mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-30 04:58:25 +00:00
192 lines
6.5 KiB
C++
192 lines
6.5 KiB
C++
/*
|
|
* Copyright (c) 2008, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/assembler.hpp"
|
|
#include "asm/assembler.inline.hpp"
|
|
#include "ci/ciEnv.hpp"
|
|
#include "gc/shared/cardTableModRefBS.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "interpreter/interpreterRuntime.hpp"
|
|
#include "interpreter/templateInterpreterGenerator.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "prims/methodHandles.hpp"
|
|
#include "runtime/biasedLocking.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "utilities/hashtable.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#if INCLUDE_ALL_GCS
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
|
|
#include "gc/g1/heapRegion.hpp"
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
// Returns whether given imm has equal bit fields <0:size-1> and <size:2*size-1>.
|
|
inline bool Assembler::LogicalImmediate::has_equal_subpatterns(uintx imm, int size) {
|
|
uintx mask = right_n_bits(size);
|
|
uintx subpattern1 = mask_bits(imm, mask);
|
|
uintx subpattern2 = mask_bits(imm >> size, mask);
|
|
return subpattern1 == subpattern2;
|
|
}
|
|
|
|
// Returns least size that is a power of two from 2 to 64 with the proviso that given
|
|
// imm is composed of repeating patterns of this size.
|
|
inline int Assembler::LogicalImmediate::least_pattern_size(uintx imm) {
|
|
int size = BitsPerWord;
|
|
while (size > 2 && has_equal_subpatterns(imm, size >> 1)) {
|
|
size >>= 1;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
// Returns count of set bits in given imm. Based on variable-precision SWAR algorithm.
|
|
inline int Assembler::LogicalImmediate::population_count(uintx x) {
|
|
x -= ((x >> 1) & 0x5555555555555555L);
|
|
x = (((x >> 2) & 0x3333333333333333L) + (x & 0x3333333333333333L));
|
|
x = (((x >> 4) + x) & 0x0f0f0f0f0f0f0f0fL);
|
|
x += (x >> 8);
|
|
x += (x >> 16);
|
|
x += (x >> 32);
|
|
return(x & 0x7f);
|
|
}
|
|
|
|
// Let given x be <A:B> where B = 0 and least bit of A = 1. Returns <A:C>, where C is B-size set bits.
|
|
inline uintx Assembler::LogicalImmediate::set_least_zeroes(uintx x) {
|
|
return x | (x - 1);
|
|
}
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
// Restores immediate by encoded bit masks.
|
|
uintx Assembler::LogicalImmediate::decode() {
|
|
assert (_encoded, "should be");
|
|
|
|
int len_code = (_immN << 6) | ((~_imms) & 0x3f);
|
|
assert (len_code != 0, "should be");
|
|
|
|
int len = 6;
|
|
while (!is_set_nth_bit(len_code, len)) len--;
|
|
int esize = 1 << len;
|
|
assert (len > 0, "should be");
|
|
assert ((_is32bit ? 32 : 64) >= esize, "should be");
|
|
|
|
int levels = right_n_bits(len);
|
|
int S = _imms & levels;
|
|
int R = _immr & levels;
|
|
|
|
assert (S != levels, "should be");
|
|
|
|
uintx welem = right_n_bits(S + 1);
|
|
uintx wmask = (R == 0) ? welem : ((welem >> R) | (welem << (esize - R)));
|
|
|
|
for (int size = esize; size < 64; size <<= 1) {
|
|
wmask |= (wmask << size);
|
|
}
|
|
|
|
return wmask;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
// Constructs LogicalImmediate by given imm. Figures out if given imm can be used in AArch64 logical
|
|
// instructions (AND, ANDS, EOR, ORR) and saves its encoding.
|
|
void Assembler::LogicalImmediate::construct(uintx imm, bool is32) {
|
|
_is32bit = is32;
|
|
|
|
if (is32) {
|
|
assert(((imm >> 32) == 0) || (((intx)imm >> 31) == -1), "32-bit immediate is out of range");
|
|
|
|
// Replicate low 32 bits.
|
|
imm &= 0xffffffff;
|
|
imm |= imm << 32;
|
|
}
|
|
|
|
// All-zeroes and all-ones can not be encoded.
|
|
if (imm != 0 && (~imm != 0)) {
|
|
|
|
// Let LPS (least pattern size) be the least size (power of two from 2 to 64) of repeating
|
|
// patterns in the immediate. If immediate value can be encoded, it is encoded by pattern
|
|
// of exactly LPS size (due to structure of valid patterns). In order to verify
|
|
// that immediate value can be encoded, LPS is calculated and <LPS-1:0> bits of immediate
|
|
// are verified to be valid pattern.
|
|
int lps = least_pattern_size(imm);
|
|
uintx lps_mask = right_n_bits(lps);
|
|
|
|
// A valid pattern has one of the following forms:
|
|
// | 0 x A | 1 x B | 0 x C |, where B > 0 and C > 0, or
|
|
// | 1 x A | 0 x B | 1 x C |, where B > 0 and C > 0.
|
|
// For simplicity, the second form of the pattern is inverted into the first form.
|
|
bool inverted = imm & 0x1;
|
|
uintx pattern = (inverted ? ~imm : imm) & lps_mask;
|
|
|
|
// | 0 x A | 1 x (B + C) |
|
|
uintx without_least_zeroes = set_least_zeroes(pattern);
|
|
|
|
// Pattern is valid iff without least zeroes it is a power of two - 1.
|
|
if ((without_least_zeroes & (without_least_zeroes + 1)) == 0) {
|
|
|
|
// Count B as population count of pattern.
|
|
int bits_count = population_count(pattern);
|
|
|
|
// Count B+C as population count of pattern without least zeroes
|
|
int left_range = population_count(without_least_zeroes);
|
|
|
|
// S-prefix is a part of imms field which encodes LPS.
|
|
// LPS | S prefix
|
|
// 64 | not defined
|
|
// 32 | 0b0
|
|
// 16 | 0b10
|
|
// 8 | 0b110
|
|
// 4 | 0b1110
|
|
// 2 | 0b11110
|
|
int s_prefix = (lps == 64) ? 0 : ~set_least_zeroes(lps) & 0x3f;
|
|
|
|
// immN bit is set iff LPS == 64.
|
|
_immN = (lps == 64) ? 1 : 0;
|
|
assert (!is32 || (_immN == 0), "32-bit immediate should be encoded with zero N-bit");
|
|
|
|
// immr is the rotation size.
|
|
_immr = lps + (inverted ? 0 : bits_count) - left_range;
|
|
|
|
// imms is the field that encodes bits count and S-prefix.
|
|
_imms = ((inverted ? (lps - bits_count) : bits_count) - 1) | s_prefix;
|
|
|
|
_encoded = true;
|
|
assert (decode() == imm, "illegal encoding");
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
_encoded = false;
|
|
}
|