mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-01 05:58:29 +00:00
303 lines
11 KiB
Java
303 lines
11 KiB
Java
/*
|
|
* Copyright (c) 2013, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* (C) Copyright IBM Corp. 2013
|
|
*/
|
|
|
|
package com.sun.crypto.provider;
|
|
|
|
import java.nio.ByteBuffer;
|
|
import java.nio.ByteOrder;
|
|
import java.util.Arrays;
|
|
|
|
/**
|
|
* This class represents the GCTR function defined in NIST 800-38D
|
|
* under section 6.5. With a given cipher object and initial counter
|
|
* block, a counter mode operation is performed. Blocksize is limited
|
|
* to 16 bytes.
|
|
*
|
|
* If any invariant is broken, failures can occur because the
|
|
* AESCrypt.encryptBlock method can be intrinsified on the HotSpot VM
|
|
* (see JDK-8067648 for details).
|
|
*
|
|
* The counter mode operations can be intrinsified and parallelized
|
|
* by using CounterMode.implCrypt() if HotSpot VM supports it on the
|
|
* architecture.
|
|
*
|
|
* <p>This function is used in the implementation of GCM mode.
|
|
*
|
|
* @since 1.8
|
|
*/
|
|
final class GCTR extends CounterMode implements GCM {
|
|
|
|
// Maximum buffer size rotating ByteBuffer->byte[] intrinsic copy
|
|
private static final int MAX_LEN = 1024;
|
|
private byte[] block;
|
|
|
|
GCTR(SymmetricCipher cipher, byte[] initialCounterBlk) {
|
|
super(cipher);
|
|
if (initialCounterBlk.length != blockSize) {
|
|
throw new RuntimeException("length of initial counter block (" +
|
|
initialCounterBlk.length + ") not equal to blockSize (" +
|
|
blockSize + ")");
|
|
}
|
|
|
|
iv = initialCounterBlk;
|
|
reset();
|
|
}
|
|
|
|
@Override
|
|
String getFeedback() {
|
|
return "GCTR";
|
|
}
|
|
|
|
// return the number of blocks until the lower 32 bits roll over
|
|
private long blocksUntilRollover() {
|
|
ByteBuffer buf = ByteBuffer.wrap(counter, counter.length - 4, 4);
|
|
buf.order(ByteOrder.BIG_ENDIAN);
|
|
long ctr32 = 0xFFFFFFFFL & buf.getInt();
|
|
long blocksLeft = (1L << 32) - ctr32;
|
|
return blocksLeft;
|
|
}
|
|
|
|
private void checkBlock() {
|
|
if (block == null) {
|
|
block = new byte[blockSize];
|
|
} else {
|
|
Arrays.fill(block, (byte)0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Using the given inLen, this operates only on blockSize data, leaving
|
|
* the remainder in 'in'.
|
|
* The return value will be (inLen - (inLen % blockSize))
|
|
*/
|
|
public int update(byte[] in, int inOfs, int inLen, byte[] out, int outOfs) {
|
|
if (inLen == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (inLen - inOfs > in.length) {
|
|
throw new RuntimeException("input length out of bound");
|
|
}
|
|
if (inLen < 0) {
|
|
throw new RuntimeException("input length unsupported");
|
|
}
|
|
if (out.length - outOfs < (inLen - (inLen % blockSize))) {
|
|
throw new RuntimeException("output buffer too small");
|
|
}
|
|
|
|
inLen -= inLen % blockSize;
|
|
long blocksLeft = blocksUntilRollover();
|
|
int numOfCompleteBlocks = inLen / blockSize;
|
|
if (numOfCompleteBlocks >= blocksLeft) {
|
|
// Counter Mode encryption cannot be used because counter will
|
|
// roll over incorrectly. Use GCM-specific code instead.
|
|
checkBlock();
|
|
for (int i = 0; i < numOfCompleteBlocks; i++) {
|
|
embeddedCipher.encryptBlock(counter, 0, block, 0);
|
|
for (int n = 0; n < blockSize; n++) {
|
|
int index = (i * blockSize + n);
|
|
out[outOfs + index] =
|
|
(byte) ((in[inOfs + index] ^ block[n]));
|
|
}
|
|
GaloisCounterMode.increment32(counter);
|
|
}
|
|
return inLen;
|
|
} else {
|
|
return encrypt(in, inOfs, inLen, out, outOfs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Operate on only blocksize data leaving the remainder in 'in' .
|
|
*/
|
|
public int update(byte[] in, int inOfs, int inLen, ByteBuffer dst) {
|
|
// If the bytebuffer is backed by arrays, use that instead of
|
|
// allocating and copying for direct bytebuffers
|
|
if (!dst.isDirect()) {
|
|
int len = update(in, inOfs, inLen, dst.array(),
|
|
dst.arrayOffset() + dst.position());
|
|
dst.position(dst.position() + len);
|
|
return len;
|
|
}
|
|
|
|
// Direct ByteBuffer operation
|
|
if (inLen - inOfs > in.length) {
|
|
throw new RuntimeException("input length out of bound");
|
|
}
|
|
if (inLen < 0) {
|
|
throw new RuntimeException("input length unsupported");
|
|
}
|
|
// See GaloisCounterMode. decryptFinal(bytebuffer, bytebuffer) for
|
|
// details on the check for 'dst' having enough space for the result.
|
|
|
|
long blocksLeft = blocksUntilRollover();
|
|
int numOfCompleteBlocks = inLen / blockSize;
|
|
if (numOfCompleteBlocks >= blocksLeft) {
|
|
// Counter Mode encryption cannot be used because counter will
|
|
// roll over incorrectly. Use GCM-specific code instead.
|
|
checkBlock();
|
|
for (int i = 0; i < numOfCompleteBlocks; i++) {
|
|
embeddedCipher.encryptBlock(counter, 0, block, 0);
|
|
for (int n = 0; n < blockSize; n++) {
|
|
int index = (i * blockSize + n);
|
|
dst.put((byte) ((in[inOfs + index] ^ block[n])));
|
|
}
|
|
GaloisCounterMode.increment32(counter);
|
|
}
|
|
return inLen;
|
|
} else {
|
|
int len = inLen - inLen % blockSize;
|
|
int processed = len;
|
|
byte[] out = new byte[Math.min(MAX_LEN, len)];
|
|
int offset = inOfs;
|
|
while (processed > MAX_LEN) {
|
|
encrypt(in, offset, MAX_LEN, out, 0);
|
|
dst.put(out, 0, MAX_LEN);
|
|
processed -= MAX_LEN;
|
|
offset += MAX_LEN;
|
|
}
|
|
encrypt(in, offset, processed, out, 0);
|
|
// If dst is less than blocksize, insert only what it can. Extra
|
|
// bytes would cause buffers with enough size to fail with a
|
|
// short buffer
|
|
dst.put(out, 0, Math.min(dst.remaining(), processed));
|
|
return len;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Operate on only blocksize data leaving the remainder in the src buffer.
|
|
*/
|
|
public int update(ByteBuffer src, ByteBuffer dst) {
|
|
int len;
|
|
|
|
// If the bytebuffer is backed by arrays, use that instead of
|
|
// allocating and copying for direct bytebuffers
|
|
if (src.hasArray() && dst.hasArray()) {
|
|
len = update(src.array(), src.arrayOffset() + src.position(),
|
|
src.remaining() - (src.remaining() % blockSize),
|
|
dst.array(), dst.arrayOffset() + dst.position());
|
|
src.position(src.position() + len);
|
|
dst.position(dst.position() + len);
|
|
return len;
|
|
}
|
|
|
|
// Direct bytebuffer operation
|
|
long blocksLeft = blocksUntilRollover();
|
|
int numOfCompleteBlocks = src.remaining() / blockSize;
|
|
if (numOfCompleteBlocks >= blocksLeft) {
|
|
// Counter Mode encryption cannot be used because counter will
|
|
// roll over incorrectly. Use GCM-specific code instead.
|
|
checkBlock();
|
|
for (int i = 0; i < numOfCompleteBlocks; i++) {
|
|
embeddedCipher.encryptBlock(counter, 0, block, 0);
|
|
for (int n = 0; n < blockSize; n++) {
|
|
dst.put((byte) (src.get() ^ block[n]));
|
|
}
|
|
GaloisCounterMode.increment32(counter);
|
|
}
|
|
return numOfCompleteBlocks * blockSize;
|
|
}
|
|
|
|
len = src.remaining() - (src.remaining() % blockSize);
|
|
int processed = len;
|
|
byte[] in = new byte[Math.min(MAX_LEN, len)];
|
|
while (processed > MAX_LEN) {
|
|
src.get(in, 0, MAX_LEN);
|
|
encrypt(in, 0, MAX_LEN, in, 0);
|
|
dst.put(in, 0, MAX_LEN);
|
|
processed -= MAX_LEN;
|
|
}
|
|
src.get(in, 0, processed);
|
|
encrypt(in, 0, processed, in, 0);
|
|
dst.put(in, 0, processed);
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* doFinal operation by using update() for any full block operations needed,
|
|
* then operating on the final bytes in the input buffer.
|
|
*
|
|
* This method will not write any block padding to the output buffer
|
|
*/
|
|
public int doFinal(byte[] in, int inOfs, int inLen, byte[] out,
|
|
int outOfs) {
|
|
if (inLen == 0) {
|
|
return 0;
|
|
}
|
|
int lastBlockSize = inLen % blockSize;
|
|
int completeBlkLen = inLen - lastBlockSize;
|
|
// process the complete blocks first
|
|
update(in, inOfs, completeBlkLen, out, outOfs);
|
|
if (lastBlockSize != 0) {
|
|
// do the last partial block
|
|
checkBlock();
|
|
embeddedCipher.encryptBlock(counter, 0, block, 0);
|
|
for (int n = 0; n < lastBlockSize; n++) {
|
|
out[outOfs + completeBlkLen + n] =
|
|
(byte) ((in[inOfs + completeBlkLen + n] ^ block[n]));
|
|
}
|
|
}
|
|
return inLen;
|
|
}
|
|
|
|
/**
|
|
* doFinal operation by using update() for any full block operations needed,
|
|
* then operating on the final bytes in the input buffer.
|
|
*
|
|
* If src and dst are array-backed bytebuffers, call doFinal(byte[]...) for
|
|
* less memory usage.
|
|
*/
|
|
public int doFinal(ByteBuffer src, ByteBuffer dst) {
|
|
// If the bytebuffer is backed by arrays, use that instead of
|
|
// allocating and copying for direct bytebuffers
|
|
if (src.hasArray() && dst.hasArray()) {
|
|
int len = doFinal(src.array(), src.arrayOffset() + src.position(),
|
|
src.remaining(), dst.array(),
|
|
dst.arrayOffset() + dst.position());
|
|
src.position(src.position() + len);
|
|
dst.position(dst.position() + len);
|
|
return len;
|
|
}
|
|
|
|
int len = src.remaining();
|
|
int lastBlockSize = len % blockSize;
|
|
update(src, dst);
|
|
if (lastBlockSize != 0) {
|
|
checkBlock();
|
|
// do the last partial block
|
|
embeddedCipher.encryptBlock(counter, 0, block, 0);
|
|
for (int n = 0; n < lastBlockSize; n++) {
|
|
dst.put((byte) (src.get() ^ block[n]));
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
}
|