jdk/src/hotspot/share/classfile/compactHashtable.hpp
2025-11-10 18:21:13 +00:00

476 lines
15 KiB
C++

/*
* Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_CLASSFILE_COMPACTHASHTABLE_HPP
#define SHARE_CLASSFILE_COMPACTHASHTABLE_HPP
#include "cds/cds_globals.hpp"
#include "oops/array.hpp"
#include "oops/symbol.hpp"
#include "runtime/globals.hpp"
#include "utilities/growableArray.hpp"
template <
typename K,
typename V,
V (*DECODE)(address base_address, u4 encoded_value),
bool (*EQUALS)(V value, K key, int len)
>
class CompactHashtable;
class NumberSeq;
class SimpleCompactHashtable;
class SerializeClosure;
// Stats for symbol tables in the CDS archive
class CompactHashtableStats {
public:
int hashentry_count;
int hashentry_bytes;
int bucket_count;
int bucket_bytes;
CompactHashtableStats() :
hashentry_count(0), hashentry_bytes(0),
bucket_count(0), bucket_bytes(0) {}
};
#if INCLUDE_CDS
/////////////////////////////////////////////////////////////////////////
//
// The compact hash table writer. Used at dump time for writing out
// the compact table to the shared archive.
//
// At dump time, the CompactHashtableWriter obtains all entries from
// a table (the table could be in any form of a collection of <hash, encoded_value> pair)
// and adds them to a new temporary hash table (_buckets). The hash
// table size (number of buckets) is calculated using
// '(num_entries + bucket_size - 1) / bucket_size'. The default bucket
// size is 4 and can be changed by -XX:SharedSymbolTableBucketSize option.
// 4 is chosen because it produces smaller sized bucket on average for
// faster lookup. It also has relatively small number of empty buckets and
// good distribution of the entries.
//
// We use a simple hash function (hash % num_bucket) for the table.
// The new table is compacted when written out. Please see comments
// above the CompactHashtable class for the table layout detail. The bucket
// offsets are written to the archive as part of the compact table. The
// bucket offset is encoded in the low 30-bit (0-29) and the bucket type
// (regular or value_only) are encoded in bit[31, 30]. For buckets with more
// than one entry, both hash and encoded_value are written to the
// table. For buckets with only one entry, only the encoded_value is written
// to the table and the buckets are tagged as value_only in their type bits.
// Buckets without entry are skipped from the table. Their offsets are
// still written out for faster lookup.
//
class CompactHashtableWriter: public StackObj {
public:
class Entry {
unsigned int _hash;
u4 _encoded_value;
public:
Entry() {}
Entry(unsigned int hash, u4 encoded_value) : _hash(hash), _encoded_value(encoded_value) {}
u4 encoded_value() {
return _encoded_value;
}
unsigned int hash() {
return _hash;
}
bool operator==(const CompactHashtableWriter::Entry& other) {
return (_encoded_value == other._encoded_value && _hash == other._hash);
}
}; // class CompactHashtableWriter::Entry
private:
int _num_entries_written;
int _num_buckets;
int _num_empty_buckets;
int _num_value_only_buckets;
int _num_other_buckets;
GrowableArray<Entry>** _buckets;
CompactHashtableStats* _stats;
Array<u4>* _compact_buckets;
Array<u4>* _compact_entries;
public:
// This is called at dump-time only
CompactHashtableWriter(int num_entries, CompactHashtableStats* stats);
~CompactHashtableWriter();
void add(unsigned int hash, u4 encoded_value);
void dump(SimpleCompactHashtable *cht, const char* table_name);
private:
void allocate_table();
void dump_table(NumberSeq* summary);
static int calculate_num_buckets(int num_entries) {
int num_buckets = num_entries / SharedSymbolTableBucketSize;
// calculation of num_buckets can result in zero buckets, we need at least one
return (num_buckets < 1) ? 1 : num_buckets;
}
};
#endif // INCLUDE_CDS
#define REGULAR_BUCKET_TYPE 0
#define VALUE_ONLY_BUCKET_TYPE 1
#define TABLEEND_BUCKET_TYPE 3
#define BUCKET_OFFSET_MASK 0x3FFFFFFF
#define BUCKET_OFFSET(info) ((info) & BUCKET_OFFSET_MASK)
#define BUCKET_TYPE_SHIFT 30
#define BUCKET_TYPE(info) (((info) & ~BUCKET_OFFSET_MASK) >> BUCKET_TYPE_SHIFT)
#define BUCKET_INFO(offset, type) (((type) << BUCKET_TYPE_SHIFT) | ((offset) & BUCKET_OFFSET_MASK))
/////////////////////////////////////////////////////////////////////////////
//
// CompactHashtable is used to store the CDS archive's tables.
// A table could be in any form of a collection of <hash, encoded_value> pair.
//
// Because these tables are read-only (no entries can be added/deleted) at run-time
// and tend to have large number of entries, we try to minimize the footprint
// cost per entry.
//
// The CompactHashtable is split into two arrays
//
// u4 buckets[num_buckets+1]; // bit[31,30]: type; bit[29-0]: offset
// u4 entries[<variable size>]
//
// The size of buckets[] is 'num_buckets + 1'. Each entry of
// buckets[] is a 32-bit encoding of the bucket type and bucket offset,
// with the type in the left-most 2-bit and offset in the remaining 30-bit.
//
// There are three types of buckets: regular, value_only, and table_end.
// . The regular buckets have '00' in their highest 2-bit.
// . The value_only buckets have '01' in their highest 2-bit.
// . There is only a single table_end bucket that marks the end of buckets[].
// It has '11' in its highest 2-bit.
//
// For regular buckets, each entry is 8 bytes in the entries[]:
// u4 hash; // entry hash
// u4 encoded_value; // A 32-bit encoding of the template type V. The template parameter DECODE
// // converts this to type V. Many CompactHashtables encode a pointer as a 32-bit offset, where
// // V entry = (V)(base_address + offset)
// // see StringTable, SymbolTable and AdapterHandlerLibrary for examples
//
// For value_only buckets, each entry has only the 4-byte 'encoded_value' in the entries[].
//
// The single table_end bucket has no corresponding entry.
//
// The number of entries in bucket <i> can be calculated like this:
// my_offset = _buckets[i] & 0x3fffffff; // mask off top 2-bit
// next_offset = _buckets[i+1] & 0x3fffffff
// For REGULAR_BUCKET_TYPE
// num_entries = (next_offset - my_offset) / 8;
// For VALUE_ONLY_BUCKET_TYPE
// num_entries = (next_offset - my_offset) / 4;
//
// If bucket <i> is empty, we have my_offset == next_offset. Empty buckets are
// always encoded as regular buckets.
//
// In the following example:
// - Bucket #0 is a REGULAR_BUCKET_TYPE with two entries
// - Bucket #1 is a VALUE_ONLY_BUCKET_TYPE with one entry.
// - Bucket #2 is a REGULAR_BUCKET_TYPE with zero entries.
//
// buckets[0, 4, 5(empty), 5, ...., N(table_end)]
// | | | | |
// | | +---+-----+ |
// | | | |
// | +----+ + |
// v v v v
// entries[H,O,H,O,O,H,O,H,O........]
//
// See CompactHashtable::lookup() for how the table is searched at runtime.
// See CompactHashtableWriter::dump() for how the table is written at CDS
// dump time.
//
class SimpleCompactHashtable {
protected:
address _base_address;
u4 _bucket_count;
u4 _entry_count;
u4* _buckets;
u4* _entries;
public:
SimpleCompactHashtable() :
_base_address(nullptr),
_bucket_count(0),
_entry_count(0),
_buckets(nullptr),
_entries(nullptr)
{}
void reset() {
_base_address = nullptr;
_bucket_count = 0;
_entry_count = 0;
_buckets = nullptr;
_entries = nullptr;
}
void init(address base_address, u4 entry_count, u4 bucket_count, u4* buckets, u4* entries);
// Read/Write the table's header from/to the CDS archive
void serialize_header(SerializeClosure* soc) NOT_CDS_RETURN;
inline bool empty() const {
return (_entry_count == 0);
}
inline size_t entry_count() const {
return _entry_count;
}
};
template <
typename K,
typename V,
V (*DECODE)(address base_address, u4 encoded_value),
bool (*EQUALS)(V value, K key, int len)
>
class CompactHashtable : public SimpleCompactHashtable {
V decode(u4 encoded_value) const {
return DECODE(_base_address, encoded_value);
}
public:
// Lookup a value V from the compact table using key K
inline V lookup(K key, unsigned int hash, int len) const {
if (_entry_count > 0) {
int index = hash % _bucket_count;
u4 bucket_info = _buckets[index];
u4 bucket_offset = BUCKET_OFFSET(bucket_info);
int bucket_type = BUCKET_TYPE(bucket_info);
u4* entry = _entries + bucket_offset;
if (bucket_type == VALUE_ONLY_BUCKET_TYPE) {
V value = decode(entry[0]);
if (EQUALS(value, key, len)) {
return value;
}
} else {
// This is a regular bucket, which has more than one
// entries. Each entry is a (hash, value) pair.
// Seek until the end of the bucket.
u4* entry_max = _entries + BUCKET_OFFSET(_buckets[index + 1]);
while (entry < entry_max) {
unsigned int h = (unsigned int)(entry[0]);
if (h == hash) {
V value = decode(entry[1]);
if (EQUALS(value, key, len)) {
return value;
}
}
entry += 2;
}
}
}
return nullptr;
}
// Iterate through the values in the table, stopping when do_value() returns false.
template <class ITER>
inline void iterate(ITER* iter) const { iterate([&](V v) { iter->do_value(v); }); }
template<typename Function>
inline void iterate(const Function& function) const { // lambda enabled API
iterate(const_cast<Function&>(function));
}
// Iterate through the values in the table, stopping when the lambda returns false.
template<typename Function>
inline void iterate(Function& function) const { // lambda enabled API
for (u4 i = 0; i < _bucket_count; i++) {
u4 bucket_info = _buckets[i];
u4 bucket_offset = BUCKET_OFFSET(bucket_info);
int bucket_type = BUCKET_TYPE(bucket_info);
u4* entry = _entries + bucket_offset;
if (bucket_type == VALUE_ONLY_BUCKET_TYPE) {
if (!function(decode(entry[0]))) {
return;
}
} else {
u4* entry_max = _entries + BUCKET_OFFSET(_buckets[i + 1]);
while (entry < entry_max) {
if (!function(decode(entry[1]))) {
return;
}
entry += 2;
}
}
}
}
// Unconditionally iterate through all the values in the table
template <class ITER>
inline void iterate_all(ITER* iter) const { iterate_all([&](V v) { iter->do_value(v); }); }
// Unconditionally iterate through all the values in the table using lambda
template<typename Function>
void iterate_all(Function function) const { // lambda enabled API
auto wrapper = [&] (V v) {
function(v);
return true;
};
iterate(wrapper);
}
void print_table_statistics(outputStream* st, const char* name) {
st->print_cr("%s statistics:", name);
int total_entries = 0;
int max_bucket = 0;
for (u4 i = 0; i < _bucket_count; i++) {
u4 bucket_info = _buckets[i];
int bucket_type = BUCKET_TYPE(bucket_info);
int bucket_size;
if (bucket_type == VALUE_ONLY_BUCKET_TYPE) {
bucket_size = 1;
} else {
bucket_size = (BUCKET_OFFSET(_buckets[i + 1]) - BUCKET_OFFSET(bucket_info)) / 2;
}
total_entries += bucket_size;
if (max_bucket < bucket_size) {
max_bucket = bucket_size;
}
}
st->print_cr("Number of buckets : %9d", _bucket_count);
st->print_cr("Number of entries : %9d", total_entries);
st->print_cr("Maximum bucket size : %9d", max_bucket);
}
};
////////////////////////////////////////////////////////////////////////
//
// OffsetCompactHashtable -- This is used to store many types of objects
// in the CDS archive. On 64-bit platforms, we save space by using a 32-bit
// offset from the CDS base address.
template <typename V>
inline V read_value_from_compact_hashtable(address base_address, u4 offset) {
return (V)(base_address + offset);
}
template <
typename K,
typename V,
bool (*EQUALS)(V value, K key, int len)
>
class OffsetCompactHashtable : public CompactHashtable<
K, V, read_value_from_compact_hashtable<V>, EQUALS> {
};
////////////////////////////////////////////////////////////////////////
//
// Read/Write the contents of a hashtable textual dump (created by
// SymbolTable::dump and StringTable::dump).
// Because the dump file may be big (hundred of MB in extreme cases),
// we use mmap for fast access when reading it.
//
class HashtableTextDump {
int _fd;
const char* _base;
const char* _p;
const char* _end;
const char* _filename;
size_t _size;
int _prefix_type;
int _line_no;
public:
HashtableTextDump(const char* filename);
~HashtableTextDump();
enum {
SymbolPrefix = 1 << 0,
StringPrefix = 1 << 1,
Unknown = 1 << 2
};
void quit(const char* err, const char* msg);
inline int remain() {
return (int)(_end - _p);
}
int last_line_no() {
return _line_no - 1;
}
void corrupted(const char *p, const char *msg);
inline void corrupted_if(bool cond, const char *msg) {
if (cond) {
corrupted(_p, msg);
}
}
bool skip_newline();
int skip(char must_be_char);
void skip_past(char c);
void check_version(const char* ver);
inline void get_num(char delim, int *num) {
const char* p = _p;
const char* end = _end;
u8 n = 0;
while (p < end) {
char c = *p++;
if ('0' <= c && c <= '9') {
n = n * 10 + (c - '0');
if (n > (u8)INT_MAX) {
corrupted(_p, "Num overflow");
}
} else if (c == delim) {
_p = p;
*num = (int)n;
return;
} else {
// Not [0-9], not 'delim'
corrupted(_p, "Unrecognized format");;
}
}
corrupted(_end, "Incorrect format");
ShouldNotReachHere();
}
void scan_prefix_type();
int scan_prefix(int* utf8_length);
int scan_string_prefix();
int scan_symbol_prefix();
int unescape(const char* from, const char* end, int count);
void get_utf8(char* utf8_buffer, int utf8_length);
static void put_utf8(outputStream* st, const char* utf8_string, size_t utf8_length);
};
#endif // SHARE_CLASSFILE_COMPACTHASHTABLE_HPP