mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
620 lines
20 KiB
C++
620 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "cds/cdsConfig.hpp"
|
|
#include "classfile/classLoaderData.hpp"
|
|
#include "classfile/vmClasses.hpp"
|
|
#include "gc/shared/allocTracer.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "gc/shared/gcLocker.hpp"
|
|
#include "gc/shared/gcHeapSummary.hpp"
|
|
#include "gc/shared/stringdedup/stringDedup.hpp"
|
|
#include "gc/shared/gcTrace.hpp"
|
|
#include "gc/shared/gcTraceTime.inline.hpp"
|
|
#include "gc/shared/gcVMOperations.hpp"
|
|
#include "gc/shared/gcWhen.hpp"
|
|
#include "gc/shared/gc_globals.hpp"
|
|
#include "gc/shared/memAllocator.hpp"
|
|
#include "gc/shared/tlab_globals.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "logging/logStream.hpp"
|
|
#include "memory/classLoaderMetaspace.hpp"
|
|
#include "memory/metaspace.hpp"
|
|
#include "memory/metaspaceUtils.hpp"
|
|
#include "memory/reservedSpace.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/instanceMirrorKlass.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/init.hpp"
|
|
#include "runtime/javaThread.hpp"
|
|
#include "runtime/perfData.hpp"
|
|
#include "runtime/threadSMR.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#include "services/heapDumper.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/events.hpp"
|
|
|
|
class ClassLoaderData;
|
|
|
|
size_t CollectedHeap::_lab_alignment_reserve = SIZE_MAX;
|
|
Klass* CollectedHeap::_filler_object_klass = nullptr;
|
|
size_t CollectedHeap::_filler_array_max_size = 0;
|
|
size_t CollectedHeap::_stack_chunk_max_size = 0;
|
|
|
|
class GCMessage : public FormatBuffer<1024> {
|
|
public:
|
|
bool is_before;
|
|
};
|
|
|
|
template <>
|
|
void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
|
|
st->print_cr("GC heap %s", m.is_before ? "before" : "after");
|
|
st->print_raw(m);
|
|
}
|
|
|
|
class GCHeapLog : public EventLogBase<GCMessage> {
|
|
private:
|
|
void log_heap(CollectedHeap* heap, bool before);
|
|
|
|
public:
|
|
GCHeapLog() : EventLogBase<GCMessage>("GC Heap History", "gc") {}
|
|
|
|
void log_heap_before(CollectedHeap* heap) {
|
|
log_heap(heap, true);
|
|
}
|
|
void log_heap_after(CollectedHeap* heap) {
|
|
log_heap(heap, false);
|
|
}
|
|
};
|
|
|
|
void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
|
|
if (!should_log()) {
|
|
return;
|
|
}
|
|
|
|
double timestamp = fetch_timestamp();
|
|
MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag);
|
|
int index = compute_log_index();
|
|
_records[index].thread = nullptr; // Its the GC thread so it's not that interesting.
|
|
_records[index].timestamp = timestamp;
|
|
_records[index].data.is_before = before;
|
|
stringStream st(_records[index].data.buffer(), _records[index].data.size());
|
|
|
|
st.print_cr("{Heap %s GC invocations=%u (full %u):",
|
|
before ? "before" : "after",
|
|
heap->total_collections(),
|
|
heap->total_full_collections());
|
|
|
|
heap->print_on(&st);
|
|
st.print_cr("}");
|
|
}
|
|
|
|
ParallelObjectIterator::ParallelObjectIterator(uint thread_num) :
|
|
_impl(Universe::heap()->parallel_object_iterator(thread_num))
|
|
{}
|
|
|
|
ParallelObjectIterator::~ParallelObjectIterator() {
|
|
delete _impl;
|
|
}
|
|
|
|
void ParallelObjectIterator::object_iterate(ObjectClosure* cl, uint worker_id) {
|
|
_impl->object_iterate(cl, worker_id);
|
|
}
|
|
|
|
size_t CollectedHeap::unused() const {
|
|
MutexLocker ml(Heap_lock);
|
|
return capacity() - used();
|
|
}
|
|
|
|
VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
|
|
size_t capacity_in_words = capacity() / HeapWordSize;
|
|
|
|
return VirtualSpaceSummary(
|
|
_reserved.start(), _reserved.start() + capacity_in_words, _reserved.end());
|
|
}
|
|
|
|
GCHeapSummary CollectedHeap::create_heap_summary() {
|
|
VirtualSpaceSummary heap_space = create_heap_space_summary();
|
|
return GCHeapSummary(heap_space, used());
|
|
}
|
|
|
|
MetaspaceSummary CollectedHeap::create_metaspace_summary() {
|
|
const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
|
|
MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType);
|
|
const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
|
|
MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType);
|
|
return MetaspaceSummary(MetaspaceGC::capacity_until_GC(),
|
|
MetaspaceUtils::get_combined_statistics(),
|
|
ms_chunk_free_list_summary, class_chunk_free_list_summary);
|
|
}
|
|
|
|
bool CollectedHeap::contains_null(const oop* p) const {
|
|
return *p == nullptr;
|
|
}
|
|
|
|
void CollectedHeap::print_heap_before_gc() {
|
|
LogTarget(Debug, gc, heap) lt;
|
|
if (lt.is_enabled()) {
|
|
LogStream ls(lt);
|
|
ls.print_cr("Heap before GC invocations=%u (full %u):", total_collections(), total_full_collections());
|
|
ResourceMark rm;
|
|
print_on(&ls);
|
|
}
|
|
|
|
if (_gc_heap_log != nullptr) {
|
|
_gc_heap_log->log_heap_before(this);
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::print_heap_after_gc() {
|
|
LogTarget(Debug, gc, heap) lt;
|
|
if (lt.is_enabled()) {
|
|
LogStream ls(lt);
|
|
ls.print_cr("Heap after GC invocations=%u (full %u):", total_collections(), total_full_collections());
|
|
ResourceMark rm;
|
|
print_on(&ls);
|
|
}
|
|
|
|
if (_gc_heap_log != nullptr) {
|
|
_gc_heap_log->log_heap_after(this);
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::print() const { print_on(tty); }
|
|
|
|
void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
|
|
const GCHeapSummary& heap_summary = create_heap_summary();
|
|
gc_tracer->report_gc_heap_summary(when, heap_summary);
|
|
|
|
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
|
|
gc_tracer->report_metaspace_summary(when, metaspace_summary);
|
|
}
|
|
|
|
void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
|
|
trace_heap(GCWhen::BeforeGC, gc_tracer);
|
|
}
|
|
|
|
void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
|
|
trace_heap(GCWhen::AfterGC, gc_tracer);
|
|
}
|
|
|
|
// Default implementation, for collectors that don't support the feature.
|
|
bool CollectedHeap::supports_concurrent_gc_breakpoints() const {
|
|
return false;
|
|
}
|
|
|
|
static bool klass_is_sane(oop object) {
|
|
if (UseCompactObjectHeaders) {
|
|
// With compact headers, we can't safely access the Klass* when
|
|
// the object has been forwarded, because non-full-GC-forwarding
|
|
// temporarily overwrites the mark-word, and thus the Klass*, with
|
|
// the forwarding pointer, and here we have no way to make a
|
|
// distinction between Full-GC and regular GC forwarding.
|
|
markWord mark = object->mark();
|
|
if (mark.is_forwarded()) {
|
|
// We can't access the Klass*. We optimistically assume that
|
|
// it is ok. This happens very rarely.
|
|
return true;
|
|
}
|
|
|
|
return Metaspace::contains(mark.klass_without_asserts());
|
|
}
|
|
|
|
return Metaspace::contains(object->klass_without_asserts());
|
|
}
|
|
|
|
bool CollectedHeap::is_oop(oop object) const {
|
|
if (!is_object_aligned(object)) {
|
|
return false;
|
|
}
|
|
|
|
if (!is_in(object)) {
|
|
return false;
|
|
}
|
|
|
|
if (!klass_is_sane(object)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Memory state functions.
|
|
|
|
|
|
CollectedHeap::CollectedHeap() :
|
|
_capacity_at_last_gc(0),
|
|
_used_at_last_gc(0),
|
|
_soft_ref_policy(),
|
|
_is_stw_gc_active(false),
|
|
_last_whole_heap_examined_time_ns(os::javaTimeNanos()),
|
|
_total_collections(0),
|
|
_total_full_collections(0),
|
|
_gc_cause(GCCause::_no_gc),
|
|
_gc_lastcause(GCCause::_no_gc)
|
|
{
|
|
// If the minimum object size is greater than MinObjAlignment, we can
|
|
// end up with a shard at the end of the buffer that's smaller than
|
|
// the smallest object. We can't allow that because the buffer must
|
|
// look like it's full of objects when we retire it, so we make
|
|
// sure we have enough space for a filler int array object.
|
|
size_t min_size = min_dummy_object_size();
|
|
_lab_alignment_reserve = min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0;
|
|
|
|
const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
|
|
const size_t elements_per_word = HeapWordSize / sizeof(jint);
|
|
_filler_array_max_size = align_object_size(filler_array_hdr_size() +
|
|
max_len / elements_per_word);
|
|
|
|
NOT_PRODUCT(_promotion_failure_alot_count = 0;)
|
|
NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
|
|
|
|
if (UsePerfData) {
|
|
EXCEPTION_MARK;
|
|
|
|
// create the gc cause jvmstat counters
|
|
_perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
|
|
80, GCCause::to_string(_gc_cause), CHECK);
|
|
|
|
_perf_gc_lastcause =
|
|
PerfDataManager::create_string_variable(SUN_GC, "lastCause",
|
|
80, GCCause::to_string(_gc_lastcause), CHECK);
|
|
}
|
|
|
|
// Create the ring log
|
|
if (LogEvents) {
|
|
_gc_heap_log = new GCHeapLog();
|
|
} else {
|
|
_gc_heap_log = nullptr;
|
|
}
|
|
}
|
|
|
|
// This interface assumes that it's being called by the
|
|
// vm thread. It collects the heap assuming that the
|
|
// heap lock is already held and that we are executing in
|
|
// the context of the vm thread.
|
|
void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
|
|
Thread* thread = Thread::current();
|
|
assert(thread->is_VM_thread(), "Precondition#1");
|
|
assert(Heap_lock->is_locked(), "Precondition#2");
|
|
GCCauseSetter gcs(this, cause);
|
|
switch (cause) {
|
|
case GCCause::_codecache_GC_threshold:
|
|
case GCCause::_codecache_GC_aggressive:
|
|
case GCCause::_heap_inspection:
|
|
case GCCause::_heap_dump:
|
|
case GCCause::_metadata_GC_threshold: {
|
|
HandleMark hm(thread);
|
|
do_full_collection(false); // don't clear all soft refs
|
|
break;
|
|
}
|
|
case GCCause::_metadata_GC_clear_soft_refs: {
|
|
HandleMark hm(thread);
|
|
do_full_collection(true); // do clear all soft refs
|
|
break;
|
|
}
|
|
default:
|
|
ShouldNotReachHere(); // Unexpected use of this function
|
|
}
|
|
}
|
|
|
|
MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
|
|
size_t word_size,
|
|
Metaspace::MetadataType mdtype) {
|
|
uint loop_count = 0;
|
|
uint gc_count = 0;
|
|
uint full_gc_count = 0;
|
|
|
|
assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
|
|
|
|
do {
|
|
MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
|
|
if (result != nullptr) {
|
|
return result;
|
|
}
|
|
|
|
{ // Need lock to get self consistent gc_count's
|
|
MutexLocker ml(Heap_lock);
|
|
gc_count = total_collections();
|
|
full_gc_count = total_full_collections();
|
|
}
|
|
|
|
// Generate a VM operation
|
|
VM_CollectForMetadataAllocation op(loader_data,
|
|
word_size,
|
|
mdtype,
|
|
gc_count,
|
|
full_gc_count,
|
|
GCCause::_metadata_GC_threshold);
|
|
|
|
VMThread::execute(&op);
|
|
|
|
if (op.prologue_succeeded()) {
|
|
return op.result();
|
|
}
|
|
loop_count++;
|
|
if ((QueuedAllocationWarningCount > 0) &&
|
|
(loop_count % QueuedAllocationWarningCount == 0)) {
|
|
log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
|
|
" size=%zu", loop_count, word_size);
|
|
}
|
|
} while (true); // Until a GC is done
|
|
}
|
|
|
|
MemoryUsage CollectedHeap::memory_usage() {
|
|
return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity());
|
|
}
|
|
|
|
void CollectedHeap::set_gc_cause(GCCause::Cause v) {
|
|
if (UsePerfData) {
|
|
_gc_lastcause = _gc_cause;
|
|
_perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
|
|
_perf_gc_cause->set_value(GCCause::to_string(v));
|
|
}
|
|
_gc_cause = v;
|
|
}
|
|
|
|
// Returns the header size in words aligned to the requirements of the
|
|
// array object type.
|
|
static int int_array_header_size() {
|
|
size_t typesize_in_bytes = arrayOopDesc::header_size_in_bytes();
|
|
return (int)align_up(typesize_in_bytes, HeapWordSize)/HeapWordSize;
|
|
}
|
|
|
|
size_t CollectedHeap::max_tlab_size() const {
|
|
// TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
|
|
// This restriction could be removed by enabling filling with multiple arrays.
|
|
// If we compute that the reasonable way as
|
|
// header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
|
|
// we'll overflow on the multiply, so we do the divide first.
|
|
// We actually lose a little by dividing first,
|
|
// but that just makes the TLAB somewhat smaller than the biggest array,
|
|
// which is fine, since we'll be able to fill that.
|
|
size_t max_int_size = int_array_header_size() +
|
|
sizeof(jint) *
|
|
((juint) max_jint / (size_t) HeapWordSize);
|
|
return align_down(max_int_size, MinObjAlignment);
|
|
}
|
|
|
|
size_t CollectedHeap::filler_array_hdr_size() {
|
|
return align_object_offset(int_array_header_size()); // align to Long
|
|
}
|
|
|
|
size_t CollectedHeap::filler_array_min_size() {
|
|
return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
|
|
}
|
|
|
|
void CollectedHeap::zap_filler_array_with(HeapWord* start, size_t words, juint value) {
|
|
Copy::fill_to_words(start + filler_array_hdr_size(),
|
|
words - filler_array_hdr_size(), value);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
|
|
{
|
|
assert(words >= min_fill_size(), "too small to fill");
|
|
assert(is_object_aligned(words), "unaligned size");
|
|
}
|
|
|
|
void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
if (ZapFillerObjects && zap) {
|
|
zap_filler_array_with(start, words, 0XDEAFBABE);
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
void
|
|
CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
assert(words >= filler_array_min_size(), "too small for an array");
|
|
assert(words <= filler_array_max_size(), "too big for a single object");
|
|
|
|
const size_t payload_size = words - filler_array_hdr_size();
|
|
const size_t len = payload_size * HeapWordSize / sizeof(jint);
|
|
assert((int)len >= 0, "size too large %zu becomes %d", words, (int)len);
|
|
|
|
ObjArrayAllocator allocator(Universe::fillerArrayKlass(), words, (int)len, /* do_zero */ false);
|
|
allocator.initialize(start);
|
|
if (CDSConfig::is_dumping_heap()) {
|
|
// This array is written into the CDS archive. Make sure it
|
|
// has deterministic contents.
|
|
zap_filler_array_with(start, words, 0);
|
|
} else {
|
|
DEBUG_ONLY(zap_filler_array(start, words, zap);)
|
|
}
|
|
}
|
|
|
|
void
|
|
CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
assert(words <= filler_array_max_size(), "too big for a single object");
|
|
|
|
if (words >= filler_array_min_size()) {
|
|
fill_with_array(start, words, zap);
|
|
} else if (words > 0) {
|
|
assert(words == min_fill_size(), "unaligned size");
|
|
ObjAllocator allocator(CollectedHeap::filler_object_klass(), words);
|
|
allocator.initialize(start);
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
DEBUG_ONLY(fill_args_check(start, words);)
|
|
HandleMark hm(Thread::current()); // Free handles before leaving.
|
|
fill_with_object_impl(start, words, zap);
|
|
}
|
|
|
|
void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
|
|
{
|
|
DEBUG_ONLY(fill_args_check(start, words);)
|
|
HandleMark hm(Thread::current()); // Free handles before leaving.
|
|
|
|
// Multiple objects may be required depending on the filler array maximum size. Fill
|
|
// the range up to that with objects that are filler_array_max_size sized. The
|
|
// remainder is filled with a single object.
|
|
const size_t min = min_fill_size();
|
|
const size_t max = filler_array_max_size();
|
|
while (words > max) {
|
|
const size_t cur = (words - max) >= min ? max : max - min;
|
|
fill_with_array(start, cur, zap);
|
|
start += cur;
|
|
words -= cur;
|
|
}
|
|
|
|
fill_with_object_impl(start, words, zap);
|
|
}
|
|
|
|
void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
|
|
CollectedHeap::fill_with_object(start, end, zap);
|
|
}
|
|
|
|
void CollectedHeap::ensure_parsability(bool retire_tlabs) {
|
|
assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
|
|
"Should only be called at a safepoint or at start-up");
|
|
|
|
ThreadLocalAllocStats stats;
|
|
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) {
|
|
BarrierSet::barrier_set()->make_parsable(thread);
|
|
if (UseTLAB) {
|
|
if (retire_tlabs) {
|
|
thread->tlab().retire(&stats);
|
|
} else {
|
|
thread->tlab().make_parsable();
|
|
}
|
|
}
|
|
}
|
|
|
|
stats.publish();
|
|
}
|
|
|
|
void CollectedHeap::resize_all_tlabs() {
|
|
assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
|
|
"Should only resize tlabs at safepoint");
|
|
|
|
if (UseTLAB && ResizeTLAB) {
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
|
|
thread->tlab().resize();
|
|
}
|
|
}
|
|
}
|
|
|
|
jlong CollectedHeap::millis_since_last_whole_heap_examined() {
|
|
return (os::javaTimeNanos() - _last_whole_heap_examined_time_ns) / NANOSECS_PER_MILLISEC;
|
|
}
|
|
|
|
void CollectedHeap::record_whole_heap_examined_timestamp() {
|
|
_last_whole_heap_examined_time_ns = os::javaTimeNanos();
|
|
}
|
|
|
|
void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
|
|
assert(timer != nullptr, "timer is null");
|
|
static uint count = 0;
|
|
if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
|
|
if (FullGCHeapDumpLimit == 0 || count < FullGCHeapDumpLimit) {
|
|
GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
|
|
HeapDumper::dump_heap();
|
|
count++;
|
|
}
|
|
}
|
|
|
|
LogTarget(Trace, gc, classhisto) lt;
|
|
if (lt.is_enabled()) {
|
|
GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
|
|
LogStream ls(lt);
|
|
VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
|
|
inspector.doit();
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
|
|
full_gc_dump(timer, true);
|
|
}
|
|
|
|
void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
|
|
full_gc_dump(timer, false);
|
|
}
|
|
|
|
void CollectedHeap::initialize_reserved_region(const ReservedHeapSpace& rs) {
|
|
// It is important to do this in a way such that concurrent readers can't
|
|
// temporarily think something is in the heap. (Seen this happen in asserts.)
|
|
_reserved.set_word_size(0);
|
|
_reserved.set_start((HeapWord*)rs.base());
|
|
_reserved.set_end((HeapWord*)rs.end());
|
|
}
|
|
|
|
void CollectedHeap::post_initialize() {
|
|
StringDedup::initialize();
|
|
initialize_serviceability();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
bool CollectedHeap::promotion_should_fail(volatile size_t* count) {
|
|
// Access to count is not atomic; the value does not have to be exact.
|
|
if (PromotionFailureALot) {
|
|
const size_t gc_num = total_collections();
|
|
const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number;
|
|
if (elapsed_gcs >= PromotionFailureALotInterval) {
|
|
// Test for unsigned arithmetic wrap-around.
|
|
if (++*count >= PromotionFailureALotCount) {
|
|
*count = 0;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CollectedHeap::promotion_should_fail() {
|
|
return promotion_should_fail(&_promotion_failure_alot_count);
|
|
}
|
|
|
|
void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) {
|
|
if (PromotionFailureALot) {
|
|
_promotion_failure_alot_gc_number = total_collections();
|
|
*count = 0;
|
|
}
|
|
}
|
|
|
|
void CollectedHeap::reset_promotion_should_fail() {
|
|
reset_promotion_should_fail(&_promotion_failure_alot_count);
|
|
}
|
|
|
|
#endif // #ifndef PRODUCT
|
|
|
|
// It's the caller's responsibility to ensure glitch-freedom
|
|
// (if required).
|
|
void CollectedHeap::update_capacity_and_used_at_gc() {
|
|
_capacity_at_last_gc = capacity();
|
|
_used_at_last_gc = used();
|
|
}
|