jdk/src/hotspot/os_cpu/aix_ppc/os_aix_ppc.cpp
Matthias Baesken 479ac8b2fd 8376281: Remove USE_XLC_BUILTINS macro usage in AIX code
Reviewed-by: mdoerr, clanger
2026-01-27 13:30:14 +00:00

510 lines
19 KiB
C++

/*
* Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2026 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "assembler_ppc.hpp"
#include "asm/assembler.inline.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm.h"
#include "memory/allocation.inline.hpp"
#include "nativeInst_ppc.hpp"
#include "os_aix.hpp"
#include "os_posix.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "porting_aix.hpp"
#include "runtime/arguments.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/timer.hpp"
#include "signals_posix.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
// put OS-includes here
# include <ucontext.h>
address os::current_stack_pointer() {
return (address)__builtin_frame_address(0);
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
return (char*) -1;
}
// Frame information (pc, sp, fp) retrieved via ucontext
// always looks like a C-frame according to the frame
// conventions in frame_ppc.hpp.
address os::Posix::ucontext_get_pc(const ucontext_t * uc) {
return (address)uc->uc_mcontext.jmp_context.iar;
}
intptr_t* os::Aix::ucontext_get_sp(const ucontext_t * uc) {
// gpr1 holds the stack pointer on aix
return (intptr_t*)uc->uc_mcontext.jmp_context.gpr[1/*REG_SP*/];
}
intptr_t* os::Aix::ucontext_get_fp(const ucontext_t * uc) {
return nullptr;
}
void os::Posix::ucontext_set_pc(ucontext_t* uc, address new_pc) {
uc->uc_mcontext.jmp_context.iar = (uint64_t) new_pc;
}
static address ucontext_get_lr(const ucontext_t * uc) {
return (address)uc->uc_mcontext.jmp_context.lr;
}
address os::fetch_frame_from_context(const void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
address epc;
const ucontext_t* uc = (const ucontext_t*)ucVoid;
if (uc != nullptr) {
epc = os::Posix::ucontext_get_pc(uc);
if (ret_sp) *ret_sp = os::Aix::ucontext_get_sp(uc);
if (ret_fp) *ret_fp = os::Aix::ucontext_get_fp(uc);
} else {
epc = nullptr;
if (ret_sp) *ret_sp = (intptr_t *)nullptr;
if (ret_fp) *ret_fp = (intptr_t *)nullptr;
}
return epc;
}
frame os::fetch_frame_from_context(const void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
address epc = fetch_frame_from_context(ucVoid, &sp, &fp);
if (epc == nullptr || !is_readable_pointer(epc)) {
// Try to recover from calling into bad memory
// Assume new frame has not been set up, the same as
// compiled frame stack bang
return fetch_compiled_frame_from_context(ucVoid);
}
return frame(sp, epc, frame::kind::unknown);
}
frame os::fetch_compiled_frame_from_context(const void* ucVoid) {
const ucontext_t* uc = (const ucontext_t*)ucVoid;
intptr_t* sp = os::Aix::ucontext_get_sp(uc);
address lr = ucontext_get_lr(uc);
return frame(sp, lr, frame::kind::unknown);
}
intptr_t* os::fetch_bcp_from_context(const void* ucVoid) {
assert(ucVoid != nullptr, "invariant");
const ucontext_t* uc = (const ucontext_t*)ucVoid;
assert(os::Posix::ucontext_is_interpreter(uc), "invariant");
return reinterpret_cast<intptr_t*>(uc->uc_mcontext.jmp_context.gpr[14]); // R14_bcp
}
frame os::get_sender_for_C_frame(frame* fr) {
if (*fr->sp() == (intptr_t) nullptr) {
// fr is the last C frame
return frame();
}
return frame(fr->sender_sp(), fr->sender_pc(), frame::kind::unknown);
}
frame os::current_frame() {
intptr_t* csp = *(intptr_t**) __builtin_frame_address(0);
frame topframe(csp, CAST_FROM_FN_PTR(address, os::current_frame), frame::kind::unknown);
return os::get_sender_for_C_frame(&topframe);
}
bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info,
ucontext_t* uc, JavaThread* thread) {
// Decide if this trap can be handled by a stub.
address stub = nullptr;
// retrieve program counter
address const pc = uc ? os::Posix::ucontext_get_pc(uc) : nullptr;
// retrieve crash address
address const addr = info ? (const address) info->si_addr : nullptr;
if (info == nullptr || uc == nullptr) {
return false; // Fatal error
}
// If we are a java thread...
if (thread != nullptr) {
// Handle ALL stack overflow variations here
if (sig == SIGSEGV && thread->is_in_full_stack(addr)) {
// stack overflow
if (os::Posix::handle_stack_overflow(thread, addr, pc, uc, &stub)) {
return true; // continue
} else if (stub != nullptr) {
goto run_stub;
} else {
return false; // Fatal error
}
} // end handle SIGSEGV inside stack boundaries
if (thread->thread_state() == _thread_in_Java) {
// Java thread running in Java code
// The following signals are used for communicating VM events:
//
// SIGILL: the compiler generates illegal opcodes
// at places where it wishes to interrupt the VM:
// Safepoints, Unreachable Code, Entry points of not entrant nmethods,
// This results in a SIGILL with (*pc) == inserted illegal instruction.
//
// (so, SIGILLs with a pc inside the zero page are real errors)
//
// SIGTRAP:
// The ppc trap instruction raises a SIGTRAP and is very efficient if it
// does not trap. It is used for conditional branches that are expected
// to be never taken. These are:
// - not entrant nmethods
// - IC (inline cache) misses.
// - null checks leading to UncommonTraps.
// - range checks leading to Uncommon Traps.
// On Aix, these are especially null checks, as the ImplicitNullCheck
// optimization works only in rare cases, as the page at address 0 is only
// write protected. //
// Note: !UseSIGTRAP is used to prevent SIGTRAPS altogether, to facilitate debugging.
//
// SIGSEGV:
// used for safe point polling:
// To notify all threads that they have to reach a safe point, safe point polling is used:
// All threads poll a certain mapped memory page. Normally, this page has read access.
// If the VM wants to inform the threads about impending safe points, it puts this
// page to read only ("poisens" the page), and the threads then reach a safe point.
// used for null checks:
// If the compiler finds a store it uses it for a null check. Unfortunately this
// happens rarely. In heap based and disjoint base compressd oop modes also loads
// are used for null checks.
CodeBlob *cb = nullptr;
int stop_type = -1;
if ((sig == (USE_POLL_BIT_ONLY ? SIGTRAP : SIGSEGV)) &&
((NativeInstruction*)pc)->is_safepoint_poll() &&
CodeCache::contains((void*) pc) &&
((cb = CodeCache::find_blob(pc)) != nullptr) &&
cb->is_nmethod()) {
if (TraceTraps) {
tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (%s)", p2i(pc),
USE_POLL_BIT_ONLY ? "SIGTRAP" : "SIGSEGV");
}
stub = SharedRuntime::get_poll_stub(pc);
goto run_stub;
}
else if (UseSIGTRAP && sig == SIGTRAP &&
((NativeInstruction*)pc)->is_safepoint_poll_return() &&
CodeCache::contains((void*) pc) &&
((cb = CodeCache::find_blob(pc)) != nullptr) &&
cb->is_nmethod()) {
if (TraceTraps) {
tty->print_cr("trap: safepoint_poll at return at " INTPTR_FORMAT " (nmethod)", p2i(pc));
}
stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
goto run_stub;
}
// SIGTRAP-based nmethod entry barriers.
else if (sig == SIGTRAP && TrapBasedNMethodEntryBarriers &&
nativeInstruction_at(pc)->is_sigtrap_nmethod_entry_barrier() &&
CodeCache::contains((void*) pc)) {
if (TraceTraps) {
tty->print_cr("trap: nmethod entry barrier at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
}
stub = StubRoutines::method_entry_barrier();
uc->uc_mcontext.jmp_context.lr = (uintptr_t)(pc + BytesPerInstWord); // emulate call by setting LR
goto run_stub;
}
// SIGTRAP-based ic miss check in compiled code.
else if (sig == SIGTRAP && TrapBasedICMissChecks &&
nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
if (TraceTraps) {
tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
}
stub = SharedRuntime::get_ic_miss_stub();
goto run_stub;
}
// SIGTRAP-based implicit null check in compiled code.
else if (sig == SIGTRAP && TrapBasedNullChecks &&
nativeInstruction_at(pc)->is_sigtrap_null_check()) {
if (TraceTraps) {
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
goto run_stub;
}
// SIGSEGV-based implicit null check in compiled code.
else if (sig == SIGSEGV && ImplicitNullChecks &&
CodeCache::contains((void*) pc) &&
MacroAssembler::uses_implicit_null_check(info->si_addr)) {
if (TraceTraps) {
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
goto run_stub;
}
#ifdef COMPILER2
// SIGTRAP-based implicit range check in compiled code.
else if (sig == SIGTRAP && TrapBasedRangeChecks &&
nativeInstruction_at(pc)->is_sigtrap_range_check()) {
if (TraceTraps) {
tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
goto run_stub;
}
#endif
else if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
if (TraceTraps) {
tty->print_raw_cr("Fix SIGFPE handler, trying divide by zero handler.");
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
goto run_stub;
}
// stop on request
else if (sig == SIGTRAP && (stop_type = nativeInstruction_at(pc)->get_stop_type()) != -1) {
bool msg_present = (stop_type & MacroAssembler::stop_msg_present);
stop_type = (stop_type &~ MacroAssembler::stop_msg_present);
const char *msg = nullptr;
switch (stop_type) {
case MacroAssembler::stop_stop : msg = "stop"; break;
case MacroAssembler::stop_untested : msg = "untested"; break;
case MacroAssembler::stop_unimplemented : msg = "unimplemented"; break;
case MacroAssembler::stop_shouldnotreachhere: msg = "shouldnotreachhere"; break;
default: msg = "unknown"; break;
}
const char **detail_msg_ptr = (const char**)(pc + 4);
const char *detail_msg = msg_present ? *detail_msg_ptr : "no details provided";
if (TraceTraps) {
tty->print_cr("trap: %s: %s (SIGTRAP, stop type %d)", msg, detail_msg, stop_type);
}
// End life with a fatal error, message and detail message and the context.
// Note: no need to do any post-processing here (e.g. signal chaining)
VMError::report_and_die(thread, uc, nullptr, 0, msg, "%s", detail_msg);
ShouldNotReachHere();
}
else if (sig == SIGBUS) {
// BugId 4454115: A read from a MappedByteBuffer can fault here if the
// underlying file has been truncated. Do not crash the VM in such a case.
CodeBlob* cb = CodeCache::find_blob(pc);
nmethod* nm = cb ? cb->as_nmethod_or_null() : nullptr;
bool is_unsafe_memory_access = (thread->doing_unsafe_access() && UnsafeMemoryAccess::contains_pc(pc));
if ((nm != nullptr && nm->has_unsafe_access()) || is_unsafe_memory_access) {
address next_pc = pc + 4;
if (is_unsafe_memory_access) {
next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc);
}
next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
os::Posix::ucontext_set_pc(uc, next_pc);
return true;
}
}
}
else { // thread->thread_state() != _thread_in_Java
// Detect CPU features. This is only done at the very start of the VM. Later, the
// VM_Version::is_determine_features_test_running() flag should be false.
if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
// SIGILL must be caused by VM_Version::determine_features().
*(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
// flushing of icache is not necessary.
stub = pc + 4; // continue with next instruction.
goto run_stub;
}
else if ((thread->thread_state() == _thread_in_vm ||
thread->thread_state() == _thread_in_native) &&
sig == SIGBUS && thread->doing_unsafe_access()) {
address next_pc = pc + 4;
if (UnsafeMemoryAccess::contains_pc(pc)) {
next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc);
}
next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
os::Posix::ucontext_set_pc(uc, next_pc);
return true;
}
}
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
// and the heap gets shrunk before the field access.
if ((sig == SIGSEGV) || (sig == SIGBUS)) {
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
stub = addr;
}
}
}
run_stub:
// One of the above code blocks ininitalized the stub, so we want to
// delegate control to that stub.
if (stub != nullptr) {
// Save all thread context in case we need to restore it.
if (thread != nullptr) thread->set_saved_exception_pc(pc);
os::Posix::ucontext_set_pc(uc, stub);
return true;
}
return false; // Fatal error
}
void os::Aix::init_thread_fpu_state(void) {
// Disable FP exceptions.
__asm__ __volatile__ ("mtfsfi 6,0");
}
////////////////////////////////////////////////////////////////////////////////
// thread stack
// Minimum usable stack sizes required to get to user code. Space for
// HotSpot guard pages is added later.
size_t os::_compiler_thread_min_stack_allowed = 192 * K;
size_t os::_java_thread_min_stack_allowed = 64 * K;
size_t os::_vm_internal_thread_min_stack_allowed = 64 * K;
// Return default stack size for thr_type.
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
// Default stack size (compiler thread needs larger stack).
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
return s;
}
/////////////////////////////////////////////////////////////////////////////
// helper functions for fatal error handler
void os::print_context(outputStream *st, const void *context) {
if (context == nullptr) return;
const ucontext_t* uc = (const ucontext_t*)context;
st->print_cr("Registers:");
st->print("pc =" INTPTR_FORMAT " ", (unsigned long)uc->uc_mcontext.jmp_context.iar);
st->print("lr =" INTPTR_FORMAT " ", (unsigned long)uc->uc_mcontext.jmp_context.lr);
st->print("ctr=" INTPTR_FORMAT " ", (unsigned long)uc->uc_mcontext.jmp_context.ctr);
st->cr();
for (int i = 0; i < 32; i++) {
st->print("r%-2d=" INTPTR_FORMAT " ", i, (unsigned long)uc->uc_mcontext.jmp_context.gpr[i]);
if (i % 3 == 2) st->cr();
}
st->cr();
st->cr();
}
void os::print_register_info(outputStream *st, const void *context, int& continuation) {
const int register_count = 32 /* r0-r31 */ + 3 /* pc, lr, sp */;
int n = continuation;
assert(n >= 0 && n <= register_count, "Invalid continuation value");
if (context == nullptr || n == register_count) {
return;
}
const ucontext_t *uc = (const ucontext_t*)context;
while (n < register_count) {
// Update continuation with next index before printing location
continuation = n + 1;
if (n == register_count - 1) {
st->print("pc ="); print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.iar);
} else if (n == register_count - 2) {
st->print("lr ="); print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.lr);
} else if (n == register_count - 3) {
st->print("sp ="); print_location(st, (intptr_t)os::Aix::ucontext_get_sp(uc));
} else {
st->print("r%-2d=", n);
print_location(st, (intptr_t)uc->uc_mcontext.jmp_context.gpr[n]);
}
++n;
}
}
extern "C" {
int SpinPause() {
return 0;
}
}
#ifndef PRODUCT
void os::verify_stack_alignment() {
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
}
#endif
int os::extra_bang_size_in_bytes() {
// PPC does not require the additional stack bang.
return 0;
}
bool os::Aix::platform_print_native_stack(outputStream* st, const void* context, char *buf, int buf_size, address& lastpc) {
AixNativeCallstack::print_callstack_for_context(st, (const ucontext_t*)context, true, buf, (size_t) buf_size);
return true;
}
// HAVE_FUNCTION_DESCRIPTORS
void* os::Aix::resolve_function_descriptor(void* p) {
return ((const FunctionDescriptor*)p)->entry();
}
void os::setup_fpu() {}