mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-04 07:28:22 +00:00
Associate number of GC workers with the workgang as opposed to the task. Reviewed-by: johnc, ysr
317 lines
13 KiB
C++
317 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2007, 2010 Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
# include "incls/_precompiled.incl"
|
|
# include "incls/_parCardTableModRefBS.cpp.incl"
|
|
|
|
void CardTableModRefBS::par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
|
|
DirtyCardToOopClosure* dcto_cl,
|
|
MemRegionClosure* cl,
|
|
bool clear,
|
|
int n_threads) {
|
|
if (n_threads > 0) {
|
|
assert((n_threads == 1 && ParallelGCThreads == 0) ||
|
|
n_threads <= (int)ParallelGCThreads,
|
|
"# worker threads != # requested!");
|
|
// Make sure the LNC array is valid for the space.
|
|
jbyte** lowest_non_clean;
|
|
uintptr_t lowest_non_clean_base_chunk_index;
|
|
size_t lowest_non_clean_chunk_size;
|
|
get_LNC_array_for_space(sp, lowest_non_clean,
|
|
lowest_non_clean_base_chunk_index,
|
|
lowest_non_clean_chunk_size);
|
|
|
|
int n_strides = n_threads * StridesPerThread;
|
|
SequentialSubTasksDone* pst = sp->par_seq_tasks();
|
|
pst->set_n_threads(n_threads);
|
|
pst->set_n_tasks(n_strides);
|
|
|
|
int stride = 0;
|
|
while (!pst->is_task_claimed(/* reference */ stride)) {
|
|
process_stride(sp, mr, stride, n_strides, dcto_cl, cl, clear,
|
|
lowest_non_clean,
|
|
lowest_non_clean_base_chunk_index,
|
|
lowest_non_clean_chunk_size);
|
|
}
|
|
if (pst->all_tasks_completed()) {
|
|
// Clear lowest_non_clean array for next time.
|
|
intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
|
|
uintptr_t last_chunk_index = addr_to_chunk_index(mr.last());
|
|
for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
|
|
intptr_t ind = ch - lowest_non_clean_base_chunk_index;
|
|
assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
|
|
"Bounds error");
|
|
lowest_non_clean[ind] = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
CardTableModRefBS::
|
|
process_stride(Space* sp,
|
|
MemRegion used,
|
|
jint stride, int n_strides,
|
|
DirtyCardToOopClosure* dcto_cl,
|
|
MemRegionClosure* cl,
|
|
bool clear,
|
|
jbyte** lowest_non_clean,
|
|
uintptr_t lowest_non_clean_base_chunk_index,
|
|
size_t lowest_non_clean_chunk_size) {
|
|
// We don't have to go downwards here; it wouldn't help anyway,
|
|
// because of parallelism.
|
|
|
|
// Find the first card address of the first chunk in the stride that is
|
|
// at least "bottom" of the used region.
|
|
jbyte* start_card = byte_for(used.start());
|
|
jbyte* end_card = byte_after(used.last());
|
|
uintptr_t start_chunk = addr_to_chunk_index(used.start());
|
|
uintptr_t start_chunk_stride_num = start_chunk % n_strides;
|
|
jbyte* chunk_card_start;
|
|
|
|
if ((uintptr_t)stride >= start_chunk_stride_num) {
|
|
chunk_card_start = (jbyte*)(start_card +
|
|
(stride - start_chunk_stride_num) *
|
|
CardsPerStrideChunk);
|
|
} else {
|
|
// Go ahead to the next chunk group boundary, then to the requested stride.
|
|
chunk_card_start = (jbyte*)(start_card +
|
|
(n_strides - start_chunk_stride_num + stride) *
|
|
CardsPerStrideChunk);
|
|
}
|
|
|
|
while (chunk_card_start < end_card) {
|
|
// We don't have to go downwards here; it wouldn't help anyway,
|
|
// because of parallelism. (We take care with "min_done"; see below.)
|
|
// Invariant: chunk_mr should be fully contained within the "used" region.
|
|
jbyte* chunk_card_end = chunk_card_start + CardsPerStrideChunk;
|
|
MemRegion chunk_mr = MemRegion(addr_for(chunk_card_start),
|
|
chunk_card_end >= end_card ?
|
|
used.end() : addr_for(chunk_card_end));
|
|
assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
|
|
assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
|
|
|
|
// Process the chunk.
|
|
process_chunk_boundaries(sp,
|
|
dcto_cl,
|
|
chunk_mr,
|
|
used,
|
|
lowest_non_clean,
|
|
lowest_non_clean_base_chunk_index,
|
|
lowest_non_clean_chunk_size);
|
|
|
|
non_clean_card_iterate_work(chunk_mr, cl, clear);
|
|
|
|
// Find the next chunk of the stride.
|
|
chunk_card_start += CardsPerStrideChunk * n_strides;
|
|
}
|
|
}
|
|
|
|
void
|
|
CardTableModRefBS::
|
|
process_chunk_boundaries(Space* sp,
|
|
DirtyCardToOopClosure* dcto_cl,
|
|
MemRegion chunk_mr,
|
|
MemRegion used,
|
|
jbyte** lowest_non_clean,
|
|
uintptr_t lowest_non_clean_base_chunk_index,
|
|
size_t lowest_non_clean_chunk_size)
|
|
{
|
|
// We must worry about the chunk boundaries.
|
|
|
|
// First, set our max_to_do:
|
|
HeapWord* max_to_do = NULL;
|
|
uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
|
|
cur_chunk_index = cur_chunk_index - lowest_non_clean_base_chunk_index;
|
|
|
|
if (chunk_mr.end() < used.end()) {
|
|
// This is not the last chunk in the used region. What is the last
|
|
// object?
|
|
HeapWord* last_block = sp->block_start(chunk_mr.end());
|
|
assert(last_block <= chunk_mr.end(), "In case this property changes.");
|
|
if (last_block == chunk_mr.end()
|
|
|| !sp->block_is_obj(last_block)) {
|
|
max_to_do = chunk_mr.end();
|
|
|
|
} else {
|
|
// It is an object and starts before the end of the current chunk.
|
|
// last_obj_card is the card corresponding to the start of the last object
|
|
// in the chunk. Note that the last object may not start in
|
|
// the chunk.
|
|
jbyte* last_obj_card = byte_for(last_block);
|
|
if (!card_may_have_been_dirty(*last_obj_card)) {
|
|
// The card containing the head is not dirty. Any marks in
|
|
// subsequent cards still in this chunk must have been made
|
|
// precisely; we can cap processing at the end.
|
|
max_to_do = chunk_mr.end();
|
|
} else {
|
|
// The last object must be considered dirty, and extends onto the
|
|
// following chunk. Look for a dirty card in that chunk that will
|
|
// bound our processing.
|
|
jbyte* limit_card = NULL;
|
|
size_t last_block_size = sp->block_size(last_block);
|
|
jbyte* last_card_of_last_obj =
|
|
byte_for(last_block + last_block_size - 1);
|
|
jbyte* first_card_of_next_chunk = byte_for(chunk_mr.end());
|
|
// This search potentially goes a long distance looking
|
|
// for the next card that will be scanned. For example,
|
|
// an object that is an array of primitives will not
|
|
// have any cards covering regions interior to the array
|
|
// that will need to be scanned. The scan can be terminated
|
|
// at the last card of the next chunk. That would leave
|
|
// limit_card as NULL and would result in "max_to_do"
|
|
// being set with the LNC value or with the end
|
|
// of the last block.
|
|
jbyte* last_card_of_next_chunk = first_card_of_next_chunk +
|
|
CardsPerStrideChunk;
|
|
assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start())
|
|
== CardsPerStrideChunk, "last card of next chunk may be wrong");
|
|
jbyte* last_card_to_check = (jbyte*) MIN2(last_card_of_last_obj,
|
|
last_card_of_next_chunk);
|
|
for (jbyte* cur = first_card_of_next_chunk;
|
|
cur <= last_card_to_check; cur++) {
|
|
if (card_will_be_scanned(*cur)) {
|
|
limit_card = cur; break;
|
|
}
|
|
}
|
|
assert(0 <= cur_chunk_index+1 &&
|
|
cur_chunk_index+1 < lowest_non_clean_chunk_size,
|
|
"Bounds error.");
|
|
// LNC for the next chunk
|
|
jbyte* lnc_card = lowest_non_clean[cur_chunk_index+1];
|
|
if (limit_card == NULL) {
|
|
limit_card = lnc_card;
|
|
}
|
|
if (limit_card != NULL) {
|
|
if (lnc_card != NULL) {
|
|
limit_card = (jbyte*)MIN2((intptr_t)limit_card,
|
|
(intptr_t)lnc_card);
|
|
}
|
|
max_to_do = addr_for(limit_card);
|
|
} else {
|
|
max_to_do = last_block + last_block_size;
|
|
}
|
|
}
|
|
}
|
|
assert(max_to_do != NULL, "OOPS!");
|
|
} else {
|
|
max_to_do = used.end();
|
|
}
|
|
// Now we can set the closure we're using so it doesn't to beyond
|
|
// max_to_do.
|
|
dcto_cl->set_min_done(max_to_do);
|
|
#ifndef PRODUCT
|
|
dcto_cl->set_last_bottom(max_to_do);
|
|
#endif
|
|
|
|
// Now we set *our" lowest_non_clean entry.
|
|
// Find the object that spans our boundary, if one exists.
|
|
// Nothing to do on the first chunk.
|
|
if (chunk_mr.start() > used.start()) {
|
|
// first_block is the block possibly spanning the chunk start
|
|
HeapWord* first_block = sp->block_start(chunk_mr.start());
|
|
// Does the block span the start of the chunk and is it
|
|
// an object?
|
|
if (first_block < chunk_mr.start() &&
|
|
sp->block_is_obj(first_block)) {
|
|
jbyte* first_dirty_card = NULL;
|
|
jbyte* last_card_of_first_obj =
|
|
byte_for(first_block + sp->block_size(first_block) - 1);
|
|
jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
|
|
jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
|
|
jbyte* last_card_to_check =
|
|
(jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
|
|
(intptr_t) last_card_of_first_obj);
|
|
for (jbyte* cur = first_card_of_cur_chunk;
|
|
cur <= last_card_to_check; cur++) {
|
|
if (card_will_be_scanned(*cur)) {
|
|
first_dirty_card = cur; break;
|
|
}
|
|
}
|
|
if (first_dirty_card != NULL) {
|
|
assert(0 <= cur_chunk_index &&
|
|
cur_chunk_index < lowest_non_clean_chunk_size,
|
|
"Bounds error.");
|
|
lowest_non_clean[cur_chunk_index] = first_dirty_card;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
CardTableModRefBS::
|
|
get_LNC_array_for_space(Space* sp,
|
|
jbyte**& lowest_non_clean,
|
|
uintptr_t& lowest_non_clean_base_chunk_index,
|
|
size_t& lowest_non_clean_chunk_size) {
|
|
|
|
int i = find_covering_region_containing(sp->bottom());
|
|
MemRegion covered = _covered[i];
|
|
size_t n_chunks = chunks_to_cover(covered);
|
|
|
|
// Only the first thread to obtain the lock will resize the
|
|
// LNC array for the covered region. Any later expansion can't affect
|
|
// the used_at_save_marks region.
|
|
// (I observed a bug in which the first thread to execute this would
|
|
// resize, and then it would cause "expand_and_allocates" that would
|
|
// Increase the number of chunks in the covered region. Then a second
|
|
// thread would come and execute this, see that the size didn't match,
|
|
// and free and allocate again. So the first thread would be using a
|
|
// freed "_lowest_non_clean" array.)
|
|
|
|
// Do a dirty read here. If we pass the conditional then take the rare
|
|
// event lock and do the read again in case some other thread had already
|
|
// succeeded and done the resize.
|
|
int cur_collection = Universe::heap()->total_collections();
|
|
if (_last_LNC_resizing_collection[i] != cur_collection) {
|
|
MutexLocker x(ParGCRareEvent_lock);
|
|
if (_last_LNC_resizing_collection[i] != cur_collection) {
|
|
if (_lowest_non_clean[i] == NULL ||
|
|
n_chunks != _lowest_non_clean_chunk_size[i]) {
|
|
|
|
// Should we delete the old?
|
|
if (_lowest_non_clean[i] != NULL) {
|
|
assert(n_chunks != _lowest_non_clean_chunk_size[i],
|
|
"logical consequence");
|
|
FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
|
|
_lowest_non_clean[i] = NULL;
|
|
}
|
|
// Now allocate a new one if necessary.
|
|
if (_lowest_non_clean[i] == NULL) {
|
|
_lowest_non_clean[i] = NEW_C_HEAP_ARRAY(CardPtr, n_chunks);
|
|
_lowest_non_clean_chunk_size[i] = n_chunks;
|
|
_lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
|
|
for (int j = 0; j < (int)n_chunks; j++)
|
|
_lowest_non_clean[i][j] = NULL;
|
|
}
|
|
}
|
|
_last_LNC_resizing_collection[i] = cur_collection;
|
|
}
|
|
}
|
|
// In any case, now do the initialization.
|
|
lowest_non_clean = _lowest_non_clean[i];
|
|
lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
|
|
lowest_non_clean_chunk_size = _lowest_non_clean_chunk_size[i];
|
|
}
|