, which is a circular doubly linked list in this case
// but it could be a priority queue or any data structure.
// _wait_set_lock protects the wait queue. Normally the wait queue is accessed only
// by the owner of the monitor *except* in the case where park()
// returns because of a timeout or interrupt. Contention is exceptionally rare
// so we use a simple spin-lock instead of a heavier-weight blocking lock.
{
SpinCriticalSection scs(&_wait_set_lock);
add_waiter(node);
}
node->_recursions = _recursions; // record the old recursion count
_recursions = 0; // set the recursion level to be 0
_waiters++; // increment the number of waiters
exit(current); // exit the monitor
guarantee(!has_owner(current), "invariant");
assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
java_lang_VirtualThread::set_state(vthread, millis == 0 ? java_lang_VirtualThread::WAITING : java_lang_VirtualThread::TIMED_WAITING);
java_lang_VirtualThread::set_timeout(vthread, millis);
// Save the ObjectWaiter* in the vthread since we will need it when resuming execution.
java_lang_VirtualThread::set_objectWaiter(vthread, node);
}
bool ObjectMonitor::vthread_wait_reenter(JavaThread* current, ObjectWaiter* node, ContinuationWrapper& cont) {
// The first time we run after being preempted on Object.wait() we
// need to check if we were interrupted or the wait timed-out, and
// in that case remove ourselves from the _wait_set queue.
bool was_notified = true;
if (node->TState == ObjectWaiter::TS_WAIT) {
SpinCriticalSection scs(&_wait_set_lock);
if (node->TState == ObjectWaiter::TS_WAIT) {
dequeue_specific_waiter(node); // unlink from wait_set
node->TState = ObjectWaiter::TS_RUN;
was_notified = false;
}
}
// If this was an interrupted case, set the _interrupted boolean so that
// once we re-acquire the monitor we know if we need to throw IE or not.
ObjectWaiter::TStates state = node->TState;
assert(was_notified || state == ObjectWaiter::TS_RUN,
"was not notified and is not in the right state: was_notified = %s, state = %s",
was_notified ? "true" : "false", node->getTStateName(state));
node->_interrupted = node->_interruptible && !was_notified && current->is_interrupted(false);
// Post JFR and JVMTI events. If non-interruptible we are in
// ObjectLocker case so we don't post anything.
EventJavaMonitorWait wait_event;
if (node->_interruptible && (wait_event.should_commit() || JvmtiExport::should_post_monitor_waited())) {
vthread_monitor_waited_event(current, node, cont, &wait_event, !was_notified && !node->_interrupted);
}
// Mark that we are at reenter so that we don't call this method again.
node->_at_reenter = true;
// We check the state rather than was_notified because, when JVMTI
// monitor_waited event is enabled, the notifier only unparks the waiter
// without adding it to the entry_list.
if (state == ObjectWaiter::TS_RUN) {
bool acquired = vthread_monitor_enter(current, node);
if (acquired) {
guarantee(_recursions == 0, "invariant");
_recursions = node->_recursions; // restore the old recursion count
_waiters--; // decrement the number of waiters
if (node->_interrupted) {
// We will throw at thaw end after finishing the mount transition.
current->set_pending_interrupted_exception(true);
}
delete node;
// Clear the ObjectWaiter* from the vthread.
java_lang_VirtualThread::set_objectWaiter(current->vthread(), nullptr);
return true;
}
} else {
// Already moved to _entry_list by notifier, so just add to contentions.
add_to_contentions(1);
}
return false;
}
// -----------------------------------------------------------------------------
// Adaptive Spinning Support
//
// Adaptive spin-then-block - rational spinning
//
// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
// algorithm.
//
// Broadly, we can fix the spin frequency -- that is, the % of contended lock
// acquisition attempts where we opt to spin -- at 100% and vary the spin count
// (duration) or we can fix the count at approximately the duration of
// a context switch and vary the frequency. Of course we could also
// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
// For a description of 'Adaptive spin-then-block mutual exclusion in
// multi-threaded processing,' see U.S. Pat. No. 8046758.
//
// This implementation varies the duration "D", where D varies with
// the success rate of recent spin attempts. (D is capped at approximately
// length of a round-trip context switch). The success rate for recent
// spin attempts is a good predictor of the success rate of future spin
// attempts. The mechanism adapts automatically to varying critical
// section length (lock modality), system load and degree of parallelism.
// D is maintained per-monitor in _SpinDuration and is initialized
// optimistically. Spin frequency is fixed at 100%.
//
// Note that _SpinDuration is volatile, but we update it without locks
// or atomics. The code is designed so that _SpinDuration stays within
// a reasonable range even in the presence of races. The arithmetic
// operations on _SpinDuration are closed over the domain of legal values,
// so at worst a race will install and older but still legal value.
// At the very worst this introduces some apparent non-determinism.
// We might spin when we shouldn't or vice-versa, but since the spin
// count are relatively short, even in the worst case, the effect is harmless.
//
// Care must be taken that a low "D" value does not become an
// an absorbing state. Transient spinning failures -- when spinning
// is overall profitable -- should not cause the system to converge
// on low "D" values. We want spinning to be stable and predictable
// and fairly responsive to change and at the same time we don't want
// it to oscillate, become metastable, be "too" non-deterministic,
// or converge on or enter undesirable stable absorbing states.
//
// We implement a feedback-based control system -- using past behavior
// to predict future behavior. We face two issues: (a) if the
// input signal is random then the spin predictor won't provide optimal
// results, and (b) if the signal frequency is too high then the control
// system, which has some natural response lag, will "chase" the signal.
// (b) can arise from multimodal lock hold times. Transient preemption
// can also result in apparent bimodal lock hold times.
// Although sub-optimal, neither condition is particularly harmful, as
// in the worst-case we'll spin when we shouldn't or vice-versa.
// The maximum spin duration is rather short so the failure modes aren't bad.
// To be conservative, I've tuned the gain in system to bias toward
// _not spinning. Relatedly, the system can sometimes enter a mode where it
// "rings" or oscillates between spinning and not spinning. This happens
// when spinning is just on the cusp of profitability, however, so the
// situation is not dire. The state is benign -- there's no need to add
// hysteresis control to damp the transition rate between spinning and
// not spinning.
int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool
static int Knob_Bonus = 100; // spin success bonus
static int Knob_Penalty = 200; // spin failure penalty
static int Knob_Poverty = 1000;
static int Knob_FixedSpin = 0;
static int Knob_PreSpin = 10; // 20-100 likely better, but it's not better in my testing.
inline static int adjust_up(int spin_duration) {
int x = spin_duration;
if (x < ObjectMonitor::Knob_SpinLimit) {
if (x < Knob_Poverty) {
x = Knob_Poverty;
}
return x + Knob_Bonus;
} else {
return spin_duration;
}
}
inline static int adjust_down(int spin_duration) {
// TODO: Use an AIMD-like policy to adjust _SpinDuration.
// AIMD is globally stable.
int x = spin_duration;
if (x > 0) {
// Consider an AIMD scheme like: x -= (x >> 3) + 100
// This is globally sample and tends to damp the response.
x -= Knob_Penalty;
if (x < 0) { x = 0; }
return x;
} else {
return spin_duration;
}
}
bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) {
for (int ctr = 0; ctr < spin_count; ctr++) {
TryLockResult status = try_lock(current);
if (status == TryLockResult::Success) {
if (adapt) {
_SpinDuration = adjust_up(_SpinDuration);
}
return true;
} else if (status == TryLockResult::Interference) {
break;
}
SpinPause();
}
return false;
}
// Spinning: Fixed frequency (100%), vary duration
bool ObjectMonitor::try_spin(JavaThread* current) {
// Dumb, brutal spin. Good for comparative measurements against adaptive spinning.
int knob_fixed_spin = Knob_FixedSpin; // 0 (don't spin: default), 2000 good test
if (knob_fixed_spin > 0) {
return short_fixed_spin(current, knob_fixed_spin, false);
}
// Admission control - verify preconditions for spinning
//
// We always spin a little bit, just to prevent _SpinDuration == 0 from
// becoming an absorbing state. Put another way, we spin briefly to
// sample, just in case the system load, parallelism, contention, or lock
// modality changed.
int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000
if (short_fixed_spin(current, knob_pre_spin, true)) {
return true;
}
//
// Consider the following alternative:
// Periodically set _SpinDuration = _SpinLimit and try a long/full
// spin attempt. "Periodically" might mean after a tally of
// the # of failed spin attempts (or iterations) reaches some threshold.
// This takes us into the realm of 1-out-of-N spinning, where we
// hold the duration constant but vary the frequency.
int ctr = _SpinDuration;
if (ctr <= 0) return false;
// We're good to spin ... spin ingress.
// CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
// when preparing to LD...CAS _owner, etc and the CAS is likely
// to succeed.
if (!has_successor()) {
set_successor(current);
}
int64_t prv = NO_OWNER;
// There are three ways to exit the following loop:
// 1. A successful spin where this thread has acquired the lock.
// 2. Spin failure with prejudice
// 3. Spin failure without prejudice
while (--ctr >= 0) {
// Periodic polling -- Check for pending GC
// Threads may spin while they're unsafe.
// We don't want spinning threads to delay the JVM from reaching
// a stop-the-world safepoint or to steal cycles from GC.
// If we detect a pending safepoint we abort in order that
// (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
// this thread, if safe, doesn't steal cycles from GC.
// This is in keeping with the "no loitering in runtime" rule.
// We periodically check to see if there's a safepoint pending.
if ((ctr & 0xFF) == 0) {
// Can't call SafepointMechanism::should_process() since that
// might update the poll values and we could be in a thread_blocked
// state here which is not allowed so just check the poll.
if (SafepointMechanism::local_poll_armed(current)) {
break;
}
SpinPause();
}
// Probe _owner with TATAS
// If this thread observes the monitor transition or flicker
// from locked to unlocked to locked, then the odds that this
// thread will acquire the lock in this spin attempt go down
// considerably. The same argument applies if the CAS fails
// or if we observe _owner change from one non-null value to
// another non-null value. In such cases we might abort
// the spin without prejudice or apply a "penalty" to the
// spin count-down variable "ctr", reducing it by 100, say.
int64_t ox = owner_raw();
if (ox == NO_OWNER) {
ox = try_set_owner_from(NO_OWNER, current);
if (ox == NO_OWNER) {
// The CAS succeeded -- this thread acquired ownership
// Take care of some bookkeeping to exit spin state.
if (has_successor(current)) {
clear_successor();
}
// Increase _SpinDuration :
// The spin was successful (profitable) so we tend toward
// longer spin attempts in the future.
// CONSIDER: factor "ctr" into the _SpinDuration adjustment.
// If we acquired the lock early in the spin cycle it
// makes sense to increase _SpinDuration proportionally.
// Note that we don't clamp SpinDuration precisely at SpinLimit.
_SpinDuration = adjust_up(_SpinDuration);
return true;
}
// The CAS failed ... we can take any of the following actions:
// * penalize: ctr -= CASPenalty
// * exit spin with prejudice -- abort without adapting spinner
// * exit spin without prejudice.
// * Since CAS is high-latency, retry again immediately.
break;
}
// Did lock ownership change hands ?
if (ox != prv && prv != NO_OWNER) {
break;
}
prv = ox;
if (!has_successor()) {
set_successor(current);
}
}
// Spin failed with prejudice -- reduce _SpinDuration.
if (ctr < 0) {
_SpinDuration = adjust_down(_SpinDuration);
}
if (has_successor(current)) {
clear_successor();
// Invariant: after setting succ=null a contending thread
// must recheck-retry _owner before parking. This usually happens
// in the normal usage of try_spin(), but it's safest
// to make try_spin() as foolproof as possible.
OrderAccess::fence();
if (try_lock(current) == TryLockResult::Success) {
return true;
}
}
return false;
}
// -----------------------------------------------------------------------------
// wait_set management ...
ObjectWaiter::ObjectWaiter(JavaThread* current) {
_next = nullptr;
_prev = nullptr;
_thread = current;
_monitor = nullptr;
_notifier_tid = 0;
_recursions = 0;
TState = TS_RUN;
_is_wait = false;
_at_reenter = false;
_interrupted = false;
_do_timed_park = false;
_active = false;
}
const char* ObjectWaiter::getTStateName(ObjectWaiter::TStates state) {
switch (state) {
case ObjectWaiter::TS_UNDEF:
return "TS_UNDEF";
case ObjectWaiter::TS_READY:
return "TS_READY";
case ObjectWaiter::TS_RUN:
return "TS_RUN";
case ObjectWaiter::TS_WAIT:
return "TS_WAIT";
case ObjectWaiter::TS_ENTER:
return "TS_ENTER";
default:
ShouldNotReachHere();
}
}
ObjectWaiter::ObjectWaiter(oop vthread, ObjectMonitor* mon) : ObjectWaiter(nullptr) {
assert(oopDesc::is_oop(vthread), "");
_vthread = OopHandle(JavaThread::thread_oop_storage(), vthread);
_monitor = mon;
}
ObjectWaiter::~ObjectWaiter() {
if (is_vthread()) {
assert(vthread() != nullptr, "");
_vthread.release(JavaThread::thread_oop_storage());
}
}
oop ObjectWaiter::vthread() const {
return _vthread.resolve();
}
void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
_active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
}
void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
}
inline void ObjectMonitor::add_waiter(ObjectWaiter* node) {
assert(node != nullptr, "should not add null node");
assert(node->_prev == nullptr, "node already in list");
assert(node->_next == nullptr, "node already in list");
// put node at end of queue (circular doubly linked list)
if (_wait_set == nullptr) {
_wait_set = node;
node->_prev = node;
node->_next = node;
} else {
ObjectWaiter* head = _wait_set;
ObjectWaiter* tail = head->_prev;
assert(tail->_next == head, "invariant check");
tail->_next = node;
head->_prev = node;
node->_next = head;
node->_prev = tail;
}
}
inline ObjectWaiter* ObjectMonitor::dequeue_waiter() {
// dequeue the very first waiter
ObjectWaiter* waiter = _wait_set;
if (waiter) {
dequeue_specific_waiter(waiter);
}
return waiter;
}
inline void ObjectMonitor::dequeue_specific_waiter(ObjectWaiter* node) {
assert(node != nullptr, "should not dequeue nullptr node");
assert(node->_prev != nullptr, "node already removed from list");
assert(node->_next != nullptr, "node already removed from list");
// when the waiter has woken up because of interrupt,
// timeout or other spurious wake-up, dequeue the
// waiter from waiting list
ObjectWaiter* next = node->_next;
if (next == node) {
assert(node->_prev == node, "invariant check");
_wait_set = nullptr;
} else {
ObjectWaiter* prev = node->_prev;
assert(prev->_next == node, "invariant check");
assert(next->_prev == node, "invariant check");
next->_prev = prev;
prev->_next = next;
if (_wait_set == node) {
_wait_set = next;
}
}
node->_next = nullptr;
node->_prev = nullptr;
}
// -----------------------------------------------------------------------------
// One-shot global initialization for the sync subsystem.
// We could also defer initialization and initialize on-demand
// the first time we call ObjectSynchronizer::inflate().
// Initialization would be protected - like so many things - by
// the MonitorCache_lock.
void ObjectMonitor::Initialize() {
assert(!InitDone, "invariant");
if (!os::is_MP()) {
Knob_SpinLimit = 0;
Knob_PreSpin = 0;
Knob_FixedSpin = -1;
}
_oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
DEBUG_ONLY(InitDone = true;)
}
// We can't call this during Initialize() because BarrierSet needs to be set.
void ObjectMonitor::Initialize2() {
_vthread_list_head = OopHandle(JavaThread::thread_oop_storage(), nullptr);
_vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr);
}
void ObjectMonitor::print_on(outputStream* st) const {
// The minimal things to print for markWord printing, more can be added for debugging and logging.
st->print("{contentions=0x%08x,waiters=0x%08x"
",recursions=%zd,owner=" INT64_FORMAT "}",
contentions(), waiters(), recursions(),
owner_raw());
}
void ObjectMonitor::print() const { print_on(tty); }
#ifdef ASSERT
// Print the ObjectMonitor like a debugger would:
//
// (ObjectMonitor) 0x00007fdfb6012e40 = {
// _metadata = 0x0000000000000001
// _object = 0x000000070ff45fd0
// _pad_buf0 = {
// [0] = '\0'
// ...
// [43] = '\0'
// }
// _owner = 0x0000000000000000
// _previous_owner_tid = 0
// _pad_buf1 = {
// [0] = '\0'
// ...
// [47] = '\0'
// }
// _next_om = 0x0000000000000000
// _recursions = 0
// _entry_list = 0x0000000000000000
// _entry_list_tail = 0x0000000000000000
// _succ = 0x0000000000000000
// _SpinDuration = 5000
// _contentions = 0
// _wait_set = 0x0000700009756248
// _waiters = 1
// _wait_set_lock = 0
// }
//
void ObjectMonitor::print_debug_style_on(outputStream* st) const {
st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
st->print_cr(" _metadata = " INTPTR_FORMAT, _metadata);
st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek()));
st->print_cr(" _pad_buf0 = {");
st->print_cr(" [0] = '\\0'");
st->print_cr(" ...");
st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
st->print_cr(" }");
st->print_cr(" _owner = " INT64_FORMAT, owner_raw());
st->print_cr(" _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
st->print_cr(" _pad_buf1 = {");
st->print_cr(" [0] = '\\0'");
st->print_cr(" ...");
st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
st->print_cr(" }");
st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om()));
st->print_cr(" _recursions = %zd", _recursions);
st->print_cr(" _entry_list = " INTPTR_FORMAT, p2i(_entry_list));
st->print_cr(" _entry_list_tail = " INTPTR_FORMAT, p2i(_entry_list_tail));
st->print_cr(" _succ = " INT64_FORMAT, successor());
st->print_cr(" _SpinDuration = %d", _SpinDuration);
st->print_cr(" _contentions = %d", contentions());
st->print_cr(" _unmounted_vthreads = " INT64_FORMAT, _unmounted_vthreads);
st->print_cr(" _wait_set = " INTPTR_FORMAT, p2i(_wait_set));
st->print_cr(" _waiters = %d", _waiters);
st->print_cr(" _wait_set_lock = %d", _wait_set_lock);
st->print_cr("}");
}
#endif