mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
7068 lines
235 KiB
C++
7068 lines
235 KiB
C++
/*
|
|
* Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "asm/assembler.hpp"
|
|
#include "asm/assembler.inline.hpp"
|
|
#include "ci/ciEnv.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "compiler/compileTask.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "compiler/oopMap.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/barrierSetAssembler.hpp"
|
|
#include "gc/shared/cardTableBarrierSet.hpp"
|
|
#include "gc/shared/cardTable.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/tlab_globals.hpp"
|
|
#include "interpreter/bytecodeHistogram.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "interpreter/interpreterRuntime.hpp"
|
|
#include "jvm.h"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "nativeInst_aarch64.hpp"
|
|
#include "oops/accessDecorators.hpp"
|
|
#include "oops/compressedKlass.inline.hpp"
|
|
#include "oops/compressedOops.inline.hpp"
|
|
#include "oops/klass.inline.hpp"
|
|
#include "runtime/continuation.hpp"
|
|
#include "runtime/icache.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/javaThread.hpp"
|
|
#include "runtime/jniHandles.inline.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_LIRAssembler.hpp"
|
|
#endif
|
|
#ifdef COMPILER2
|
|
#include "oops/oop.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/node.hpp"
|
|
#include "opto/output.hpp"
|
|
#endif
|
|
|
|
#include <sys/types.h>
|
|
|
|
#ifdef PRODUCT
|
|
#define BLOCK_COMMENT(str) /* nothing */
|
|
#else
|
|
#define BLOCK_COMMENT(str) block_comment(str)
|
|
#endif
|
|
#define STOP(str) stop(str);
|
|
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
|
|
|
|
#ifdef ASSERT
|
|
extern "C" void disnm(intptr_t p);
|
|
#endif
|
|
// Target-dependent relocation processing
|
|
//
|
|
// Instruction sequences whose target may need to be retrieved or
|
|
// patched are distinguished by their leading instruction, sorting
|
|
// them into three main instruction groups and related subgroups.
|
|
//
|
|
// 1) Branch, Exception and System (insn count = 1)
|
|
// 1a) Unconditional branch (immediate):
|
|
// b/bl imm19
|
|
// 1b) Compare & branch (immediate):
|
|
// cbz/cbnz Rt imm19
|
|
// 1c) Test & branch (immediate):
|
|
// tbz/tbnz Rt imm14
|
|
// 1d) Conditional branch (immediate):
|
|
// b.cond imm19
|
|
//
|
|
// 2) Loads and Stores (insn count = 1)
|
|
// 2a) Load register literal:
|
|
// ldr Rt imm19
|
|
//
|
|
// 3) Data Processing Immediate (insn count = 2 or 3)
|
|
// 3a) PC-rel. addressing
|
|
// adr/adrp Rx imm21; ldr/str Ry Rx #imm12
|
|
// adr/adrp Rx imm21; add Ry Rx #imm12
|
|
// adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page]
|
|
// adr/adrp Rx imm21
|
|
// adr/adrp Rx imm21; movk Rx #imm16<<32
|
|
// adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page
|
|
// The latter form can only happen when the target is an
|
|
// ExternalAddress, and (by definition) ExternalAddresses don't
|
|
// move. Because of that property, there is never any need to
|
|
// patch the last of the three instructions. However,
|
|
// MacroAssembler::target_addr_for_insn takes all three
|
|
// instructions into account and returns the correct address.
|
|
// 3b) Move wide (immediate)
|
|
// movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32;
|
|
//
|
|
// A switch on a subset of the instruction's bits provides an
|
|
// efficient dispatch to these subcases.
|
|
//
|
|
// insn[28:26] -> main group ('x' == don't care)
|
|
// 00x -> UNALLOCATED
|
|
// 100 -> Data Processing Immediate
|
|
// 101 -> Branch, Exception and System
|
|
// x1x -> Loads and Stores
|
|
//
|
|
// insn[30:25] -> subgroup ('_' == group, 'x' == don't care).
|
|
// n.b. in some cases extra bits need to be checked to verify the
|
|
// instruction is as expected
|
|
//
|
|
// 1) ... xx101x Branch, Exception and System
|
|
// 1a) 00___x Unconditional branch (immediate)
|
|
// 1b) 01___0 Compare & branch (immediate)
|
|
// 1c) 01___1 Test & branch (immediate)
|
|
// 1d) 10___0 Conditional branch (immediate)
|
|
// other Should not happen
|
|
//
|
|
// 2) ... xxx1x0 Loads and Stores
|
|
// 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0)
|
|
// 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0)
|
|
// strictly should be 64 bit non-FP/SIMD i.e.
|
|
// 0101_000 (i.e. requires insn[31:24] == 01011000)
|
|
//
|
|
// 3) ... xx100x Data Processing Immediate
|
|
// 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0)
|
|
// 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01)
|
|
// strictly should be 64 bit movz #imm16<<0
|
|
// 110___10100 (i.e. requires insn[31:21] == 11010010100)
|
|
//
|
|
|
|
static uint32_t insn_at(address insn_addr, int n) {
|
|
return ((uint32_t*)insn_addr)[n];
|
|
}
|
|
|
|
template<typename T>
|
|
class RelocActions : public AllStatic {
|
|
|
|
public:
|
|
|
|
static int ALWAYSINLINE run(address insn_addr, address &target) {
|
|
int instructions = 1;
|
|
uint32_t insn = insn_at(insn_addr, 0);
|
|
|
|
uint32_t dispatch = Instruction_aarch64::extract(insn, 30, 25);
|
|
switch(dispatch) {
|
|
case 0b001010:
|
|
case 0b001011: {
|
|
instructions = T::unconditionalBranch(insn_addr, target);
|
|
break;
|
|
}
|
|
case 0b101010: // Conditional branch (immediate)
|
|
case 0b011010: { // Compare & branch (immediate)
|
|
instructions = T::conditionalBranch(insn_addr, target);
|
|
break;
|
|
}
|
|
case 0b011011: {
|
|
instructions = T::testAndBranch(insn_addr, target);
|
|
break;
|
|
}
|
|
case 0b001100:
|
|
case 0b001110:
|
|
case 0b011100:
|
|
case 0b011110:
|
|
case 0b101100:
|
|
case 0b101110:
|
|
case 0b111100:
|
|
case 0b111110: {
|
|
// load/store
|
|
if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
|
|
// Load register (literal)
|
|
instructions = T::loadStore(insn_addr, target);
|
|
break;
|
|
} else {
|
|
// nothing to do
|
|
assert(target == nullptr, "did not expect to relocate target for polling page load");
|
|
}
|
|
break;
|
|
}
|
|
case 0b001000:
|
|
case 0b011000:
|
|
case 0b101000:
|
|
case 0b111000: {
|
|
// adr/adrp
|
|
assert(Instruction_aarch64::extract(insn, 28, 24) == 0b10000, "must be");
|
|
int shift = Instruction_aarch64::extract(insn, 31, 31);
|
|
if (shift) {
|
|
uint32_t insn2 = insn_at(insn_addr, 1);
|
|
if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
|
|
Instruction_aarch64::extract(insn, 4, 0) ==
|
|
Instruction_aarch64::extract(insn2, 9, 5)) {
|
|
instructions = T::adrp(insn_addr, target, T::adrpMem);
|
|
} else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
|
|
Instruction_aarch64::extract(insn, 4, 0) ==
|
|
Instruction_aarch64::extract(insn2, 4, 0)) {
|
|
instructions = T::adrp(insn_addr, target, T::adrpAdd);
|
|
} else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
|
|
Instruction_aarch64::extract(insn, 4, 0) ==
|
|
Instruction_aarch64::extract(insn2, 4, 0)) {
|
|
instructions = T::adrp(insn_addr, target, T::adrpMovk);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
instructions = T::adr(insn_addr, target);
|
|
}
|
|
break;
|
|
}
|
|
case 0b001001:
|
|
case 0b011001:
|
|
case 0b101001:
|
|
case 0b111001: {
|
|
instructions = T::immediate(insn_addr, target);
|
|
break;
|
|
}
|
|
default: {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
T::verify(insn_addr, target);
|
|
return instructions * NativeInstruction::instruction_size;
|
|
}
|
|
};
|
|
|
|
class Patcher : public AllStatic {
|
|
public:
|
|
static int unconditionalBranch(address insn_addr, address &target) {
|
|
intptr_t offset = (target - insn_addr) >> 2;
|
|
Instruction_aarch64::spatch(insn_addr, 25, 0, offset);
|
|
return 1;
|
|
}
|
|
static int conditionalBranch(address insn_addr, address &target) {
|
|
intptr_t offset = (target - insn_addr) >> 2;
|
|
Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
|
|
return 1;
|
|
}
|
|
static int testAndBranch(address insn_addr, address &target) {
|
|
intptr_t offset = (target - insn_addr) >> 2;
|
|
Instruction_aarch64::spatch(insn_addr, 18, 5, offset);
|
|
return 1;
|
|
}
|
|
static int loadStore(address insn_addr, address &target) {
|
|
intptr_t offset = (target - insn_addr) >> 2;
|
|
Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
|
|
return 1;
|
|
}
|
|
static int adr(address insn_addr, address &target) {
|
|
#ifdef ASSERT
|
|
assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 28, 24) == 0b10000, "must be");
|
|
#endif
|
|
// PC-rel. addressing
|
|
ptrdiff_t offset = target - insn_addr;
|
|
int offset_lo = offset & 3;
|
|
offset >>= 2;
|
|
Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
|
|
Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
|
|
return 1;
|
|
}
|
|
template<typename U>
|
|
static int adrp(address insn_addr, address &target, U inner) {
|
|
int instructions = 1;
|
|
#ifdef ASSERT
|
|
assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 28, 24) == 0b10000, "must be");
|
|
#endif
|
|
ptrdiff_t offset = target - insn_addr;
|
|
instructions = 2;
|
|
precond(inner != nullptr);
|
|
// Give the inner reloc a chance to modify the target.
|
|
address adjusted_target = target;
|
|
instructions = inner(insn_addr, adjusted_target);
|
|
uintptr_t pc_page = (uintptr_t)insn_addr >> 12;
|
|
uintptr_t adr_page = (uintptr_t)adjusted_target >> 12;
|
|
offset = adr_page - pc_page;
|
|
int offset_lo = offset & 3;
|
|
offset >>= 2;
|
|
Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
|
|
Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
|
|
return instructions;
|
|
}
|
|
static int adrpMem(address insn_addr, address &target) {
|
|
uintptr_t dest = (uintptr_t)target;
|
|
int offset_lo = dest & 0xfff;
|
|
uint32_t insn2 = insn_at(insn_addr, 1);
|
|
uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
|
|
Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size);
|
|
guarantee(((dest >> size) << size) == dest, "misaligned target");
|
|
return 2;
|
|
}
|
|
static int adrpAdd(address insn_addr, address &target) {
|
|
uintptr_t dest = (uintptr_t)target;
|
|
int offset_lo = dest & 0xfff;
|
|
Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo);
|
|
return 2;
|
|
}
|
|
static int adrpMovk(address insn_addr, address &target) {
|
|
uintptr_t dest = uintptr_t(target);
|
|
Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32);
|
|
dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL);
|
|
target = address(dest);
|
|
return 2;
|
|
}
|
|
static int immediate(address insn_addr, address &target) {
|
|
assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 31, 21) == 0b11010010100, "must be");
|
|
uint64_t dest = (uint64_t)target;
|
|
// Move wide constant
|
|
assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
|
|
assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
|
|
Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
|
|
Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
|
|
Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
|
|
return 3;
|
|
}
|
|
static void verify(address insn_addr, address &target) {
|
|
#ifdef ASSERT
|
|
address address_is = MacroAssembler::target_addr_for_insn(insn_addr);
|
|
if (!(address_is == target)) {
|
|
tty->print_cr("%p at %p should be %p", address_is, insn_addr, target);
|
|
disnm((intptr_t)insn_addr);
|
|
assert(address_is == target, "should be");
|
|
}
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// If insn1 and insn2 use the same register to form an address, either
|
|
// by an offsetted LDR or a simple ADD, return the offset. If the
|
|
// second instruction is an LDR, the offset may be scaled.
|
|
static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) {
|
|
if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
|
|
Instruction_aarch64::extract(insn1, 4, 0) ==
|
|
Instruction_aarch64::extract(insn2, 9, 5)) {
|
|
// Load/store register (unsigned immediate)
|
|
byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
|
|
uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
|
|
byte_offset <<= size;
|
|
return true;
|
|
} else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
|
|
Instruction_aarch64::extract(insn1, 4, 0) ==
|
|
Instruction_aarch64::extract(insn2, 4, 0)) {
|
|
// add (immediate)
|
|
byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
class AArch64Decoder : public AllStatic {
|
|
public:
|
|
|
|
static int loadStore(address insn_addr, address &target) {
|
|
intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 23, 5);
|
|
target = insn_addr + (offset << 2);
|
|
return 1;
|
|
}
|
|
static int unconditionalBranch(address insn_addr, address &target) {
|
|
intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 25, 0);
|
|
target = insn_addr + (offset << 2);
|
|
return 1;
|
|
}
|
|
static int conditionalBranch(address insn_addr, address &target) {
|
|
intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 23, 5);
|
|
target = address(((uint64_t)insn_addr + (offset << 2)));
|
|
return 1;
|
|
}
|
|
static int testAndBranch(address insn_addr, address &target) {
|
|
intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 18, 5);
|
|
target = address(((uint64_t)insn_addr + (offset << 2)));
|
|
return 1;
|
|
}
|
|
static int adr(address insn_addr, address &target) {
|
|
// PC-rel. addressing
|
|
uint32_t insn = insn_at(insn_addr, 0);
|
|
intptr_t offset = Instruction_aarch64::extract(insn, 30, 29);
|
|
offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
|
|
target = address((uint64_t)insn_addr + offset);
|
|
return 1;
|
|
}
|
|
template<typename U>
|
|
static int adrp(address insn_addr, address &target, U inner) {
|
|
uint32_t insn = insn_at(insn_addr, 0);
|
|
assert(Instruction_aarch64::extract(insn, 28, 24) == 0b10000, "must be");
|
|
intptr_t offset = Instruction_aarch64::extract(insn, 30, 29);
|
|
offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
|
|
int shift = 12;
|
|
offset <<= shift;
|
|
uint64_t target_page = ((uint64_t)insn_addr) + offset;
|
|
target_page &= ((uint64_t)-1) << shift;
|
|
uint32_t insn2 = insn_at(insn_addr, 1);
|
|
target = address(target_page);
|
|
precond(inner != nullptr);
|
|
inner(insn_addr, target);
|
|
return 2;
|
|
}
|
|
static int adrpMem(address insn_addr, address &target) {
|
|
uint32_t insn2 = insn_at(insn_addr, 1);
|
|
// Load/store register (unsigned immediate)
|
|
ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
|
|
uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
|
|
byte_offset <<= size;
|
|
target += byte_offset;
|
|
return 2;
|
|
}
|
|
static int adrpAdd(address insn_addr, address &target) {
|
|
uint32_t insn2 = insn_at(insn_addr, 1);
|
|
// add (immediate)
|
|
ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
|
|
target += byte_offset;
|
|
return 2;
|
|
}
|
|
static int adrpMovk(address insn_addr, address &target) {
|
|
uint32_t insn2 = insn_at(insn_addr, 1);
|
|
uint64_t dest = uint64_t(target);
|
|
dest = (dest & 0xffff0000ffffffff) |
|
|
((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
|
|
target = address(dest);
|
|
|
|
// We know the destination 4k page. Maybe we have a third
|
|
// instruction.
|
|
uint32_t insn = insn_at(insn_addr, 0);
|
|
uint32_t insn3 = insn_at(insn_addr, 2);
|
|
ptrdiff_t byte_offset;
|
|
if (offset_for(insn, insn3, byte_offset)) {
|
|
target += byte_offset;
|
|
return 3;
|
|
} else {
|
|
return 2;
|
|
}
|
|
}
|
|
static int immediate(address insn_addr, address &target) {
|
|
uint32_t *insns = (uint32_t *)insn_addr;
|
|
assert(Instruction_aarch64::extract(insns[0], 31, 21) == 0b11010010100, "must be");
|
|
// Move wide constant: movz, movk, movk. See movptr().
|
|
assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
|
|
assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
|
|
target = address(uint64_t(Instruction_aarch64::extract(insns[0], 20, 5))
|
|
+ (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
|
|
+ (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
|
|
assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
|
|
assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
|
|
return 3;
|
|
}
|
|
static void verify(address insn_addr, address &target) {
|
|
}
|
|
};
|
|
|
|
address MacroAssembler::target_addr_for_insn(address insn_addr) {
|
|
address target;
|
|
RelocActions<AArch64Decoder>::run(insn_addr, target);
|
|
return target;
|
|
}
|
|
|
|
// Patch any kind of instruction; there may be several instructions.
|
|
// Return the total length (in bytes) of the instructions.
|
|
int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) {
|
|
return RelocActions<Patcher>::run(insn_addr, target);
|
|
}
|
|
|
|
int MacroAssembler::patch_oop(address insn_addr, address o) {
|
|
int instructions;
|
|
unsigned insn = *(unsigned*)insn_addr;
|
|
assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
|
|
|
|
// OOPs are either narrow (32 bits) or wide (48 bits). We encode
|
|
// narrow OOPs by setting the upper 16 bits in the first
|
|
// instruction.
|
|
if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
|
|
// Move narrow OOP
|
|
uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o));
|
|
Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
|
|
Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
|
|
instructions = 2;
|
|
} else {
|
|
// Move wide OOP
|
|
assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
|
|
uintptr_t dest = (uintptr_t)o;
|
|
Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
|
|
Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
|
|
Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
|
|
instructions = 3;
|
|
}
|
|
return instructions * NativeInstruction::instruction_size;
|
|
}
|
|
|
|
int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
|
|
// Metadata pointers are either narrow (32 bits) or wide (48 bits).
|
|
// We encode narrow ones by setting the upper 16 bits in the first
|
|
// instruction.
|
|
NativeInstruction *insn = nativeInstruction_at(insn_addr);
|
|
assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
|
|
nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
|
|
|
|
Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
|
|
Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
|
|
return 2 * NativeInstruction::instruction_size;
|
|
}
|
|
|
|
address MacroAssembler::target_addr_for_insn_or_null(address insn_addr) {
|
|
if (NativeInstruction::is_ldrw_to_zr(insn_addr)) {
|
|
return nullptr;
|
|
}
|
|
return MacroAssembler::target_addr_for_insn(insn_addr);
|
|
}
|
|
|
|
void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp) {
|
|
ldr(tmp, Address(rthread, JavaThread::polling_word_offset()));
|
|
if (at_return) {
|
|
// Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
|
|
// we may safely use the sp instead to perform the stack watermark check.
|
|
cmp(in_nmethod ? sp : rfp, tmp);
|
|
br(Assembler::HI, slow_path);
|
|
} else {
|
|
tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::rt_call(address dest, Register tmp) {
|
|
CodeBlob *cb = CodeCache::find_blob(dest);
|
|
if (cb) {
|
|
far_call(RuntimeAddress(dest));
|
|
} else {
|
|
lea(tmp, RuntimeAddress(dest));
|
|
blr(tmp);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::push_cont_fastpath(Register java_thread) {
|
|
if (!Continuations::enabled()) return;
|
|
Label done;
|
|
ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
|
|
cmp(sp, rscratch1);
|
|
br(Assembler::LS, done);
|
|
mov(rscratch1, sp); // we can't use sp as the source in str
|
|
str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
|
|
bind(done);
|
|
}
|
|
|
|
void MacroAssembler::pop_cont_fastpath(Register java_thread) {
|
|
if (!Continuations::enabled()) return;
|
|
Label done;
|
|
ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
|
|
cmp(sp, rscratch1);
|
|
br(Assembler::LO, done);
|
|
str(zr, Address(java_thread, JavaThread::cont_fastpath_offset()));
|
|
bind(done);
|
|
}
|
|
|
|
void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
|
|
// we must set sp to zero to clear frame
|
|
str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
|
|
|
|
// must clear fp, so that compiled frames are not confused; it is
|
|
// possible that we need it only for debugging
|
|
if (clear_fp) {
|
|
str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
|
|
}
|
|
|
|
// Always clear the pc because it could have been set by make_walkable()
|
|
str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
|
|
}
|
|
|
|
// Calls to C land
|
|
//
|
|
// When entering C land, the rfp, & resp of the last Java frame have to be recorded
|
|
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
|
|
// has to be reset to 0. This is required to allow proper stack traversal.
|
|
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
Register last_java_pc,
|
|
Register scratch) {
|
|
|
|
if (last_java_pc->is_valid()) {
|
|
str(last_java_pc, Address(rthread,
|
|
JavaThread::frame_anchor_offset()
|
|
+ JavaFrameAnchor::last_Java_pc_offset()));
|
|
}
|
|
|
|
// determine last_java_sp register
|
|
if (last_java_sp == sp) {
|
|
mov(scratch, sp);
|
|
last_java_sp = scratch;
|
|
} else if (!last_java_sp->is_valid()) {
|
|
last_java_sp = esp;
|
|
}
|
|
|
|
// last_java_fp is optional
|
|
if (last_java_fp->is_valid()) {
|
|
str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
|
|
}
|
|
|
|
// We must set sp last.
|
|
str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
|
|
}
|
|
|
|
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
address last_java_pc,
|
|
Register scratch) {
|
|
assert(last_java_pc != nullptr, "must provide a valid PC");
|
|
|
|
adr(scratch, last_java_pc);
|
|
str(scratch, Address(rthread,
|
|
JavaThread::frame_anchor_offset()
|
|
+ JavaFrameAnchor::last_Java_pc_offset()));
|
|
|
|
set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
|
|
}
|
|
|
|
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
Label &L,
|
|
Register scratch) {
|
|
if (L.is_bound()) {
|
|
set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
|
|
} else {
|
|
InstructionMark im(this);
|
|
L.add_patch_at(code(), locator());
|
|
set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch);
|
|
}
|
|
}
|
|
|
|
static inline bool target_needs_far_branch(address addr) {
|
|
if (AOTCodeCache::is_on_for_dump()) {
|
|
return true;
|
|
}
|
|
// codecache size <= 128M
|
|
if (!MacroAssembler::far_branches()) {
|
|
return false;
|
|
}
|
|
// codecache size > 240M
|
|
if (MacroAssembler::codestub_branch_needs_far_jump()) {
|
|
return true;
|
|
}
|
|
// codecache size: 128M..240M
|
|
return !CodeCache::is_non_nmethod(addr);
|
|
}
|
|
|
|
void MacroAssembler::far_call(Address entry, Register tmp) {
|
|
assert(ReservedCodeCacheSize < 4*G, "branch out of range");
|
|
assert(CodeCache::find_blob(entry.target()) != nullptr,
|
|
"destination of far call not found in code cache");
|
|
assert(entry.rspec().type() == relocInfo::external_word_type
|
|
|| entry.rspec().type() == relocInfo::runtime_call_type
|
|
|| entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
|
|
if (target_needs_far_branch(entry.target())) {
|
|
uint64_t offset;
|
|
// We can use ADRP here because we know that the total size of
|
|
// the code cache cannot exceed 2Gb (ADRP limit is 4GB).
|
|
adrp(tmp, entry, offset);
|
|
add(tmp, tmp, offset);
|
|
blr(tmp);
|
|
} else {
|
|
bl(entry);
|
|
}
|
|
}
|
|
|
|
int MacroAssembler::far_jump(Address entry, Register tmp) {
|
|
assert(ReservedCodeCacheSize < 4*G, "branch out of range");
|
|
assert(CodeCache::find_blob(entry.target()) != nullptr,
|
|
"destination of far call not found in code cache");
|
|
assert(entry.rspec().type() == relocInfo::external_word_type
|
|
|| entry.rspec().type() == relocInfo::runtime_call_type
|
|
|| entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
|
|
address start = pc();
|
|
if (target_needs_far_branch(entry.target())) {
|
|
uint64_t offset;
|
|
// We can use ADRP here because we know that the total size of
|
|
// the code cache cannot exceed 2Gb (ADRP limit is 4GB).
|
|
adrp(tmp, entry, offset);
|
|
add(tmp, tmp, offset);
|
|
br(tmp);
|
|
} else {
|
|
b(entry);
|
|
}
|
|
return pc() - start;
|
|
}
|
|
|
|
void MacroAssembler::reserved_stack_check() {
|
|
// testing if reserved zone needs to be enabled
|
|
Label no_reserved_zone_enabling;
|
|
|
|
ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
|
|
cmp(sp, rscratch1);
|
|
br(Assembler::LO, no_reserved_zone_enabling);
|
|
|
|
enter(); // LR and FP are live.
|
|
lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)));
|
|
mov(c_rarg0, rthread);
|
|
blr(rscratch1);
|
|
leave();
|
|
|
|
// We have already removed our own frame.
|
|
// throw_delayed_StackOverflowError will think that it's been
|
|
// called by our caller.
|
|
lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
|
|
br(rscratch1);
|
|
should_not_reach_here();
|
|
|
|
bind(no_reserved_zone_enabling);
|
|
}
|
|
|
|
static void pass_arg0(MacroAssembler* masm, Register arg) {
|
|
if (c_rarg0 != arg ) {
|
|
masm->mov(c_rarg0, arg);
|
|
}
|
|
}
|
|
|
|
static void pass_arg1(MacroAssembler* masm, Register arg) {
|
|
if (c_rarg1 != arg ) {
|
|
masm->mov(c_rarg1, arg);
|
|
}
|
|
}
|
|
|
|
static void pass_arg2(MacroAssembler* masm, Register arg) {
|
|
if (c_rarg2 != arg ) {
|
|
masm->mov(c_rarg2, arg);
|
|
}
|
|
}
|
|
|
|
static void pass_arg3(MacroAssembler* masm, Register arg) {
|
|
if (c_rarg3 != arg ) {
|
|
masm->mov(c_rarg3, arg);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::call_VM_base(Register oop_result,
|
|
Register java_thread,
|
|
Register last_java_sp,
|
|
Label* return_pc,
|
|
address entry_point,
|
|
int number_of_arguments,
|
|
bool check_exceptions) {
|
|
// determine java_thread register
|
|
if (!java_thread->is_valid()) {
|
|
java_thread = rthread;
|
|
}
|
|
|
|
// determine last_java_sp register
|
|
if (!last_java_sp->is_valid()) {
|
|
last_java_sp = esp;
|
|
}
|
|
|
|
// debugging support
|
|
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
|
|
assert(java_thread == rthread, "unexpected register");
|
|
#ifdef ASSERT
|
|
// TraceBytecodes does not use r12 but saves it over the call, so don't verify
|
|
// if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
|
|
#endif // ASSERT
|
|
|
|
assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
|
|
assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
|
|
|
|
// push java thread (becomes first argument of C function)
|
|
|
|
mov(c_rarg0, java_thread);
|
|
|
|
// set last Java frame before call
|
|
assert(last_java_sp != rfp, "can't use rfp");
|
|
|
|
Label l;
|
|
set_last_Java_frame(last_java_sp, rfp, return_pc != nullptr ? *return_pc : l, rscratch1);
|
|
|
|
// do the call, remove parameters
|
|
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
|
|
|
|
// lr could be poisoned with PAC signature during throw_pending_exception
|
|
// if it was tail-call optimized by compiler, since lr is not callee-saved
|
|
// reload it with proper value
|
|
adr(lr, l);
|
|
|
|
// reset last Java frame
|
|
// Only interpreter should have to clear fp
|
|
reset_last_Java_frame(true);
|
|
|
|
// C++ interp handles this in the interpreter
|
|
check_and_handle_popframe(java_thread);
|
|
check_and_handle_earlyret(java_thread);
|
|
|
|
if (check_exceptions) {
|
|
// check for pending exceptions (java_thread is set upon return)
|
|
ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
|
|
Label ok;
|
|
cbz(rscratch1, ok);
|
|
lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
|
|
br(rscratch1);
|
|
bind(ok);
|
|
}
|
|
|
|
// get oop result if there is one and reset the value in the thread
|
|
if (oop_result->is_valid()) {
|
|
get_vm_result_oop(oop_result, java_thread);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
|
|
call_VM_base(oop_result, noreg, noreg, nullptr, entry_point, number_of_arguments, check_exceptions);
|
|
}
|
|
|
|
// Check the entry target is always reachable from any branch.
|
|
static bool is_always_within_branch_range(Address entry) {
|
|
if (AOTCodeCache::is_on_for_dump()) {
|
|
return false;
|
|
}
|
|
const address target = entry.target();
|
|
|
|
if (!CodeCache::contains(target)) {
|
|
// We always use trampolines for callees outside CodeCache.
|
|
assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target");
|
|
return false;
|
|
}
|
|
|
|
if (!MacroAssembler::far_branches()) {
|
|
return true;
|
|
}
|
|
|
|
if (entry.rspec().type() == relocInfo::runtime_call_type) {
|
|
// Runtime calls are calls of a non-compiled method (stubs, adapters).
|
|
// Non-compiled methods stay forever in CodeCache.
|
|
// We check whether the longest possible branch is within the branch range.
|
|
assert(CodeCache::find_blob(target) != nullptr &&
|
|
!CodeCache::find_blob(target)->is_nmethod(),
|
|
"runtime call of compiled method");
|
|
const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size;
|
|
const address left_longest_branch_start = CodeCache::low_bound();
|
|
const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) &&
|
|
Assembler::reachable_from_branch_at(right_longest_branch_start, target);
|
|
return is_reachable;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Maybe emit a call via a trampoline. If the code cache is small
|
|
// trampolines won't be emitted.
|
|
address MacroAssembler::trampoline_call(Address entry) {
|
|
assert(entry.rspec().type() == relocInfo::runtime_call_type
|
|
|| entry.rspec().type() == relocInfo::opt_virtual_call_type
|
|
|| entry.rspec().type() == relocInfo::static_call_type
|
|
|| entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
|
|
|
|
address target = entry.target();
|
|
|
|
if (!is_always_within_branch_range(entry)) {
|
|
if (!in_scratch_emit_size()) {
|
|
// We don't want to emit a trampoline if C2 is generating dummy
|
|
// code during its branch shortening phase.
|
|
if (entry.rspec().type() == relocInfo::runtime_call_type) {
|
|
assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs");
|
|
code()->share_trampoline_for(entry.target(), offset());
|
|
} else {
|
|
address stub = emit_trampoline_stub(offset(), target);
|
|
if (stub == nullptr) {
|
|
postcond(pc() == badAddress);
|
|
return nullptr; // CodeCache is full
|
|
}
|
|
}
|
|
}
|
|
target = pc();
|
|
}
|
|
|
|
address call_pc = pc();
|
|
relocate(entry.rspec());
|
|
bl(target);
|
|
|
|
postcond(pc() != badAddress);
|
|
return call_pc;
|
|
}
|
|
|
|
// Emit a trampoline stub for a call to a target which is too far away.
|
|
//
|
|
// code sequences:
|
|
//
|
|
// call-site:
|
|
// branch-and-link to <destination> or <trampoline stub>
|
|
//
|
|
// Related trampoline stub for this call site in the stub section:
|
|
// load the call target from the constant pool
|
|
// branch (LR still points to the call site above)
|
|
|
|
address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
|
|
address dest) {
|
|
// Max stub size: alignment nop, TrampolineStub.
|
|
address stub = start_a_stub(max_trampoline_stub_size());
|
|
if (stub == nullptr) {
|
|
return nullptr; // CodeBuffer::expand failed
|
|
}
|
|
|
|
// Create a trampoline stub relocation which relates this trampoline stub
|
|
// with the call instruction at insts_call_instruction_offset in the
|
|
// instructions code-section.
|
|
align(wordSize);
|
|
relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
|
|
+ insts_call_instruction_offset));
|
|
const int stub_start_offset = offset();
|
|
|
|
// Now, create the trampoline stub's code:
|
|
// - load the call
|
|
// - call
|
|
Label target;
|
|
ldr(rscratch1, target);
|
|
br(rscratch1);
|
|
bind(target);
|
|
assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
|
|
"should be");
|
|
emit_int64((int64_t)dest);
|
|
|
|
const address stub_start_addr = addr_at(stub_start_offset);
|
|
|
|
assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
|
|
|
|
end_a_stub();
|
|
return stub_start_addr;
|
|
}
|
|
|
|
int MacroAssembler::max_trampoline_stub_size() {
|
|
// Max stub size: alignment nop, TrampolineStub.
|
|
return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size;
|
|
}
|
|
|
|
void MacroAssembler::emit_static_call_stub() {
|
|
// CompiledDirectCall::set_to_interpreted knows the
|
|
// exact layout of this stub.
|
|
|
|
isb();
|
|
mov_metadata(rmethod, nullptr);
|
|
|
|
// Jump to the entry point of the c2i stub.
|
|
if (codestub_branch_needs_far_jump()) {
|
|
movptr(rscratch1, 0);
|
|
br(rscratch1);
|
|
} else {
|
|
b(pc());
|
|
}
|
|
}
|
|
|
|
int MacroAssembler::static_call_stub_size() {
|
|
if (!codestub_branch_needs_far_jump()) {
|
|
// isb; movk; movz; movz; b
|
|
return 5 * NativeInstruction::instruction_size;
|
|
}
|
|
// isb; movk; movz; movz; movk; movz; movz; br
|
|
return 8 * NativeInstruction::instruction_size;
|
|
}
|
|
|
|
void MacroAssembler::c2bool(Register x) {
|
|
// implements x == 0 ? 0 : 1
|
|
// note: must only look at least-significant byte of x
|
|
// since C-style booleans are stored in one byte
|
|
// only! (was bug)
|
|
tst(x, 0xff);
|
|
cset(x, Assembler::NE);
|
|
}
|
|
|
|
address MacroAssembler::ic_call(address entry, jint method_index) {
|
|
RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
|
|
movptr(rscratch2, (intptr_t)Universe::non_oop_word());
|
|
return trampoline_call(Address(entry, rh));
|
|
}
|
|
|
|
int MacroAssembler::ic_check_size() {
|
|
int extra_instructions = UseCompactObjectHeaders ? 1 : 0;
|
|
if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) {
|
|
return NativeInstruction::instruction_size * (7 + extra_instructions);
|
|
} else {
|
|
return NativeInstruction::instruction_size * (5 + extra_instructions);
|
|
}
|
|
}
|
|
|
|
int MacroAssembler::ic_check(int end_alignment) {
|
|
Register receiver = j_rarg0;
|
|
Register data = rscratch2;
|
|
Register tmp1 = rscratch1;
|
|
Register tmp2 = r10;
|
|
|
|
// The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
|
|
// before the inline cache check, so we don't have to execute any nop instructions when dispatching
|
|
// through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
|
|
// before the inline cache check here, and not after
|
|
align(end_alignment, offset() + ic_check_size());
|
|
|
|
int uep_offset = offset();
|
|
|
|
if (UseCompactObjectHeaders) {
|
|
load_narrow_klass_compact(tmp1, receiver);
|
|
ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
|
|
cmpw(tmp1, tmp2);
|
|
} else if (UseCompressedClassPointers) {
|
|
ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
|
|
ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
|
|
cmpw(tmp1, tmp2);
|
|
} else {
|
|
ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
|
|
ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
|
|
cmp(tmp1, tmp2);
|
|
}
|
|
|
|
Label dont;
|
|
br(Assembler::EQ, dont);
|
|
far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
|
|
bind(dont);
|
|
assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
|
|
|
|
return uep_offset;
|
|
}
|
|
|
|
// Implementation of call_VM versions
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
address entry_point,
|
|
bool check_exceptions) {
|
|
call_VM_helper(oop_result, entry_point, 0, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1,
|
|
bool check_exceptions) {
|
|
pass_arg1(this, arg_1);
|
|
call_VM_helper(oop_result, entry_point, 1, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1,
|
|
Register arg_2,
|
|
bool check_exceptions) {
|
|
assert_different_registers(arg_1, c_rarg2);
|
|
pass_arg2(this, arg_2);
|
|
pass_arg1(this, arg_1);
|
|
call_VM_helper(oop_result, entry_point, 2, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1,
|
|
Register arg_2,
|
|
Register arg_3,
|
|
bool check_exceptions) {
|
|
assert_different_registers(arg_1, c_rarg2, c_rarg3);
|
|
assert_different_registers(arg_2, c_rarg3);
|
|
pass_arg3(this, arg_3);
|
|
|
|
pass_arg2(this, arg_2);
|
|
|
|
pass_arg1(this, arg_1);
|
|
call_VM_helper(oop_result, entry_point, 3, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
int number_of_arguments,
|
|
bool check_exceptions) {
|
|
call_VM_base(oop_result, rthread, last_java_sp, nullptr, entry_point, number_of_arguments, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1,
|
|
bool check_exceptions) {
|
|
pass_arg1(this, arg_1);
|
|
call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1,
|
|
Register arg_2,
|
|
bool check_exceptions) {
|
|
|
|
assert_different_registers(arg_1, c_rarg2);
|
|
pass_arg2(this, arg_2);
|
|
pass_arg1(this, arg_1);
|
|
call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1,
|
|
Register arg_2,
|
|
Register arg_3,
|
|
bool check_exceptions) {
|
|
assert_different_registers(arg_1, c_rarg2, c_rarg3);
|
|
assert_different_registers(arg_2, c_rarg3);
|
|
pass_arg3(this, arg_3);
|
|
pass_arg2(this, arg_2);
|
|
pass_arg1(this, arg_1);
|
|
call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
|
|
}
|
|
|
|
|
|
void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) {
|
|
ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset()));
|
|
str(zr, Address(java_thread, JavaThread::vm_result_oop_offset()));
|
|
verify_oop_msg(oop_result, "broken oop in call_VM_base");
|
|
}
|
|
|
|
void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) {
|
|
ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset()));
|
|
str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset()));
|
|
}
|
|
|
|
void MacroAssembler::align(int modulus) {
|
|
align(modulus, offset());
|
|
}
|
|
|
|
// Ensure that the code at target bytes offset from the current offset() is aligned
|
|
// according to modulus.
|
|
void MacroAssembler::align(int modulus, int target) {
|
|
int delta = target - offset();
|
|
while ((offset() + delta) % modulus != 0) nop();
|
|
}
|
|
|
|
void MacroAssembler::post_call_nop() {
|
|
if (!Continuations::enabled()) {
|
|
return;
|
|
}
|
|
InstructionMark im(this);
|
|
relocate(post_call_nop_Relocation::spec());
|
|
InlineSkippedInstructionsCounter skipCounter(this);
|
|
nop();
|
|
movk(zr, 0);
|
|
movk(zr, 0);
|
|
}
|
|
|
|
// these are no-ops overridden by InterpreterMacroAssembler
|
|
|
|
void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
|
|
|
|
void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
|
|
|
|
// Look up the method for a megamorphic invokeinterface call.
|
|
// The target method is determined by <intf_klass, itable_index>.
|
|
// The receiver klass is in recv_klass.
|
|
// On success, the result will be in method_result, and execution falls through.
|
|
// On failure, execution transfers to the given label.
|
|
void MacroAssembler::lookup_interface_method(Register recv_klass,
|
|
Register intf_klass,
|
|
RegisterOrConstant itable_index,
|
|
Register method_result,
|
|
Register scan_temp,
|
|
Label& L_no_such_interface,
|
|
bool return_method) {
|
|
assert_different_registers(recv_klass, intf_klass, scan_temp);
|
|
assert_different_registers(method_result, intf_klass, scan_temp);
|
|
assert(recv_klass != method_result || !return_method,
|
|
"recv_klass can be destroyed when method isn't needed");
|
|
assert(itable_index.is_constant() || itable_index.as_register() == method_result,
|
|
"caller must use same register for non-constant itable index as for method");
|
|
|
|
// Compute start of first itableOffsetEntry (which is at the end of the vtable)
|
|
int vtable_base = in_bytes(Klass::vtable_start_offset());
|
|
int itentry_off = in_bytes(itableMethodEntry::method_offset());
|
|
int scan_step = itableOffsetEntry::size() * wordSize;
|
|
int vte_size = vtableEntry::size_in_bytes();
|
|
assert(vte_size == wordSize, "else adjust times_vte_scale");
|
|
|
|
ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
|
|
|
|
// Could store the aligned, prescaled offset in the klass.
|
|
// lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
|
|
lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
|
|
add(scan_temp, scan_temp, vtable_base);
|
|
|
|
if (return_method) {
|
|
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
|
|
assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
|
|
// lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
|
|
lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
|
|
if (itentry_off)
|
|
add(recv_klass, recv_klass, itentry_off);
|
|
}
|
|
|
|
// for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
|
|
// if (scan->interface() == intf) {
|
|
// result = (klass + scan->offset() + itable_index);
|
|
// }
|
|
// }
|
|
Label search, found_method;
|
|
|
|
ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
|
|
cmp(intf_klass, method_result);
|
|
br(Assembler::EQ, found_method);
|
|
bind(search);
|
|
// Check that the previous entry is non-null. A null entry means that
|
|
// the receiver class doesn't implement the interface, and wasn't the
|
|
// same as when the caller was compiled.
|
|
cbz(method_result, L_no_such_interface);
|
|
if (itableOffsetEntry::interface_offset() != 0) {
|
|
add(scan_temp, scan_temp, scan_step);
|
|
ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
|
|
} else {
|
|
ldr(method_result, Address(pre(scan_temp, scan_step)));
|
|
}
|
|
cmp(intf_klass, method_result);
|
|
br(Assembler::NE, search);
|
|
|
|
bind(found_method);
|
|
|
|
// Got a hit.
|
|
if (return_method) {
|
|
ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
|
|
ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
|
|
}
|
|
}
|
|
|
|
// Look up the method for a megamorphic invokeinterface call in a single pass over itable:
|
|
// - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
|
|
// - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
|
|
// The target method is determined by <holder_klass, itable_index>.
|
|
// The receiver klass is in recv_klass.
|
|
// On success, the result will be in method_result, and execution falls through.
|
|
// On failure, execution transfers to the given label.
|
|
void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
|
|
Register holder_klass,
|
|
Register resolved_klass,
|
|
Register method_result,
|
|
Register temp_itbl_klass,
|
|
Register scan_temp,
|
|
int itable_index,
|
|
Label& L_no_such_interface) {
|
|
// 'method_result' is only used as output register at the very end of this method.
|
|
// Until then we can reuse it as 'holder_offset'.
|
|
Register holder_offset = method_result;
|
|
assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset);
|
|
|
|
int vtable_start_offset = in_bytes(Klass::vtable_start_offset());
|
|
int itable_offset_entry_size = itableOffsetEntry::size() * wordSize;
|
|
int ioffset = in_bytes(itableOffsetEntry::interface_offset());
|
|
int ooffset = in_bytes(itableOffsetEntry::offset_offset());
|
|
|
|
Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found;
|
|
|
|
ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
|
|
add(recv_klass, recv_klass, vtable_start_offset + ioffset);
|
|
// itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len;
|
|
// temp_itbl_klass = itable[0]._interface;
|
|
int vtblEntrySize = vtableEntry::size_in_bytes();
|
|
assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3");
|
|
ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
|
|
mov(holder_offset, zr);
|
|
// scan_temp = &(itable[0]._interface)
|
|
lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
|
|
|
|
// Initial checks:
|
|
// - if (holder_klass != resolved_klass), go to "scan for resolved"
|
|
// - if (itable[0] == holder_klass), shortcut to "holder found"
|
|
// - if (itable[0] == 0), no such interface
|
|
cmp(resolved_klass, holder_klass);
|
|
br(Assembler::NE, L_loop_search_resolved_entry);
|
|
cmp(holder_klass, temp_itbl_klass);
|
|
br(Assembler::EQ, L_holder_found);
|
|
cbz(temp_itbl_klass, L_no_such_interface);
|
|
|
|
// Loop: Look for holder_klass record in itable
|
|
// do {
|
|
// temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
|
|
// if (temp_itbl_klass == holder_klass) {
|
|
// goto L_holder_found; // Found!
|
|
// }
|
|
// } while (temp_itbl_klass != 0);
|
|
// goto L_no_such_interface // Not found.
|
|
Label L_search_holder;
|
|
bind(L_search_holder);
|
|
ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
|
|
cmp(holder_klass, temp_itbl_klass);
|
|
br(Assembler::EQ, L_holder_found);
|
|
cbnz(temp_itbl_klass, L_search_holder);
|
|
|
|
b(L_no_such_interface);
|
|
|
|
// Loop: Look for resolved_class record in itable
|
|
// while (true) {
|
|
// temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
|
|
// if (temp_itbl_klass == 0) {
|
|
// goto L_no_such_interface;
|
|
// }
|
|
// if (temp_itbl_klass == resolved_klass) {
|
|
// goto L_resolved_found; // Found!
|
|
// }
|
|
// if (temp_itbl_klass == holder_klass) {
|
|
// holder_offset = scan_temp;
|
|
// }
|
|
// }
|
|
//
|
|
Label L_loop_search_resolved;
|
|
bind(L_loop_search_resolved);
|
|
ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
|
|
bind(L_loop_search_resolved_entry);
|
|
cbz(temp_itbl_klass, L_no_such_interface);
|
|
cmp(resolved_klass, temp_itbl_klass);
|
|
br(Assembler::EQ, L_resolved_found);
|
|
cmp(holder_klass, temp_itbl_klass);
|
|
br(Assembler::NE, L_loop_search_resolved);
|
|
mov(holder_offset, scan_temp);
|
|
b(L_loop_search_resolved);
|
|
|
|
// See if we already have a holder klass. If not, go and scan for it.
|
|
bind(L_resolved_found);
|
|
cbz(holder_offset, L_search_holder);
|
|
mov(scan_temp, holder_offset);
|
|
|
|
// Finally, scan_temp contains holder_klass vtable offset
|
|
bind(L_holder_found);
|
|
ldrw(method_result, Address(scan_temp, ooffset - ioffset));
|
|
add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset())
|
|
- vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass
|
|
ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0)));
|
|
}
|
|
|
|
// virtual method calling
|
|
void MacroAssembler::lookup_virtual_method(Register recv_klass,
|
|
RegisterOrConstant vtable_index,
|
|
Register method_result) {
|
|
assert(vtableEntry::size() * wordSize == 8,
|
|
"adjust the scaling in the code below");
|
|
int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset());
|
|
|
|
if (vtable_index.is_register()) {
|
|
lea(method_result, Address(recv_klass,
|
|
vtable_index.as_register(),
|
|
Address::lsl(LogBytesPerWord)));
|
|
ldr(method_result, Address(method_result, vtable_offset_in_bytes));
|
|
} else {
|
|
vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
|
|
ldr(method_result,
|
|
form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::check_klass_subtype(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label& L_success) {
|
|
Label L_failure;
|
|
check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr);
|
|
check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
|
|
bind(L_failure);
|
|
}
|
|
|
|
|
|
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
Label* L_slow_path,
|
|
Register super_check_offset) {
|
|
assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset);
|
|
bool must_load_sco = ! super_check_offset->is_valid();
|
|
if (must_load_sco) {
|
|
assert(temp_reg != noreg, "supply either a temp or a register offset");
|
|
}
|
|
|
|
Label L_fallthrough;
|
|
int label_nulls = 0;
|
|
if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
|
|
if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
|
|
if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
|
|
assert(label_nulls <= 1, "at most one null in the batch");
|
|
|
|
int sco_offset = in_bytes(Klass::super_check_offset_offset());
|
|
Address super_check_offset_addr(super_klass, sco_offset);
|
|
|
|
// Hacked jmp, which may only be used just before L_fallthrough.
|
|
#define final_jmp(label) \
|
|
if (&(label) == &L_fallthrough) { /*do nothing*/ } \
|
|
else b(label) /*omit semi*/
|
|
|
|
// If the pointers are equal, we are done (e.g., String[] elements).
|
|
// This self-check enables sharing of secondary supertype arrays among
|
|
// non-primary types such as array-of-interface. Otherwise, each such
|
|
// type would need its own customized SSA.
|
|
// We move this check to the front of the fast path because many
|
|
// type checks are in fact trivially successful in this manner,
|
|
// so we get a nicely predicted branch right at the start of the check.
|
|
cmp(sub_klass, super_klass);
|
|
br(Assembler::EQ, *L_success);
|
|
|
|
// Check the supertype display:
|
|
if (must_load_sco) {
|
|
ldrw(temp_reg, super_check_offset_addr);
|
|
super_check_offset = temp_reg;
|
|
}
|
|
|
|
Address super_check_addr(sub_klass, super_check_offset);
|
|
ldr(rscratch1, super_check_addr);
|
|
cmp(super_klass, rscratch1); // load displayed supertype
|
|
br(Assembler::EQ, *L_success);
|
|
|
|
// This check has worked decisively for primary supers.
|
|
// Secondary supers are sought in the super_cache ('super_cache_addr').
|
|
// (Secondary supers are interfaces and very deeply nested subtypes.)
|
|
// This works in the same check above because of a tricky aliasing
|
|
// between the super_cache and the primary super display elements.
|
|
// (The 'super_check_addr' can address either, as the case requires.)
|
|
// Note that the cache is updated below if it does not help us find
|
|
// what we need immediately.
|
|
// So if it was a primary super, we can just fail immediately.
|
|
// Otherwise, it's the slow path for us (no success at this point).
|
|
|
|
sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset()));
|
|
if (L_failure == &L_fallthrough) {
|
|
cbz(rscratch1, *L_slow_path);
|
|
} else {
|
|
cbnz(rscratch1, *L_failure);
|
|
final_jmp(*L_slow_path);
|
|
}
|
|
|
|
bind(L_fallthrough);
|
|
|
|
#undef final_jmp
|
|
}
|
|
|
|
// These two are taken from x86, but they look generally useful
|
|
|
|
// scans count pointer sized words at [addr] for occurrence of value,
|
|
// generic
|
|
void MacroAssembler::repne_scan(Register addr, Register value, Register count,
|
|
Register scratch) {
|
|
Label Lloop, Lexit;
|
|
cbz(count, Lexit);
|
|
bind(Lloop);
|
|
ldr(scratch, post(addr, wordSize));
|
|
cmp(value, scratch);
|
|
br(EQ, Lexit);
|
|
sub(count, count, 1);
|
|
cbnz(count, Lloop);
|
|
bind(Lexit);
|
|
}
|
|
|
|
// scans count 4 byte words at [addr] for occurrence of value,
|
|
// generic
|
|
void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
|
|
Register scratch) {
|
|
Label Lloop, Lexit;
|
|
cbz(count, Lexit);
|
|
bind(Lloop);
|
|
ldrw(scratch, post(addr, wordSize));
|
|
cmpw(value, scratch);
|
|
br(EQ, Lexit);
|
|
sub(count, count, 1);
|
|
cbnz(count, Lloop);
|
|
bind(Lexit);
|
|
}
|
|
|
|
void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
bool set_cond_codes) {
|
|
// NB! Callers may assume that, when temp2_reg is a valid register,
|
|
// this code sets it to a nonzero value.
|
|
|
|
assert_different_registers(sub_klass, super_klass, temp_reg);
|
|
if (temp2_reg != noreg)
|
|
assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
|
|
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
|
|
|
|
Label L_fallthrough;
|
|
int label_nulls = 0;
|
|
if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
|
|
if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
|
|
assert(label_nulls <= 1, "at most one null in the batch");
|
|
|
|
// a couple of useful fields in sub_klass:
|
|
int ss_offset = in_bytes(Klass::secondary_supers_offset());
|
|
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
Address secondary_supers_addr(sub_klass, ss_offset);
|
|
Address super_cache_addr( sub_klass, sc_offset);
|
|
|
|
BLOCK_COMMENT("check_klass_subtype_slow_path");
|
|
|
|
// Do a linear scan of the secondary super-klass chain.
|
|
// This code is rarely used, so simplicity is a virtue here.
|
|
// The repne_scan instruction uses fixed registers, which we must spill.
|
|
// Don't worry too much about pre-existing connections with the input regs.
|
|
|
|
assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
|
|
assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
|
|
|
|
RegSet pushed_registers;
|
|
if (!IS_A_TEMP(r2)) pushed_registers += r2;
|
|
if (!IS_A_TEMP(r5)) pushed_registers += r5;
|
|
|
|
if (super_klass != r0) {
|
|
if (!IS_A_TEMP(r0)) pushed_registers += r0;
|
|
}
|
|
|
|
push(pushed_registers, sp);
|
|
|
|
// Get super_klass value into r0 (even if it was in r5 or r2).
|
|
if (super_klass != r0) {
|
|
mov(r0, super_klass);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
|
|
#endif //PRODUCT
|
|
|
|
// We will consult the secondary-super array.
|
|
ldr(r5, secondary_supers_addr);
|
|
// Load the array length.
|
|
ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
|
|
// Skip to start of data.
|
|
add(r5, r5, Array<Klass*>::base_offset_in_bytes());
|
|
|
|
cmp(sp, zr); // Clear Z flag; SP is never zero
|
|
// Scan R2 words at [R5] for an occurrence of R0.
|
|
// Set NZ/Z based on last compare.
|
|
repne_scan(r5, r0, r2, rscratch1);
|
|
|
|
// Unspill the temp. registers:
|
|
pop(pushed_registers, sp);
|
|
|
|
br(Assembler::NE, *L_failure);
|
|
|
|
// Success. Cache the super we found and proceed in triumph.
|
|
|
|
if (UseSecondarySupersCache) {
|
|
str(super_klass, super_cache_addr);
|
|
}
|
|
|
|
if (L_success != &L_fallthrough) {
|
|
b(*L_success);
|
|
}
|
|
|
|
#undef IS_A_TEMP
|
|
|
|
bind(L_fallthrough);
|
|
}
|
|
|
|
// If Register r is invalid, remove a new register from
|
|
// available_regs, and add new register to regs_to_push.
|
|
Register MacroAssembler::allocate_if_noreg(Register r,
|
|
RegSetIterator<Register> &available_regs,
|
|
RegSet ®s_to_push) {
|
|
if (!r->is_valid()) {
|
|
r = *available_regs++;
|
|
regs_to_push += r;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// check_klass_subtype_slow_path_table() looks for super_klass in the
|
|
// hash table belonging to super_klass, branching to L_success or
|
|
// L_failure as appropriate. This is essentially a shim which
|
|
// allocates registers as necessary then calls
|
|
// lookup_secondary_supers_table() to do the work. Any of the temp
|
|
// regs may be noreg, in which case this logic will chooses some
|
|
// registers push and pop them from the stack.
|
|
void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Register temp2_reg,
|
|
Register temp3_reg,
|
|
Register result_reg,
|
|
FloatRegister vtemp,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
bool set_cond_codes) {
|
|
RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
|
|
|
|
assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
|
|
|
|
Label L_fallthrough;
|
|
int label_nulls = 0;
|
|
if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
|
|
if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
|
|
assert(label_nulls <= 1, "at most one null in the batch");
|
|
|
|
BLOCK_COMMENT("check_klass_subtype_slow_path");
|
|
|
|
RegSetIterator<Register> available_regs
|
|
= (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin();
|
|
|
|
RegSet pushed_regs;
|
|
|
|
temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
|
|
temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
|
|
temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
|
|
result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
|
|
|
|
push(pushed_regs, sp);
|
|
|
|
lookup_secondary_supers_table_var(sub_klass,
|
|
super_klass,
|
|
temp_reg, temp2_reg, temp3_reg, vtemp, result_reg,
|
|
nullptr);
|
|
cmp(result_reg, zr);
|
|
|
|
// Unspill the temp. registers:
|
|
pop(pushed_regs, sp);
|
|
|
|
// NB! Callers may assume that, when set_cond_codes is true, this
|
|
// code sets temp2_reg to a nonzero value.
|
|
if (set_cond_codes) {
|
|
mov(temp2_reg, 1);
|
|
}
|
|
|
|
br(Assembler::NE, *L_failure);
|
|
|
|
if (L_success != &L_fallthrough) {
|
|
b(*L_success);
|
|
}
|
|
|
|
bind(L_fallthrough);
|
|
}
|
|
|
|
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
bool set_cond_codes) {
|
|
if (UseSecondarySupersTable) {
|
|
check_klass_subtype_slow_path_table
|
|
(sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg,
|
|
/*vtemp*/fnoreg,
|
|
L_success, L_failure, set_cond_codes);
|
|
} else {
|
|
check_klass_subtype_slow_path_linear
|
|
(sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes);
|
|
}
|
|
}
|
|
|
|
|
|
// Ensure that the inline code and the stub are using the same registers.
|
|
#define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \
|
|
do { \
|
|
assert(r_super_klass == r0 && \
|
|
r_array_base == r1 && \
|
|
r_array_length == r2 && \
|
|
(r_array_index == r3 || r_array_index == noreg) && \
|
|
(r_sub_klass == r4 || r_sub_klass == noreg) && \
|
|
(r_bitmap == rscratch2 || r_bitmap == noreg) && \
|
|
(result == r5 || result == noreg), "registers must match aarch64.ad"); \
|
|
} while(0)
|
|
|
|
bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
|
|
Register r_super_klass,
|
|
Register temp1,
|
|
Register temp2,
|
|
Register temp3,
|
|
FloatRegister vtemp,
|
|
Register result,
|
|
u1 super_klass_slot,
|
|
bool stub_is_near) {
|
|
assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2);
|
|
|
|
Label L_fallthrough;
|
|
|
|
BLOCK_COMMENT("lookup_secondary_supers_table {");
|
|
|
|
const Register
|
|
r_array_base = temp1, // r1
|
|
r_array_length = temp2, // r2
|
|
r_array_index = temp3, // r3
|
|
r_bitmap = rscratch2;
|
|
|
|
LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
|
|
|
|
u1 bit = super_klass_slot;
|
|
|
|
// Make sure that result is nonzero if the TBZ below misses.
|
|
mov(result, 1);
|
|
|
|
// We're going to need the bitmap in a vector reg and in a core reg,
|
|
// so load both now.
|
|
ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
|
|
if (bit != 0) {
|
|
ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
|
|
}
|
|
// First check the bitmap to see if super_klass might be present. If
|
|
// the bit is zero, we are certain that super_klass is not one of
|
|
// the secondary supers.
|
|
tbz(r_bitmap, bit, L_fallthrough);
|
|
|
|
// Get the first array index that can contain super_klass into r_array_index.
|
|
if (bit != 0) {
|
|
shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit);
|
|
cnt(vtemp, T8B, vtemp);
|
|
addv(vtemp, T8B, vtemp);
|
|
fmovd(r_array_index, vtemp);
|
|
} else {
|
|
mov(r_array_index, (u1)1);
|
|
}
|
|
// NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
|
|
|
|
// We will consult the secondary-super array.
|
|
ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
|
|
|
|
// The value i in r_array_index is >= 1, so even though r_array_base
|
|
// points to the length, we don't need to adjust it to point to the
|
|
// data.
|
|
assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
|
|
assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
|
|
|
|
ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
|
|
eor(result, result, r_super_klass);
|
|
cbz(result, L_fallthrough); // Found a match
|
|
|
|
// Is there another entry to check? Consult the bitmap.
|
|
tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough);
|
|
|
|
// Linear probe.
|
|
if (bit != 0) {
|
|
ror(r_bitmap, r_bitmap, bit);
|
|
}
|
|
|
|
// The slot we just inspected is at secondary_supers[r_array_index - 1].
|
|
// The next slot to be inspected, by the stub we're about to call,
|
|
// is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap
|
|
// have been checked.
|
|
Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub());
|
|
if (stub_is_near) {
|
|
bl(stub);
|
|
} else {
|
|
address call = trampoline_call(stub);
|
|
if (call == nullptr) {
|
|
return false; // trampoline allocation failed
|
|
}
|
|
}
|
|
|
|
BLOCK_COMMENT("} lookup_secondary_supers_table");
|
|
|
|
bind(L_fallthrough);
|
|
|
|
if (VerifySecondarySupers) {
|
|
verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0
|
|
temp1, temp2, result); // r1, r2, r5
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// At runtime, return 0 in result if r_super_klass is a superclass of
|
|
// r_sub_klass, otherwise return nonzero. Use this version of
|
|
// lookup_secondary_supers_table() if you don't know ahead of time
|
|
// which superclass will be searched for. Used by interpreter and
|
|
// runtime stubs. It is larger and has somewhat greater latency than
|
|
// the version above, which takes a constant super_klass_slot.
|
|
void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
|
|
Register r_super_klass,
|
|
Register temp1,
|
|
Register temp2,
|
|
Register temp3,
|
|
FloatRegister vtemp,
|
|
Register result,
|
|
Label *L_success) {
|
|
assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2);
|
|
|
|
Label L_fallthrough;
|
|
|
|
BLOCK_COMMENT("lookup_secondary_supers_table {");
|
|
|
|
const Register
|
|
r_array_index = temp3,
|
|
slot = rscratch1,
|
|
r_bitmap = rscratch2;
|
|
|
|
ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
|
|
|
|
// Make sure that result is nonzero if the test below misses.
|
|
mov(result, 1);
|
|
|
|
ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
|
|
|
|
// First check the bitmap to see if super_klass might be present. If
|
|
// the bit is zero, we are certain that super_klass is not one of
|
|
// the secondary supers.
|
|
|
|
// This next instruction is equivalent to:
|
|
// mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1));
|
|
// sub(temp2, tmp_reg, slot);
|
|
eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1));
|
|
lslv(temp2, r_bitmap, temp2);
|
|
tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough);
|
|
|
|
bool must_save_v0 = (vtemp == fnoreg);
|
|
if (must_save_v0) {
|
|
// temp1 and result are free, so use them to preserve vtemp
|
|
vtemp = v0;
|
|
mov(temp1, vtemp, D, 0);
|
|
mov(result, vtemp, D, 1);
|
|
}
|
|
|
|
// Get the first array index that can contain super_klass into r_array_index.
|
|
mov(vtemp, D, 0, temp2);
|
|
cnt(vtemp, T8B, vtemp);
|
|
addv(vtemp, T8B, vtemp);
|
|
mov(r_array_index, vtemp, D, 0);
|
|
|
|
if (must_save_v0) {
|
|
mov(vtemp, D, 0, temp1 );
|
|
mov(vtemp, D, 1, result);
|
|
}
|
|
|
|
// NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
|
|
|
|
const Register
|
|
r_array_base = temp1,
|
|
r_array_length = temp2;
|
|
|
|
// The value i in r_array_index is >= 1, so even though r_array_base
|
|
// points to the length, we don't need to adjust it to point to the
|
|
// data.
|
|
assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
|
|
assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
|
|
|
|
// We will consult the secondary-super array.
|
|
ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
|
|
|
|
ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
|
|
eor(result, result, r_super_klass);
|
|
cbz(result, L_success ? *L_success : L_fallthrough); // Found a match
|
|
|
|
// Is there another entry to check? Consult the bitmap.
|
|
rorv(r_bitmap, r_bitmap, slot);
|
|
// rol(r_bitmap, r_bitmap, 1);
|
|
tbz(r_bitmap, 1, L_fallthrough);
|
|
|
|
// The slot we just inspected is at secondary_supers[r_array_index - 1].
|
|
// The next slot to be inspected, by the logic we're about to call,
|
|
// is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap
|
|
// have been checked.
|
|
lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index,
|
|
r_bitmap, r_array_length, result, /*is_stub*/false);
|
|
|
|
BLOCK_COMMENT("} lookup_secondary_supers_table");
|
|
|
|
bind(L_fallthrough);
|
|
|
|
if (VerifySecondarySupers) {
|
|
verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0
|
|
temp1, temp2, result); // r1, r2, r5
|
|
}
|
|
|
|
if (L_success) {
|
|
cbz(result, *L_success);
|
|
}
|
|
}
|
|
|
|
// Called by code generated by check_klass_subtype_slow_path
|
|
// above. This is called when there is a collision in the hashed
|
|
// lookup in the secondary supers array.
|
|
void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
|
|
Register r_array_base,
|
|
Register r_array_index,
|
|
Register r_bitmap,
|
|
Register temp1,
|
|
Register result,
|
|
bool is_stub) {
|
|
assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1);
|
|
|
|
const Register
|
|
r_array_length = temp1,
|
|
r_sub_klass = noreg; // unused
|
|
|
|
if (is_stub) {
|
|
LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
|
|
}
|
|
|
|
Label L_fallthrough, L_huge;
|
|
|
|
// Load the array length.
|
|
ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
|
|
// And adjust the array base to point to the data.
|
|
// NB! Effectively increments current slot index by 1.
|
|
assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
|
|
add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
|
|
|
|
// The bitmap is full to bursting.
|
|
// Implicit invariant: BITMAP_FULL implies (length > 0)
|
|
assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), "");
|
|
cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2));
|
|
br(GT, L_huge);
|
|
|
|
// NB! Our caller has checked bits 0 and 1 in the bitmap. The
|
|
// current slot (at secondary_supers[r_array_index]) has not yet
|
|
// been inspected, and r_array_index may be out of bounds if we
|
|
// wrapped around the end of the array.
|
|
|
|
{ // This is conventional linear probing, but instead of terminating
|
|
// when a null entry is found in the table, we maintain a bitmap
|
|
// in which a 0 indicates missing entries.
|
|
// As long as the bitmap is not completely full,
|
|
// array_length == popcount(bitmap). The array_length check above
|
|
// guarantees there are 0s in the bitmap, so the loop eventually
|
|
// terminates.
|
|
Label L_loop;
|
|
bind(L_loop);
|
|
|
|
// Check for wraparound.
|
|
cmp(r_array_index, r_array_length);
|
|
csel(r_array_index, zr, r_array_index, GE);
|
|
|
|
ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
|
|
eor(result, rscratch1, r_super_klass);
|
|
cbz(result, L_fallthrough);
|
|
|
|
tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero
|
|
|
|
ror(r_bitmap, r_bitmap, 1);
|
|
add(r_array_index, r_array_index, 1);
|
|
b(L_loop);
|
|
}
|
|
|
|
{ // Degenerate case: more than 64 secondary supers.
|
|
// FIXME: We could do something smarter here, maybe a vectorized
|
|
// comparison or a binary search, but is that worth any added
|
|
// complexity?
|
|
bind(L_huge);
|
|
cmp(sp, zr); // Clear Z flag; SP is never zero
|
|
repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1);
|
|
cset(result, NE); // result == 0 iff we got a match.
|
|
}
|
|
|
|
bind(L_fallthrough);
|
|
}
|
|
|
|
// Make sure that the hashed lookup and a linear scan agree.
|
|
void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
|
|
Register r_super_klass,
|
|
Register temp1,
|
|
Register temp2,
|
|
Register result) {
|
|
assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1);
|
|
|
|
const Register
|
|
r_array_base = temp1,
|
|
r_array_length = temp2,
|
|
r_array_index = noreg, // unused
|
|
r_bitmap = noreg; // unused
|
|
|
|
BLOCK_COMMENT("verify_secondary_supers_table {");
|
|
|
|
// We will consult the secondary-super array.
|
|
ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
|
|
|
|
// Load the array length.
|
|
ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
|
|
// And adjust the array base to point to the data.
|
|
add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
|
|
|
|
cmp(sp, zr); // Clear Z flag; SP is never zero
|
|
// Scan R2 words at [R5] for an occurrence of R0.
|
|
// Set NZ/Z based on last compare.
|
|
repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2);
|
|
// rscratch1 == 0 iff we got a match.
|
|
cset(rscratch1, NE);
|
|
|
|
Label passed;
|
|
cmp(result, zr);
|
|
cset(result, NE); // normalize result to 0/1 for comparison
|
|
|
|
cmp(rscratch1, result);
|
|
br(EQ, passed);
|
|
{
|
|
mov(r0, r_super_klass); // r0 <- r0
|
|
mov(r1, r_sub_klass); // r1 <- r4
|
|
mov(r2, /*expected*/rscratch1); // r2 <- r8
|
|
mov(r3, result); // r3 <- r5
|
|
mov(r4, (address)("mismatch")); // r4 <- const
|
|
rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2);
|
|
should_not_reach_here();
|
|
}
|
|
bind(passed);
|
|
|
|
BLOCK_COMMENT("} verify_secondary_supers_table");
|
|
}
|
|
|
|
void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) {
|
|
assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
|
|
assert_different_registers(klass, rthread, scratch);
|
|
|
|
Label L_fallthrough, L_tmp;
|
|
if (L_fast_path == nullptr) {
|
|
L_fast_path = &L_fallthrough;
|
|
} else if (L_slow_path == nullptr) {
|
|
L_slow_path = &L_fallthrough;
|
|
}
|
|
// Fast path check: class is fully initialized
|
|
lea(scratch, Address(klass, InstanceKlass::init_state_offset()));
|
|
ldarb(scratch, scratch);
|
|
cmp(scratch, InstanceKlass::fully_initialized);
|
|
br(Assembler::EQ, *L_fast_path);
|
|
|
|
// Fast path check: current thread is initializer thread
|
|
ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
|
|
cmp(rthread, scratch);
|
|
|
|
if (L_slow_path == &L_fallthrough) {
|
|
br(Assembler::EQ, *L_fast_path);
|
|
bind(*L_slow_path);
|
|
} else if (L_fast_path == &L_fallthrough) {
|
|
br(Assembler::NE, *L_slow_path);
|
|
bind(*L_fast_path);
|
|
} else {
|
|
Unimplemented();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
|
|
if (!VerifyOops) return;
|
|
|
|
// Pass register number to verify_oop_subroutine
|
|
const char* b = nullptr;
|
|
{
|
|
ResourceMark rm;
|
|
stringStream ss;
|
|
ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
|
|
b = code_string(ss.as_string());
|
|
}
|
|
BLOCK_COMMENT("verify_oop {");
|
|
|
|
strip_return_address(); // This might happen within a stack frame.
|
|
protect_return_address();
|
|
stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
|
|
stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
|
|
|
|
mov(r0, reg);
|
|
movptr(rscratch1, (uintptr_t)(address)b);
|
|
|
|
// call indirectly to solve generation ordering problem
|
|
lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
|
|
ldr(rscratch2, Address(rscratch2));
|
|
blr(rscratch2);
|
|
|
|
ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
|
|
ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
|
|
authenticate_return_address();
|
|
|
|
BLOCK_COMMENT("} verify_oop");
|
|
}
|
|
|
|
void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
|
|
if (!VerifyOops) return;
|
|
|
|
const char* b = nullptr;
|
|
{
|
|
ResourceMark rm;
|
|
stringStream ss;
|
|
ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
|
|
b = code_string(ss.as_string());
|
|
}
|
|
BLOCK_COMMENT("verify_oop_addr {");
|
|
|
|
strip_return_address(); // This might happen within a stack frame.
|
|
protect_return_address();
|
|
stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
|
|
stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
|
|
|
|
// addr may contain sp so we will have to adjust it based on the
|
|
// pushes that we just did.
|
|
if (addr.uses(sp)) {
|
|
lea(r0, addr);
|
|
ldr(r0, Address(r0, 4 * wordSize));
|
|
} else {
|
|
ldr(r0, addr);
|
|
}
|
|
movptr(rscratch1, (uintptr_t)(address)b);
|
|
|
|
// call indirectly to solve generation ordering problem
|
|
lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
|
|
ldr(rscratch2, Address(rscratch2));
|
|
blr(rscratch2);
|
|
|
|
ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
|
|
ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
|
|
authenticate_return_address();
|
|
|
|
BLOCK_COMMENT("} verify_oop_addr");
|
|
}
|
|
|
|
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
|
|
int extra_slot_offset) {
|
|
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
|
|
int stackElementSize = Interpreter::stackElementSize;
|
|
int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
|
|
#ifdef ASSERT
|
|
int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
|
|
assert(offset1 - offset == stackElementSize, "correct arithmetic");
|
|
#endif
|
|
if (arg_slot.is_constant()) {
|
|
return Address(esp, arg_slot.as_constant() * stackElementSize
|
|
+ offset);
|
|
} else {
|
|
add(rscratch1, esp, arg_slot.as_register(),
|
|
ext::uxtx, exact_log2(stackElementSize));
|
|
return Address(rscratch1, offset);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_base(address entry_point,
|
|
int number_of_arguments,
|
|
Label *retaddr) {
|
|
Label E, L;
|
|
|
|
stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
|
|
|
|
mov(rscratch1, RuntimeAddress(entry_point));
|
|
blr(rscratch1);
|
|
if (retaddr)
|
|
bind(*retaddr);
|
|
|
|
ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
|
|
call_VM_leaf_base(entry_point, number_of_arguments);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
|
|
pass_arg0(this, arg_0);
|
|
call_VM_leaf_base(entry_point, 1);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
|
|
assert_different_registers(arg_1, c_rarg0);
|
|
pass_arg0(this, arg_0);
|
|
pass_arg1(this, arg_1);
|
|
call_VM_leaf_base(entry_point, 2);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
|
|
Register arg_1, Register arg_2) {
|
|
assert_different_registers(arg_1, c_rarg0);
|
|
assert_different_registers(arg_2, c_rarg0, c_rarg1);
|
|
pass_arg0(this, arg_0);
|
|
pass_arg1(this, arg_1);
|
|
pass_arg2(this, arg_2);
|
|
call_VM_leaf_base(entry_point, 3);
|
|
}
|
|
|
|
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
|
|
pass_arg0(this, arg_0);
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 1);
|
|
}
|
|
|
|
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
|
|
|
|
assert_different_registers(arg_0, c_rarg1);
|
|
pass_arg1(this, arg_1);
|
|
pass_arg0(this, arg_0);
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 2);
|
|
}
|
|
|
|
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
|
|
assert_different_registers(arg_0, c_rarg1, c_rarg2);
|
|
assert_different_registers(arg_1, c_rarg2);
|
|
pass_arg2(this, arg_2);
|
|
pass_arg1(this, arg_1);
|
|
pass_arg0(this, arg_0);
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 3);
|
|
}
|
|
|
|
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
|
|
assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
|
|
assert_different_registers(arg_1, c_rarg2, c_rarg3);
|
|
assert_different_registers(arg_2, c_rarg3);
|
|
pass_arg3(this, arg_3);
|
|
pass_arg2(this, arg_2);
|
|
pass_arg1(this, arg_1);
|
|
pass_arg0(this, arg_0);
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 4);
|
|
}
|
|
|
|
void MacroAssembler::null_check(Register reg, int offset) {
|
|
if (needs_explicit_null_check(offset)) {
|
|
// provoke OS null exception if reg is null by
|
|
// accessing M[reg] w/o changing any registers
|
|
// NOTE: this is plenty to provoke a segv
|
|
ldr(zr, Address(reg));
|
|
} else {
|
|
// nothing to do, (later) access of M[reg + offset]
|
|
// will provoke OS null exception if reg is null
|
|
}
|
|
}
|
|
|
|
// MacroAssembler protected routines needed to implement
|
|
// public methods
|
|
|
|
void MacroAssembler::mov(Register r, Address dest) {
|
|
code_section()->relocate(pc(), dest.rspec());
|
|
uint64_t imm64 = (uint64_t)dest.target();
|
|
movptr(r, imm64);
|
|
}
|
|
|
|
// Move a constant pointer into r. In AArch64 mode the virtual
|
|
// address space is 48 bits in size, so we only need three
|
|
// instructions to create a patchable instruction sequence that can
|
|
// reach anywhere.
|
|
void MacroAssembler::movptr(Register r, uintptr_t imm64) {
|
|
#ifndef PRODUCT
|
|
{
|
|
char buffer[64];
|
|
os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
|
|
block_comment(buffer);
|
|
}
|
|
#endif
|
|
assert(imm64 < (1ull << 48), "48-bit overflow in address constant");
|
|
movz(r, imm64 & 0xffff);
|
|
imm64 >>= 16;
|
|
movk(r, imm64 & 0xffff, 16);
|
|
imm64 >>= 16;
|
|
movk(r, imm64 & 0xffff, 32);
|
|
}
|
|
|
|
// Macro to mov replicated immediate to vector register.
|
|
// imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is,
|
|
// the upper 56/48/32 bits must be zeros for B/H/S type.
|
|
// Vd will get the following values for different arrangements in T
|
|
// imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh
|
|
// imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh
|
|
// imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh
|
|
// imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh
|
|
// imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh
|
|
// imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh
|
|
// imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh
|
|
// imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh
|
|
// Clobbers rscratch1
|
|
void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) {
|
|
assert(T != T1Q, "unsupported");
|
|
if (T == T1D || T == T2D) {
|
|
int imm = operand_valid_for_movi_immediate(imm64, T);
|
|
if (-1 != imm) {
|
|
movi(Vd, T, imm);
|
|
} else {
|
|
mov(rscratch1, imm64);
|
|
dup(Vd, T, rscratch1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)");
|
|
if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)");
|
|
if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)");
|
|
#endif
|
|
int shift = operand_valid_for_movi_immediate(imm64, T);
|
|
uint32_t imm32 = imm64 & 0xffffffffULL;
|
|
if (shift >= 0) {
|
|
movi(Vd, T, (imm32 >> shift) & 0xff, shift);
|
|
} else {
|
|
movw(rscratch1, imm32);
|
|
dup(Vd, T, rscratch1);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64)
|
|
{
|
|
#ifndef PRODUCT
|
|
{
|
|
char buffer[64];
|
|
os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
|
|
block_comment(buffer);
|
|
}
|
|
#endif
|
|
if (operand_valid_for_logical_immediate(false, imm64)) {
|
|
orr(dst, zr, imm64);
|
|
} else {
|
|
// we can use a combination of MOVZ or MOVN with
|
|
// MOVK to build up the constant
|
|
uint64_t imm_h[4];
|
|
int zero_count = 0;
|
|
int neg_count = 0;
|
|
int i;
|
|
for (i = 0; i < 4; i++) {
|
|
imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
|
|
if (imm_h[i] == 0) {
|
|
zero_count++;
|
|
} else if (imm_h[i] == 0xffffL) {
|
|
neg_count++;
|
|
}
|
|
}
|
|
if (zero_count == 4) {
|
|
// one MOVZ will do
|
|
movz(dst, 0);
|
|
} else if (neg_count == 4) {
|
|
// one MOVN will do
|
|
movn(dst, 0);
|
|
} else if (zero_count == 3) {
|
|
for (i = 0; i < 4; i++) {
|
|
if (imm_h[i] != 0L) {
|
|
movz(dst, (uint32_t)imm_h[i], (i << 4));
|
|
break;
|
|
}
|
|
}
|
|
} else if (neg_count == 3) {
|
|
// one MOVN will do
|
|
for (int i = 0; i < 4; i++) {
|
|
if (imm_h[i] != 0xffffL) {
|
|
movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
|
|
break;
|
|
}
|
|
}
|
|
} else if (zero_count == 2) {
|
|
// one MOVZ and one MOVK will do
|
|
for (i = 0; i < 3; i++) {
|
|
if (imm_h[i] != 0L) {
|
|
movz(dst, (uint32_t)imm_h[i], (i << 4));
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
for (;i < 4; i++) {
|
|
if (imm_h[i] != 0L) {
|
|
movk(dst, (uint32_t)imm_h[i], (i << 4));
|
|
}
|
|
}
|
|
} else if (neg_count == 2) {
|
|
// one MOVN and one MOVK will do
|
|
for (i = 0; i < 4; i++) {
|
|
if (imm_h[i] != 0xffffL) {
|
|
movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
for (;i < 4; i++) {
|
|
if (imm_h[i] != 0xffffL) {
|
|
movk(dst, (uint32_t)imm_h[i], (i << 4));
|
|
}
|
|
}
|
|
} else if (zero_count == 1) {
|
|
// one MOVZ and two MOVKs will do
|
|
for (i = 0; i < 4; i++) {
|
|
if (imm_h[i] != 0L) {
|
|
movz(dst, (uint32_t)imm_h[i], (i << 4));
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
for (;i < 4; i++) {
|
|
if (imm_h[i] != 0x0L) {
|
|
movk(dst, (uint32_t)imm_h[i], (i << 4));
|
|
}
|
|
}
|
|
} else if (neg_count == 1) {
|
|
// one MOVN and two MOVKs will do
|
|
for (i = 0; i < 4; i++) {
|
|
if (imm_h[i] != 0xffffL) {
|
|
movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
for (;i < 4; i++) {
|
|
if (imm_h[i] != 0xffffL) {
|
|
movk(dst, (uint32_t)imm_h[i], (i << 4));
|
|
}
|
|
}
|
|
} else {
|
|
// use a MOVZ and 3 MOVKs (makes it easier to debug)
|
|
movz(dst, (uint32_t)imm_h[0], 0);
|
|
for (i = 1; i < 4; i++) {
|
|
movk(dst, (uint32_t)imm_h[i], (i << 4));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32)
|
|
{
|
|
#ifndef PRODUCT
|
|
{
|
|
char buffer[64];
|
|
os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX32, imm32);
|
|
block_comment(buffer);
|
|
}
|
|
#endif
|
|
if (operand_valid_for_logical_immediate(true, imm32)) {
|
|
orrw(dst, zr, imm32);
|
|
} else {
|
|
// we can use MOVZ, MOVN or two calls to MOVK to build up the
|
|
// constant
|
|
uint32_t imm_h[2];
|
|
imm_h[0] = imm32 & 0xffff;
|
|
imm_h[1] = ((imm32 >> 16) & 0xffff);
|
|
if (imm_h[0] == 0) {
|
|
movzw(dst, imm_h[1], 16);
|
|
} else if (imm_h[0] == 0xffff) {
|
|
movnw(dst, imm_h[1] ^ 0xffff, 16);
|
|
} else if (imm_h[1] == 0) {
|
|
movzw(dst, imm_h[0], 0);
|
|
} else if (imm_h[1] == 0xffff) {
|
|
movnw(dst, imm_h[0] ^ 0xffff, 0);
|
|
} else {
|
|
// use a MOVZ and MOVK (makes it easier to debug)
|
|
movzw(dst, imm_h[0], 0);
|
|
movkw(dst, imm_h[1], 16);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Form an address from base + offset in Rd. Rd may or may
|
|
// not actually be used: you must use the Address that is returned.
|
|
// It is up to you to ensure that the shift provided matches the size
|
|
// of your data.
|
|
Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) {
|
|
if (Address::offset_ok_for_immed(byte_offset, shift))
|
|
// It fits; no need for any heroics
|
|
return Address(base, byte_offset);
|
|
|
|
// Don't do anything clever with negative or misaligned offsets
|
|
unsigned mask = (1 << shift) - 1;
|
|
if (byte_offset < 0 || byte_offset & mask) {
|
|
mov(Rd, byte_offset);
|
|
add(Rd, base, Rd);
|
|
return Address(Rd);
|
|
}
|
|
|
|
// See if we can do this with two 12-bit offsets
|
|
{
|
|
uint64_t word_offset = byte_offset >> shift;
|
|
uint64_t masked_offset = word_offset & 0xfff000;
|
|
if (Address::offset_ok_for_immed(word_offset - masked_offset, 0)
|
|
&& Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
|
|
add(Rd, base, masked_offset << shift);
|
|
word_offset -= masked_offset;
|
|
return Address(Rd, word_offset << shift);
|
|
}
|
|
}
|
|
|
|
// Do it the hard way
|
|
mov(Rd, byte_offset);
|
|
add(Rd, base, Rd);
|
|
return Address(Rd);
|
|
}
|
|
|
|
int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
|
|
bool want_remainder, Register scratch)
|
|
{
|
|
// Full implementation of Java idiv and irem. The function
|
|
// returns the (pc) offset of the div instruction - may be needed
|
|
// for implicit exceptions.
|
|
//
|
|
// constraint : ra/rb =/= scratch
|
|
// normal case
|
|
//
|
|
// input : ra: dividend
|
|
// rb: divisor
|
|
//
|
|
// result: either
|
|
// quotient (= ra idiv rb)
|
|
// remainder (= ra irem rb)
|
|
|
|
assert(ra != scratch && rb != scratch, "reg cannot be scratch");
|
|
|
|
int idivl_offset = offset();
|
|
if (! want_remainder) {
|
|
sdivw(result, ra, rb);
|
|
} else {
|
|
sdivw(scratch, ra, rb);
|
|
Assembler::msubw(result, scratch, rb, ra);
|
|
}
|
|
|
|
return idivl_offset;
|
|
}
|
|
|
|
int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
|
|
bool want_remainder, Register scratch)
|
|
{
|
|
// Full implementation of Java ldiv and lrem. The function
|
|
// returns the (pc) offset of the div instruction - may be needed
|
|
// for implicit exceptions.
|
|
//
|
|
// constraint : ra/rb =/= scratch
|
|
// normal case
|
|
//
|
|
// input : ra: dividend
|
|
// rb: divisor
|
|
//
|
|
// result: either
|
|
// quotient (= ra idiv rb)
|
|
// remainder (= ra irem rb)
|
|
|
|
assert(ra != scratch && rb != scratch, "reg cannot be scratch");
|
|
|
|
int idivq_offset = offset();
|
|
if (! want_remainder) {
|
|
sdiv(result, ra, rb);
|
|
} else {
|
|
sdiv(scratch, ra, rb);
|
|
Assembler::msub(result, scratch, rb, ra);
|
|
}
|
|
|
|
return idivq_offset;
|
|
}
|
|
|
|
void MacroAssembler::membar(Membar_mask_bits order_constraint) {
|
|
address prev = pc() - NativeMembar::instruction_size;
|
|
address last = code()->last_insn();
|
|
if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) {
|
|
NativeMembar *bar = NativeMembar_at(prev);
|
|
if (AlwaysMergeDMB) {
|
|
bar->set_kind(bar->get_kind() | order_constraint);
|
|
BLOCK_COMMENT("merged membar(always)");
|
|
return;
|
|
}
|
|
// Don't promote DMB ST|DMB LD to DMB (a full barrier) because
|
|
// doing so would introduce a StoreLoad which the caller did not
|
|
// intend
|
|
if (bar->get_kind() == order_constraint
|
|
|| bar->get_kind() == AnyAny
|
|
|| order_constraint == AnyAny) {
|
|
// We are merging two memory barrier instructions. On AArch64 we
|
|
// can do this simply by ORing them together.
|
|
bar->set_kind(bar->get_kind() | order_constraint);
|
|
BLOCK_COMMENT("merged membar");
|
|
return;
|
|
} else {
|
|
// A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped
|
|
// We need check the last 2 instructions
|
|
address prev2 = prev - NativeMembar::instruction_size;
|
|
if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) {
|
|
NativeMembar *bar2 = NativeMembar_at(prev2);
|
|
assert(bar2->get_kind() == order_constraint, "it should be merged before");
|
|
BLOCK_COMMENT("merged membar(elided)");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
code()->set_last_insn(pc());
|
|
dmb(Assembler::barrier(order_constraint));
|
|
}
|
|
|
|
bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
|
|
if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
|
|
merge_ldst(rt, adr, size_in_bytes, is_store);
|
|
code()->clear_last_insn();
|
|
return true;
|
|
} else {
|
|
assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
|
|
const uint64_t mask = size_in_bytes - 1;
|
|
if (adr.getMode() == Address::base_plus_offset &&
|
|
(adr.offset() & mask) == 0) { // only supports base_plus_offset.
|
|
code()->set_last_insn(pc());
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::ldr(Register Rx, const Address &adr) {
|
|
// We always try to merge two adjacent loads into one ldp.
|
|
if (!try_merge_ldst(Rx, adr, 8, false)) {
|
|
Assembler::ldr(Rx, adr);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::ldrw(Register Rw, const Address &adr) {
|
|
// We always try to merge two adjacent loads into one ldp.
|
|
if (!try_merge_ldst(Rw, adr, 4, false)) {
|
|
Assembler::ldrw(Rw, adr);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::str(Register Rx, const Address &adr) {
|
|
// We always try to merge two adjacent stores into one stp.
|
|
if (!try_merge_ldst(Rx, adr, 8, true)) {
|
|
Assembler::str(Rx, adr);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::strw(Register Rw, const Address &adr) {
|
|
// We always try to merge two adjacent stores into one stp.
|
|
if (!try_merge_ldst(Rw, adr, 4, true)) {
|
|
Assembler::strw(Rw, adr);
|
|
}
|
|
}
|
|
|
|
// MacroAssembler routines found actually to be needed
|
|
|
|
void MacroAssembler::push(Register src)
|
|
{
|
|
str(src, Address(pre(esp, -1 * wordSize)));
|
|
}
|
|
|
|
void MacroAssembler::pop(Register dst)
|
|
{
|
|
ldr(dst, Address(post(esp, 1 * wordSize)));
|
|
}
|
|
|
|
// Note: load_unsigned_short used to be called load_unsigned_word.
|
|
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
|
|
int off = offset();
|
|
ldrh(dst, src);
|
|
return off;
|
|
}
|
|
|
|
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
|
|
int off = offset();
|
|
ldrb(dst, src);
|
|
return off;
|
|
}
|
|
|
|
int MacroAssembler::load_signed_short(Register dst, Address src) {
|
|
int off = offset();
|
|
ldrsh(dst, src);
|
|
return off;
|
|
}
|
|
|
|
int MacroAssembler::load_signed_byte(Register dst, Address src) {
|
|
int off = offset();
|
|
ldrsb(dst, src);
|
|
return off;
|
|
}
|
|
|
|
int MacroAssembler::load_signed_short32(Register dst, Address src) {
|
|
int off = offset();
|
|
ldrshw(dst, src);
|
|
return off;
|
|
}
|
|
|
|
int MacroAssembler::load_signed_byte32(Register dst, Address src) {
|
|
int off = offset();
|
|
ldrsbw(dst, src);
|
|
return off;
|
|
}
|
|
|
|
void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
|
|
switch (size_in_bytes) {
|
|
case 8: ldr(dst, src); break;
|
|
case 4: ldrw(dst, src); break;
|
|
case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
|
|
case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) {
|
|
switch (size_in_bytes) {
|
|
case 8: str(src, dst); break;
|
|
case 4: strw(src, dst); break;
|
|
case 2: strh(src, dst); break;
|
|
case 1: strb(src, dst); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::decrementw(Register reg, int value)
|
|
{
|
|
if (value < 0) { incrementw(reg, -value); return; }
|
|
if (value == 0) { return; }
|
|
if (value < (1 << 12)) { subw(reg, reg, value); return; }
|
|
/* else */ {
|
|
guarantee(reg != rscratch2, "invalid dst for register decrement");
|
|
movw(rscratch2, (unsigned)value);
|
|
subw(reg, reg, rscratch2);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::decrement(Register reg, int value)
|
|
{
|
|
if (value < 0) { increment(reg, -value); return; }
|
|
if (value == 0) { return; }
|
|
if (value < (1 << 12)) { sub(reg, reg, value); return; }
|
|
/* else */ {
|
|
assert(reg != rscratch2, "invalid dst for register decrement");
|
|
mov(rscratch2, (uint64_t)value);
|
|
sub(reg, reg, rscratch2);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::decrementw(Address dst, int value)
|
|
{
|
|
assert(!dst.uses(rscratch1), "invalid dst for address decrement");
|
|
if (dst.getMode() == Address::literal) {
|
|
assert(abs(value) < (1 << 12), "invalid value and address mode combination");
|
|
lea(rscratch2, dst);
|
|
dst = Address(rscratch2);
|
|
}
|
|
ldrw(rscratch1, dst);
|
|
decrementw(rscratch1, value);
|
|
strw(rscratch1, dst);
|
|
}
|
|
|
|
void MacroAssembler::decrement(Address dst, int value)
|
|
{
|
|
assert(!dst.uses(rscratch1), "invalid address for decrement");
|
|
if (dst.getMode() == Address::literal) {
|
|
assert(abs(value) < (1 << 12), "invalid value and address mode combination");
|
|
lea(rscratch2, dst);
|
|
dst = Address(rscratch2);
|
|
}
|
|
ldr(rscratch1, dst);
|
|
decrement(rscratch1, value);
|
|
str(rscratch1, dst);
|
|
}
|
|
|
|
void MacroAssembler::incrementw(Register reg, int value)
|
|
{
|
|
if (value < 0) { decrementw(reg, -value); return; }
|
|
if (value == 0) { return; }
|
|
if (value < (1 << 12)) { addw(reg, reg, value); return; }
|
|
/* else */ {
|
|
assert(reg != rscratch2, "invalid dst for register increment");
|
|
movw(rscratch2, (unsigned)value);
|
|
addw(reg, reg, rscratch2);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::increment(Register reg, int value)
|
|
{
|
|
if (value < 0) { decrement(reg, -value); return; }
|
|
if (value == 0) { return; }
|
|
if (value < (1 << 12)) { add(reg, reg, value); return; }
|
|
/* else */ {
|
|
assert(reg != rscratch2, "invalid dst for register increment");
|
|
movw(rscratch2, (unsigned)value);
|
|
add(reg, reg, rscratch2);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::incrementw(Address dst, int value)
|
|
{
|
|
assert(!dst.uses(rscratch1), "invalid dst for address increment");
|
|
if (dst.getMode() == Address::literal) {
|
|
assert(abs(value) < (1 << 12), "invalid value and address mode combination");
|
|
lea(rscratch2, dst);
|
|
dst = Address(rscratch2);
|
|
}
|
|
ldrw(rscratch1, dst);
|
|
incrementw(rscratch1, value);
|
|
strw(rscratch1, dst);
|
|
}
|
|
|
|
void MacroAssembler::increment(Address dst, int value)
|
|
{
|
|
assert(!dst.uses(rscratch1), "invalid dst for address increment");
|
|
if (dst.getMode() == Address::literal) {
|
|
assert(abs(value) < (1 << 12), "invalid value and address mode combination");
|
|
lea(rscratch2, dst);
|
|
dst = Address(rscratch2);
|
|
}
|
|
ldr(rscratch1, dst);
|
|
increment(rscratch1, value);
|
|
str(rscratch1, dst);
|
|
}
|
|
|
|
// Push lots of registers in the bit set supplied. Don't push sp.
|
|
// Return the number of words pushed
|
|
int MacroAssembler::push(unsigned int bitset, Register stack) {
|
|
int words_pushed = 0;
|
|
|
|
// Scan bitset to accumulate register pairs
|
|
unsigned char regs[32];
|
|
int count = 0;
|
|
for (int reg = 0; reg <= 30; reg++) {
|
|
if (1 & bitset)
|
|
regs[count++] = reg;
|
|
bitset >>= 1;
|
|
}
|
|
regs[count++] = zr->raw_encoding();
|
|
count &= ~1; // Only push an even number of regs
|
|
|
|
if (count) {
|
|
stp(as_Register(regs[0]), as_Register(regs[1]),
|
|
Address(pre(stack, -count * wordSize)));
|
|
words_pushed += 2;
|
|
}
|
|
for (int i = 2; i < count; i += 2) {
|
|
stp(as_Register(regs[i]), as_Register(regs[i+1]),
|
|
Address(stack, i * wordSize));
|
|
words_pushed += 2;
|
|
}
|
|
|
|
assert(words_pushed == count, "oops, pushed != count");
|
|
|
|
return count;
|
|
}
|
|
|
|
int MacroAssembler::pop(unsigned int bitset, Register stack) {
|
|
int words_pushed = 0;
|
|
|
|
// Scan bitset to accumulate register pairs
|
|
unsigned char regs[32];
|
|
int count = 0;
|
|
for (int reg = 0; reg <= 30; reg++) {
|
|
if (1 & bitset)
|
|
regs[count++] = reg;
|
|
bitset >>= 1;
|
|
}
|
|
regs[count++] = zr->raw_encoding();
|
|
count &= ~1;
|
|
|
|
for (int i = 2; i < count; i += 2) {
|
|
ldp(as_Register(regs[i]), as_Register(regs[i+1]),
|
|
Address(stack, i * wordSize));
|
|
words_pushed += 2;
|
|
}
|
|
if (count) {
|
|
ldp(as_Register(regs[0]), as_Register(regs[1]),
|
|
Address(post(stack, count * wordSize)));
|
|
words_pushed += 2;
|
|
}
|
|
|
|
assert(words_pushed == count, "oops, pushed != count");
|
|
|
|
return count;
|
|
}
|
|
|
|
// Push lots of registers in the bit set supplied. Don't push sp.
|
|
// Return the number of dwords pushed
|
|
int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
|
|
int words_pushed = 0;
|
|
bool use_sve = false;
|
|
int sve_vector_size_in_bytes = 0;
|
|
|
|
#ifdef COMPILER2
|
|
use_sve = Matcher::supports_scalable_vector();
|
|
sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
|
|
#endif
|
|
|
|
// Scan bitset to accumulate register pairs
|
|
unsigned char regs[32];
|
|
int count = 0;
|
|
for (int reg = 0; reg <= 31; reg++) {
|
|
if (1 & bitset)
|
|
regs[count++] = reg;
|
|
bitset >>= 1;
|
|
}
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (mode == PushPopFull) {
|
|
if (use_sve && sve_vector_size_in_bytes > 16) {
|
|
mode = PushPopSVE;
|
|
} else {
|
|
mode = PushPopNeon;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
{
|
|
char buffer[48];
|
|
if (mode == PushPopSVE) {
|
|
os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d SVE registers", count);
|
|
} else if (mode == PushPopNeon) {
|
|
os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d Neon registers", count);
|
|
} else {
|
|
os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d fp registers", count);
|
|
}
|
|
block_comment(buffer);
|
|
}
|
|
#endif
|
|
|
|
if (mode == PushPopSVE) {
|
|
sub(stack, stack, sve_vector_size_in_bytes * count);
|
|
for (int i = 0; i < count; i++) {
|
|
sve_str(as_FloatRegister(regs[i]), Address(stack, i));
|
|
}
|
|
return count * sve_vector_size_in_bytes / 8;
|
|
}
|
|
|
|
if (mode == PushPopNeon) {
|
|
if (count == 1) {
|
|
strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2)));
|
|
return 2;
|
|
}
|
|
|
|
bool odd = (count & 1) == 1;
|
|
int push_slots = count + (odd ? 1 : 0);
|
|
|
|
// Always pushing full 128 bit registers.
|
|
stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2)));
|
|
words_pushed += 2;
|
|
|
|
for (int i = 2; i + 1 < count; i += 2) {
|
|
stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
|
|
words_pushed += 2;
|
|
}
|
|
|
|
if (odd) {
|
|
strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
|
|
words_pushed++;
|
|
}
|
|
|
|
assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
|
|
return count * 2;
|
|
}
|
|
|
|
if (mode == PushPopFp) {
|
|
bool odd = (count & 1) == 1;
|
|
int push_slots = count + (odd ? 1 : 0);
|
|
|
|
if (count == 1) {
|
|
// Stack pointer must be 16 bytes aligned
|
|
strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize)));
|
|
return 1;
|
|
}
|
|
|
|
stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize)));
|
|
words_pushed += 2;
|
|
|
|
for (int i = 2; i + 1 < count; i += 2) {
|
|
stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
|
|
words_pushed += 2;
|
|
}
|
|
|
|
if (odd) {
|
|
// Stack pointer must be 16 bytes aligned
|
|
strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
|
|
words_pushed++;
|
|
}
|
|
|
|
assert(words_pushed == count, "oops, pushed != count");
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Return the number of dwords popped
|
|
int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
|
|
int words_pushed = 0;
|
|
bool use_sve = false;
|
|
int sve_vector_size_in_bytes = 0;
|
|
|
|
#ifdef COMPILER2
|
|
use_sve = Matcher::supports_scalable_vector();
|
|
sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
|
|
#endif
|
|
// Scan bitset to accumulate register pairs
|
|
unsigned char regs[32];
|
|
int count = 0;
|
|
for (int reg = 0; reg <= 31; reg++) {
|
|
if (1 & bitset)
|
|
regs[count++] = reg;
|
|
bitset >>= 1;
|
|
}
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (mode == PushPopFull) {
|
|
if (use_sve && sve_vector_size_in_bytes > 16) {
|
|
mode = PushPopSVE;
|
|
} else {
|
|
mode = PushPopNeon;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
{
|
|
char buffer[48];
|
|
if (mode == PushPopSVE) {
|
|
os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count);
|
|
} else if (mode == PushPopNeon) {
|
|
os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count);
|
|
} else {
|
|
os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d fp registers", count);
|
|
}
|
|
block_comment(buffer);
|
|
}
|
|
#endif
|
|
|
|
if (mode == PushPopSVE) {
|
|
for (int i = count - 1; i >= 0; i--) {
|
|
sve_ldr(as_FloatRegister(regs[i]), Address(stack, i));
|
|
}
|
|
add(stack, stack, sve_vector_size_in_bytes * count);
|
|
return count * sve_vector_size_in_bytes / 8;
|
|
}
|
|
|
|
if (mode == PushPopNeon) {
|
|
if (count == 1) {
|
|
ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2)));
|
|
return 2;
|
|
}
|
|
|
|
bool odd = (count & 1) == 1;
|
|
int push_slots = count + (odd ? 1 : 0);
|
|
|
|
if (odd) {
|
|
ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
|
|
words_pushed++;
|
|
}
|
|
|
|
for (int i = 2; i + 1 < count; i += 2) {
|
|
ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
|
|
words_pushed += 2;
|
|
}
|
|
|
|
ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2)));
|
|
words_pushed += 2;
|
|
|
|
assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
|
|
|
|
return count * 2;
|
|
}
|
|
|
|
if (mode == PushPopFp) {
|
|
bool odd = (count & 1) == 1;
|
|
int push_slots = count + (odd ? 1 : 0);
|
|
|
|
if (count == 1) {
|
|
ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize)));
|
|
return 1;
|
|
}
|
|
|
|
if (odd) {
|
|
ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
|
|
words_pushed++;
|
|
}
|
|
|
|
for (int i = 2; i + 1 < count; i += 2) {
|
|
ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
|
|
words_pushed += 2;
|
|
}
|
|
|
|
ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize)));
|
|
words_pushed += 2;
|
|
|
|
assert(words_pushed == count, "oops, pushed != count");
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Return the number of dwords pushed
|
|
int MacroAssembler::push_p(unsigned int bitset, Register stack) {
|
|
bool use_sve = false;
|
|
int sve_predicate_size_in_slots = 0;
|
|
|
|
#ifdef COMPILER2
|
|
use_sve = Matcher::supports_scalable_vector();
|
|
if (use_sve) {
|
|
sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
|
|
}
|
|
#endif
|
|
|
|
if (!use_sve) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned char regs[PRegister::number_of_registers];
|
|
int count = 0;
|
|
for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
|
|
if (1 & bitset)
|
|
regs[count++] = reg;
|
|
bitset >>= 1;
|
|
}
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
int total_push_bytes = align_up(sve_predicate_size_in_slots *
|
|
VMRegImpl::stack_slot_size * count, 16);
|
|
sub(stack, stack, total_push_bytes);
|
|
for (int i = 0; i < count; i++) {
|
|
sve_str(as_PRegister(regs[i]), Address(stack, i));
|
|
}
|
|
return total_push_bytes / 8;
|
|
}
|
|
|
|
// Return the number of dwords popped
|
|
int MacroAssembler::pop_p(unsigned int bitset, Register stack) {
|
|
bool use_sve = false;
|
|
int sve_predicate_size_in_slots = 0;
|
|
|
|
#ifdef COMPILER2
|
|
use_sve = Matcher::supports_scalable_vector();
|
|
if (use_sve) {
|
|
sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
|
|
}
|
|
#endif
|
|
|
|
if (!use_sve) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned char regs[PRegister::number_of_registers];
|
|
int count = 0;
|
|
for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
|
|
if (1 & bitset)
|
|
regs[count++] = reg;
|
|
bitset >>= 1;
|
|
}
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
int total_pop_bytes = align_up(sve_predicate_size_in_slots *
|
|
VMRegImpl::stack_slot_size * count, 16);
|
|
for (int i = count - 1; i >= 0; i--) {
|
|
sve_ldr(as_PRegister(regs[i]), Address(stack, i));
|
|
}
|
|
add(stack, stack, total_pop_bytes);
|
|
return total_pop_bytes / 8;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void MacroAssembler::verify_heapbase(const char* msg) {
|
|
#if 0
|
|
assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
|
|
assert (Universe::heap() != nullptr, "java heap should be initialized");
|
|
if (!UseCompressedOops || Universe::ptr_base() == nullptr) {
|
|
// rheapbase is allocated as general register
|
|
return;
|
|
}
|
|
if (CheckCompressedOops) {
|
|
Label ok;
|
|
push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
|
|
cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr()));
|
|
br(Assembler::EQ, ok);
|
|
stop(msg);
|
|
bind(ok);
|
|
pop(1 << rscratch1->encoding(), sp);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
|
|
assert_different_registers(value, tmp1, tmp2);
|
|
Label done, tagged, weak_tagged;
|
|
|
|
cbz(value, done); // Use null as-is.
|
|
tst(value, JNIHandles::tag_mask); // Test for tag.
|
|
br(Assembler::NE, tagged);
|
|
|
|
// Resolve local handle
|
|
access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2);
|
|
verify_oop(value);
|
|
b(done);
|
|
|
|
bind(tagged);
|
|
STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1);
|
|
tbnz(value, 0, weak_tagged); // Test for weak tag.
|
|
|
|
// Resolve global handle
|
|
access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
|
|
verify_oop(value);
|
|
b(done);
|
|
|
|
bind(weak_tagged);
|
|
// Resolve jweak.
|
|
access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
|
|
value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2);
|
|
verify_oop(value);
|
|
|
|
bind(done);
|
|
}
|
|
|
|
void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) {
|
|
assert_different_registers(value, tmp1, tmp2);
|
|
Label done;
|
|
|
|
cbz(value, done); // Use null as-is.
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10);
|
|
Label valid_global_tag;
|
|
tbnz(value, 1, valid_global_tag); // Test for global tag
|
|
stop("non global jobject using resolve_global_jobject");
|
|
bind(valid_global_tag);
|
|
}
|
|
#endif
|
|
|
|
// Resolve global handle
|
|
access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
|
|
verify_oop(value);
|
|
|
|
bind(done);
|
|
}
|
|
|
|
void MacroAssembler::stop(const char* msg) {
|
|
// Skip AOT caching C strings in scratch buffer.
|
|
const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg);
|
|
BLOCK_COMMENT(str);
|
|
// load msg into r0 so we can access it from the signal handler
|
|
// ExternalAddress enables saving and restoring via the code cache
|
|
lea(c_rarg0, ExternalAddress((address) str));
|
|
dcps1(0xdeae);
|
|
}
|
|
|
|
void MacroAssembler::unimplemented(const char* what) {
|
|
const char* buf = nullptr;
|
|
{
|
|
ResourceMark rm;
|
|
stringStream ss;
|
|
ss.print("unimplemented: %s", what);
|
|
buf = code_string(ss.as_string());
|
|
}
|
|
stop(buf);
|
|
}
|
|
|
|
void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) {
|
|
#ifdef ASSERT
|
|
Label OK;
|
|
br(cc, OK);
|
|
stop(msg);
|
|
bind(OK);
|
|
#endif
|
|
}
|
|
|
|
// If a constant does not fit in an immediate field, generate some
|
|
// number of MOV instructions and then perform the operation.
|
|
void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
|
|
add_sub_imm_insn insn1,
|
|
add_sub_reg_insn insn2,
|
|
bool is32) {
|
|
assert(Rd != zr, "Rd = zr and not setting flags?");
|
|
bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
|
|
if (fits) {
|
|
(this->*insn1)(Rd, Rn, imm);
|
|
} else {
|
|
if (g_uabs(imm) < (1 << 24)) {
|
|
(this->*insn1)(Rd, Rn, imm & -(1 << 12));
|
|
(this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
|
|
} else {
|
|
assert_different_registers(Rd, Rn);
|
|
mov(Rd, imm);
|
|
(this->*insn2)(Rd, Rn, Rd, LSL, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Separate vsn which sets the flags. Optimisations are more restricted
|
|
// because we must set the flags correctly.
|
|
void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
|
|
add_sub_imm_insn insn1,
|
|
add_sub_reg_insn insn2,
|
|
bool is32) {
|
|
bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
|
|
if (fits) {
|
|
(this->*insn1)(Rd, Rn, imm);
|
|
} else {
|
|
assert_different_registers(Rd, Rn);
|
|
assert(Rd != zr, "overflow in immediate operand");
|
|
mov(Rd, imm);
|
|
(this->*insn2)(Rd, Rn, Rd, LSL, 0);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
|
|
if (increment.is_register()) {
|
|
add(Rd, Rn, increment.as_register());
|
|
} else {
|
|
add(Rd, Rn, increment.as_constant());
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
|
|
if (increment.is_register()) {
|
|
addw(Rd, Rn, increment.as_register());
|
|
} else {
|
|
addw(Rd, Rn, increment.as_constant());
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
|
|
if (decrement.is_register()) {
|
|
sub(Rd, Rn, decrement.as_register());
|
|
} else {
|
|
sub(Rd, Rn, decrement.as_constant());
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
|
|
if (decrement.is_register()) {
|
|
subw(Rd, Rn, decrement.as_register());
|
|
} else {
|
|
subw(Rd, Rn, decrement.as_constant());
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::reinit_heapbase()
|
|
{
|
|
if (UseCompressedOops) {
|
|
if (Universe::is_fully_initialized()) {
|
|
mov(rheapbase, CompressedOops::base());
|
|
} else {
|
|
lea(rheapbase, ExternalAddress(CompressedOops::base_addr()));
|
|
ldr(rheapbase, Address(rheapbase));
|
|
}
|
|
}
|
|
}
|
|
|
|
// A generic CAS; success or failure is in the EQ flag. A weak CAS
|
|
// doesn't retry and may fail spuriously. If the oldval is wanted,
|
|
// Pass a register for the result, otherwise pass noreg.
|
|
|
|
// Clobbers rscratch1
|
|
void MacroAssembler::cmpxchg(Register addr, Register expected,
|
|
Register new_val,
|
|
enum operand_size size,
|
|
bool acquire, bool release,
|
|
bool weak,
|
|
Register result) {
|
|
if (result == noreg) result = rscratch1;
|
|
BLOCK_COMMENT("cmpxchg {");
|
|
if (UseLSE) {
|
|
mov(result, expected);
|
|
lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
|
|
compare_eq(result, expected, size);
|
|
#ifdef ASSERT
|
|
// Poison rscratch1 which is written on !UseLSE branch
|
|
mov(rscratch1, 0x1f1f1f1f1f1f1f1f);
|
|
#endif
|
|
} else {
|
|
Label retry_load, done;
|
|
prfm(Address(addr), PSTL1STRM);
|
|
bind(retry_load);
|
|
load_exclusive(result, addr, size, acquire);
|
|
compare_eq(result, expected, size);
|
|
br(Assembler::NE, done);
|
|
store_exclusive(rscratch1, new_val, addr, size, release);
|
|
if (weak) {
|
|
cmpw(rscratch1, 0u); // If the store fails, return NE to our caller.
|
|
} else {
|
|
cbnzw(rscratch1, retry_load);
|
|
}
|
|
bind(done);
|
|
}
|
|
BLOCK_COMMENT("} cmpxchg");
|
|
}
|
|
|
|
// A generic comparison. Only compares for equality, clobbers rscratch1.
|
|
void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) {
|
|
if (size == xword) {
|
|
cmp(rm, rn);
|
|
} else if (size == word) {
|
|
cmpw(rm, rn);
|
|
} else if (size == halfword) {
|
|
eorw(rscratch1, rm, rn);
|
|
ands(zr, rscratch1, 0xffff);
|
|
} else if (size == byte) {
|
|
eorw(rscratch1, rm, rn);
|
|
ands(zr, rscratch1, 0xff);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
|
|
static bool different(Register a, RegisterOrConstant b, Register c) {
|
|
if (b.is_constant())
|
|
return a != c;
|
|
else
|
|
return a != b.as_register() && a != c && b.as_register() != c;
|
|
}
|
|
|
|
#define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \
|
|
void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
|
|
if (UseLSE) { \
|
|
prev = prev->is_valid() ? prev : zr; \
|
|
if (incr.is_register()) { \
|
|
AOP(sz, incr.as_register(), prev, addr); \
|
|
} else { \
|
|
mov(rscratch2, incr.as_constant()); \
|
|
AOP(sz, rscratch2, prev, addr); \
|
|
} \
|
|
return; \
|
|
} \
|
|
Register result = rscratch2; \
|
|
if (prev->is_valid()) \
|
|
result = different(prev, incr, addr) ? prev : rscratch2; \
|
|
\
|
|
Label retry_load; \
|
|
prfm(Address(addr), PSTL1STRM); \
|
|
bind(retry_load); \
|
|
LDXR(result, addr); \
|
|
OP(rscratch1, result, incr); \
|
|
STXR(rscratch2, rscratch1, addr); \
|
|
cbnzw(rscratch2, retry_load); \
|
|
if (prev->is_valid() && prev != result) { \
|
|
IOP(prev, rscratch1, incr); \
|
|
} \
|
|
}
|
|
|
|
ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
|
|
ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
|
|
ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
|
|
ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
|
|
|
|
#undef ATOMIC_OP
|
|
|
|
#define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \
|
|
void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
|
|
if (UseLSE) { \
|
|
prev = prev->is_valid() ? prev : zr; \
|
|
AOP(sz, newv, prev, addr); \
|
|
return; \
|
|
} \
|
|
Register result = rscratch2; \
|
|
if (prev->is_valid()) \
|
|
result = different(prev, newv, addr) ? prev : rscratch2; \
|
|
\
|
|
Label retry_load; \
|
|
prfm(Address(addr), PSTL1STRM); \
|
|
bind(retry_load); \
|
|
LDXR(result, addr); \
|
|
STXR(rscratch1, newv, addr); \
|
|
cbnzw(rscratch1, retry_load); \
|
|
if (prev->is_valid() && prev != result) \
|
|
mov(prev, result); \
|
|
}
|
|
|
|
ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
|
|
ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
|
|
ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword)
|
|
ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word)
|
|
ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
|
|
ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
|
|
|
|
#undef ATOMIC_XCHG
|
|
|
|
#ifndef PRODUCT
|
|
extern "C" void findpc(intptr_t x);
|
|
#endif
|
|
|
|
void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
|
|
{
|
|
// In order to get locks to work, we need to fake a in_VM state
|
|
if (ShowMessageBoxOnError ) {
|
|
JavaThread* thread = JavaThread::current();
|
|
JavaThreadState saved_state = thread->thread_state();
|
|
thread->set_thread_state(_thread_in_vm);
|
|
#ifndef PRODUCT
|
|
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
|
|
ttyLocker ttyl;
|
|
BytecodeCounter::print();
|
|
}
|
|
#endif
|
|
if (os::message_box(msg, "Execution stopped, print registers?")) {
|
|
ttyLocker ttyl;
|
|
tty->print_cr(" pc = 0x%016" PRIx64, pc);
|
|
#ifndef PRODUCT
|
|
tty->cr();
|
|
findpc(pc);
|
|
tty->cr();
|
|
#endif
|
|
tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]);
|
|
tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]);
|
|
tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]);
|
|
tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]);
|
|
tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]);
|
|
tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]);
|
|
tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]);
|
|
tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]);
|
|
tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]);
|
|
tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]);
|
|
tty->print_cr("r10 = 0x%016" PRIx64, regs[10]);
|
|
tty->print_cr("r11 = 0x%016" PRIx64, regs[11]);
|
|
tty->print_cr("r12 = 0x%016" PRIx64, regs[12]);
|
|
tty->print_cr("r13 = 0x%016" PRIx64, regs[13]);
|
|
tty->print_cr("r14 = 0x%016" PRIx64, regs[14]);
|
|
tty->print_cr("r15 = 0x%016" PRIx64, regs[15]);
|
|
tty->print_cr("r16 = 0x%016" PRIx64, regs[16]);
|
|
tty->print_cr("r17 = 0x%016" PRIx64, regs[17]);
|
|
tty->print_cr("r18 = 0x%016" PRIx64, regs[18]);
|
|
tty->print_cr("r19 = 0x%016" PRIx64, regs[19]);
|
|
tty->print_cr("r20 = 0x%016" PRIx64, regs[20]);
|
|
tty->print_cr("r21 = 0x%016" PRIx64, regs[21]);
|
|
tty->print_cr("r22 = 0x%016" PRIx64, regs[22]);
|
|
tty->print_cr("r23 = 0x%016" PRIx64, regs[23]);
|
|
tty->print_cr("r24 = 0x%016" PRIx64, regs[24]);
|
|
tty->print_cr("r25 = 0x%016" PRIx64, regs[25]);
|
|
tty->print_cr("r26 = 0x%016" PRIx64, regs[26]);
|
|
tty->print_cr("r27 = 0x%016" PRIx64, regs[27]);
|
|
tty->print_cr("r28 = 0x%016" PRIx64, regs[28]);
|
|
tty->print_cr("r30 = 0x%016" PRIx64, regs[30]);
|
|
tty->print_cr("r31 = 0x%016" PRIx64, regs[31]);
|
|
BREAKPOINT;
|
|
}
|
|
}
|
|
fatal("DEBUG MESSAGE: %s", msg);
|
|
}
|
|
|
|
RegSet MacroAssembler::call_clobbered_gp_registers() {
|
|
RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2);
|
|
#ifndef R18_RESERVED
|
|
regs += r18_tls;
|
|
#endif
|
|
return regs;
|
|
}
|
|
|
|
void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) {
|
|
int step = 4 * wordSize;
|
|
push(call_clobbered_gp_registers() - exclude, sp);
|
|
sub(sp, sp, step);
|
|
mov(rscratch1, -step);
|
|
// Push v0-v7, v16-v31.
|
|
for (int i = 31; i>= 4; i -= 4) {
|
|
if (i <= v7->encoding() || i >= v16->encoding())
|
|
st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1),
|
|
as_FloatRegister(i), T1D, Address(post(sp, rscratch1)));
|
|
}
|
|
st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2),
|
|
as_FloatRegister(3), T1D, Address(sp));
|
|
}
|
|
|
|
void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) {
|
|
for (int i = 0; i < 32; i += 4) {
|
|
if (i <= v7->encoding() || i >= v16->encoding())
|
|
ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
|
|
as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize)));
|
|
}
|
|
|
|
reinitialize_ptrue();
|
|
|
|
pop(call_clobbered_gp_registers() - exclude, sp);
|
|
}
|
|
|
|
void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve,
|
|
int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
|
|
push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
|
|
if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) {
|
|
sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
|
|
for (int i = 0; i < FloatRegister::number_of_registers; i++) {
|
|
sve_str(as_FloatRegister(i), Address(sp, i));
|
|
}
|
|
} else {
|
|
int step = (save_vectors ? 8 : 4) * wordSize;
|
|
mov(rscratch1, -step);
|
|
sub(sp, sp, step);
|
|
for (int i = 28; i >= 4; i -= 4) {
|
|
st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
|
|
as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1)));
|
|
}
|
|
st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp);
|
|
}
|
|
if (save_vectors && use_sve && total_predicate_in_bytes > 0) {
|
|
sub(sp, sp, total_predicate_in_bytes);
|
|
for (int i = 0; i < PRegister::number_of_registers; i++) {
|
|
sve_str(as_PRegister(i), Address(sp, i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve,
|
|
int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
|
|
if (restore_vectors && use_sve && total_predicate_in_bytes > 0) {
|
|
for (int i = PRegister::number_of_registers - 1; i >= 0; i--) {
|
|
sve_ldr(as_PRegister(i), Address(sp, i));
|
|
}
|
|
add(sp, sp, total_predicate_in_bytes);
|
|
}
|
|
if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) {
|
|
for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) {
|
|
sve_ldr(as_FloatRegister(i), Address(sp, i));
|
|
}
|
|
add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
|
|
} else {
|
|
int step = (restore_vectors ? 8 : 4) * wordSize;
|
|
for (int i = 0; i <= 28; i += 4)
|
|
ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
|
|
as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step)));
|
|
}
|
|
|
|
// We may use predicate registers and rely on ptrue with SVE,
|
|
// regardless of wide vector (> 8 bytes) used or not.
|
|
if (use_sve) {
|
|
reinitialize_ptrue();
|
|
}
|
|
|
|
// integer registers except lr & sp
|
|
pop(RegSet::range(r0, r17), sp);
|
|
#ifdef R18_RESERVED
|
|
ldp(zr, r19, Address(post(sp, 2 * wordSize)));
|
|
pop(RegSet::range(r20, r29), sp);
|
|
#else
|
|
pop(RegSet::range(r18_tls, r29), sp);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Helpers for multiply_to_len().
|
|
*/
|
|
void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
|
|
Register src1, Register src2) {
|
|
adds(dest_lo, dest_lo, src1);
|
|
adc(dest_hi, dest_hi, zr);
|
|
adds(dest_lo, dest_lo, src2);
|
|
adc(final_dest_hi, dest_hi, zr);
|
|
}
|
|
|
|
// Generate an address from (r + r1 extend offset). "size" is the
|
|
// size of the operand. The result may be in rscratch2.
|
|
Address MacroAssembler::offsetted_address(Register r, Register r1,
|
|
Address::extend ext, int offset, int size) {
|
|
if (offset || (ext.shift() % size != 0)) {
|
|
lea(rscratch2, Address(r, r1, ext));
|
|
return Address(rscratch2, offset);
|
|
} else {
|
|
return Address(r, r1, ext);
|
|
}
|
|
}
|
|
|
|
Address MacroAssembler::spill_address(int size, int offset, Register tmp)
|
|
{
|
|
assert(offset >= 0, "spill to negative address?");
|
|
// Offset reachable ?
|
|
// Not aligned - 9 bits signed offset
|
|
// Aligned - 12 bits unsigned offset shifted
|
|
Register base = sp;
|
|
if ((offset & (size-1)) && offset >= (1<<8)) {
|
|
add(tmp, base, offset & ((1<<12)-1));
|
|
base = tmp;
|
|
offset &= -1u<<12;
|
|
}
|
|
|
|
if (offset >= (1<<12) * size) {
|
|
add(tmp, base, offset & (((1<<12)-1)<<12));
|
|
base = tmp;
|
|
offset &= ~(((1<<12)-1)<<12);
|
|
}
|
|
|
|
return Address(base, offset);
|
|
}
|
|
|
|
Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) {
|
|
assert(offset >= 0, "spill to negative address?");
|
|
|
|
Register base = sp;
|
|
|
|
// An immediate offset in the range 0 to 255 which is multiplied
|
|
// by the current vector or predicate register size in bytes.
|
|
if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) {
|
|
return Address(base, offset / sve_reg_size_in_bytes);
|
|
}
|
|
|
|
add(tmp, base, offset);
|
|
return Address(tmp);
|
|
}
|
|
|
|
// Checks whether offset is aligned.
|
|
// Returns true if it is, else false.
|
|
bool MacroAssembler::merge_alignment_check(Register base,
|
|
size_t size,
|
|
int64_t cur_offset,
|
|
int64_t prev_offset) const {
|
|
if (AvoidUnalignedAccesses) {
|
|
if (base == sp) {
|
|
// Checks whether low offset if aligned to pair of registers.
|
|
int64_t pair_mask = size * 2 - 1;
|
|
int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset;
|
|
return (offset & pair_mask) == 0;
|
|
} else { // If base is not sp, we can't guarantee the access is aligned.
|
|
return false;
|
|
}
|
|
} else {
|
|
int64_t mask = size - 1;
|
|
// Load/store pair instruction only supports element size aligned offset.
|
|
return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
|
|
}
|
|
}
|
|
|
|
// Checks whether current and previous loads/stores can be merged.
|
|
// Returns true if it can be merged, else false.
|
|
bool MacroAssembler::ldst_can_merge(Register rt,
|
|
const Address &adr,
|
|
size_t cur_size_in_bytes,
|
|
bool is_store) const {
|
|
address prev = pc() - NativeInstruction::instruction_size;
|
|
address last = code()->last_insn();
|
|
|
|
if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) {
|
|
return false;
|
|
}
|
|
|
|
if (adr.getMode() != Address::base_plus_offset || prev != last) {
|
|
return false;
|
|
}
|
|
|
|
NativeLdSt* prev_ldst = NativeLdSt_at(prev);
|
|
size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
|
|
|
|
assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
|
|
assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
|
|
|
|
if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
|
|
return false;
|
|
}
|
|
|
|
int64_t max_offset = 63 * prev_size_in_bytes;
|
|
int64_t min_offset = -64 * prev_size_in_bytes;
|
|
|
|
assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
|
|
|
|
// Only same base can be merged.
|
|
if (adr.base() != prev_ldst->base()) {
|
|
return false;
|
|
}
|
|
|
|
int64_t cur_offset = adr.offset();
|
|
int64_t prev_offset = prev_ldst->offset();
|
|
size_t diff = abs(cur_offset - prev_offset);
|
|
if (diff != prev_size_in_bytes) {
|
|
return false;
|
|
}
|
|
|
|
// Following cases can not be merged:
|
|
// ldr x2, [x2, #8]
|
|
// ldr x3, [x2, #16]
|
|
// or:
|
|
// ldr x2, [x3, #8]
|
|
// ldr x2, [x3, #16]
|
|
// If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
|
|
if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
|
|
return false;
|
|
}
|
|
|
|
int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
|
|
// Offset range must be in ldp/stp instruction's range.
|
|
if (low_offset > max_offset || low_offset < min_offset) {
|
|
return false;
|
|
}
|
|
|
|
if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Merge current load/store with previous load/store into ldp/stp.
|
|
void MacroAssembler::merge_ldst(Register rt,
|
|
const Address &adr,
|
|
size_t cur_size_in_bytes,
|
|
bool is_store) {
|
|
|
|
assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
|
|
|
|
Register rt_low, rt_high;
|
|
address prev = pc() - NativeInstruction::instruction_size;
|
|
NativeLdSt* prev_ldst = NativeLdSt_at(prev);
|
|
|
|
int64_t offset;
|
|
|
|
if (adr.offset() < prev_ldst->offset()) {
|
|
offset = adr.offset();
|
|
rt_low = rt;
|
|
rt_high = prev_ldst->target();
|
|
} else {
|
|
offset = prev_ldst->offset();
|
|
rt_low = prev_ldst->target();
|
|
rt_high = rt;
|
|
}
|
|
|
|
Address adr_p = Address(prev_ldst->base(), offset);
|
|
// Overwrite previous generated binary.
|
|
code_section()->set_end(prev);
|
|
|
|
const size_t sz = prev_ldst->size_in_bytes();
|
|
assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
|
|
if (!is_store) {
|
|
BLOCK_COMMENT("merged ldr pair");
|
|
if (sz == 8) {
|
|
ldp(rt_low, rt_high, adr_p);
|
|
} else {
|
|
ldpw(rt_low, rt_high, adr_p);
|
|
}
|
|
} else {
|
|
BLOCK_COMMENT("merged str pair");
|
|
if (sz == 8) {
|
|
stp(rt_low, rt_high, adr_p);
|
|
} else {
|
|
stpw(rt_low, rt_high, adr_p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Multiply 64 bit by 64 bit first loop.
|
|
*/
|
|
void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
|
|
Register y, Register y_idx, Register z,
|
|
Register carry, Register product,
|
|
Register idx, Register kdx) {
|
|
//
|
|
// jlong carry, x[], y[], z[];
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
|
|
// huge_128 product = y[idx] * x[xstart] + carry;
|
|
// z[kdx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
// z[xstart] = carry;
|
|
//
|
|
|
|
Label L_first_loop, L_first_loop_exit;
|
|
Label L_one_x, L_one_y, L_multiply;
|
|
|
|
subsw(xstart, xstart, 1);
|
|
br(Assembler::MI, L_one_x);
|
|
|
|
lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
|
|
ldr(x_xstart, Address(rscratch1));
|
|
ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
|
|
|
|
bind(L_first_loop);
|
|
subsw(idx, idx, 1);
|
|
br(Assembler::MI, L_first_loop_exit);
|
|
subsw(idx, idx, 1);
|
|
br(Assembler::MI, L_one_y);
|
|
lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
|
|
ldr(y_idx, Address(rscratch1));
|
|
ror(y_idx, y_idx, 32); // convert big-endian to little-endian
|
|
bind(L_multiply);
|
|
|
|
// AArch64 has a multiply-accumulate instruction that we can't use
|
|
// here because it has no way to process carries, so we have to use
|
|
// separate add and adc instructions. Bah.
|
|
umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
|
|
mul(product, x_xstart, y_idx);
|
|
adds(product, product, carry);
|
|
adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product
|
|
|
|
subw(kdx, kdx, 2);
|
|
ror(product, product, 32); // back to big-endian
|
|
str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
|
|
|
|
b(L_first_loop);
|
|
|
|
bind(L_one_y);
|
|
ldrw(y_idx, Address(y, 0));
|
|
b(L_multiply);
|
|
|
|
bind(L_one_x);
|
|
ldrw(x_xstart, Address(x, 0));
|
|
b(L_first_loop);
|
|
|
|
bind(L_first_loop_exit);
|
|
}
|
|
|
|
/**
|
|
* Multiply 128 bit by 128. Unrolled inner loop.
|
|
*
|
|
*/
|
|
void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
|
|
Register carry, Register carry2,
|
|
Register idx, Register jdx,
|
|
Register yz_idx1, Register yz_idx2,
|
|
Register tmp, Register tmp3, Register tmp4,
|
|
Register tmp6, Register product_hi) {
|
|
|
|
// jlong carry, x[], y[], z[];
|
|
// int kdx = ystart+1;
|
|
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
|
|
// huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
|
|
// jlong carry2 = (jlong)(tmp3 >>> 64);
|
|
// huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2;
|
|
// carry = (jlong)(tmp4 >>> 64);
|
|
// z[kdx+idx+1] = (jlong)tmp3;
|
|
// z[kdx+idx] = (jlong)tmp4;
|
|
// }
|
|
// idx += 2;
|
|
// if (idx > 0) {
|
|
// yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
|
|
// z[kdx+idx] = (jlong)yz_idx1;
|
|
// carry = (jlong)(yz_idx1 >>> 64);
|
|
// }
|
|
//
|
|
|
|
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
|
|
|
|
lsrw(jdx, idx, 2);
|
|
|
|
bind(L_third_loop);
|
|
|
|
subsw(jdx, jdx, 1);
|
|
br(Assembler::MI, L_third_loop_exit);
|
|
subw(idx, idx, 4);
|
|
|
|
lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
|
|
|
|
ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
|
|
|
|
lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
|
|
|
|
ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
|
|
ror(yz_idx2, yz_idx2, 32);
|
|
|
|
ldp(rscratch2, rscratch1, Address(tmp6, 0));
|
|
|
|
mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
|
|
umulh(tmp4, product_hi, yz_idx1);
|
|
|
|
ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
|
|
ror(rscratch2, rscratch2, 32);
|
|
|
|
mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp
|
|
umulh(carry2, product_hi, yz_idx2);
|
|
|
|
// propagate sum of both multiplications into carry:tmp4:tmp3
|
|
adds(tmp3, tmp3, carry);
|
|
adc(tmp4, tmp4, zr);
|
|
adds(tmp3, tmp3, rscratch1);
|
|
adcs(tmp4, tmp4, tmp);
|
|
adc(carry, carry2, zr);
|
|
adds(tmp4, tmp4, rscratch2);
|
|
adc(carry, carry, zr);
|
|
|
|
ror(tmp3, tmp3, 32); // convert little-endian to big-endian
|
|
ror(tmp4, tmp4, 32);
|
|
stp(tmp4, tmp3, Address(tmp6, 0));
|
|
|
|
b(L_third_loop);
|
|
bind (L_third_loop_exit);
|
|
|
|
andw (idx, idx, 0x3);
|
|
cbz(idx, L_post_third_loop_done);
|
|
|
|
Label L_check_1;
|
|
subsw(idx, idx, 2);
|
|
br(Assembler::MI, L_check_1);
|
|
|
|
lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
|
|
ldr(yz_idx1, Address(rscratch1, 0));
|
|
ror(yz_idx1, yz_idx1, 32);
|
|
mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
|
|
umulh(tmp4, product_hi, yz_idx1);
|
|
lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
|
|
ldr(yz_idx2, Address(rscratch1, 0));
|
|
ror(yz_idx2, yz_idx2, 32);
|
|
|
|
add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
|
|
|
|
ror(tmp3, tmp3, 32);
|
|
str(tmp3, Address(rscratch1, 0));
|
|
|
|
bind (L_check_1);
|
|
|
|
andw (idx, idx, 0x1);
|
|
subsw(idx, idx, 1);
|
|
br(Assembler::MI, L_post_third_loop_done);
|
|
ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
|
|
mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3
|
|
umulh(carry2, tmp4, product_hi);
|
|
ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
|
|
|
|
add2_with_carry(carry2, tmp3, tmp4, carry);
|
|
|
|
strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
|
|
extr(carry, carry2, tmp3, 32);
|
|
|
|
bind(L_post_third_loop_done);
|
|
}
|
|
|
|
/**
|
|
* Code for BigInteger::multiplyToLen() intrinsic.
|
|
*
|
|
* r0: x
|
|
* r1: xlen
|
|
* r2: y
|
|
* r3: ylen
|
|
* r4: z
|
|
* r5: tmp0
|
|
* r10: tmp1
|
|
* r11: tmp2
|
|
* r12: tmp3
|
|
* r13: tmp4
|
|
* r14: tmp5
|
|
* r15: tmp6
|
|
* r16: tmp7
|
|
*
|
|
*/
|
|
void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
|
|
Register z, Register tmp0,
|
|
Register tmp1, Register tmp2, Register tmp3, Register tmp4,
|
|
Register tmp5, Register tmp6, Register product_hi) {
|
|
|
|
assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi);
|
|
|
|
const Register idx = tmp1;
|
|
const Register kdx = tmp2;
|
|
const Register xstart = tmp3;
|
|
|
|
const Register y_idx = tmp4;
|
|
const Register carry = tmp5;
|
|
const Register product = xlen;
|
|
const Register x_xstart = tmp0;
|
|
|
|
// First Loop.
|
|
//
|
|
// final static long LONG_MASK = 0xffffffffL;
|
|
// int xstart = xlen - 1;
|
|
// int ystart = ylen - 1;
|
|
// long carry = 0;
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
|
|
// long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
|
|
// z[kdx] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[xstart] = (int)carry;
|
|
//
|
|
|
|
movw(idx, ylen); // idx = ylen;
|
|
addw(kdx, xlen, ylen); // kdx = xlen+ylen;
|
|
mov(carry, zr); // carry = 0;
|
|
|
|
Label L_done;
|
|
|
|
movw(xstart, xlen);
|
|
subsw(xstart, xstart, 1);
|
|
br(Assembler::MI, L_done);
|
|
|
|
multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
|
|
|
|
Label L_second_loop;
|
|
cbzw(kdx, L_second_loop);
|
|
|
|
Label L_carry;
|
|
subw(kdx, kdx, 1);
|
|
cbzw(kdx, L_carry);
|
|
|
|
strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
|
|
lsr(carry, carry, 32);
|
|
subw(kdx, kdx, 1);
|
|
|
|
bind(L_carry);
|
|
strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
|
|
|
|
// Second and third (nested) loops.
|
|
//
|
|
// for (int i = xstart-1; i >= 0; i--) { // Second loop
|
|
// carry = 0;
|
|
// for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
|
|
// long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
|
|
// (z[k] & LONG_MASK) + carry;
|
|
// z[k] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[i] = (int)carry;
|
|
// }
|
|
//
|
|
// i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
|
|
|
|
const Register jdx = tmp1;
|
|
|
|
bind(L_second_loop);
|
|
mov(carry, zr); // carry = 0;
|
|
movw(jdx, ylen); // j = ystart+1
|
|
|
|
subsw(xstart, xstart, 1); // i = xstart-1;
|
|
br(Assembler::MI, L_done);
|
|
|
|
str(z, Address(pre(sp, -4 * wordSize)));
|
|
|
|
Label L_last_x;
|
|
lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
|
|
subsw(xstart, xstart, 1); // i = xstart-1;
|
|
br(Assembler::MI, L_last_x);
|
|
|
|
lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
|
|
ldr(product_hi, Address(rscratch1));
|
|
ror(product_hi, product_hi, 32); // convert big-endian to little-endian
|
|
|
|
Label L_third_loop_prologue;
|
|
bind(L_third_loop_prologue);
|
|
|
|
str(ylen, Address(sp, wordSize));
|
|
stp(x, xstart, Address(sp, 2 * wordSize));
|
|
multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
|
|
tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
|
|
ldp(z, ylen, Address(post(sp, 2 * wordSize)));
|
|
ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen
|
|
|
|
addw(tmp3, xlen, 1);
|
|
strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
|
|
subsw(tmp3, tmp3, 1);
|
|
br(Assembler::MI, L_done);
|
|
|
|
lsr(carry, carry, 32);
|
|
strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
|
|
b(L_second_loop);
|
|
|
|
// Next infrequent code is moved outside loops.
|
|
bind(L_last_x);
|
|
ldrw(product_hi, Address(x, 0));
|
|
b(L_third_loop_prologue);
|
|
|
|
bind(L_done);
|
|
}
|
|
|
|
// Code for BigInteger::mulAdd intrinsic
|
|
// out = r0
|
|
// in = r1
|
|
// offset = r2 (already out.length-offset)
|
|
// len = r3
|
|
// k = r4
|
|
//
|
|
// pseudo code from java implementation:
|
|
// carry = 0;
|
|
// offset = out.length-offset - 1;
|
|
// for (int j=len-1; j >= 0; j--) {
|
|
// product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
|
|
// out[offset--] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// return (int)carry;
|
|
void MacroAssembler::mul_add(Register out, Register in, Register offset,
|
|
Register len, Register k) {
|
|
Label LOOP, END;
|
|
// pre-loop
|
|
cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
|
|
csel(out, zr, out, Assembler::EQ);
|
|
br(Assembler::EQ, END);
|
|
add(in, in, len, LSL, 2); // in[j+1] address
|
|
add(offset, out, offset, LSL, 2); // out[offset + 1] address
|
|
mov(out, zr); // used to keep carry now
|
|
BIND(LOOP);
|
|
ldrw(rscratch1, Address(pre(in, -4)));
|
|
madd(rscratch1, rscratch1, k, out);
|
|
ldrw(rscratch2, Address(pre(offset, -4)));
|
|
add(rscratch1, rscratch1, rscratch2);
|
|
strw(rscratch1, Address(offset));
|
|
lsr(out, rscratch1, 32);
|
|
subs(len, len, 1);
|
|
br(Assembler::NE, LOOP);
|
|
BIND(END);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a byte value according to constants in table
|
|
*
|
|
* @param [in,out]crc Register containing the crc.
|
|
* @param [in]val Register containing the byte to fold into the CRC.
|
|
* @param [in]table Register containing the table of crc constants.
|
|
*
|
|
* uint32_t crc;
|
|
* val = crc_table[(val ^ crc) & 0xFF];
|
|
* crc = val ^ (crc >> 8);
|
|
*
|
|
*/
|
|
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
|
|
eor(val, val, crc);
|
|
andr(val, val, 0xff);
|
|
ldrw(val, Address(table, val, Address::lsl(2)));
|
|
eor(crc, val, crc, Assembler::LSR, 8);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
|
|
*
|
|
* @param [in,out]crc Register containing the crc.
|
|
* @param [in]v Register containing the 32-bit to fold into the CRC.
|
|
* @param [in]table0 Register containing table 0 of crc constants.
|
|
* @param [in]table1 Register containing table 1 of crc constants.
|
|
* @param [in]table2 Register containing table 2 of crc constants.
|
|
* @param [in]table3 Register containing table 3 of crc constants.
|
|
*
|
|
* uint32_t crc;
|
|
* v = crc ^ v
|
|
* crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
|
|
*
|
|
*/
|
|
void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
|
|
Register table0, Register table1, Register table2, Register table3,
|
|
bool upper) {
|
|
eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
|
|
uxtb(tmp, v);
|
|
ldrw(crc, Address(table3, tmp, Address::lsl(2)));
|
|
ubfx(tmp, v, 8, 8);
|
|
ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
|
|
eor(crc, crc, tmp);
|
|
ubfx(tmp, v, 16, 8);
|
|
ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
|
|
eor(crc, crc, tmp);
|
|
ubfx(tmp, v, 24, 8);
|
|
ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
|
|
eor(crc, crc, tmp);
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf,
|
|
Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
|
|
Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
|
|
assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
|
|
|
|
subs(tmp0, len, 384);
|
|
mvnw(crc, crc);
|
|
br(Assembler::GE, CRC_by128_pre);
|
|
BIND(CRC_less128);
|
|
subs(len, len, 32);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
BIND(CRC_less32);
|
|
adds(len, len, 32 - 4);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by32_loop);
|
|
ldp(tmp0, tmp1, Address(buf));
|
|
crc32x(crc, crc, tmp0);
|
|
ldp(tmp2, tmp3, Address(buf, 16));
|
|
crc32x(crc, crc, tmp1);
|
|
add(buf, buf, 32);
|
|
crc32x(crc, crc, tmp2);
|
|
subs(len, len, 32);
|
|
crc32x(crc, crc, tmp3);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
cmn(len, (u1)32);
|
|
br(Assembler::NE, CRC_less32);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by4_loop);
|
|
ldrw(tmp0, Address(post(buf, 4)));
|
|
subs(len, len, 4);
|
|
crc32w(crc, crc, tmp0);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::LE, L_exit);
|
|
BIND(CRC_by1_loop);
|
|
ldrb(tmp0, Address(post(buf, 1)));
|
|
subs(len, len, 1);
|
|
crc32b(crc, crc, tmp0);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by128_pre);
|
|
kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
|
|
4*256*sizeof(juint) + 8*sizeof(juint));
|
|
mov(crc, 0);
|
|
crc32x(crc, crc, tmp0);
|
|
crc32x(crc, crc, tmp1);
|
|
|
|
cbnz(len, CRC_less128);
|
|
|
|
BIND(L_exit);
|
|
mvnw(crc, crc);
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
|
|
Register len, Register tmp0, Register tmp1, Register tmp2,
|
|
Register tmp3) {
|
|
Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
|
|
assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
mvnw(crc, crc);
|
|
|
|
subs(len, len, 128);
|
|
br(Assembler::GE, CRC_by64_pre);
|
|
BIND(CRC_less64);
|
|
adds(len, len, 128-32);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
BIND(CRC_less32);
|
|
adds(len, len, 32-4);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by32_loop);
|
|
ldp(tmp0, tmp1, Address(post(buf, 16)));
|
|
subs(len, len, 32);
|
|
crc32x(crc, crc, tmp0);
|
|
ldr(tmp2, Address(post(buf, 8)));
|
|
crc32x(crc, crc, tmp1);
|
|
ldr(tmp3, Address(post(buf, 8)));
|
|
crc32x(crc, crc, tmp2);
|
|
crc32x(crc, crc, tmp3);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
cmn(len, (u1)32);
|
|
br(Assembler::NE, CRC_less32);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by4_loop);
|
|
ldrw(tmp0, Address(post(buf, 4)));
|
|
subs(len, len, 4);
|
|
crc32w(crc, crc, tmp0);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::LE, L_exit);
|
|
BIND(CRC_by1_loop);
|
|
ldrb(tmp0, Address(post(buf, 1)));
|
|
subs(len, len, 1);
|
|
crc32b(crc, crc, tmp0);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by64_pre);
|
|
sub(buf, buf, 8);
|
|
ldp(tmp0, tmp1, Address(buf, 8));
|
|
crc32x(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 24));
|
|
crc32x(crc, crc, tmp1);
|
|
ldr(tmp3, Address(buf, 32));
|
|
crc32x(crc, crc, tmp2);
|
|
ldr(tmp0, Address(buf, 40));
|
|
crc32x(crc, crc, tmp3);
|
|
ldr(tmp1, Address(buf, 48));
|
|
crc32x(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 56));
|
|
crc32x(crc, crc, tmp1);
|
|
ldr(tmp3, Address(pre(buf, 64)));
|
|
|
|
b(CRC_by64_loop);
|
|
|
|
align(CodeEntryAlignment);
|
|
BIND(CRC_by64_loop);
|
|
subs(len, len, 64);
|
|
crc32x(crc, crc, tmp2);
|
|
ldr(tmp0, Address(buf, 8));
|
|
crc32x(crc, crc, tmp3);
|
|
ldr(tmp1, Address(buf, 16));
|
|
crc32x(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 24));
|
|
crc32x(crc, crc, tmp1);
|
|
ldr(tmp3, Address(buf, 32));
|
|
crc32x(crc, crc, tmp2);
|
|
ldr(tmp0, Address(buf, 40));
|
|
crc32x(crc, crc, tmp3);
|
|
ldr(tmp1, Address(buf, 48));
|
|
crc32x(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 56));
|
|
crc32x(crc, crc, tmp1);
|
|
ldr(tmp3, Address(pre(buf, 64)));
|
|
br(Assembler::GE, CRC_by64_loop);
|
|
|
|
// post-loop
|
|
crc32x(crc, crc, tmp2);
|
|
crc32x(crc, crc, tmp3);
|
|
|
|
sub(len, len, 64);
|
|
add(buf, buf, 8);
|
|
cmn(len, (u1)128);
|
|
br(Assembler::NE, CRC_less64);
|
|
BIND(L_exit);
|
|
mvnw(crc, crc);
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register that will contain address of CRC table
|
|
* @param tmp scratch register
|
|
*/
|
|
void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
|
|
Register table0, Register table1, Register table2, Register table3,
|
|
Register tmp, Register tmp2, Register tmp3) {
|
|
Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
|
|
|
|
if (UseCryptoPmullForCRC32) {
|
|
kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
|
|
return;
|
|
}
|
|
|
|
if (UseCRC32) {
|
|
kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
|
|
return;
|
|
}
|
|
|
|
mvnw(crc, crc);
|
|
|
|
{
|
|
uint64_t offset;
|
|
adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
|
|
add(table0, table0, offset);
|
|
}
|
|
add(table1, table0, 1*256*sizeof(juint));
|
|
add(table2, table0, 2*256*sizeof(juint));
|
|
add(table3, table0, 3*256*sizeof(juint));
|
|
|
|
{ // Neon code start
|
|
cmp(len, (u1)64);
|
|
br(Assembler::LT, L_by16);
|
|
eor(v16, T16B, v16, v16);
|
|
|
|
Label L_fold;
|
|
|
|
add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
|
|
|
|
ld1(v0, v1, T2D, post(buf, 32));
|
|
ld1r(v4, T2D, post(tmp, 8));
|
|
ld1r(v5, T2D, post(tmp, 8));
|
|
ld1r(v6, T2D, post(tmp, 8));
|
|
ld1r(v7, T2D, post(tmp, 8));
|
|
mov(v16, S, 0, crc);
|
|
|
|
eor(v0, T16B, v0, v16);
|
|
sub(len, len, 64);
|
|
|
|
BIND(L_fold);
|
|
pmull(v22, T8H, v0, v5, T8B);
|
|
pmull(v20, T8H, v0, v7, T8B);
|
|
pmull(v23, T8H, v0, v4, T8B);
|
|
pmull(v21, T8H, v0, v6, T8B);
|
|
|
|
pmull2(v18, T8H, v0, v5, T16B);
|
|
pmull2(v16, T8H, v0, v7, T16B);
|
|
pmull2(v19, T8H, v0, v4, T16B);
|
|
pmull2(v17, T8H, v0, v6, T16B);
|
|
|
|
uzp1(v24, T8H, v20, v22);
|
|
uzp2(v25, T8H, v20, v22);
|
|
eor(v20, T16B, v24, v25);
|
|
|
|
uzp1(v26, T8H, v16, v18);
|
|
uzp2(v27, T8H, v16, v18);
|
|
eor(v16, T16B, v26, v27);
|
|
|
|
ushll2(v22, T4S, v20, T8H, 8);
|
|
ushll(v20, T4S, v20, T4H, 8);
|
|
|
|
ushll2(v18, T4S, v16, T8H, 8);
|
|
ushll(v16, T4S, v16, T4H, 8);
|
|
|
|
eor(v22, T16B, v23, v22);
|
|
eor(v18, T16B, v19, v18);
|
|
eor(v20, T16B, v21, v20);
|
|
eor(v16, T16B, v17, v16);
|
|
|
|
uzp1(v17, T2D, v16, v20);
|
|
uzp2(v21, T2D, v16, v20);
|
|
eor(v17, T16B, v17, v21);
|
|
|
|
ushll2(v20, T2D, v17, T4S, 16);
|
|
ushll(v16, T2D, v17, T2S, 16);
|
|
|
|
eor(v20, T16B, v20, v22);
|
|
eor(v16, T16B, v16, v18);
|
|
|
|
uzp1(v17, T2D, v20, v16);
|
|
uzp2(v21, T2D, v20, v16);
|
|
eor(v28, T16B, v17, v21);
|
|
|
|
pmull(v22, T8H, v1, v5, T8B);
|
|
pmull(v20, T8H, v1, v7, T8B);
|
|
pmull(v23, T8H, v1, v4, T8B);
|
|
pmull(v21, T8H, v1, v6, T8B);
|
|
|
|
pmull2(v18, T8H, v1, v5, T16B);
|
|
pmull2(v16, T8H, v1, v7, T16B);
|
|
pmull2(v19, T8H, v1, v4, T16B);
|
|
pmull2(v17, T8H, v1, v6, T16B);
|
|
|
|
ld1(v0, v1, T2D, post(buf, 32));
|
|
|
|
uzp1(v24, T8H, v20, v22);
|
|
uzp2(v25, T8H, v20, v22);
|
|
eor(v20, T16B, v24, v25);
|
|
|
|
uzp1(v26, T8H, v16, v18);
|
|
uzp2(v27, T8H, v16, v18);
|
|
eor(v16, T16B, v26, v27);
|
|
|
|
ushll2(v22, T4S, v20, T8H, 8);
|
|
ushll(v20, T4S, v20, T4H, 8);
|
|
|
|
ushll2(v18, T4S, v16, T8H, 8);
|
|
ushll(v16, T4S, v16, T4H, 8);
|
|
|
|
eor(v22, T16B, v23, v22);
|
|
eor(v18, T16B, v19, v18);
|
|
eor(v20, T16B, v21, v20);
|
|
eor(v16, T16B, v17, v16);
|
|
|
|
uzp1(v17, T2D, v16, v20);
|
|
uzp2(v21, T2D, v16, v20);
|
|
eor(v16, T16B, v17, v21);
|
|
|
|
ushll2(v20, T2D, v16, T4S, 16);
|
|
ushll(v16, T2D, v16, T2S, 16);
|
|
|
|
eor(v20, T16B, v22, v20);
|
|
eor(v16, T16B, v16, v18);
|
|
|
|
uzp1(v17, T2D, v20, v16);
|
|
uzp2(v21, T2D, v20, v16);
|
|
eor(v20, T16B, v17, v21);
|
|
|
|
shl(v16, T2D, v28, 1);
|
|
shl(v17, T2D, v20, 1);
|
|
|
|
eor(v0, T16B, v0, v16);
|
|
eor(v1, T16B, v1, v17);
|
|
|
|
subs(len, len, 32);
|
|
br(Assembler::GE, L_fold);
|
|
|
|
mov(crc, 0);
|
|
mov(tmp, v0, D, 0);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
|
|
mov(tmp, v0, D, 1);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
|
|
mov(tmp, v1, D, 0);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
|
|
mov(tmp, v1, D, 1);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
|
|
|
|
add(len, len, 32);
|
|
} // Neon code end
|
|
|
|
BIND(L_by16);
|
|
subs(len, len, 16);
|
|
br(Assembler::GE, L_by16_loop);
|
|
adds(len, len, 16-4);
|
|
br(Assembler::GE, L_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::GT, L_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(L_by4_loop);
|
|
ldrw(tmp, Address(post(buf, 4)));
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
|
|
subs(len, len, 4);
|
|
br(Assembler::GE, L_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::LE, L_exit);
|
|
BIND(L_by1_loop);
|
|
subs(len, len, 1);
|
|
ldrb(tmp, Address(post(buf, 1)));
|
|
update_byte_crc32(crc, tmp, table0);
|
|
br(Assembler::GT, L_by1_loop);
|
|
b(L_exit);
|
|
|
|
align(CodeEntryAlignment);
|
|
BIND(L_by16_loop);
|
|
subs(len, len, 16);
|
|
ldp(tmp, tmp3, Address(post(buf, 16)));
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
|
|
update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
|
|
update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
|
|
update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
|
|
br(Assembler::GE, L_by16_loop);
|
|
adds(len, len, 16-4);
|
|
br(Assembler::GE, L_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::GT, L_by1_loop);
|
|
BIND(L_exit);
|
|
mvnw(crc, crc);
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
|
|
Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
|
|
Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
|
|
assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
|
|
|
|
subs(tmp0, len, 384);
|
|
br(Assembler::GE, CRC_by128_pre);
|
|
BIND(CRC_less128);
|
|
subs(len, len, 32);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
BIND(CRC_less32);
|
|
adds(len, len, 32 - 4);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by32_loop);
|
|
ldp(tmp0, tmp1, Address(buf));
|
|
crc32cx(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 16));
|
|
crc32cx(crc, crc, tmp1);
|
|
ldr(tmp3, Address(buf, 24));
|
|
crc32cx(crc, crc, tmp2);
|
|
add(buf, buf, 32);
|
|
subs(len, len, 32);
|
|
crc32cx(crc, crc, tmp3);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
cmn(len, (u1)32);
|
|
br(Assembler::NE, CRC_less32);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by4_loop);
|
|
ldrw(tmp0, Address(post(buf, 4)));
|
|
subs(len, len, 4);
|
|
crc32cw(crc, crc, tmp0);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::LE, L_exit);
|
|
BIND(CRC_by1_loop);
|
|
ldrb(tmp0, Address(post(buf, 1)));
|
|
subs(len, len, 1);
|
|
crc32cb(crc, crc, tmp0);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by128_pre);
|
|
kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
|
|
4*256*sizeof(juint) + 8*sizeof(juint) + 0x50);
|
|
mov(crc, 0);
|
|
crc32cx(crc, crc, tmp0);
|
|
crc32cx(crc, crc, tmp1);
|
|
|
|
cbnz(len, CRC_less128);
|
|
|
|
BIND(L_exit);
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
|
|
Register len, Register tmp0, Register tmp1, Register tmp2,
|
|
Register tmp3) {
|
|
Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
|
|
assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
subs(len, len, 128);
|
|
br(Assembler::GE, CRC_by64_pre);
|
|
BIND(CRC_less64);
|
|
adds(len, len, 128-32);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
BIND(CRC_less32);
|
|
adds(len, len, 32-4);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by32_loop);
|
|
ldp(tmp0, tmp1, Address(post(buf, 16)));
|
|
subs(len, len, 32);
|
|
crc32cx(crc, crc, tmp0);
|
|
ldr(tmp2, Address(post(buf, 8)));
|
|
crc32cx(crc, crc, tmp1);
|
|
ldr(tmp3, Address(post(buf, 8)));
|
|
crc32cx(crc, crc, tmp2);
|
|
crc32cx(crc, crc, tmp3);
|
|
br(Assembler::GE, CRC_by32_loop);
|
|
cmn(len, (u1)32);
|
|
br(Assembler::NE, CRC_less32);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by4_loop);
|
|
ldrw(tmp0, Address(post(buf, 4)));
|
|
subs(len, len, 4);
|
|
crc32cw(crc, crc, tmp0);
|
|
br(Assembler::GE, CRC_by4_loop);
|
|
adds(len, len, 4);
|
|
br(Assembler::LE, L_exit);
|
|
BIND(CRC_by1_loop);
|
|
ldrb(tmp0, Address(post(buf, 1)));
|
|
subs(len, len, 1);
|
|
crc32cb(crc, crc, tmp0);
|
|
br(Assembler::GT, CRC_by1_loop);
|
|
b(L_exit);
|
|
|
|
BIND(CRC_by64_pre);
|
|
sub(buf, buf, 8);
|
|
ldp(tmp0, tmp1, Address(buf, 8));
|
|
crc32cx(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 24));
|
|
crc32cx(crc, crc, tmp1);
|
|
ldr(tmp3, Address(buf, 32));
|
|
crc32cx(crc, crc, tmp2);
|
|
ldr(tmp0, Address(buf, 40));
|
|
crc32cx(crc, crc, tmp3);
|
|
ldr(tmp1, Address(buf, 48));
|
|
crc32cx(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 56));
|
|
crc32cx(crc, crc, tmp1);
|
|
ldr(tmp3, Address(pre(buf, 64)));
|
|
|
|
b(CRC_by64_loop);
|
|
|
|
align(CodeEntryAlignment);
|
|
BIND(CRC_by64_loop);
|
|
subs(len, len, 64);
|
|
crc32cx(crc, crc, tmp2);
|
|
ldr(tmp0, Address(buf, 8));
|
|
crc32cx(crc, crc, tmp3);
|
|
ldr(tmp1, Address(buf, 16));
|
|
crc32cx(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 24));
|
|
crc32cx(crc, crc, tmp1);
|
|
ldr(tmp3, Address(buf, 32));
|
|
crc32cx(crc, crc, tmp2);
|
|
ldr(tmp0, Address(buf, 40));
|
|
crc32cx(crc, crc, tmp3);
|
|
ldr(tmp1, Address(buf, 48));
|
|
crc32cx(crc, crc, tmp0);
|
|
ldr(tmp2, Address(buf, 56));
|
|
crc32cx(crc, crc, tmp1);
|
|
ldr(tmp3, Address(pre(buf, 64)));
|
|
br(Assembler::GE, CRC_by64_loop);
|
|
|
|
// post-loop
|
|
crc32cx(crc, crc, tmp2);
|
|
crc32cx(crc, crc, tmp3);
|
|
|
|
sub(len, len, 64);
|
|
add(buf, buf, 8);
|
|
cmn(len, (u1)128);
|
|
br(Assembler::NE, CRC_less64);
|
|
BIND(L_exit);
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register that will contain address of CRC table
|
|
* @param tmp scratch register
|
|
*/
|
|
void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
|
|
Register table0, Register table1, Register table2, Register table3,
|
|
Register tmp, Register tmp2, Register tmp3) {
|
|
if (UseCryptoPmullForCRC32) {
|
|
kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
|
|
} else {
|
|
kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
|
|
Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) {
|
|
Label CRC_by128_loop;
|
|
assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
|
|
|
|
sub(len, len, 256);
|
|
Register table = tmp0;
|
|
{
|
|
uint64_t offset;
|
|
adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset);
|
|
add(table, table, offset);
|
|
}
|
|
add(table, table, table_offset);
|
|
|
|
// Registers v0..v7 are used as data registers.
|
|
// Registers v16..v31 are used as tmp registers.
|
|
sub(buf, buf, 0x10);
|
|
ldrq(v0, Address(buf, 0x10));
|
|
ldrq(v1, Address(buf, 0x20));
|
|
ldrq(v2, Address(buf, 0x30));
|
|
ldrq(v3, Address(buf, 0x40));
|
|
ldrq(v4, Address(buf, 0x50));
|
|
ldrq(v5, Address(buf, 0x60));
|
|
ldrq(v6, Address(buf, 0x70));
|
|
ldrq(v7, Address(pre(buf, 0x80)));
|
|
|
|
movi(v31, T4S, 0);
|
|
mov(v31, S, 0, crc);
|
|
eor(v0, T16B, v0, v31);
|
|
|
|
// Register v16 contains constants from the crc table.
|
|
ldrq(v16, Address(table));
|
|
b(CRC_by128_loop);
|
|
|
|
align(OptoLoopAlignment);
|
|
BIND(CRC_by128_loop);
|
|
pmull (v17, T1Q, v0, v16, T1D);
|
|
pmull2(v18, T1Q, v0, v16, T2D);
|
|
ldrq(v0, Address(buf, 0x10));
|
|
eor3(v0, T16B, v17, v18, v0);
|
|
|
|
pmull (v19, T1Q, v1, v16, T1D);
|
|
pmull2(v20, T1Q, v1, v16, T2D);
|
|
ldrq(v1, Address(buf, 0x20));
|
|
eor3(v1, T16B, v19, v20, v1);
|
|
|
|
pmull (v21, T1Q, v2, v16, T1D);
|
|
pmull2(v22, T1Q, v2, v16, T2D);
|
|
ldrq(v2, Address(buf, 0x30));
|
|
eor3(v2, T16B, v21, v22, v2);
|
|
|
|
pmull (v23, T1Q, v3, v16, T1D);
|
|
pmull2(v24, T1Q, v3, v16, T2D);
|
|
ldrq(v3, Address(buf, 0x40));
|
|
eor3(v3, T16B, v23, v24, v3);
|
|
|
|
pmull (v25, T1Q, v4, v16, T1D);
|
|
pmull2(v26, T1Q, v4, v16, T2D);
|
|
ldrq(v4, Address(buf, 0x50));
|
|
eor3(v4, T16B, v25, v26, v4);
|
|
|
|
pmull (v27, T1Q, v5, v16, T1D);
|
|
pmull2(v28, T1Q, v5, v16, T2D);
|
|
ldrq(v5, Address(buf, 0x60));
|
|
eor3(v5, T16B, v27, v28, v5);
|
|
|
|
pmull (v29, T1Q, v6, v16, T1D);
|
|
pmull2(v30, T1Q, v6, v16, T2D);
|
|
ldrq(v6, Address(buf, 0x70));
|
|
eor3(v6, T16B, v29, v30, v6);
|
|
|
|
// Reuse registers v23, v24.
|
|
// Using them won't block the first instruction of the next iteration.
|
|
pmull (v23, T1Q, v7, v16, T1D);
|
|
pmull2(v24, T1Q, v7, v16, T2D);
|
|
ldrq(v7, Address(pre(buf, 0x80)));
|
|
eor3(v7, T16B, v23, v24, v7);
|
|
|
|
subs(len, len, 0x80);
|
|
br(Assembler::GE, CRC_by128_loop);
|
|
|
|
// fold into 512 bits
|
|
// Use v31 for constants because v16 can be still in use.
|
|
ldrq(v31, Address(table, 0x10));
|
|
|
|
pmull (v17, T1Q, v0, v31, T1D);
|
|
pmull2(v18, T1Q, v0, v31, T2D);
|
|
eor3(v0, T16B, v17, v18, v4);
|
|
|
|
pmull (v19, T1Q, v1, v31, T1D);
|
|
pmull2(v20, T1Q, v1, v31, T2D);
|
|
eor3(v1, T16B, v19, v20, v5);
|
|
|
|
pmull (v21, T1Q, v2, v31, T1D);
|
|
pmull2(v22, T1Q, v2, v31, T2D);
|
|
eor3(v2, T16B, v21, v22, v6);
|
|
|
|
pmull (v23, T1Q, v3, v31, T1D);
|
|
pmull2(v24, T1Q, v3, v31, T2D);
|
|
eor3(v3, T16B, v23, v24, v7);
|
|
|
|
// fold into 128 bits
|
|
// Use v17 for constants because v31 can be still in use.
|
|
ldrq(v17, Address(table, 0x20));
|
|
pmull (v25, T1Q, v0, v17, T1D);
|
|
pmull2(v26, T1Q, v0, v17, T2D);
|
|
eor3(v3, T16B, v3, v25, v26);
|
|
|
|
// Use v18 for constants because v17 can be still in use.
|
|
ldrq(v18, Address(table, 0x30));
|
|
pmull (v27, T1Q, v1, v18, T1D);
|
|
pmull2(v28, T1Q, v1, v18, T2D);
|
|
eor3(v3, T16B, v3, v27, v28);
|
|
|
|
// Use v19 for constants because v18 can be still in use.
|
|
ldrq(v19, Address(table, 0x40));
|
|
pmull (v29, T1Q, v2, v19, T1D);
|
|
pmull2(v30, T1Q, v2, v19, T2D);
|
|
eor3(v0, T16B, v3, v29, v30);
|
|
|
|
add(len, len, 0x80);
|
|
add(buf, buf, 0x10);
|
|
|
|
mov(tmp0, v0, D, 0);
|
|
mov(tmp1, v0, D, 1);
|
|
}
|
|
|
|
void MacroAssembler::addptr(const Address &dst, int32_t src) {
|
|
Address adr;
|
|
switch(dst.getMode()) {
|
|
case Address::base_plus_offset:
|
|
// This is the expected mode, although we allow all the other
|
|
// forms below.
|
|
adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
|
|
break;
|
|
default:
|
|
lea(rscratch2, dst);
|
|
adr = Address(rscratch2);
|
|
break;
|
|
}
|
|
ldr(rscratch1, adr);
|
|
add(rscratch1, rscratch1, src);
|
|
str(rscratch1, adr);
|
|
}
|
|
|
|
void MacroAssembler::cmpptr(Register src1, Address src2) {
|
|
uint64_t offset;
|
|
adrp(rscratch1, src2, offset);
|
|
ldr(rscratch1, Address(rscratch1, offset));
|
|
cmp(src1, rscratch1);
|
|
}
|
|
|
|
void MacroAssembler::cmpoop(Register obj1, Register obj2) {
|
|
cmp(obj1, obj2);
|
|
}
|
|
|
|
void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
|
|
load_method_holder(rresult, rmethod);
|
|
ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
|
|
}
|
|
|
|
void MacroAssembler::load_method_holder(Register holder, Register method) {
|
|
ldr(holder, Address(method, Method::const_offset())); // ConstMethod*
|
|
ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
|
|
ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass*
|
|
}
|
|
|
|
// Loads the obj's Klass* into dst.
|
|
// Preserves all registers (incl src, rscratch1 and rscratch2).
|
|
// Input:
|
|
// src - the oop we want to load the klass from.
|
|
// dst - output narrow klass.
|
|
void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
|
|
assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders");
|
|
ldr(dst, Address(src, oopDesc::mark_offset_in_bytes()));
|
|
lsr(dst, dst, markWord::klass_shift);
|
|
}
|
|
|
|
void MacroAssembler::load_klass(Register dst, Register src) {
|
|
if (UseCompactObjectHeaders) {
|
|
load_narrow_klass_compact(dst, src);
|
|
decode_klass_not_null(dst);
|
|
} else if (UseCompressedClassPointers) {
|
|
ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
|
|
decode_klass_not_null(dst);
|
|
} else {
|
|
ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
|
|
if (RestoreMXCSROnJNICalls) {
|
|
Label OK;
|
|
get_fpcr(tmp1);
|
|
mov(tmp2, tmp1);
|
|
// Set FPCR to the state we need. We do want Round to Nearest. We
|
|
// don't want non-IEEE rounding modes or floating-point traps.
|
|
bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
|
|
bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12)
|
|
bfi(tmp1, zr, 0, 2); // Clear AH:FIZ
|
|
eor(tmp2, tmp1, tmp2);
|
|
cbz(tmp2, OK); // Only reset FPCR if it's wrong
|
|
set_fpcr(tmp1);
|
|
bind(OK);
|
|
}
|
|
}
|
|
|
|
// ((OopHandle)result).resolve();
|
|
void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) {
|
|
// OopHandle::resolve is an indirection.
|
|
access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2);
|
|
}
|
|
|
|
// ((WeakHandle)result).resolve();
|
|
void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) {
|
|
assert_different_registers(result, tmp1, tmp2);
|
|
Label resolved;
|
|
|
|
// A null weak handle resolves to null.
|
|
cbz(result, resolved);
|
|
|
|
// Only 64 bit platforms support GCs that require a tmp register
|
|
// WeakHandle::resolve is an indirection like jweak.
|
|
access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
|
|
result, Address(result), tmp1, tmp2);
|
|
bind(resolved);
|
|
}
|
|
|
|
void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) {
|
|
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
|
|
ldr(dst, Address(rmethod, Method::const_offset()));
|
|
ldr(dst, Address(dst, ConstMethod::constants_offset()));
|
|
ldr(dst, Address(dst, ConstantPool::pool_holder_offset()));
|
|
ldr(dst, Address(dst, mirror_offset));
|
|
resolve_oop_handle(dst, tmp1, tmp2);
|
|
}
|
|
|
|
void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) {
|
|
assert_different_registers(obj, klass, tmp);
|
|
if (UseCompressedClassPointers) {
|
|
if (UseCompactObjectHeaders) {
|
|
load_narrow_klass_compact(tmp, obj);
|
|
} else {
|
|
ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes()));
|
|
}
|
|
if (CompressedKlassPointers::base() == nullptr) {
|
|
cmp(klass, tmp, LSL, CompressedKlassPointers::shift());
|
|
return;
|
|
} else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
|
|
&& CompressedKlassPointers::shift() == 0) {
|
|
// Only the bottom 32 bits matter
|
|
cmpw(klass, tmp);
|
|
return;
|
|
}
|
|
decode_klass_not_null(tmp);
|
|
} else {
|
|
ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes()));
|
|
}
|
|
cmp(klass, tmp);
|
|
}
|
|
|
|
void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) {
|
|
if (UseCompactObjectHeaders) {
|
|
load_narrow_klass_compact(tmp1, obj1);
|
|
load_narrow_klass_compact(tmp2, obj2);
|
|
cmpw(tmp1, tmp2);
|
|
} else if (UseCompressedClassPointers) {
|
|
ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
|
|
ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes()));
|
|
cmpw(tmp1, tmp2);
|
|
} else {
|
|
ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
|
|
ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes()));
|
|
cmp(tmp1, tmp2);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_klass(Register dst, Register src) {
|
|
// FIXME: Should this be a store release? concurrent gcs assumes
|
|
// klass length is valid if klass field is not null.
|
|
assert(!UseCompactObjectHeaders, "not with compact headers");
|
|
if (UseCompressedClassPointers) {
|
|
encode_klass_not_null(src);
|
|
strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
|
|
} else {
|
|
str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_klass_gap(Register dst, Register src) {
|
|
assert(!UseCompactObjectHeaders, "not with compact headers");
|
|
if (UseCompressedClassPointers) {
|
|
// Store to klass gap in destination
|
|
strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
|
|
}
|
|
}
|
|
|
|
// Algorithm must match CompressedOops::encode.
|
|
void MacroAssembler::encode_heap_oop(Register d, Register s) {
|
|
#ifdef ASSERT
|
|
verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
|
|
#endif
|
|
verify_oop_msg(s, "broken oop in encode_heap_oop");
|
|
if (CompressedOops::base() == nullptr) {
|
|
if (CompressedOops::shift() != 0) {
|
|
assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
|
|
lsr(d, s, LogMinObjAlignmentInBytes);
|
|
} else {
|
|
mov(d, s);
|
|
}
|
|
} else {
|
|
subs(d, s, rheapbase);
|
|
csel(d, d, zr, Assembler::HS);
|
|
lsr(d, d, LogMinObjAlignmentInBytes);
|
|
|
|
/* Old algorithm: is this any worse?
|
|
Label nonnull;
|
|
cbnz(r, nonnull);
|
|
sub(r, r, rheapbase);
|
|
bind(nonnull);
|
|
lsr(r, r, LogMinObjAlignmentInBytes);
|
|
*/
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::encode_heap_oop_not_null(Register r) {
|
|
#ifdef ASSERT
|
|
verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
|
|
if (CheckCompressedOops) {
|
|
Label ok;
|
|
cbnz(r, ok);
|
|
stop("null oop passed to encode_heap_oop_not_null");
|
|
bind(ok);
|
|
}
|
|
#endif
|
|
verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
|
|
if (CompressedOops::base() != nullptr) {
|
|
sub(r, r, rheapbase);
|
|
}
|
|
if (CompressedOops::shift() != 0) {
|
|
assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
|
|
lsr(r, r, LogMinObjAlignmentInBytes);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
|
|
#ifdef ASSERT
|
|
verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
|
|
if (CheckCompressedOops) {
|
|
Label ok;
|
|
cbnz(src, ok);
|
|
stop("null oop passed to encode_heap_oop_not_null2");
|
|
bind(ok);
|
|
}
|
|
#endif
|
|
verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
|
|
|
|
Register data = src;
|
|
if (CompressedOops::base() != nullptr) {
|
|
sub(dst, src, rheapbase);
|
|
data = dst;
|
|
}
|
|
if (CompressedOops::shift() != 0) {
|
|
assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
|
|
lsr(dst, data, LogMinObjAlignmentInBytes);
|
|
data = dst;
|
|
}
|
|
if (data == src)
|
|
mov(dst, src);
|
|
}
|
|
|
|
void MacroAssembler::decode_heap_oop(Register d, Register s) {
|
|
#ifdef ASSERT
|
|
verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
|
|
#endif
|
|
if (CompressedOops::base() == nullptr) {
|
|
if (CompressedOops::shift() != 0) {
|
|
lsl(d, s, CompressedOops::shift());
|
|
} else if (d != s) {
|
|
mov(d, s);
|
|
}
|
|
} else {
|
|
Label done;
|
|
if (d != s)
|
|
mov(d, s);
|
|
cbz(s, done);
|
|
add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
|
|
bind(done);
|
|
}
|
|
verify_oop_msg(d, "broken oop in decode_heap_oop");
|
|
}
|
|
|
|
void MacroAssembler::decode_heap_oop_not_null(Register r) {
|
|
assert (UseCompressedOops, "should only be used for compressed headers");
|
|
assert (Universe::heap() != nullptr, "java heap should be initialized");
|
|
// Cannot assert, unverified entry point counts instructions (see .ad file)
|
|
// vtableStubs also counts instructions in pd_code_size_limit.
|
|
// Also do not verify_oop as this is called by verify_oop.
|
|
if (CompressedOops::shift() != 0) {
|
|
assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
|
|
if (CompressedOops::base() != nullptr) {
|
|
add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
|
|
} else {
|
|
add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
|
|
}
|
|
} else {
|
|
assert (CompressedOops::base() == nullptr, "sanity");
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
|
|
assert (UseCompressedOops, "should only be used for compressed headers");
|
|
assert (Universe::heap() != nullptr, "java heap should be initialized");
|
|
// Cannot assert, unverified entry point counts instructions (see .ad file)
|
|
// vtableStubs also counts instructions in pd_code_size_limit.
|
|
// Also do not verify_oop as this is called by verify_oop.
|
|
if (CompressedOops::shift() != 0) {
|
|
assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
|
|
if (CompressedOops::base() != nullptr) {
|
|
add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
|
|
} else {
|
|
add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
|
|
}
|
|
} else {
|
|
assert (CompressedOops::base() == nullptr, "sanity");
|
|
if (dst != src) {
|
|
mov(dst, src);
|
|
}
|
|
}
|
|
}
|
|
|
|
MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone);
|
|
|
|
MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() {
|
|
assert(Metaspace::initialized(), "metaspace not initialized yet");
|
|
assert(_klass_decode_mode != KlassDecodeNone, "should be initialized");
|
|
return _klass_decode_mode;
|
|
}
|
|
|
|
MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) {
|
|
assert(UseCompressedClassPointers, "not using compressed class pointers");
|
|
|
|
// KlassDecodeMode shouldn't be set already.
|
|
assert(_klass_decode_mode == KlassDecodeNone, "set once");
|
|
|
|
if (base == nullptr) {
|
|
return KlassDecodeZero;
|
|
}
|
|
|
|
if (operand_valid_for_logical_immediate(
|
|
/*is32*/false, (uint64_t)base)) {
|
|
const uint64_t range_mask = right_n_bits(log2i_ceil(range));
|
|
if (((uint64_t)base & range_mask) == 0) {
|
|
return KlassDecodeXor;
|
|
}
|
|
}
|
|
|
|
const uint64_t shifted_base =
|
|
(uint64_t)base >> shift;
|
|
if ((shifted_base & 0xffff0000ffffffff) == 0) {
|
|
return KlassDecodeMovk;
|
|
}
|
|
|
|
// No valid encoding.
|
|
return KlassDecodeNone;
|
|
}
|
|
|
|
// Check if one of the above decoding modes will work for given base, shift and range.
|
|
bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) {
|
|
return klass_decode_mode(base, shift, range) != KlassDecodeNone;
|
|
}
|
|
|
|
bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) {
|
|
_klass_decode_mode = klass_decode_mode(base, shift, range);
|
|
return _klass_decode_mode != KlassDecodeNone;
|
|
}
|
|
|
|
static Register pick_different_tmp(Register dst, Register src) {
|
|
auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst);
|
|
return *tmps.begin();
|
|
}
|
|
|
|
void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) {
|
|
// we have to load the klass base from the AOT constants area but
|
|
// not the shift because it is not allowed to change
|
|
int shift = CompressedKlassPointers::shift();
|
|
assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!");
|
|
if (dst != src) {
|
|
// we can load the base into dst, subtract it formthe src and shift down
|
|
lea(dst, ExternalAddress(CompressedKlassPointers::base_addr()));
|
|
ldr(dst, dst);
|
|
sub(dst, src, dst);
|
|
lsr(dst, dst, shift);
|
|
} else {
|
|
// we need an extra register in order to load the coop base
|
|
Register tmp = pick_different_tmp(dst, src);
|
|
RegSet regs = RegSet::of(tmp);
|
|
push(regs, sp);
|
|
lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
|
|
ldr(tmp, tmp);
|
|
sub(dst, src, tmp);
|
|
lsr(dst, dst, shift);
|
|
pop(regs, sp);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
|
|
if (AOTCodeCache::is_on_for_dump()) {
|
|
encode_klass_not_null_for_aot(dst, src);
|
|
return;
|
|
}
|
|
|
|
switch (klass_decode_mode()) {
|
|
case KlassDecodeZero:
|
|
if (CompressedKlassPointers::shift() != 0) {
|
|
lsr(dst, src, CompressedKlassPointers::shift());
|
|
} else {
|
|
if (dst != src) mov(dst, src);
|
|
}
|
|
break;
|
|
|
|
case KlassDecodeXor:
|
|
if (CompressedKlassPointers::shift() != 0) {
|
|
eor(dst, src, (uint64_t)CompressedKlassPointers::base());
|
|
lsr(dst, dst, CompressedKlassPointers::shift());
|
|
} else {
|
|
eor(dst, src, (uint64_t)CompressedKlassPointers::base());
|
|
}
|
|
break;
|
|
|
|
case KlassDecodeMovk:
|
|
if (CompressedKlassPointers::shift() != 0) {
|
|
ubfx(dst, src, CompressedKlassPointers::shift(), 32);
|
|
} else {
|
|
movw(dst, src);
|
|
}
|
|
break;
|
|
|
|
case KlassDecodeNone:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::encode_klass_not_null(Register r) {
|
|
encode_klass_not_null(r, r);
|
|
}
|
|
|
|
void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) {
|
|
// we have to load the klass base from the AOT constants area but
|
|
// not the shift because it is not allowed to change
|
|
int shift = CompressedKlassPointers::shift();
|
|
assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!");
|
|
if (dst != src) {
|
|
// we can load the base into dst then add the offset with a suitable shift
|
|
lea(dst, ExternalAddress(CompressedKlassPointers::base_addr()));
|
|
ldr(dst, dst);
|
|
add(dst, dst, src, LSL, shift);
|
|
} else {
|
|
// we need an extra register in order to load the coop base
|
|
Register tmp = pick_different_tmp(dst, src);
|
|
RegSet regs = RegSet::of(tmp);
|
|
push(regs, sp);
|
|
lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
|
|
ldr(tmp, tmp);
|
|
add(dst, tmp, src, LSL, shift);
|
|
pop(regs, sp);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
|
|
assert (UseCompressedClassPointers, "should only be used for compressed headers");
|
|
|
|
if (AOTCodeCache::is_on_for_dump()) {
|
|
decode_klass_not_null_for_aot(dst, src);
|
|
return;
|
|
}
|
|
|
|
switch (klass_decode_mode()) {
|
|
case KlassDecodeZero:
|
|
if (CompressedKlassPointers::shift() != 0) {
|
|
lsl(dst, src, CompressedKlassPointers::shift());
|
|
} else {
|
|
if (dst != src) mov(dst, src);
|
|
}
|
|
break;
|
|
|
|
case KlassDecodeXor:
|
|
if (CompressedKlassPointers::shift() != 0) {
|
|
lsl(dst, src, CompressedKlassPointers::shift());
|
|
eor(dst, dst, (uint64_t)CompressedKlassPointers::base());
|
|
} else {
|
|
eor(dst, src, (uint64_t)CompressedKlassPointers::base());
|
|
}
|
|
break;
|
|
|
|
case KlassDecodeMovk: {
|
|
const uint64_t shifted_base =
|
|
(uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
|
|
|
|
if (dst != src) movw(dst, src);
|
|
movk(dst, shifted_base >> 32, 32);
|
|
|
|
if (CompressedKlassPointers::shift() != 0) {
|
|
lsl(dst, dst, CompressedKlassPointers::shift());
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case KlassDecodeNone:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::decode_klass_not_null(Register r) {
|
|
decode_klass_not_null(r, r);
|
|
}
|
|
|
|
void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
|
|
#ifdef ASSERT
|
|
{
|
|
ThreadInVMfromUnknown tiv;
|
|
assert (UseCompressedOops, "should only be used for compressed oops");
|
|
assert (Universe::heap() != nullptr, "java heap should be initialized");
|
|
assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
|
|
assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
|
|
}
|
|
#endif
|
|
int oop_index = oop_recorder()->find_index(obj);
|
|
InstructionMark im(this);
|
|
RelocationHolder rspec = oop_Relocation::spec(oop_index);
|
|
code_section()->relocate(inst_mark(), rspec);
|
|
movz(dst, 0xDEAD, 16);
|
|
movk(dst, 0xBEEF);
|
|
}
|
|
|
|
void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
|
|
assert (UseCompressedClassPointers, "should only be used for compressed headers");
|
|
assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
|
|
int index = oop_recorder()->find_index(k);
|
|
|
|
InstructionMark im(this);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
code_section()->relocate(inst_mark(), rspec);
|
|
narrowKlass nk = CompressedKlassPointers::encode(k);
|
|
movz(dst, (nk >> 16), 16);
|
|
movk(dst, nk & 0xffff);
|
|
}
|
|
|
|
void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
|
|
Register dst, Address src,
|
|
Register tmp1, Register tmp2) {
|
|
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
|
|
decorators = AccessInternal::decorator_fixup(decorators, type);
|
|
bool as_raw = (decorators & AS_RAW) != 0;
|
|
if (as_raw) {
|
|
bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
|
|
} else {
|
|
bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
|
|
Address dst, Register val,
|
|
Register tmp1, Register tmp2, Register tmp3) {
|
|
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
|
|
decorators = AccessInternal::decorator_fixup(decorators, type);
|
|
bool as_raw = (decorators & AS_RAW) != 0;
|
|
if (as_raw) {
|
|
bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
|
|
} else {
|
|
bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
|
|
Register tmp2, DecoratorSet decorators) {
|
|
access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
|
|
}
|
|
|
|
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
|
|
Register tmp2, DecoratorSet decorators) {
|
|
access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
|
|
}
|
|
|
|
void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
|
|
Register tmp2, Register tmp3, DecoratorSet decorators) {
|
|
access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
|
|
}
|
|
|
|
// Used for storing nulls.
|
|
void MacroAssembler::store_heap_oop_null(Address dst) {
|
|
access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
|
|
}
|
|
|
|
Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
|
|
assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
|
|
int index = oop_recorder()->allocate_metadata_index(obj);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
return Address((address)obj, rspec);
|
|
}
|
|
|
|
// Move an oop into a register.
|
|
void MacroAssembler::movoop(Register dst, jobject obj) {
|
|
int oop_index;
|
|
if (obj == nullptr) {
|
|
oop_index = oop_recorder()->allocate_oop_index(obj);
|
|
} else {
|
|
#ifdef ASSERT
|
|
{
|
|
ThreadInVMfromUnknown tiv;
|
|
assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
|
|
}
|
|
#endif
|
|
oop_index = oop_recorder()->find_index(obj);
|
|
}
|
|
RelocationHolder rspec = oop_Relocation::spec(oop_index);
|
|
|
|
if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) {
|
|
mov(dst, Address((address)obj, rspec));
|
|
} else {
|
|
address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
|
|
ldr(dst, Address(dummy, rspec));
|
|
}
|
|
}
|
|
|
|
// Move a metadata address into a register.
|
|
void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
|
|
int oop_index;
|
|
if (obj == nullptr) {
|
|
oop_index = oop_recorder()->allocate_metadata_index(obj);
|
|
} else {
|
|
oop_index = oop_recorder()->find_index(obj);
|
|
}
|
|
RelocationHolder rspec = metadata_Relocation::spec(oop_index);
|
|
mov(dst, Address((address)obj, rspec));
|
|
}
|
|
|
|
Address MacroAssembler::constant_oop_address(jobject obj) {
|
|
#ifdef ASSERT
|
|
{
|
|
ThreadInVMfromUnknown tiv;
|
|
assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
|
|
assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
|
|
}
|
|
#endif
|
|
int oop_index = oop_recorder()->find_index(obj);
|
|
return Address((address)obj, oop_Relocation::spec(oop_index));
|
|
}
|
|
|
|
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
|
|
void MacroAssembler::tlab_allocate(Register obj,
|
|
Register var_size_in_bytes,
|
|
int con_size_in_bytes,
|
|
Register t1,
|
|
Register t2,
|
|
Label& slow_case) {
|
|
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
|
|
bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
|
|
}
|
|
|
|
void MacroAssembler::verify_tlab() {
|
|
#ifdef ASSERT
|
|
if (UseTLAB && VerifyOops) {
|
|
Label next, ok;
|
|
|
|
stp(rscratch2, rscratch1, Address(pre(sp, -16)));
|
|
|
|
ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
|
|
ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
|
|
cmp(rscratch2, rscratch1);
|
|
br(Assembler::HS, next);
|
|
STOP("assert(top >= start)");
|
|
should_not_reach_here();
|
|
|
|
bind(next);
|
|
ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
|
|
ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
|
|
cmp(rscratch2, rscratch1);
|
|
br(Assembler::HS, ok);
|
|
STOP("assert(top <= end)");
|
|
should_not_reach_here();
|
|
|
|
bind(ok);
|
|
ldp(rscratch2, rscratch1, Address(post(sp, 16)));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Writes to stack successive pages until offset reached to check for
|
|
// stack overflow + shadow pages. This clobbers tmp.
|
|
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
|
|
assert_different_registers(tmp, size, rscratch1);
|
|
mov(tmp, sp);
|
|
// Bang stack for total size given plus shadow page size.
|
|
// Bang one page at a time because large size can bang beyond yellow and
|
|
// red zones.
|
|
Label loop;
|
|
mov(rscratch1, (int)os::vm_page_size());
|
|
bind(loop);
|
|
lea(tmp, Address(tmp, -(int)os::vm_page_size()));
|
|
subsw(size, size, rscratch1);
|
|
str(size, Address(tmp));
|
|
br(Assembler::GT, loop);
|
|
|
|
// Bang down shadow pages too.
|
|
// At this point, (tmp-0) is the last address touched, so don't
|
|
// touch it again. (It was touched as (tmp-pagesize) but then tmp
|
|
// was post-decremented.) Skip this address by starting at i=1, and
|
|
// touch a few more pages below. N.B. It is important to touch all
|
|
// the way down to and including i=StackShadowPages.
|
|
for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) {
|
|
// this could be any sized move but this is can be a debugging crumb
|
|
// so the bigger the better.
|
|
lea(tmp, Address(tmp, -(int)os::vm_page_size()));
|
|
str(size, Address(tmp));
|
|
}
|
|
}
|
|
|
|
// Move the address of the polling page into dest.
|
|
void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) {
|
|
ldr(dest, Address(rthread, JavaThread::polling_page_offset()));
|
|
}
|
|
|
|
// Read the polling page. The address of the polling page must
|
|
// already be in r.
|
|
address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
|
|
address mark;
|
|
{
|
|
InstructionMark im(this);
|
|
code_section()->relocate(inst_mark(), rtype);
|
|
ldrw(zr, Address(r, 0));
|
|
mark = inst_mark();
|
|
}
|
|
verify_cross_modify_fence_not_required();
|
|
return mark;
|
|
}
|
|
|
|
void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) {
|
|
relocInfo::relocType rtype = dest.rspec().reloc()->type();
|
|
uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12;
|
|
uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12;
|
|
uint64_t dest_page = (uint64_t)dest.target() >> 12;
|
|
int64_t offset_low = dest_page - low_page;
|
|
int64_t offset_high = dest_page - high_page;
|
|
|
|
assert(is_valid_AArch64_address(dest.target()), "bad address");
|
|
assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
|
|
|
|
InstructionMark im(this);
|
|
code_section()->relocate(inst_mark(), dest.rspec());
|
|
// 8143067: Ensure that the adrp can reach the dest from anywhere within
|
|
// the code cache so that if it is relocated we know it will still reach
|
|
if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
|
|
_adrp(reg1, dest.target());
|
|
} else {
|
|
uint64_t target = (uint64_t)dest.target();
|
|
uint64_t adrp_target
|
|
= (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL);
|
|
|
|
_adrp(reg1, (address)adrp_target);
|
|
movk(reg1, target >> 32, 32);
|
|
}
|
|
byte_offset = (uint64_t)dest.target() & 0xfff;
|
|
}
|
|
|
|
void MacroAssembler::load_byte_map_base(Register reg) {
|
|
CardTable::CardValue* byte_map_base =
|
|
((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
|
|
|
|
// Strictly speaking the byte_map_base isn't an address at all, and it might
|
|
// even be negative. It is thus materialised as a constant.
|
|
mov(reg, (uint64_t)byte_map_base);
|
|
}
|
|
|
|
void MacroAssembler::build_frame(int framesize) {
|
|
assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
|
|
assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
|
|
protect_return_address();
|
|
if (framesize < ((1 << 9) + 2 * wordSize)) {
|
|
sub(sp, sp, framesize);
|
|
stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
|
|
if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
|
|
} else {
|
|
stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
|
|
if (PreserveFramePointer) mov(rfp, sp);
|
|
if (framesize < ((1 << 12) + 2 * wordSize))
|
|
sub(sp, sp, framesize - 2 * wordSize);
|
|
else {
|
|
mov(rscratch1, framesize - 2 * wordSize);
|
|
sub(sp, sp, rscratch1);
|
|
}
|
|
}
|
|
verify_cross_modify_fence_not_required();
|
|
}
|
|
|
|
void MacroAssembler::remove_frame(int framesize) {
|
|
assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
|
|
assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
|
|
if (framesize < ((1 << 9) + 2 * wordSize)) {
|
|
ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
|
|
add(sp, sp, framesize);
|
|
} else {
|
|
if (framesize < ((1 << 12) + 2 * wordSize))
|
|
add(sp, sp, framesize - 2 * wordSize);
|
|
else {
|
|
mov(rscratch1, framesize - 2 * wordSize);
|
|
add(sp, sp, rscratch1);
|
|
}
|
|
ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
|
|
}
|
|
authenticate_return_address();
|
|
}
|
|
|
|
|
|
// This method counts leading positive bytes (highest bit not set) in provided byte array
|
|
address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
|
|
// Simple and most common case of aligned small array which is not at the
|
|
// end of memory page is placed here. All other cases are in stub.
|
|
Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
|
|
const uint64_t UPPER_BIT_MASK=0x8080808080808080;
|
|
assert_different_registers(ary1, len, result);
|
|
|
|
mov(result, len);
|
|
cmpw(len, 0);
|
|
br(LE, DONE);
|
|
cmpw(len, 4 * wordSize);
|
|
br(GE, STUB_LONG); // size > 32 then go to stub
|
|
|
|
int shift = 64 - exact_log2(os::vm_page_size());
|
|
lsl(rscratch1, ary1, shift);
|
|
mov(rscratch2, (size_t)(4 * wordSize) << shift);
|
|
adds(rscratch2, rscratch1, rscratch2); // At end of page?
|
|
br(CS, STUB); // at the end of page then go to stub
|
|
subs(len, len, wordSize);
|
|
br(LT, END);
|
|
|
|
BIND(LOOP);
|
|
ldr(rscratch1, Address(post(ary1, wordSize)));
|
|
tst(rscratch1, UPPER_BIT_MASK);
|
|
br(NE, SET_RESULT);
|
|
subs(len, len, wordSize);
|
|
br(GE, LOOP);
|
|
cmpw(len, -wordSize);
|
|
br(EQ, DONE);
|
|
|
|
BIND(END);
|
|
ldr(rscratch1, Address(ary1));
|
|
sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
|
|
lslv(rscratch1, rscratch1, rscratch2);
|
|
tst(rscratch1, UPPER_BIT_MASK);
|
|
br(NE, SET_RESULT);
|
|
b(DONE);
|
|
|
|
BIND(STUB);
|
|
RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives());
|
|
assert(count_pos.target() != nullptr, "count_positives stub has not been generated");
|
|
address tpc1 = trampoline_call(count_pos);
|
|
if (tpc1 == nullptr) {
|
|
DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE));
|
|
postcond(pc() == badAddress);
|
|
return nullptr;
|
|
}
|
|
b(DONE);
|
|
|
|
BIND(STUB_LONG);
|
|
RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long());
|
|
assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated");
|
|
address tpc2 = trampoline_call(count_pos_long);
|
|
if (tpc2 == nullptr) {
|
|
DEBUG_ONLY(reset_labels(SET_RESULT, DONE));
|
|
postcond(pc() == badAddress);
|
|
return nullptr;
|
|
}
|
|
b(DONE);
|
|
|
|
BIND(SET_RESULT);
|
|
|
|
add(len, len, wordSize);
|
|
sub(result, result, len);
|
|
|
|
BIND(DONE);
|
|
postcond(pc() != badAddress);
|
|
return pc();
|
|
}
|
|
|
|
// Clobbers: rscratch1, rscratch2, rflags
|
|
// May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals)
|
|
address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
|
|
Register tmp4, Register tmp5, Register result,
|
|
Register cnt1, int elem_size) {
|
|
Label DONE, SAME;
|
|
Register tmp1 = rscratch1;
|
|
Register tmp2 = rscratch2;
|
|
int elem_per_word = wordSize/elem_size;
|
|
int log_elem_size = exact_log2(elem_size);
|
|
int klass_offset = arrayOopDesc::klass_offset_in_bytes();
|
|
int length_offset = arrayOopDesc::length_offset_in_bytes();
|
|
int base_offset
|
|
= arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
|
|
// When the length offset is not aligned to 8 bytes,
|
|
// then we align it down. This is valid because the new
|
|
// offset will always be the klass which is the same
|
|
// for type arrays.
|
|
int start_offset = align_down(length_offset, BytesPerWord);
|
|
int extra_length = base_offset - start_offset;
|
|
assert(start_offset == length_offset || start_offset == klass_offset,
|
|
"start offset must be 8-byte-aligned or be the klass offset");
|
|
assert(base_offset != start_offset, "must include the length field");
|
|
extra_length = extra_length / elem_size; // We count in elements, not bytes.
|
|
int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
|
|
|
|
assert(elem_size == 1 || elem_size == 2, "must be char or byte");
|
|
assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
|
|
|
|
#ifndef PRODUCT
|
|
{
|
|
const char kind = (elem_size == 2) ? 'U' : 'L';
|
|
char comment[64];
|
|
os::snprintf_checked(comment, sizeof comment, "array_equals%c{", kind);
|
|
BLOCK_COMMENT(comment);
|
|
}
|
|
#endif
|
|
|
|
// if (a1 == a2)
|
|
// return true;
|
|
cmpoop(a1, a2); // May have read barriers for a1 and a2.
|
|
br(EQ, SAME);
|
|
|
|
if (UseSimpleArrayEquals) {
|
|
Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
|
|
// if (a1 == nullptr || a2 == nullptr)
|
|
// return false;
|
|
// a1 & a2 == 0 means (some-pointer is null) or
|
|
// (very-rare-or-even-probably-impossible-pointer-values)
|
|
// so, we can save one branch in most cases
|
|
tst(a1, a2);
|
|
mov(result, false);
|
|
br(EQ, A_MIGHT_BE_NULL);
|
|
// if (a1.length != a2.length)
|
|
// return false;
|
|
bind(A_IS_NOT_NULL);
|
|
ldrw(cnt1, Address(a1, length_offset));
|
|
ldrw(tmp5, Address(a2, length_offset));
|
|
cmp(cnt1, tmp5);
|
|
br(NE, DONE); // If lengths differ, return false
|
|
// Increase loop counter by diff between base- and actual start-offset.
|
|
addw(cnt1, cnt1, extra_length);
|
|
lea(a1, Address(a1, start_offset));
|
|
lea(a2, Address(a2, start_offset));
|
|
// Check for short strings, i.e. smaller than wordSize.
|
|
subs(cnt1, cnt1, elem_per_word);
|
|
br(Assembler::LT, SHORT);
|
|
// Main 8 byte comparison loop.
|
|
bind(NEXT_WORD); {
|
|
ldr(tmp1, Address(post(a1, wordSize)));
|
|
ldr(tmp2, Address(post(a2, wordSize)));
|
|
subs(cnt1, cnt1, elem_per_word);
|
|
eor(tmp5, tmp1, tmp2);
|
|
cbnz(tmp5, DONE);
|
|
} br(GT, NEXT_WORD);
|
|
// Last longword. In the case where length == 4 we compare the
|
|
// same longword twice, but that's still faster than another
|
|
// conditional branch.
|
|
// cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
|
|
// length == 4.
|
|
if (log_elem_size > 0)
|
|
lsl(cnt1, cnt1, log_elem_size);
|
|
ldr(tmp3, Address(a1, cnt1));
|
|
ldr(tmp4, Address(a2, cnt1));
|
|
eor(tmp5, tmp3, tmp4);
|
|
cbnz(tmp5, DONE);
|
|
b(SAME);
|
|
bind(A_MIGHT_BE_NULL);
|
|
// in case both a1 and a2 are not-null, proceed with loads
|
|
cbz(a1, DONE);
|
|
cbz(a2, DONE);
|
|
b(A_IS_NOT_NULL);
|
|
bind(SHORT);
|
|
|
|
tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
|
|
{
|
|
ldrw(tmp1, Address(post(a1, 4)));
|
|
ldrw(tmp2, Address(post(a2, 4)));
|
|
eorw(tmp5, tmp1, tmp2);
|
|
cbnzw(tmp5, DONE);
|
|
}
|
|
bind(TAIL03);
|
|
tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
|
|
{
|
|
ldrh(tmp3, Address(post(a1, 2)));
|
|
ldrh(tmp4, Address(post(a2, 2)));
|
|
eorw(tmp5, tmp3, tmp4);
|
|
cbnzw(tmp5, DONE);
|
|
}
|
|
bind(TAIL01);
|
|
if (elem_size == 1) { // Only needed when comparing byte arrays.
|
|
tbz(cnt1, 0, SAME); // 0-1 bytes left.
|
|
{
|
|
ldrb(tmp1, a1);
|
|
ldrb(tmp2, a2);
|
|
eorw(tmp5, tmp1, tmp2);
|
|
cbnzw(tmp5, DONE);
|
|
}
|
|
}
|
|
} else {
|
|
Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB,
|
|
CSET_EQ, LAST_CHECK;
|
|
mov(result, false);
|
|
cbz(a1, DONE);
|
|
ldrw(cnt1, Address(a1, length_offset));
|
|
cbz(a2, DONE);
|
|
ldrw(tmp5, Address(a2, length_offset));
|
|
cmp(cnt1, tmp5);
|
|
br(NE, DONE); // If lengths differ, return false
|
|
// Increase loop counter by diff between base- and actual start-offset.
|
|
addw(cnt1, cnt1, extra_length);
|
|
|
|
// on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
|
|
// faster to perform another branch before comparing a1 and a2
|
|
cmp(cnt1, (u1)elem_per_word);
|
|
br(LE, SHORT); // short or same
|
|
ldr(tmp3, Address(pre(a1, start_offset)));
|
|
subs(zr, cnt1, stubBytesThreshold);
|
|
br(GE, STUB);
|
|
ldr(tmp4, Address(pre(a2, start_offset)));
|
|
sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
|
|
|
|
// Main 16 byte comparison loop with 2 exits
|
|
bind(NEXT_DWORD); {
|
|
ldr(tmp1, Address(pre(a1, wordSize)));
|
|
ldr(tmp2, Address(pre(a2, wordSize)));
|
|
subs(cnt1, cnt1, 2 * elem_per_word);
|
|
br(LE, TAIL);
|
|
eor(tmp4, tmp3, tmp4);
|
|
cbnz(tmp4, DONE);
|
|
ldr(tmp3, Address(pre(a1, wordSize)));
|
|
ldr(tmp4, Address(pre(a2, wordSize)));
|
|
cmp(cnt1, (u1)elem_per_word);
|
|
br(LE, TAIL2);
|
|
cmp(tmp1, tmp2);
|
|
} br(EQ, NEXT_DWORD);
|
|
b(DONE);
|
|
|
|
bind(TAIL);
|
|
eor(tmp4, tmp3, tmp4);
|
|
eor(tmp2, tmp1, tmp2);
|
|
lslv(tmp2, tmp2, tmp5);
|
|
orr(tmp5, tmp4, tmp2);
|
|
cmp(tmp5, zr);
|
|
b(CSET_EQ);
|
|
|
|
bind(TAIL2);
|
|
eor(tmp2, tmp1, tmp2);
|
|
cbnz(tmp2, DONE);
|
|
b(LAST_CHECK);
|
|
|
|
bind(STUB);
|
|
ldr(tmp4, Address(pre(a2, start_offset)));
|
|
if (elem_size == 2) { // convert to byte counter
|
|
lsl(cnt1, cnt1, 1);
|
|
}
|
|
eor(tmp5, tmp3, tmp4);
|
|
cbnz(tmp5, DONE);
|
|
RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
|
|
assert(stub.target() != nullptr, "array_equals_long stub has not been generated");
|
|
address tpc = trampoline_call(stub);
|
|
if (tpc == nullptr) {
|
|
DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE));
|
|
postcond(pc() == badAddress);
|
|
return nullptr;
|
|
}
|
|
b(DONE);
|
|
|
|
// (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
|
|
// so, if a2 == null => return false(0), else return true, so we can return a2
|
|
mov(result, a2);
|
|
b(DONE);
|
|
bind(SHORT);
|
|
sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
|
|
ldr(tmp3, Address(a1, start_offset));
|
|
ldr(tmp4, Address(a2, start_offset));
|
|
bind(LAST_CHECK);
|
|
eor(tmp4, tmp3, tmp4);
|
|
lslv(tmp5, tmp4, tmp5);
|
|
cmp(tmp5, zr);
|
|
bind(CSET_EQ);
|
|
cset(result, EQ);
|
|
b(DONE);
|
|
}
|
|
|
|
bind(SAME);
|
|
mov(result, true);
|
|
// That's it.
|
|
bind(DONE);
|
|
|
|
BLOCK_COMMENT("} array_equals");
|
|
postcond(pc() != badAddress);
|
|
return pc();
|
|
}
|
|
|
|
// Compare Strings
|
|
|
|
// For Strings we're passed the address of the first characters in a1
|
|
// and a2 and the length in cnt1.
|
|
// There are two implementations. For arrays >= 8 bytes, all
|
|
// comparisons (including the final one, which may overlap) are
|
|
// performed 8 bytes at a time. For strings < 8 bytes, we compare a
|
|
// halfword, then a short, and then a byte.
|
|
|
|
void MacroAssembler::string_equals(Register a1, Register a2,
|
|
Register result, Register cnt1)
|
|
{
|
|
Label SAME, DONE, SHORT, NEXT_WORD;
|
|
Register tmp1 = rscratch1;
|
|
Register tmp2 = rscratch2;
|
|
Register cnt2 = tmp2; // cnt2 only used in array length compare
|
|
|
|
assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
|
|
|
|
#ifndef PRODUCT
|
|
{
|
|
char comment[64];
|
|
os::snprintf_checked(comment, sizeof comment, "{string_equalsL");
|
|
BLOCK_COMMENT(comment);
|
|
}
|
|
#endif
|
|
|
|
mov(result, false);
|
|
|
|
// Check for short strings, i.e. smaller than wordSize.
|
|
subs(cnt1, cnt1, wordSize);
|
|
br(Assembler::LT, SHORT);
|
|
// Main 8 byte comparison loop.
|
|
bind(NEXT_WORD); {
|
|
ldr(tmp1, Address(post(a1, wordSize)));
|
|
ldr(tmp2, Address(post(a2, wordSize)));
|
|
subs(cnt1, cnt1, wordSize);
|
|
eor(tmp1, tmp1, tmp2);
|
|
cbnz(tmp1, DONE);
|
|
} br(GT, NEXT_WORD);
|
|
// Last longword. In the case where length == 4 we compare the
|
|
// same longword twice, but that's still faster than another
|
|
// conditional branch.
|
|
// cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
|
|
// length == 4.
|
|
ldr(tmp1, Address(a1, cnt1));
|
|
ldr(tmp2, Address(a2, cnt1));
|
|
eor(tmp2, tmp1, tmp2);
|
|
cbnz(tmp2, DONE);
|
|
b(SAME);
|
|
|
|
bind(SHORT);
|
|
Label TAIL03, TAIL01;
|
|
|
|
tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
|
|
{
|
|
ldrw(tmp1, Address(post(a1, 4)));
|
|
ldrw(tmp2, Address(post(a2, 4)));
|
|
eorw(tmp1, tmp1, tmp2);
|
|
cbnzw(tmp1, DONE);
|
|
}
|
|
bind(TAIL03);
|
|
tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
|
|
{
|
|
ldrh(tmp1, Address(post(a1, 2)));
|
|
ldrh(tmp2, Address(post(a2, 2)));
|
|
eorw(tmp1, tmp1, tmp2);
|
|
cbnzw(tmp1, DONE);
|
|
}
|
|
bind(TAIL01);
|
|
tbz(cnt1, 0, SAME); // 0-1 bytes left.
|
|
{
|
|
ldrb(tmp1, a1);
|
|
ldrb(tmp2, a2);
|
|
eorw(tmp1, tmp1, tmp2);
|
|
cbnzw(tmp1, DONE);
|
|
}
|
|
// Arrays are equal.
|
|
bind(SAME);
|
|
mov(result, true);
|
|
|
|
// That's it.
|
|
bind(DONE);
|
|
BLOCK_COMMENT("} string_equals");
|
|
}
|
|
|
|
|
|
// The size of the blocks erased by the zero_blocks stub. We must
|
|
// handle anything smaller than this ourselves in zero_words().
|
|
const int MacroAssembler::zero_words_block_size = 8;
|
|
|
|
// zero_words() is used by C2 ClearArray patterns and by
|
|
// C1_MacroAssembler. It is as small as possible, handling small word
|
|
// counts locally and delegating anything larger to the zero_blocks
|
|
// stub. It is expanded many times in compiled code, so it is
|
|
// important to keep it short.
|
|
|
|
// ptr: Address of a buffer to be zeroed.
|
|
// cnt: Count in HeapWords.
|
|
//
|
|
// ptr, cnt, rscratch1, and rscratch2 are clobbered.
|
|
address MacroAssembler::zero_words(Register ptr, Register cnt)
|
|
{
|
|
assert(is_power_of_2(zero_words_block_size), "adjust this");
|
|
|
|
BLOCK_COMMENT("zero_words {");
|
|
assert(ptr == r10 && cnt == r11, "mismatch in register usage");
|
|
RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
|
|
assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
|
|
|
|
subs(rscratch1, cnt, zero_words_block_size);
|
|
Label around;
|
|
br(LO, around);
|
|
{
|
|
RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
|
|
assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
|
|
// Make sure this is a C2 compilation. C1 allocates space only for
|
|
// trampoline stubs generated by Call LIR ops, and in any case it
|
|
// makes sense for a C1 compilation task to proceed as quickly as
|
|
// possible.
|
|
CompileTask* task;
|
|
if (StubRoutines::aarch64::complete()
|
|
&& Thread::current()->is_Compiler_thread()
|
|
&& (task = ciEnv::current()->task())
|
|
&& is_c2_compile(task->comp_level())) {
|
|
address tpc = trampoline_call(zero_blocks);
|
|
if (tpc == nullptr) {
|
|
DEBUG_ONLY(reset_labels(around));
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
far_call(zero_blocks);
|
|
}
|
|
}
|
|
bind(around);
|
|
|
|
// We have a few words left to do. zero_blocks has adjusted r10 and r11
|
|
// for us.
|
|
for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
|
|
Label l;
|
|
tbz(cnt, exact_log2(i), l);
|
|
for (int j = 0; j < i; j += 2) {
|
|
stp(zr, zr, post(ptr, 2 * BytesPerWord));
|
|
}
|
|
bind(l);
|
|
}
|
|
{
|
|
Label l;
|
|
tbz(cnt, 0, l);
|
|
str(zr, Address(ptr));
|
|
bind(l);
|
|
}
|
|
|
|
BLOCK_COMMENT("} zero_words");
|
|
return pc();
|
|
}
|
|
|
|
// base: Address of a buffer to be zeroed, 8 bytes aligned.
|
|
// cnt: Immediate count in HeapWords.
|
|
//
|
|
// r10, r11, rscratch1, and rscratch2 are clobbered.
|
|
address MacroAssembler::zero_words(Register base, uint64_t cnt)
|
|
{
|
|
assert(wordSize <= BlockZeroingLowLimit,
|
|
"increase BlockZeroingLowLimit");
|
|
address result = nullptr;
|
|
if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) {
|
|
#ifndef PRODUCT
|
|
{
|
|
char buf[64];
|
|
os::snprintf_checked(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt);
|
|
BLOCK_COMMENT(buf);
|
|
}
|
|
#endif
|
|
if (cnt >= 16) {
|
|
uint64_t loops = cnt/16;
|
|
if (loops > 1) {
|
|
mov(rscratch2, loops - 1);
|
|
}
|
|
{
|
|
Label loop;
|
|
bind(loop);
|
|
for (int i = 0; i < 16; i += 2) {
|
|
stp(zr, zr, Address(base, i * BytesPerWord));
|
|
}
|
|
add(base, base, 16 * BytesPerWord);
|
|
if (loops > 1) {
|
|
subs(rscratch2, rscratch2, 1);
|
|
br(GE, loop);
|
|
}
|
|
}
|
|
}
|
|
cnt %= 16;
|
|
int i = cnt & 1; // store any odd word to start
|
|
if (i) str(zr, Address(base));
|
|
for (; i < (int)cnt; i += 2) {
|
|
stp(zr, zr, Address(base, i * wordSize));
|
|
}
|
|
BLOCK_COMMENT("} zero_words");
|
|
result = pc();
|
|
} else {
|
|
mov(r10, base); mov(r11, cnt);
|
|
result = zero_words(r10, r11);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Zero blocks of memory by using DC ZVA.
|
|
//
|
|
// Aligns the base address first sufficiently for DC ZVA, then uses
|
|
// DC ZVA repeatedly for every full block. cnt is the size to be
|
|
// zeroed in HeapWords. Returns the count of words left to be zeroed
|
|
// in cnt.
|
|
//
|
|
// NOTE: This is intended to be used in the zero_blocks() stub. If
|
|
// you want to use it elsewhere, note that cnt must be >= 2*zva_length.
|
|
void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
|
|
Register tmp = rscratch1;
|
|
Register tmp2 = rscratch2;
|
|
int zva_length = VM_Version::zva_length();
|
|
Label initial_table_end, loop_zva;
|
|
Label fini;
|
|
|
|
// Base must be 16 byte aligned. If not just return and let caller handle it
|
|
tst(base, 0x0f);
|
|
br(Assembler::NE, fini);
|
|
// Align base with ZVA length.
|
|
neg(tmp, base);
|
|
andr(tmp, tmp, zva_length - 1);
|
|
|
|
// tmp: the number of bytes to be filled to align the base with ZVA length.
|
|
add(base, base, tmp);
|
|
sub(cnt, cnt, tmp, Assembler::ASR, 3);
|
|
adr(tmp2, initial_table_end);
|
|
sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
|
|
br(tmp2);
|
|
|
|
for (int i = -zva_length + 16; i < 0; i += 16)
|
|
stp(zr, zr, Address(base, i));
|
|
bind(initial_table_end);
|
|
|
|
sub(cnt, cnt, zva_length >> 3);
|
|
bind(loop_zva);
|
|
dc(Assembler::ZVA, base);
|
|
subs(cnt, cnt, zva_length >> 3);
|
|
add(base, base, zva_length);
|
|
br(Assembler::GE, loop_zva);
|
|
add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
|
|
bind(fini);
|
|
}
|
|
|
|
// base: Address of a buffer to be filled, 8 bytes aligned.
|
|
// cnt: Count in 8-byte unit.
|
|
// value: Value to be filled with.
|
|
// base will point to the end of the buffer after filling.
|
|
void MacroAssembler::fill_words(Register base, Register cnt, Register value)
|
|
{
|
|
// Algorithm:
|
|
//
|
|
// if (cnt == 0) {
|
|
// return;
|
|
// }
|
|
// if ((p & 8) != 0) {
|
|
// *p++ = v;
|
|
// }
|
|
//
|
|
// scratch1 = cnt & 14;
|
|
// cnt -= scratch1;
|
|
// p += scratch1;
|
|
// switch (scratch1 / 2) {
|
|
// do {
|
|
// cnt -= 16;
|
|
// p[-16] = v;
|
|
// p[-15] = v;
|
|
// case 7:
|
|
// p[-14] = v;
|
|
// p[-13] = v;
|
|
// case 6:
|
|
// p[-12] = v;
|
|
// p[-11] = v;
|
|
// // ...
|
|
// case 1:
|
|
// p[-2] = v;
|
|
// p[-1] = v;
|
|
// case 0:
|
|
// p += 16;
|
|
// } while (cnt);
|
|
// }
|
|
// if ((cnt & 1) == 1) {
|
|
// *p++ = v;
|
|
// }
|
|
|
|
assert_different_registers(base, cnt, value, rscratch1, rscratch2);
|
|
|
|
Label fini, skip, entry, loop;
|
|
const int unroll = 8; // Number of stp instructions we'll unroll
|
|
|
|
cbz(cnt, fini);
|
|
tbz(base, 3, skip);
|
|
str(value, Address(post(base, 8)));
|
|
sub(cnt, cnt, 1);
|
|
bind(skip);
|
|
|
|
andr(rscratch1, cnt, (unroll-1) * 2);
|
|
sub(cnt, cnt, rscratch1);
|
|
add(base, base, rscratch1, Assembler::LSL, 3);
|
|
adr(rscratch2, entry);
|
|
sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
|
|
br(rscratch2);
|
|
|
|
bind(loop);
|
|
add(base, base, unroll * 16);
|
|
for (int i = -unroll; i < 0; i++)
|
|
stp(value, value, Address(base, i * 16));
|
|
bind(entry);
|
|
subs(cnt, cnt, unroll * 2);
|
|
br(Assembler::GE, loop);
|
|
|
|
tbz(cnt, 0, fini);
|
|
str(value, Address(post(base, 8)));
|
|
bind(fini);
|
|
}
|
|
|
|
// Intrinsic for
|
|
//
|
|
// - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray
|
|
// return the number of characters copied.
|
|
// - java/lang/StringUTF16.compress
|
|
// return index of non-latin1 character if copy fails, otherwise 'len'.
|
|
//
|
|
// This version always returns the number of characters copied, and does not
|
|
// clobber the 'len' register. A successful copy will complete with the post-
|
|
// condition: 'res' == 'len', while an unsuccessful copy will exit with the
|
|
// post-condition: 0 <= 'res' < 'len'.
|
|
//
|
|
// NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to
|
|
// degrade performance (on Ampere Altra - Neoverse N1), to an extent
|
|
// beyond the acceptable, even though the footprint would be smaller.
|
|
// Using 'umaxv' in the ASCII-case comes with a small penalty but does
|
|
// avoid additional bloat.
|
|
//
|
|
// Clobbers: src, dst, res, rscratch1, rscratch2, rflags
|
|
void MacroAssembler::encode_iso_array(Register src, Register dst,
|
|
Register len, Register res, bool ascii,
|
|
FloatRegister vtmp0, FloatRegister vtmp1,
|
|
FloatRegister vtmp2, FloatRegister vtmp3,
|
|
FloatRegister vtmp4, FloatRegister vtmp5)
|
|
{
|
|
Register cnt = res;
|
|
Register max = rscratch1;
|
|
Register chk = rscratch2;
|
|
|
|
prfm(Address(src), PLDL1STRM);
|
|
movw(cnt, len);
|
|
|
|
#define ASCII(insn) do { if (ascii) { insn; } } while (0)
|
|
|
|
Label LOOP_32, DONE_32, FAIL_32;
|
|
|
|
BIND(LOOP_32);
|
|
{
|
|
cmpw(cnt, 32);
|
|
br(LT, DONE_32);
|
|
ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64)));
|
|
// Extract lower bytes.
|
|
FloatRegister vlo0 = vtmp4;
|
|
FloatRegister vlo1 = vtmp5;
|
|
uzp1(vlo0, T16B, vtmp0, vtmp1);
|
|
uzp1(vlo1, T16B, vtmp2, vtmp3);
|
|
// Merge bits...
|
|
orr(vtmp0, T16B, vtmp0, vtmp1);
|
|
orr(vtmp2, T16B, vtmp2, vtmp3);
|
|
// Extract merged upper bytes.
|
|
FloatRegister vhix = vtmp0;
|
|
uzp2(vhix, T16B, vtmp0, vtmp2);
|
|
// ISO-check on hi-parts (all zero).
|
|
// ASCII-check on lo-parts (no sign).
|
|
FloatRegister vlox = vtmp1; // Merge lower bytes.
|
|
ASCII(orr(vlox, T16B, vlo0, vlo1));
|
|
umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox));
|
|
fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox));
|
|
orr(chk, chk, max); ASCII(umov(max, vlox, B, 0));
|
|
ASCII(orr(chk, chk, max));
|
|
cbnz(chk, FAIL_32);
|
|
subw(cnt, cnt, 32);
|
|
st1(vlo0, vlo1, T16B, Address(post(dst, 32)));
|
|
b(LOOP_32);
|
|
}
|
|
BIND(FAIL_32);
|
|
sub(src, src, 64);
|
|
BIND(DONE_32);
|
|
|
|
Label LOOP_8, SKIP_8;
|
|
|
|
BIND(LOOP_8);
|
|
{
|
|
cmpw(cnt, 8);
|
|
br(LT, SKIP_8);
|
|
FloatRegister vhi = vtmp0;
|
|
FloatRegister vlo = vtmp1;
|
|
ld1(vtmp3, T8H, src);
|
|
uzp1(vlo, T16B, vtmp3, vtmp3);
|
|
uzp2(vhi, T16B, vtmp3, vtmp3);
|
|
// ISO-check on hi-parts (all zero).
|
|
// ASCII-check on lo-parts (no sign).
|
|
ASCII(cm(LT, vtmp2, T16B, vlo));
|
|
fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2));
|
|
ASCII(umov(max, vtmp2, B, 0));
|
|
ASCII(orr(chk, chk, max));
|
|
cbnz(chk, SKIP_8);
|
|
|
|
strd(vlo, Address(post(dst, 8)));
|
|
subw(cnt, cnt, 8);
|
|
add(src, src, 16);
|
|
b(LOOP_8);
|
|
}
|
|
BIND(SKIP_8);
|
|
|
|
#undef ASCII
|
|
|
|
Label LOOP, DONE;
|
|
|
|
cbz(cnt, DONE);
|
|
BIND(LOOP);
|
|
{
|
|
Register chr = rscratch1;
|
|
ldrh(chr, Address(post(src, 2)));
|
|
tst(chr, ascii ? 0xff80 : 0xff00);
|
|
br(NE, DONE);
|
|
strb(chr, Address(post(dst, 1)));
|
|
subs(cnt, cnt, 1);
|
|
br(GT, LOOP);
|
|
}
|
|
BIND(DONE);
|
|
// Return index where we stopped.
|
|
subw(res, len, cnt);
|
|
}
|
|
|
|
// Inflate byte[] array to char[].
|
|
// Clobbers: src, dst, len, rflags, rscratch1, v0-v6
|
|
address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
|
|
FloatRegister vtmp1, FloatRegister vtmp2,
|
|
FloatRegister vtmp3, Register tmp4) {
|
|
Label big, done, after_init, to_stub;
|
|
|
|
assert_different_registers(src, dst, len, tmp4, rscratch1);
|
|
|
|
fmovd(vtmp1, 0.0);
|
|
lsrw(tmp4, len, 3);
|
|
bind(after_init);
|
|
cbnzw(tmp4, big);
|
|
// Short string: less than 8 bytes.
|
|
{
|
|
Label loop, tiny;
|
|
|
|
cmpw(len, 4);
|
|
br(LT, tiny);
|
|
// Use SIMD to do 4 bytes.
|
|
ldrs(vtmp2, post(src, 4));
|
|
zip1(vtmp3, T8B, vtmp2, vtmp1);
|
|
subw(len, len, 4);
|
|
strd(vtmp3, post(dst, 8));
|
|
|
|
cbzw(len, done);
|
|
|
|
// Do the remaining bytes by steam.
|
|
bind(loop);
|
|
ldrb(tmp4, post(src, 1));
|
|
strh(tmp4, post(dst, 2));
|
|
subw(len, len, 1);
|
|
|
|
bind(tiny);
|
|
cbnz(len, loop);
|
|
|
|
b(done);
|
|
}
|
|
|
|
if (SoftwarePrefetchHintDistance >= 0) {
|
|
bind(to_stub);
|
|
RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate());
|
|
assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated");
|
|
address tpc = trampoline_call(stub);
|
|
if (tpc == nullptr) {
|
|
DEBUG_ONLY(reset_labels(big, done));
|
|
postcond(pc() == badAddress);
|
|
return nullptr;
|
|
}
|
|
b(after_init);
|
|
}
|
|
|
|
// Unpack the bytes 8 at a time.
|
|
bind(big);
|
|
{
|
|
Label loop, around, loop_last, loop_start;
|
|
|
|
if (SoftwarePrefetchHintDistance >= 0) {
|
|
const int large_loop_threshold = (64 + 16)/8;
|
|
ldrd(vtmp2, post(src, 8));
|
|
andw(len, len, 7);
|
|
cmp(tmp4, (u1)large_loop_threshold);
|
|
br(GE, to_stub);
|
|
b(loop_start);
|
|
|
|
bind(loop);
|
|
ldrd(vtmp2, post(src, 8));
|
|
bind(loop_start);
|
|
subs(tmp4, tmp4, 1);
|
|
br(EQ, loop_last);
|
|
zip1(vtmp2, T16B, vtmp2, vtmp1);
|
|
ldrd(vtmp3, post(src, 8));
|
|
st1(vtmp2, T8H, post(dst, 16));
|
|
subs(tmp4, tmp4, 1);
|
|
zip1(vtmp3, T16B, vtmp3, vtmp1);
|
|
st1(vtmp3, T8H, post(dst, 16));
|
|
br(NE, loop);
|
|
b(around);
|
|
bind(loop_last);
|
|
zip1(vtmp2, T16B, vtmp2, vtmp1);
|
|
st1(vtmp2, T8H, post(dst, 16));
|
|
bind(around);
|
|
cbz(len, done);
|
|
} else {
|
|
andw(len, len, 7);
|
|
bind(loop);
|
|
ldrd(vtmp2, post(src, 8));
|
|
sub(tmp4, tmp4, 1);
|
|
zip1(vtmp3, T16B, vtmp2, vtmp1);
|
|
st1(vtmp3, T8H, post(dst, 16));
|
|
cbnz(tmp4, loop);
|
|
}
|
|
}
|
|
|
|
// Do the tail of up to 8 bytes.
|
|
add(src, src, len);
|
|
ldrd(vtmp3, Address(src, -8));
|
|
add(dst, dst, len, ext::uxtw, 1);
|
|
zip1(vtmp3, T16B, vtmp3, vtmp1);
|
|
strq(vtmp3, Address(dst, -16));
|
|
|
|
bind(done);
|
|
postcond(pc() != badAddress);
|
|
return pc();
|
|
}
|
|
|
|
// Compress char[] array to byte[].
|
|
// Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
|
|
// Return the array length if every element in array can be encoded,
|
|
// otherwise, the index of first non-latin1 (> 0xff) character.
|
|
void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
|
|
Register res,
|
|
FloatRegister tmp0, FloatRegister tmp1,
|
|
FloatRegister tmp2, FloatRegister tmp3,
|
|
FloatRegister tmp4, FloatRegister tmp5) {
|
|
encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
|
|
}
|
|
|
|
// java.math.round(double a)
|
|
// Returns the closest long to the argument, with ties rounding to
|
|
// positive infinity. This requires some fiddling for corner
|
|
// cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5).
|
|
void MacroAssembler::java_round_double(Register dst, FloatRegister src,
|
|
FloatRegister ftmp) {
|
|
Label DONE;
|
|
BLOCK_COMMENT("java_round_double: { ");
|
|
fmovd(rscratch1, src);
|
|
// Use RoundToNearestTiesAway unless src small and -ve.
|
|
fcvtasd(dst, src);
|
|
// Test if src >= 0 || abs(src) >= 0x1.0p52
|
|
eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit
|
|
mov(rscratch2, julong_cast(0x1.0p52));
|
|
cmp(rscratch1, rscratch2);
|
|
br(HS, DONE); {
|
|
// src < 0 && abs(src) < 0x1.0p52
|
|
// src may have a fractional part, so add 0.5
|
|
fmovd(ftmp, 0.5);
|
|
faddd(ftmp, src, ftmp);
|
|
// Convert double to jlong, use RoundTowardsNegative
|
|
fcvtmsd(dst, ftmp);
|
|
}
|
|
bind(DONE);
|
|
BLOCK_COMMENT("} java_round_double");
|
|
}
|
|
|
|
void MacroAssembler::java_round_float(Register dst, FloatRegister src,
|
|
FloatRegister ftmp) {
|
|
Label DONE;
|
|
BLOCK_COMMENT("java_round_float: { ");
|
|
fmovs(rscratch1, src);
|
|
// Use RoundToNearestTiesAway unless src small and -ve.
|
|
fcvtassw(dst, src);
|
|
// Test if src >= 0 || abs(src) >= 0x1.0p23
|
|
eor(rscratch1, rscratch1, 0x80000000); // flip sign bit
|
|
mov(rscratch2, jint_cast(0x1.0p23f));
|
|
cmp(rscratch1, rscratch2);
|
|
br(HS, DONE); {
|
|
// src < 0 && |src| < 0x1.0p23
|
|
// src may have a fractional part, so add 0.5
|
|
fmovs(ftmp, 0.5f);
|
|
fadds(ftmp, src, ftmp);
|
|
// Convert float to jint, use RoundTowardsNegative
|
|
fcvtmssw(dst, ftmp);
|
|
}
|
|
bind(DONE);
|
|
BLOCK_COMMENT("} java_round_float");
|
|
}
|
|
|
|
// get_thread() can be called anywhere inside generated code so we
|
|
// need to save whatever non-callee save context might get clobbered
|
|
// by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
|
|
// the call setup code.
|
|
//
|
|
// On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags.
|
|
// On other systems, the helper is a usual C function.
|
|
//
|
|
void MacroAssembler::get_thread(Register dst) {
|
|
RegSet saved_regs =
|
|
LINUX_ONLY(RegSet::range(r0, r1) + lr - dst)
|
|
NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
|
|
|
|
protect_return_address();
|
|
push(saved_regs, sp);
|
|
|
|
mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)));
|
|
blr(lr);
|
|
if (dst != c_rarg0) {
|
|
mov(dst, c_rarg0);
|
|
}
|
|
|
|
pop(saved_regs, sp);
|
|
authenticate_return_address();
|
|
}
|
|
|
|
void MacroAssembler::cache_wb(Address line) {
|
|
assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
|
|
assert(line.index() == noreg, "index should be noreg");
|
|
assert(line.offset() == 0, "offset should be 0");
|
|
// would like to assert this
|
|
// assert(line._ext.shift == 0, "shift should be zero");
|
|
if (VM_Version::supports_dcpop()) {
|
|
// writeback using clear virtual address to point of persistence
|
|
dc(Assembler::CVAP, line.base());
|
|
} else {
|
|
// no need to generate anything as Unsafe.writebackMemory should
|
|
// never invoke this stub
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::cache_wbsync(bool is_pre) {
|
|
// we only need a barrier post sync
|
|
if (!is_pre) {
|
|
membar(Assembler::AnyAny);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::verify_sve_vector_length(Register tmp) {
|
|
if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) {
|
|
return;
|
|
}
|
|
// Make sure that native code does not change SVE vector length.
|
|
Label verify_ok;
|
|
movw(tmp, zr);
|
|
sve_inc(tmp, B);
|
|
subsw(zr, tmp, VM_Version::get_initial_sve_vector_length());
|
|
br(EQ, verify_ok);
|
|
stop("Error: SVE vector length has changed since jvm startup");
|
|
bind(verify_ok);
|
|
}
|
|
|
|
void MacroAssembler::verify_ptrue() {
|
|
Label verify_ok;
|
|
if (!UseSVE) {
|
|
return;
|
|
}
|
|
sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count.
|
|
sve_dec(rscratch1, B);
|
|
cbz(rscratch1, verify_ok);
|
|
stop("Error: the preserved predicate register (p7) elements are not all true");
|
|
bind(verify_ok);
|
|
}
|
|
|
|
void MacroAssembler::safepoint_isb() {
|
|
isb();
|
|
#ifndef PRODUCT
|
|
if (VerifyCrossModifyFence) {
|
|
// Clear the thread state.
|
|
strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void MacroAssembler::verify_cross_modify_fence_not_required() {
|
|
if (VerifyCrossModifyFence) {
|
|
// Check if thread needs a cross modify fence.
|
|
ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
|
|
Label fence_not_required;
|
|
cbz(rscratch1, fence_not_required);
|
|
// If it does then fail.
|
|
lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)));
|
|
mov(c_rarg0, rthread);
|
|
blr(rscratch1);
|
|
bind(fence_not_required);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void MacroAssembler::spin_wait() {
|
|
block_comment("spin_wait {");
|
|
for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) {
|
|
switch (VM_Version::spin_wait_desc().inst()) {
|
|
case SpinWait::NOP:
|
|
nop();
|
|
break;
|
|
case SpinWait::ISB:
|
|
isb();
|
|
break;
|
|
case SpinWait::YIELD:
|
|
yield();
|
|
break;
|
|
case SpinWait::SB:
|
|
assert(VM_Version::supports_sb(), "current CPU does not support SB instruction");
|
|
sb();
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
block_comment("}");
|
|
}
|
|
|
|
// Stack frame creation/removal
|
|
|
|
void MacroAssembler::enter(bool strip_ret_addr) {
|
|
if (strip_ret_addr) {
|
|
// Addresses can only be signed once. If there are multiple nested frames being created
|
|
// in the same function, then the return address needs stripping first.
|
|
strip_return_address();
|
|
}
|
|
protect_return_address();
|
|
stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
|
|
mov(rfp, sp);
|
|
}
|
|
|
|
void MacroAssembler::leave() {
|
|
mov(sp, rfp);
|
|
ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
|
|
authenticate_return_address();
|
|
}
|
|
|
|
// ROP Protection
|
|
// Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/
|
|
// destroying stack frames or whenever directly loading/storing the LR to memory.
|
|
// If ROP protection is not set then these functions are no-ops.
|
|
// For more details on PAC see pauth_aarch64.hpp.
|
|
|
|
// Sign the LR. Use during construction of a stack frame, before storing the LR to memory.
|
|
// Uses value zero as the modifier.
|
|
//
|
|
void MacroAssembler::protect_return_address() {
|
|
if (VM_Version::use_rop_protection()) {
|
|
check_return_address();
|
|
paciaz();
|
|
}
|
|
}
|
|
|
|
// Sign the return value in the given register. Use before updating the LR in the existing stack
|
|
// frame for the current function.
|
|
// Uses value zero as the modifier.
|
|
//
|
|
void MacroAssembler::protect_return_address(Register return_reg) {
|
|
if (VM_Version::use_rop_protection()) {
|
|
check_return_address(return_reg);
|
|
paciza(return_reg);
|
|
}
|
|
}
|
|
|
|
// Authenticate the LR. Use before function return, after restoring FP and loading LR from memory.
|
|
// Uses value zero as the modifier.
|
|
//
|
|
void MacroAssembler::authenticate_return_address() {
|
|
if (VM_Version::use_rop_protection()) {
|
|
autiaz();
|
|
check_return_address();
|
|
}
|
|
}
|
|
|
|
// Authenticate the return value in the given register. Use before updating the LR in the existing
|
|
// stack frame for the current function.
|
|
// Uses value zero as the modifier.
|
|
//
|
|
void MacroAssembler::authenticate_return_address(Register return_reg) {
|
|
if (VM_Version::use_rop_protection()) {
|
|
autiza(return_reg);
|
|
check_return_address(return_reg);
|
|
}
|
|
}
|
|
|
|
// Strip any PAC data from LR without performing any authentication. Use with caution - only if
|
|
// there is no guaranteed way of authenticating the LR.
|
|
//
|
|
void MacroAssembler::strip_return_address() {
|
|
if (VM_Version::use_rop_protection()) {
|
|
xpaclri();
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// PAC failures can be difficult to debug. After an authentication failure, a segfault will only
|
|
// occur when the pointer is used - ie when the program returns to the invalid LR. At this point
|
|
// it is difficult to debug back to the callee function.
|
|
// This function simply loads from the address in the given register.
|
|
// Use directly after authentication to catch authentication failures.
|
|
// Also use before signing to check that the pointer is valid and hasn't already been signed.
|
|
//
|
|
void MacroAssembler::check_return_address(Register return_reg) {
|
|
if (VM_Version::use_rop_protection()) {
|
|
ldr(zr, Address(return_reg));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// The java_calling_convention describes stack locations as ideal slots on
|
|
// a frame with no abi restrictions. Since we must observe abi restrictions
|
|
// (like the placement of the register window) the slots must be biased by
|
|
// the following value.
|
|
static int reg2offset_in(VMReg r) {
|
|
// Account for saved rfp and lr
|
|
// This should really be in_preserve_stack_slots
|
|
return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
|
|
}
|
|
|
|
static int reg2offset_out(VMReg r) {
|
|
return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
|
|
}
|
|
|
|
// On 64bit we will store integer like items to the stack as
|
|
// 64bits items (AArch64 ABI) even though java would only store
|
|
// 32bits for a parameter. On 32bit it will simply be 32bits
|
|
// So this routine will do 32->32 on 32bit and 32->64 on 64bit
|
|
void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) {
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
// stack to stack
|
|
ldr(tmp, Address(rfp, reg2offset_in(src.first())));
|
|
str(tmp, Address(sp, reg2offset_out(dst.first())));
|
|
} else {
|
|
// stack to reg
|
|
ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
|
|
}
|
|
} else if (dst.first()->is_stack()) {
|
|
// reg to stack
|
|
str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
|
|
} else {
|
|
if (dst.first() != src.first()) {
|
|
sxtw(dst.first()->as_Register(), src.first()->as_Register());
|
|
}
|
|
}
|
|
}
|
|
|
|
// An oop arg. Must pass a handle not the oop itself
|
|
void MacroAssembler::object_move(
|
|
OopMap* map,
|
|
int oop_handle_offset,
|
|
int framesize_in_slots,
|
|
VMRegPair src,
|
|
VMRegPair dst,
|
|
bool is_receiver,
|
|
int* receiver_offset) {
|
|
|
|
// must pass a handle. First figure out the location we use as a handle
|
|
|
|
Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
|
|
|
|
// See if oop is null if it is we need no handle
|
|
|
|
if (src.first()->is_stack()) {
|
|
|
|
// Oop is already on the stack as an argument
|
|
int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
|
|
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
|
|
if (is_receiver) {
|
|
*receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
|
|
}
|
|
|
|
ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
|
|
lea(rHandle, Address(rfp, reg2offset_in(src.first())));
|
|
// conditionally move a null
|
|
cmp(rscratch1, zr);
|
|
csel(rHandle, zr, rHandle, Assembler::EQ);
|
|
} else {
|
|
|
|
// Oop is in an a register we must store it to the space we reserve
|
|
// on the stack for oop_handles and pass a handle if oop is non-null
|
|
|
|
const Register rOop = src.first()->as_Register();
|
|
int oop_slot;
|
|
if (rOop == j_rarg0)
|
|
oop_slot = 0;
|
|
else if (rOop == j_rarg1)
|
|
oop_slot = 1;
|
|
else if (rOop == j_rarg2)
|
|
oop_slot = 2;
|
|
else if (rOop == j_rarg3)
|
|
oop_slot = 3;
|
|
else if (rOop == j_rarg4)
|
|
oop_slot = 4;
|
|
else if (rOop == j_rarg5)
|
|
oop_slot = 5;
|
|
else if (rOop == j_rarg6)
|
|
oop_slot = 6;
|
|
else {
|
|
assert(rOop == j_rarg7, "wrong register");
|
|
oop_slot = 7;
|
|
}
|
|
|
|
oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
|
|
int offset = oop_slot*VMRegImpl::stack_slot_size;
|
|
|
|
map->set_oop(VMRegImpl::stack2reg(oop_slot));
|
|
// Store oop in handle area, may be null
|
|
str(rOop, Address(sp, offset));
|
|
if (is_receiver) {
|
|
*receiver_offset = offset;
|
|
}
|
|
|
|
cmp(rOop, zr);
|
|
lea(rHandle, Address(sp, offset));
|
|
// conditionally move a null
|
|
csel(rHandle, zr, rHandle, Assembler::EQ);
|
|
}
|
|
|
|
// If arg is on the stack then place it otherwise it is already in correct reg.
|
|
if (dst.first()->is_stack()) {
|
|
str(rHandle, Address(sp, reg2offset_out(dst.first())));
|
|
}
|
|
}
|
|
|
|
// A float arg may have to do float reg int reg conversion
|
|
void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) {
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
ldrw(tmp, Address(rfp, reg2offset_in(src.first())));
|
|
strw(tmp, Address(sp, reg2offset_out(dst.first())));
|
|
} else {
|
|
ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
|
|
}
|
|
} else if (src.first() != dst.first()) {
|
|
if (src.is_single_phys_reg() && dst.is_single_phys_reg())
|
|
fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
|
|
else
|
|
strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
|
|
}
|
|
}
|
|
|
|
// A long move
|
|
void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) {
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
// stack to stack
|
|
ldr(tmp, Address(rfp, reg2offset_in(src.first())));
|
|
str(tmp, Address(sp, reg2offset_out(dst.first())));
|
|
} else {
|
|
// stack to reg
|
|
ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
|
|
}
|
|
} else if (dst.first()->is_stack()) {
|
|
// reg to stack
|
|
// Do we really have to sign extend???
|
|
// __ movslq(src.first()->as_Register(), src.first()->as_Register());
|
|
str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
|
|
} else {
|
|
if (dst.first() != src.first()) {
|
|
mov(dst.first()->as_Register(), src.first()->as_Register());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// A double move
|
|
void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) {
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
ldr(tmp, Address(rfp, reg2offset_in(src.first())));
|
|
str(tmp, Address(sp, reg2offset_out(dst.first())));
|
|
} else {
|
|
ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
|
|
}
|
|
} else if (src.first() != dst.first()) {
|
|
if (src.is_single_phys_reg() && dst.is_single_phys_reg())
|
|
fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
|
|
else
|
|
strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
|
|
}
|
|
}
|
|
|
|
// Implements fast-locking.
|
|
//
|
|
// - obj: the object to be locked
|
|
// - t1, t2, t3: temporary registers, will be destroyed
|
|
// - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding).
|
|
void MacroAssembler::fast_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) {
|
|
assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1);
|
|
|
|
Label push;
|
|
const Register top = t1;
|
|
const Register mark = t2;
|
|
const Register t = t3;
|
|
|
|
// Preload the markWord. It is important that this is the first
|
|
// instruction emitted as it is part of C1's null check semantics.
|
|
ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
|
|
|
|
if (UseObjectMonitorTable) {
|
|
// Clear cache in case fast locking succeeds or we need to take the slow-path.
|
|
str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))));
|
|
}
|
|
|
|
if (DiagnoseSyncOnValueBasedClasses != 0) {
|
|
load_klass(t1, obj);
|
|
ldrb(t1, Address(t1, Klass::misc_flags_offset()));
|
|
tst(t1, KlassFlags::_misc_is_value_based_class);
|
|
br(Assembler::NE, slow);
|
|
}
|
|
|
|
// Check if the lock-stack is full.
|
|
ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
|
|
cmpw(top, (unsigned)LockStack::end_offset());
|
|
br(Assembler::GE, slow);
|
|
|
|
// Check for recursion.
|
|
subw(t, top, oopSize);
|
|
ldr(t, Address(rthread, t));
|
|
cmp(obj, t);
|
|
br(Assembler::EQ, push);
|
|
|
|
// Check header for monitor (0b10).
|
|
tst(mark, markWord::monitor_value);
|
|
br(Assembler::NE, slow);
|
|
|
|
// Try to lock. Transition lock bits 0b01 => 0b00
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
|
|
orr(mark, mark, markWord::unlocked_value);
|
|
eor(t, mark, markWord::unlocked_value);
|
|
cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
|
|
/*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
|
|
br(Assembler::NE, slow);
|
|
|
|
bind(push);
|
|
// After successful lock, push object on lock-stack.
|
|
str(obj, Address(rthread, top));
|
|
addw(top, top, oopSize);
|
|
strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
|
|
}
|
|
|
|
// Implements fast-unlocking.
|
|
//
|
|
// - obj: the object to be unlocked
|
|
// - t1, t2, t3: temporary registers
|
|
// - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
|
|
void MacroAssembler::fast_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
|
|
// cmpxchg clobbers rscratch1.
|
|
assert_different_registers(obj, t1, t2, t3, rscratch1);
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
// Check for lock-stack underflow.
|
|
Label stack_ok;
|
|
ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
|
|
cmpw(t1, (unsigned)LockStack::start_offset());
|
|
br(Assembler::GE, stack_ok);
|
|
STOP("Lock-stack underflow");
|
|
bind(stack_ok);
|
|
}
|
|
#endif
|
|
|
|
Label unlocked, push_and_slow;
|
|
const Register top = t1;
|
|
const Register mark = t2;
|
|
const Register t = t3;
|
|
|
|
// Check if obj is top of lock-stack.
|
|
ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
|
|
subw(top, top, oopSize);
|
|
ldr(t, Address(rthread, top));
|
|
cmp(obj, t);
|
|
br(Assembler::NE, slow);
|
|
|
|
// Pop lock-stack.
|
|
DEBUG_ONLY(str(zr, Address(rthread, top));)
|
|
strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
|
|
|
|
// Check if recursive.
|
|
subw(t, top, oopSize);
|
|
ldr(t, Address(rthread, t));
|
|
cmp(obj, t);
|
|
br(Assembler::EQ, unlocked);
|
|
|
|
// Not recursive. Check header for monitor (0b10).
|
|
ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
|
|
tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow);
|
|
|
|
#ifdef ASSERT
|
|
// Check header not unlocked (0b01).
|
|
Label not_unlocked;
|
|
tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked);
|
|
stop("fast_unlock already unlocked");
|
|
bind(not_unlocked);
|
|
#endif
|
|
|
|
// Try to unlock. Transition lock bits 0b00 => 0b01
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
|
|
orr(t, mark, markWord::unlocked_value);
|
|
cmpxchg(obj, mark, t, Assembler::xword,
|
|
/*acquire*/ false, /*release*/ true, /*weak*/ false, noreg);
|
|
br(Assembler::EQ, unlocked);
|
|
|
|
bind(push_and_slow);
|
|
// Restore lock-stack and handle the unlock in runtime.
|
|
DEBUG_ONLY(str(obj, Address(rthread, top));)
|
|
addw(top, top, oopSize);
|
|
strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
|
|
b(slow);
|
|
|
|
bind(unlocked);
|
|
}
|