mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-13 20:05:31 +00:00
The fix avoids a call to address_for_index() in this particular situation where it is not known if the passed index is in bounds. Reviewed-by: tonyp
344 lines
14 KiB
C++
344 lines
14 KiB
C++
/*
|
|
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
# include "incls/_precompiled.incl"
|
|
# include "incls/_parGCAllocBuffer.cpp.incl"
|
|
|
|
ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
|
|
_word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
|
|
_end(NULL), _hard_end(NULL),
|
|
_retained(false), _retained_filler(),
|
|
_allocated(0), _wasted(0)
|
|
{
|
|
assert (min_size() > AlignmentReserve, "Inconsistency!");
|
|
// arrayOopDesc::header_size depends on command line initialization.
|
|
FillerHeaderSize = align_object_size(arrayOopDesc::header_size(T_INT));
|
|
AlignmentReserve = oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
|
|
}
|
|
|
|
size_t ParGCAllocBuffer::FillerHeaderSize;
|
|
|
|
// If the minimum object size is greater than MinObjAlignment, we can
|
|
// end up with a shard at the end of the buffer that's smaller than
|
|
// the smallest object. We can't allow that because the buffer must
|
|
// look like it's full of objects when we retire it, so we make
|
|
// sure we have enough space for a filler int array object.
|
|
size_t ParGCAllocBuffer::AlignmentReserve;
|
|
|
|
void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
|
|
assert(!retain || end_of_gc, "Can only retain at GC end.");
|
|
if (_retained) {
|
|
// If the buffer had been retained shorten the previous filler object.
|
|
assert(_retained_filler.end() <= _top, "INVARIANT");
|
|
SharedHeap::fill_region_with_object(_retained_filler);
|
|
// Wasted space book-keeping, otherwise (normally) done in invalidate()
|
|
_wasted += _retained_filler.word_size();
|
|
_retained = false;
|
|
}
|
|
assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
|
|
if (_top < _hard_end) {
|
|
SharedHeap::fill_region_with_object(MemRegion(_top, _hard_end));
|
|
if (!retain) {
|
|
invalidate();
|
|
} else {
|
|
// Is there wasted space we'd like to retain for the next GC?
|
|
if (pointer_delta(_end, _top) > FillerHeaderSize) {
|
|
_retained = true;
|
|
_retained_filler = MemRegion(_top, FillerHeaderSize);
|
|
_top = _top + FillerHeaderSize;
|
|
} else {
|
|
invalidate();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
|
|
assert(ResizePLAB, "Wasted work");
|
|
stats->add_allocated(_allocated);
|
|
stats->add_wasted(_wasted);
|
|
stats->add_unused(pointer_delta(_end, _top));
|
|
}
|
|
|
|
// Compute desired plab size and latch result for later
|
|
// use. This should be called once at the end of parallel
|
|
// scavenge; it clears the sensor accumulators.
|
|
void PLABStats::adjust_desired_plab_sz() {
|
|
assert(ResizePLAB, "Not set");
|
|
if (_allocated == 0) {
|
|
assert(_unused == 0, "Inconsistency in PLAB stats");
|
|
_allocated = 1;
|
|
}
|
|
double wasted_frac = (double)_unused/(double)_allocated;
|
|
size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
|
|
TargetPLABWastePct);
|
|
if (target_refills == 0) {
|
|
target_refills = 1;
|
|
}
|
|
_used = _allocated - _wasted - _unused;
|
|
size_t plab_sz = _used/(target_refills*ParallelGCThreads);
|
|
if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
|
|
// Take historical weighted average
|
|
_filter.sample(plab_sz);
|
|
// Clip from above and below, and align to object boundary
|
|
plab_sz = MAX2(min_size(), (size_t)_filter.average());
|
|
plab_sz = MIN2(max_size(), plab_sz);
|
|
plab_sz = align_object_size(plab_sz);
|
|
// Latch the result
|
|
if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
|
|
if (ResizePLAB) {
|
|
_desired_plab_sz = plab_sz;
|
|
}
|
|
// Now clear the accumulators for next round:
|
|
// note this needs to be fixed in the case where we
|
|
// are retaining across scavenges. FIX ME !!! XXX
|
|
_allocated = 0;
|
|
_wasted = 0;
|
|
_unused = 0;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void ParGCAllocBuffer::print() {
|
|
gclog_or_tty->print("parGCAllocBuffer: _bottom: %p _top: %p _end: %p _hard_end: %p"
|
|
"_retained: %c _retained_filler: [%p,%p)\n",
|
|
_bottom, _top, _end, _hard_end,
|
|
"FT"[_retained], _retained_filler.start(), _retained_filler.end());
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
|
|
MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
|
|
((size_t)Generation::GenGrain)/HeapWordSize);
|
|
const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
|
|
MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
|
|
(size_t)Generation::GenGrain);
|
|
|
|
ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
|
|
BlockOffsetSharedArray* bsa) :
|
|
ParGCAllocBuffer(word_sz),
|
|
_bsa(bsa),
|
|
_bt(bsa, MemRegion(_bottom, _hard_end)),
|
|
_true_end(_hard_end)
|
|
{}
|
|
|
|
// The buffer comes with its own BOT, with a shared (obviously) underlying
|
|
// BlockOffsetSharedArray. We manipulate this BOT in the normal way
|
|
// as we would for any contiguous space. However, on accasion we
|
|
// need to do some buffer surgery at the extremities before we
|
|
// start using the body of the buffer for allocations. Such surgery
|
|
// (as explained elsewhere) is to prevent allocation on a card that
|
|
// is in the process of being walked concurrently by another GC thread.
|
|
// When such surgery happens at a point that is far removed (to the
|
|
// right of the current allocation point, top), we use the "contig"
|
|
// parameter below to directly manipulate the shared array without
|
|
// modifying the _next_threshold state in the BOT.
|
|
void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
|
|
bool contig) {
|
|
SharedHeap::fill_region_with_object(mr);
|
|
if (contig) {
|
|
_bt.alloc_block(mr.start(), mr.end());
|
|
} else {
|
|
_bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
|
|
}
|
|
}
|
|
|
|
HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
|
|
HeapWord* res = NULL;
|
|
if (_true_end > _hard_end) {
|
|
assert((HeapWord*)align_size_down(intptr_t(_hard_end),
|
|
ChunkSizeInBytes) == _hard_end,
|
|
"or else _true_end should be equal to _hard_end");
|
|
assert(_retained, "or else _true_end should be equal to _hard_end");
|
|
assert(_retained_filler.end() <= _top, "INVARIANT");
|
|
SharedHeap::fill_region_with_object(_retained_filler);
|
|
if (_top < _hard_end) {
|
|
fill_region_with_block(MemRegion(_top, _hard_end), true);
|
|
}
|
|
HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
|
|
_retained_filler = MemRegion(_hard_end, FillerHeaderSize);
|
|
_bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
|
|
_top = _retained_filler.end();
|
|
_hard_end = next_hard_end;
|
|
_end = _hard_end - AlignmentReserve;
|
|
res = ParGCAllocBuffer::allocate(word_sz);
|
|
if (res != NULL) {
|
|
_bt.alloc_block(res, word_sz);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void
|
|
ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
|
|
ParGCAllocBuffer::undo_allocation(obj, word_sz);
|
|
// This may back us up beyond the previous threshold, so reset.
|
|
_bt.set_region(MemRegion(_top, _hard_end));
|
|
_bt.initialize_threshold();
|
|
}
|
|
|
|
void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
|
|
assert(!retain || end_of_gc, "Can only retain at GC end.");
|
|
if (_retained) {
|
|
// We're about to make the retained_filler into a block.
|
|
_bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
|
|
_retained_filler.end());
|
|
}
|
|
// Reset _hard_end to _true_end (and update _end)
|
|
if (retain && _hard_end != NULL) {
|
|
assert(_hard_end <= _true_end, "Invariant.");
|
|
_hard_end = _true_end;
|
|
_end = MAX2(_top, _hard_end - AlignmentReserve);
|
|
assert(_end <= _hard_end, "Invariant.");
|
|
}
|
|
_true_end = _hard_end;
|
|
HeapWord* pre_top = _top;
|
|
|
|
ParGCAllocBuffer::retire(end_of_gc, retain);
|
|
// Now any old _retained_filler is cut back to size, the free part is
|
|
// filled with a filler object, and top is past the header of that
|
|
// object.
|
|
|
|
if (retain && _top < _end) {
|
|
assert(end_of_gc && retain, "Or else retain should be false.");
|
|
// If the lab does not start on a card boundary, we don't want to
|
|
// allocate onto that card, since that might lead to concurrent
|
|
// allocation and card scanning, which we don't support. So we fill
|
|
// the first card with a garbage object.
|
|
size_t first_card_index = _bsa->index_for(pre_top);
|
|
HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
|
|
if (first_card_start < pre_top) {
|
|
HeapWord* second_card_start =
|
|
_bsa->inc_by_region_size(first_card_start);
|
|
|
|
// Ensure enough room to fill with the smallest block
|
|
second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
|
|
|
|
// If the end is already in the first card, don't go beyond it!
|
|
// Or if the remainder is too small for a filler object, gobble it up.
|
|
if (_hard_end < second_card_start ||
|
|
pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
|
|
second_card_start = _hard_end;
|
|
}
|
|
if (pre_top < second_card_start) {
|
|
MemRegion first_card_suffix(pre_top, second_card_start);
|
|
fill_region_with_block(first_card_suffix, true);
|
|
}
|
|
pre_top = second_card_start;
|
|
_top = pre_top;
|
|
_end = MAX2(_top, _hard_end - AlignmentReserve);
|
|
}
|
|
|
|
// If the lab does not end on a card boundary, we don't want to
|
|
// allocate onto that card, since that might lead to concurrent
|
|
// allocation and card scanning, which we don't support. So we fill
|
|
// the last card with a garbage object.
|
|
size_t last_card_index = _bsa->index_for(_hard_end);
|
|
HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
|
|
if (last_card_start < _hard_end) {
|
|
|
|
// Ensure enough room to fill with the smallest block
|
|
last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
|
|
|
|
// If the top is already in the last card, don't go back beyond it!
|
|
// Or if the remainder is too small for a filler object, gobble it up.
|
|
if (_top > last_card_start ||
|
|
pointer_delta(last_card_start, _top) < AlignmentReserve) {
|
|
last_card_start = _top;
|
|
}
|
|
if (last_card_start < _hard_end) {
|
|
MemRegion last_card_prefix(last_card_start, _hard_end);
|
|
fill_region_with_block(last_card_prefix, false);
|
|
}
|
|
_hard_end = last_card_start;
|
|
_end = MAX2(_top, _hard_end - AlignmentReserve);
|
|
_true_end = _hard_end;
|
|
assert(_end <= _hard_end, "Invariant.");
|
|
}
|
|
|
|
// At this point:
|
|
// 1) we had a filler object from the original top to hard_end.
|
|
// 2) We've filled in any partial cards at the front and back.
|
|
if (pre_top < _hard_end) {
|
|
// Now we can reset the _bt to do allocation in the given area.
|
|
MemRegion new_filler(pre_top, _hard_end);
|
|
fill_region_with_block(new_filler, false);
|
|
_top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
|
|
// If there's no space left, don't retain.
|
|
if (_top >= _end) {
|
|
_retained = false;
|
|
invalidate();
|
|
return;
|
|
}
|
|
_retained_filler = MemRegion(pre_top, _top);
|
|
_bt.set_region(MemRegion(_top, _hard_end));
|
|
_bt.initialize_threshold();
|
|
assert(_bt.threshold() > _top, "initialize_threshold failed!");
|
|
|
|
// There may be other reasons for queries into the middle of the
|
|
// filler object. When such queries are done in parallel with
|
|
// allocation, bad things can happen, if the query involves object
|
|
// iteration. So we ensure that such queries do not involve object
|
|
// iteration, by putting another filler object on the boundaries of
|
|
// such queries. One such is the object spanning a parallel card
|
|
// chunk boundary.
|
|
|
|
// "chunk_boundary" is the address of the first chunk boundary less
|
|
// than "hard_end".
|
|
HeapWord* chunk_boundary =
|
|
(HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
|
|
assert(chunk_boundary < _hard_end, "Or else above did not work.");
|
|
assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
|
|
"Consequence of last card handling above.");
|
|
|
|
if (_top <= chunk_boundary) {
|
|
assert(_true_end == _hard_end, "Invariant.");
|
|
while (_top <= chunk_boundary) {
|
|
assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
|
|
"Consequence of last card handling above.");
|
|
MemRegion chunk_portion(chunk_boundary, _hard_end);
|
|
_bt.BlockOffsetArray::alloc_block(chunk_portion.start(),
|
|
chunk_portion.end());
|
|
SharedHeap::fill_region_with_object(chunk_portion);
|
|
_hard_end = chunk_portion.start();
|
|
chunk_boundary -= ChunkSizeInWords;
|
|
}
|
|
_end = _hard_end - AlignmentReserve;
|
|
assert(_top <= _end, "Invariant.");
|
|
// Now reset the initial filler chunk so it doesn't overlap with
|
|
// the one(s) inserted above.
|
|
MemRegion new_filler(pre_top, _hard_end);
|
|
fill_region_with_block(new_filler, false);
|
|
}
|
|
} else {
|
|
_retained = false;
|
|
invalidate();
|
|
}
|
|
} else {
|
|
assert(!end_of_gc ||
|
|
(!_retained && _true_end == _hard_end), "Checking.");
|
|
}
|
|
assert(_end <= _hard_end, "Invariant.");
|
|
assert(_top < _end || _top == _hard_end, "Invariant");
|
|
}
|