jdk/src/hotspot/share/opto/convertnode.cpp
2025-06-26 15:42:43 +00:00

997 lines
38 KiB
C++

/*
* Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "opto/addnode.hpp"
#include "opto/castnode.hpp"
#include "opto/connode.hpp"
#include "opto/convertnode.hpp"
#include "opto/divnode.hpp"
#include "opto/matcher.hpp"
#include "opto/movenode.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/checkedCast.hpp"
//=============================================================================
//------------------------------Identity---------------------------------------
Node* Conv2BNode::Identity(PhaseGVN* phase) {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return in(1);
if( t == TypeInt::ZERO ) return in(1);
if( t == TypeInt::ONE ) return in(1);
if( t == TypeInt::BOOL ) return in(1);
return this;
}
//------------------------------Value------------------------------------------
const Type* Conv2BNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == TypeInt::ZERO ) return TypeInt::ZERO;
if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
const TypePtr *tp = t->isa_ptr();
if(tp != nullptr) {
if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
return TypeInt::BOOL;
}
if (t->base() != Type::Int) return TypeInt::BOOL;
const TypeInt *ti = t->is_int();
if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
return TypeInt::BOOL;
}
Node* Conv2BNode::Ideal(PhaseGVN* phase, bool can_reshape) {
if (!Matcher::match_rule_supported(Op_Conv2B)) {
if (phase->C->post_loop_opts_phase()) {
// Get type of comparison to make
const Type* t = phase->type(in(1));
Node* cmp = nullptr;
if (t->isa_int()) {
cmp = phase->transform(new CmpINode(in(1), phase->intcon(0)));
} else if (t->isa_ptr()) {
cmp = phase->transform(new CmpPNode(in(1), phase->zerocon(BasicType::T_OBJECT)));
} else {
assert(false, "Unrecognized comparison for Conv2B: %s", NodeClassNames[in(1)->Opcode()]);
}
// Skip the transformation if input is unexpected.
if (cmp == nullptr) {
return nullptr;
}
// Replace Conv2B with the cmove
Node* bol = phase->transform(new BoolNode(cmp, BoolTest::eq));
return new CMoveINode(bol, phase->intcon(1), phase->intcon(0), TypeInt::BOOL);
} else {
phase->C->record_for_post_loop_opts_igvn(this);
}
}
return nullptr;
}
uint ConvertNode::ideal_reg() const {
return _type->ideal_reg();
}
Node* ConvertNode::create_convert(BasicType source, BasicType target, Node* input) {
if (source == T_INT) {
if (target == T_LONG) {
return new ConvI2LNode(input);
} else if (target == T_FLOAT) {
return new ConvI2FNode(input);
} else if (target == T_DOUBLE) {
return new ConvI2DNode(input);
}
} else if (source == T_LONG) {
if (target == T_INT) {
return new ConvL2INode(input);
} else if (target == T_FLOAT) {
return new ConvL2FNode(input);
} else if (target == T_DOUBLE) {
return new ConvL2DNode(input);
}
} else if (source == T_FLOAT) {
if (target == T_INT) {
return new ConvF2INode(input);
} else if (target == T_LONG) {
return new ConvF2LNode(input);
} else if (target == T_DOUBLE) {
return new ConvF2DNode(input);
} else if (target == T_SHORT) {
return new ConvF2HFNode(input);
}
} else if (source == T_DOUBLE) {
if (target == T_INT) {
return new ConvD2INode(input);
} else if (target == T_LONG) {
return new ConvD2LNode(input);
} else if (target == T_FLOAT) {
return new ConvD2FNode(input);
}
} else if (source == T_SHORT) {
if (target == T_FLOAT) {
return new ConvHF2FNode(input);
}
}
assert(false, "Couldn't create conversion for type %s to %s", type2name(source), type2name(target));
return nullptr;
}
// The conversions operations are all Alpha sorted. Please keep it that way!
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::DOUBLE ) return Type::FLOAT;
const TypeD *td = t->is_double_constant();
return TypeF::make( (float)td->getd() );
}
//------------------------------Ideal------------------------------------------
// If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float.
Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if ( in(1)->Opcode() == Op_SqrtD ) {
Node* sqrtd = in(1);
if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) {
if ( Matcher::match_rule_supported(Op_SqrtF) ) {
Node* convf2d = sqrtd->in(1);
return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1));
}
}
}
return nullptr;
}
//------------------------------Identity---------------------------------------
// Float's can be converted to doubles with no loss of bits. Hence
// converting a float to a double and back to a float is a NOP.
Node* ConvD2FNode::Identity(PhaseGVN* phase) {
return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvD2INode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::DOUBLE ) return TypeInt::INT;
const TypeD *td = t->is_double_constant();
return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
}
//------------------------------Identity---------------------------------------
// Int's can be converted to doubles with no loss of bits. Hence
// converting an integer to a double and back to an integer is a NOP.
Node* ConvD2INode::Identity(PhaseGVN* phase) {
return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::DOUBLE ) return TypeLong::LONG;
const TypeD *td = t->is_double_constant();
return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
}
//------------------------------Identity---------------------------------------
Node* ConvD2LNode::Identity(PhaseGVN* phase) {
// Remove ConvD2L->ConvL2D->ConvD2L sequences.
if( in(1) ->Opcode() == Op_ConvL2D &&
in(1)->in(1)->Opcode() == Op_ConvD2L )
return in(1)->in(1);
return this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::FLOAT ) return Type::DOUBLE;
const TypeF *tf = t->is_float_constant();
return TypeD::make( (double)tf->getf() );
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvF2HFNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if (t == Type::TOP) return Type::TOP;
if (t == Type::FLOAT || StubRoutines::f2hf_adr() == nullptr) {
return TypeInt::SHORT;
}
const TypeF *tf = t->is_float_constant();
return TypeInt::make( StubRoutines::f2hf(tf->getf()) );
}
//------------------------------Ideal------------------------------------------
Node* ConvF2HFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
// Float16 instance encapsulates a short field holding IEEE 754
// binary16 value. On unboxing, this short field is loaded into a
// GPR register while FP operation operates over floating point
// registers. ConvHF2F converts incoming short value to a FP32 value
// to perform operation at FP32 granularity. However, if target
// support FP16 ISA we can save this redundant up casting and
// optimize the graph pallet using following transformation.
//
// ConvF2HF(FP32BinOp(ConvHF2F(x), ConvHF2F(y))) =>
// ReinterpretHF2S(FP16BinOp(ReinterpretS2HF(x), ReinterpretS2HF(y)))
//
// Please note we need to inject appropriate reinterpretation
// IR to move the values b/w GPR and floating point register
// before and after FP16 operation.
if (Float16NodeFactory::is_float32_binary_oper(in(1)->Opcode()) &&
in(1)->in(1)->Opcode() == Op_ConvHF2F &&
in(1)->in(2)->Opcode() == Op_ConvHF2F) {
if (Matcher::match_rule_supported(Float16NodeFactory::get_float16_binary_oper(in(1)->Opcode())) &&
Matcher::match_rule_supported(Op_ReinterpretS2HF) &&
Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
Node* in1 = phase->transform(new ReinterpretS2HFNode(in(1)->in(1)->in(1)));
Node* in2 = phase->transform(new ReinterpretS2HFNode(in(1)->in(2)->in(1)));
Node* binop = phase->transform(Float16NodeFactory::make(in(1)->Opcode(), in(1)->in(0), in1, in2));
return new ReinterpretHF2SNode(binop);
}
}
// Detects following ideal graph pattern
// ConvF2HF(binopF(conF, ConvHF2F(varS))) =>
// ReinterpretHF2SNode(binopHF(conHF, ReinterpretS2HFNode(varS)))
if (Float16NodeFactory::is_float32_binary_oper(in(1)->Opcode())) {
Node* binopF = in(1);
// Check if the incoming binary operation has one floating point constant
// input and the other input is a half precision to single precision upcasting node.
// We land here because a prior HalfFloat to Float conversion promotes
// an integral constant holding Float16 value to a floating point constant.
// i.e. ConvHF2F ConI(short) => ConF
Node* conF = nullptr;
Node* varS = nullptr;
if (binopF->in(1)->is_Con() && binopF->in(2)->Opcode() == Op_ConvHF2F) {
conF = binopF->in(1);
varS = binopF->in(2)->in(1);
} else if (binopF->in(2)->is_Con() && binopF->in(1)->Opcode() == Op_ConvHF2F) {
conF = binopF->in(2);
varS = binopF->in(1)->in(1);
}
if (conF != nullptr &&
varS != nullptr &&
conF->bottom_type()->isa_float_constant() != nullptr &&
Matcher::match_rule_supported(Float16NodeFactory::get_float16_binary_oper(binopF->Opcode())) &&
Matcher::match_rule_supported(Op_ReinterpretS2HF) &&
Matcher::match_rule_supported(Op_ReinterpretHF2S) &&
StubRoutines::hf2f_adr() != nullptr &&
StubRoutines::f2hf_adr() != nullptr) {
jfloat con = conF->bottom_type()->getf();
// Conditions under which floating point constant can be considered for a pattern match.
// 1. conF must lie within Float16 value range, otherwise we would have rounding issues:
// Doing the operation in float32 and then rounding is not the same as
// rounding first and doing the operation in float16.
// 2. If a constant value is one of the valid IEEE 754 binary32 NaN bit patterns
// then it's safe to consider it for pattern match because of the following reasons:
// a. As per section 2.8 of JVMS, Java Virtual Machine does not support
// signaling NaN value.
// b. Any signaling NaN which takes part in a non-comparison expression
// results in a quiet NaN but preserves the significand bits of signaling NaN.
// c. The pattern being matched includes a Float to Float16 conversion after binary
// expression, this downcast will still preserve the significand bits of binary32 NaN.
bool isnan = g_isnan((jdouble)con);
if (StubRoutines::hf2f(StubRoutines::f2hf(con)) == con || isnan) {
Node* newVarHF = phase->transform(new ReinterpretS2HFNode(varS));
Node* conHF = phase->makecon(TypeH::make(con));
Node* binopHF = nullptr;
// Preserving original input order for semantic correctness
// of non-commutative operation.
if (binopF->in(1) == conF) {
binopHF = phase->transform(Float16NodeFactory::make(binopF->Opcode(), binopF->in(0), conHF, newVarHF));
} else {
binopHF = phase->transform(Float16NodeFactory::make(binopF->Opcode(), binopF->in(0), newVarHF, conHF));
}
return new ReinterpretHF2SNode(binopHF);
}
}
}
return nullptr;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvF2INode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::FLOAT ) return TypeInt::INT;
const TypeF *tf = t->is_float_constant();
return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
}
//------------------------------Identity---------------------------------------
Node* ConvF2INode::Identity(PhaseGVN* phase) {
// Remove ConvF2I->ConvI2F->ConvF2I sequences.
if( in(1) ->Opcode() == Op_ConvI2F &&
in(1)->in(1)->Opcode() == Op_ConvF2I )
return in(1)->in(1);
return this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::FLOAT ) return TypeLong::LONG;
const TypeF *tf = t->is_float_constant();
return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
}
//------------------------------Identity---------------------------------------
Node* ConvF2LNode::Identity(PhaseGVN* phase) {
// Remove ConvF2L->ConvL2F->ConvF2L sequences.
if( in(1) ->Opcode() == Op_ConvL2F &&
in(1)->in(1)->Opcode() == Op_ConvF2L )
return in(1)->in(1);
return this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvHF2FNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if (t == Type::TOP) return Type::TOP;
if (t == TypeInt::SHORT || StubRoutines::hf2f_adr() == nullptr) {
return Type::FLOAT;
}
const TypeInt *ti = t->is_int();
if (ti->is_con()) {
return TypeF::make( StubRoutines::hf2f(ti->get_con()) );
}
return Type::FLOAT;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeInt *ti = t->is_int();
if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
return Type::DOUBLE;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeInt *ti = t->is_int();
if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
return Type::FLOAT;
}
//------------------------------Identity---------------------------------------
Node* ConvI2FNode::Identity(PhaseGVN* phase) {
// Remove ConvI2F->ConvF2I->ConvI2F sequences.
if( in(1) ->Opcode() == Op_ConvF2I &&
in(1)->in(1)->Opcode() == Op_ConvI2F )
return in(1)->in(1);
return this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if (t == Type::TOP) {
return Type::TOP;
}
const TypeInt *ti = t->is_int();
const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
// Join my declared type against my incoming type.
tl = tl->filter(_type);
if (!tl->isa_long()) {
return tl;
}
const TypeLong* this_type = tl->is_long();
// Do NOT remove this node's type assertion until no more loop ops can happen.
if (phase->C->post_loop_opts_phase()) {
const TypeInt* in_type = phase->type(in(1))->isa_int();
if (in_type != nullptr &&
(in_type->_lo != this_type->_lo ||
in_type->_hi != this_type->_hi)) {
// Although this WORSENS the type, it increases GVN opportunities,
// because I2L nodes with the same input will common up, regardless
// of slightly differing type assertions. Such slight differences
// arise routinely as a result of loop unrolling, so this is a
// post-unrolling graph cleanup. Choose a type which depends only
// on my input. (Exception: Keep a range assertion of >=0 or <0.)
jlong lo1 = this_type->_lo;
jlong hi1 = this_type->_hi;
int w1 = this_type->_widen;
if (lo1 >= 0) {
// Keep a range assertion of >=0.
lo1 = 0; hi1 = max_jint;
} else if (hi1 < 0) {
// Keep a range assertion of <0.
lo1 = min_jint; hi1 = -1;
} else {
lo1 = min_jint; hi1 = max_jint;
}
return TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
MIN2((jlong)in_type->_hi, hi1),
MAX2((int)in_type->_widen, w1));
}
}
return this_type;
}
Node* ConvI2LNode::Identity(PhaseGVN* phase) {
// If type is in "int" sub-range, we can
// convert I2L(L2I(x)) => x
// since the conversions have no effect.
if (in(1)->Opcode() == Op_ConvL2I) {
Node* x = in(1)->in(1);
const TypeLong* t = phase->type(x)->isa_long();
if (t != nullptr && t->_lo >= min_jint && t->_hi <= max_jint) {
return x;
}
}
return this;
}
#ifdef ASSERT
static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
jlong lo2, jlong hi2) {
// Two ranges overlap iff one range's low point falls in the other range.
return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
}
#endif
template<class T> static bool subtract_overflows(T x, T y) {
T s = java_subtract(x, y);
return (x >= 0) && (y < 0) && (s < 0);
}
template<class T> static bool subtract_underflows(T x, T y) {
T s = java_subtract(x, y);
return (x < 0) && (y > 0) && (s > 0);
}
template<class T> static bool add_overflows(T x, T y) {
T s = java_add(x, y);
return (x > 0) && (y > 0) && (s < 0);
}
template<class T> static bool add_underflows(T x, T y) {
T s = java_add(x, y);
return (x < 0) && (y < 0) && (s >= 0);
}
template<class T> static bool ranges_overlap(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
const Node* n, bool pos) {
assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
T x_y_lo;
T x_y_hi;
bool x_y_lo_overflow;
bool x_y_hi_overflow;
if (n->is_Sub()) {
x_y_lo = java_subtract(xlo, yhi);
x_y_hi = java_subtract(xhi, ylo);
x_y_lo_overflow = pos ? subtract_overflows(xlo, yhi) : subtract_underflows(xlo, yhi);
x_y_hi_overflow = pos ? subtract_overflows(xhi, ylo) : subtract_underflows(xhi, ylo);
} else {
assert(n->is_Add(), "Add or Sub only");
x_y_lo = java_add(xlo, ylo);
x_y_hi = java_add(xhi, yhi);
x_y_lo_overflow = pos ? add_overflows(xlo, ylo) : add_underflows(xlo, ylo);
x_y_hi_overflow = pos ? add_overflows(xhi, yhi) : add_underflows(xhi, yhi);
}
assert(!pos || !x_y_lo_overflow || x_y_hi_overflow, "x_y_lo_overflow => x_y_hi_overflow");
assert(pos || !x_y_hi_overflow || x_y_lo_overflow, "x_y_hi_overflow => x_y_lo_overflow");
// Two ranges overlap iff one range's low point falls in the other range.
// nbits = 32 or 64
if (pos) {
// (zlo + 2**nbits <= x_y_lo && x_y_lo <= zhi ** nbits)
if (x_y_lo_overflow) {
if (zlo <= x_y_lo && x_y_lo <= zhi) {
return true;
}
}
// (x_y_lo <= zlo + 2**nbits && zlo + 2**nbits <= x_y_hi)
if (x_y_hi_overflow) {
if ((!x_y_lo_overflow || x_y_lo <= zlo) && zlo <= x_y_hi) {
return true;
}
}
} else {
// (zlo - 2**nbits <= x_y_hi && x_y_hi <= zhi - 2**nbits)
if (x_y_hi_overflow) {
if (zlo <= x_y_hi && x_y_hi <= zhi) {
return true;
}
}
// (x_y_lo <= zhi - 2**nbits && zhi - 2**nbits <= x_y_hi)
if (x_y_lo_overflow) {
if (x_y_lo <= zhi && (!x_y_hi_overflow || zhi <= x_y_hi)) {
return true;
}
}
}
return false;
}
static bool ranges_overlap(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
const Node* n, bool pos, BasicType bt) {
jlong xlo = tx->lo_as_long();
jlong xhi = tx->hi_as_long();
jlong ylo = ty->lo_as_long();
jlong yhi = ty->hi_as_long();
jlong zlo = tz->lo_as_long();
jlong zhi = tz->hi_as_long();
if (bt == T_INT) {
// See if x+y can cause positive overflow into z+2**32
// See if x+y can cause negative overflow into z-2**32
bool res = ranges_overlap(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
checked_cast<jint>(xhi), checked_cast<jint>(yhi),
checked_cast<jint>(zlo), checked_cast<jint>(zhi), n, pos);
#ifdef ASSERT
jlong vbit = CONST64(1) << BitsPerInt;
if (n->Opcode() == Op_SubI) {
jlong ylo0 = ylo;
ylo = -yhi;
yhi = -ylo0;
}
assert(res == long_ranges_overlap(xlo+ylo, xhi+yhi, pos ? zlo+vbit : zlo-vbit, pos ? zhi+vbit : zhi-vbit), "inconsistent result");
#endif
return res;
}
assert(bt == T_LONG, "only int or long");
// See if x+y can cause positive overflow into z+2**64
// See if x+y can cause negative overflow into z-2**64
return ranges_overlap(xlo, ylo, xhi, yhi, zlo, zhi, n, pos);
}
#ifdef ASSERT
static bool compute_updates_ranges_verif(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
const Node* n) {
jlong xlo = tx->lo_as_long();
jlong xhi = tx->hi_as_long();
jlong ylo = ty->lo_as_long();
jlong yhi = ty->hi_as_long();
jlong zlo = tz->lo_as_long();
jlong zhi = tz->hi_as_long();
if (n->is_Sub()) {
swap(ylo, yhi);
ylo = -ylo;
yhi = -yhi;
}
rxlo = MAX2(xlo, zlo - yhi);
rxhi = MIN2(xhi, zhi - ylo);
rylo = MAX2(ylo, zlo - xhi);
ryhi = MIN2(yhi, zhi - xlo);
if (rxlo > rxhi || rylo > ryhi) {
return false;
}
if (n->is_Sub()) {
swap(rylo, ryhi);
rylo = -rylo;
ryhi = -ryhi;
}
assert(rxlo == (int) rxlo && rxhi == (int) rxhi, "x should not overflow");
assert(rylo == (int) rylo && ryhi == (int) ryhi, "y should not overflow");
return true;
}
#endif
template<class T> static bool compute_updates_ranges(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
const Node* n) {
assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
// Now it's always safe to assume x+y does not overflow.
// This is true even if some pairs x,y might cause overflow, as long
// as that overflow value cannot fall into [zlo,zhi].
// Confident that the arithmetic is "as if infinite precision",
// we can now use n's range to put constraints on those of x and y.
// The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
// more "restricted" range by intersecting [xlo,xhi] with the
// range obtained by subtracting y's range from the asserted range
// of the I2L conversion. Here's the interval arithmetic algebra:
// x == n-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
// => x in [zlo-yhi, zhi-ylo]
// => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
// => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
// And similarly, x changing place with y.
if (n->is_Sub()) {
if (add_overflows(zlo, ylo) || add_underflows(zhi, yhi) || subtract_underflows(xhi, zlo) ||
subtract_overflows(xlo, zhi)) {
return false;
}
rxlo = add_underflows(zlo, ylo) ? xlo : MAX2(xlo, java_add(zlo, ylo));
rxhi = add_overflows(zhi, yhi) ? xhi : MIN2(xhi, java_add(zhi, yhi));
ryhi = subtract_overflows(xhi, zlo) ? yhi : MIN2(yhi, java_subtract(xhi, zlo));
rylo = subtract_underflows(xlo, zhi) ? ylo : MAX2(ylo, java_subtract(xlo, zhi));
} else {
assert(n->is_Add(), "Add or Sub only");
if (subtract_overflows(zlo, yhi) || subtract_underflows(zhi, ylo) ||
subtract_overflows(zlo, xhi) || subtract_underflows(zhi, xlo)) {
return false;
}
rxlo = subtract_underflows(zlo, yhi) ? xlo : MAX2(xlo, java_subtract(zlo, yhi));
rxhi = subtract_overflows(zhi, ylo) ? xhi : MIN2(xhi, java_subtract(zhi, ylo));
rylo = subtract_underflows(zlo, xhi) ? ylo : MAX2(ylo, java_subtract(zlo, xhi));
ryhi = subtract_overflows(zhi, xlo) ? yhi : MIN2(yhi, java_subtract(zhi, xlo));
}
if (rxlo > rxhi || rylo > ryhi) {
return false; // x or y is dying; don't mess w/ it
}
return true;
}
static bool compute_updates_ranges(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
const TypeInteger*& rx, const TypeInteger*& ry,
const Node* n, const BasicType in_bt, BasicType out_bt) {
jlong xlo = tx->lo_as_long();
jlong xhi = tx->hi_as_long();
jlong ylo = ty->lo_as_long();
jlong yhi = ty->hi_as_long();
jlong zlo = tz->lo_as_long();
jlong zhi = tz->hi_as_long();
jlong rxlo, rxhi, rylo, ryhi;
if (in_bt == T_INT) {
#ifdef ASSERT
jlong expected_rxlo, expected_rxhi, expected_rylo, expected_ryhi;
bool expected = compute_updates_ranges_verif(tx, ty, tz,
expected_rxlo, expected_rxhi,
expected_rylo, expected_ryhi, n);
#endif
if (!compute_updates_ranges(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
checked_cast<jint>(xhi), checked_cast<jint>(yhi),
checked_cast<jint>(zlo), checked_cast<jint>(zhi),
rxlo, rxhi, rylo, ryhi, n)) {
assert(!expected, "inconsistent");
return false;
}
assert(expected && rxlo == expected_rxlo && rxhi == expected_rxhi && rylo == expected_rylo && ryhi == expected_ryhi, "inconsistent");
} else {
if (!compute_updates_ranges(xlo, ylo, xhi, yhi, zlo, zhi,
rxlo, rxhi, rylo, ryhi, n)) {
return false;
}
}
int widen = MAX2(tx->widen_limit(), ty->widen_limit());
rx = TypeInteger::make(rxlo, rxhi, widen, out_bt);
ry = TypeInteger::make(rylo, ryhi, widen, out_bt);
return true;
}
#ifdef _LP64
// If there is an existing ConvI2L node with the given parent and type, return
// it. Otherwise, create and return a new one. Both reusing existing ConvI2L
// nodes and postponing the idealization of new ones are needed to avoid an
// explosion of recursive Ideal() calls when compiling long AddI chains.
static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent,
const TypeLong* type) {
Node* n = new ConvI2LNode(parent, type);
Node* existing = igvn->hash_find_insert(n);
if (existing != nullptr) {
n->destruct(igvn);
return existing;
}
return igvn->register_new_node_with_optimizer(n);
}
#endif
bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
BasicType in_bt, BasicType out_bt) {
int op = z->Opcode();
if (op == Op_Add(in_bt) || op == Op_Sub(in_bt)) {
Node* x = z->in(1);
Node* y = z->in(2);
assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
if (phase->type(x) == Type::TOP) {
return false;
}
if (phase->type(y) == Type::TOP) {
return false;
}
const TypeInteger* tx = phase->type(x)->is_integer(in_bt);
const TypeInteger* ty = phase->type(y)->is_integer(in_bt);
if (ranges_overlap(tx, ty, tz, z, true, in_bt) ||
ranges_overlap(tx, ty, tz, z, false, in_bt)) {
return false;
}
return compute_updates_ranges(tx, ty, tz, rx, ry, z, in_bt, out_bt);
}
return false;
}
//------------------------------Ideal------------------------------------------
Node* ConvI2LNode::Ideal(PhaseGVN* phase, bool can_reshape) {
if (in(1) != nullptr && phase->type(in(1)) != Type::TOP) {
Node* progress = TypeNode::Ideal(phase, can_reshape);
if (progress != nullptr) {
return progress;
}
}
const TypeLong* this_type = this->type()->is_long();
if (can_reshape && !phase->C->post_loop_opts_phase()) {
// makes sure we run ::Value to potentially remove type assertion after loop opts
phase->C->record_for_post_loop_opts_igvn(this);
}
#ifdef _LP64
// Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
// but only if x and y have subranges that cannot cause 32-bit overflow,
// under the assumption that x+y is in my own subrange this->type().
// This assumption is based on a constraint (i.e., type assertion)
// established in Parse::array_addressing or perhaps elsewhere.
// This constraint has been adjoined to the "natural" type of
// the incoming argument in(0). We know (because of runtime
// checks) - that the result value I2L(x+y) is in the joined range.
// Hence we can restrict the incoming terms (x, y) to values such
// that their sum also lands in that range.
// This optimization is useful only on 64-bit systems, where we hope
// the addition will end up subsumed in an addressing mode.
// It is necessary to do this when optimizing an unrolled array
// copy loop such as x[i++] = y[i++].
// On 32-bit systems, it's better to perform as much 32-bit math as
// possible before the I2L conversion, because 32-bit math is cheaper.
// There's no common reason to "leak" a constant offset through the I2L.
// Addressing arithmetic will not absorb it as part of a 64-bit AddL.
PhaseIterGVN* igvn = phase->is_IterGVN();
Node* z = in(1);
const TypeInteger* rx = nullptr;
const TypeInteger* ry = nullptr;
if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT, T_LONG)) {
if (igvn == nullptr) {
// Postpone this optimization to iterative GVN, where we can handle deep
// AddI chains without an exponential number of recursive Ideal() calls.
phase->record_for_igvn(this);
return nullptr;
}
int op = z->Opcode();
Node* x = z->in(1);
Node* y = z->in(2);
Node* cx = find_or_make_convI2L(igvn, x, rx->is_long());
Node* cy = find_or_make_convI2L(igvn, y, ry->is_long());
switch (op) {
case Op_AddI: return new AddLNode(cx, cy);
case Op_SubI: return new SubLNode(cx, cy);
default: ShouldNotReachHere();
}
}
#endif //_LP64
return nullptr;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeLong *tl = t->is_long();
if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
return Type::DOUBLE;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeLong *tl = t->is_long();
if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
return Type::FLOAT;
}
//=============================================================================
//----------------------------Identity-----------------------------------------
Node* ConvL2INode::Identity(PhaseGVN* phase) {
// Convert L2I(I2L(x)) => x
if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
return this;
}
//------------------------------Value------------------------------------------
const Type* ConvL2INode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeLong *tl = t->is_long();
const TypeInt* ti = TypeInt::INT;
if (tl->is_con()) {
// Easy case.
ti = TypeInt::make((jint)tl->get_con());
} else if (tl->_lo >= min_jint && tl->_hi <= max_jint) {
ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen);
}
return ti->filter(_type);
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.
// Blow off prior masking to int
Node* ConvL2INode::Ideal(PhaseGVN* phase, bool can_reshape) {
if (in(1) != nullptr && phase->type(in(1)) != Type::TOP) {
Node* progress = TypeNode::Ideal(phase, can_reshape);
if (progress != nullptr) {
return progress;
}
}
Node *andl = in(1);
uint andl_op = andl->Opcode();
if( andl_op == Op_AndL ) {
// Blow off prior masking to int
if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
set_req_X(1,andl->in(1), phase);
return this;
}
}
// Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
// This replaces an 'AddL' with an 'AddI'.
if( andl_op == Op_AddL ) {
// Don't do this for nodes which have more than one user since
// we'll end up computing the long add anyway.
if (andl->outcnt() > 1) return nullptr;
Node* x = andl->in(1);
Node* y = andl->in(2);
assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
if (phase->type(x) == Type::TOP) return nullptr;
if (phase->type(y) == Type::TOP) return nullptr;
Node *add1 = phase->transform(new ConvL2INode(x));
Node *add2 = phase->transform(new ConvL2INode(y));
return new AddINode(add1,add2);
}
// Disable optimization: LoadL->ConvL2I ==> LoadI.
// It causes problems (sizes of Load and Store nodes do not match)
// in objects initialization code and Escape Analysis.
return nullptr;
}
//=============================================================================
RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) {
ConINode* rm = gvn.intcon(rmode);
return new RoundDoubleModeNode(arg, (Node *)rm);
}
//------------------------------Identity---------------------------------------
// Remove redundant roundings.
Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) {
int op = in(1)->Opcode();
// Redundant rounding e.g. floor(ceil(n)) -> ceil(n)
if(op == Op_RoundDoubleMode) return in(1);
return this;
}
const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const {
return Type::DOUBLE;
}
//=============================================================================
const Type* ReinterpretS2HFNode::Value(PhaseGVN* phase) const {
const Type* type = phase->type(in(1));
// Convert short constant value to a Half Float constant value
if ((type->isa_int() && type->is_int()->is_con())) {
jshort hfval = type->is_int()->get_con();
return TypeH::make(hfval);
}
return Type::HALF_FLOAT;
}
Node* ReinterpretS2HFNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_ReinterpretHF2S) {
assert(in(1)->in(1)->bottom_type()->isa_half_float(), "");
return in(1)->in(1);
}
return this;
}
const Type* ReinterpretHF2SNode::Value(PhaseGVN* phase) const {
const Type* type = phase->type(in(1));
// Convert Half float constant value to short constant value.
if (type->isa_half_float_constant()) {
jshort hfval = type->is_half_float_constant()->_f;
return TypeInt::make(hfval);
}
return TypeInt::SHORT;
}
bool Float16NodeFactory::is_float32_binary_oper(int opc) {
switch(opc) {
case Op_AddF:
case Op_SubF:
case Op_MulF:
case Op_DivF:
case Op_MaxF:
case Op_MinF:
return true;
default:
return false;
}
}
int Float16NodeFactory::get_float16_binary_oper(int opc) {
switch(opc) {
case Op_AddF:
return Op_AddHF;
case Op_SubF:
return Op_SubHF;
case Op_MulF:
return Op_MulHF;
case Op_DivF:
return Op_DivHF;
case Op_MaxF:
return Op_MaxHF;
case Op_MinF:
return Op_MinHF;
default: ShouldNotReachHere();
}
}
Node* Float16NodeFactory::make(int opc, Node* c, Node* in1, Node* in2) {
switch(opc) {
case Op_AddF: return new AddHFNode(in1, in2);
case Op_SubF: return new SubHFNode(in1, in2);
case Op_MulF: return new MulHFNode(in1, in2);
case Op_DivF: return new DivHFNode(c, in1, in2);
case Op_MaxF: return new MaxHFNode(in1, in2);
case Op_MinF: return new MinHFNode(in1, in2);
default: ShouldNotReachHere();
}
}