mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-15 21:05:11 +00:00
Make two G1 cmd line flags available in product builds: G1HeapWastePercent (previously called: G1OldReclaimableThresholdPercent) and G1MixedGCCountTarget (previous called: G1MaxMixedGCNum). Also changed the default of the former from 1% to 5% and the default for G1OldCSetRegionLiveThresholdPercent to 90%. Reviewed-by: azeemj, jwilhelm, johnc
392 lines
14 KiB
C++
392 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc_implementation/g1/collectionSetChooser.hpp"
|
|
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
|
|
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
|
|
#include "memory/space.inline.hpp"
|
|
|
|
CSetChooserCache::CSetChooserCache() {
|
|
for (int i = 0; i < CacheLength; ++i)
|
|
_cache[i] = NULL;
|
|
clear();
|
|
}
|
|
|
|
void CSetChooserCache::clear() {
|
|
_occupancy = 0;
|
|
_first = 0;
|
|
for (int i = 0; i < CacheLength; ++i) {
|
|
HeapRegion *hr = _cache[i];
|
|
if (hr != NULL)
|
|
hr->set_sort_index(-1);
|
|
_cache[i] = NULL;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
bool CSetChooserCache::verify() {
|
|
guarantee(false, "CSetChooserCache::verify(): don't call this any more");
|
|
|
|
int index = _first;
|
|
HeapRegion *prev = NULL;
|
|
for (int i = 0; i < _occupancy; ++i) {
|
|
guarantee(_cache[index] != NULL, "cache entry should not be empty");
|
|
HeapRegion *hr = _cache[index];
|
|
guarantee(!hr->is_young(), "should not be young!");
|
|
if (prev != NULL) {
|
|
guarantee(prev->gc_efficiency() >= hr->gc_efficiency(),
|
|
"cache should be correctly ordered");
|
|
}
|
|
guarantee(hr->sort_index() == get_sort_index(index),
|
|
"sort index should be correct");
|
|
index = trim_index(index + 1);
|
|
prev = hr;
|
|
}
|
|
|
|
for (int i = 0; i < (CacheLength - _occupancy); ++i) {
|
|
guarantee(_cache[index] == NULL, "cache entry should be empty");
|
|
index = trim_index(index + 1);
|
|
}
|
|
|
|
guarantee(index == _first, "we should have reached where we started from");
|
|
return true;
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
void CSetChooserCache::insert(HeapRegion *hr) {
|
|
guarantee(false, "CSetChooserCache::insert(): don't call this any more");
|
|
|
|
assert(!is_full(), "cache should not be empty");
|
|
hr->calc_gc_efficiency();
|
|
|
|
int empty_index;
|
|
if (_occupancy == 0) {
|
|
empty_index = _first;
|
|
} else {
|
|
empty_index = trim_index(_first + _occupancy);
|
|
assert(_cache[empty_index] == NULL, "last slot should be empty");
|
|
int last_index = trim_index(empty_index - 1);
|
|
HeapRegion *last = _cache[last_index];
|
|
assert(last != NULL,"as the cache is not empty, last should not be empty");
|
|
while (empty_index != _first &&
|
|
last->gc_efficiency() < hr->gc_efficiency()) {
|
|
_cache[empty_index] = last;
|
|
last->set_sort_index(get_sort_index(empty_index));
|
|
empty_index = last_index;
|
|
last_index = trim_index(last_index - 1);
|
|
last = _cache[last_index];
|
|
}
|
|
}
|
|
_cache[empty_index] = hr;
|
|
hr->set_sort_index(get_sort_index(empty_index));
|
|
|
|
++_occupancy;
|
|
assert(verify(), "cache should be consistent");
|
|
}
|
|
|
|
HeapRegion *CSetChooserCache::remove_first() {
|
|
guarantee(false, "CSetChooserCache::remove_first(): "
|
|
"don't call this any more");
|
|
|
|
if (_occupancy > 0) {
|
|
assert(_cache[_first] != NULL, "cache should have at least one region");
|
|
HeapRegion *ret = _cache[_first];
|
|
_cache[_first] = NULL;
|
|
ret->set_sort_index(-1);
|
|
--_occupancy;
|
|
_first = trim_index(_first + 1);
|
|
assert(verify(), "cache should be consistent");
|
|
return ret;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Even though we don't use the GC efficiency in our heuristics as
|
|
// much as we used to, we still order according to GC efficiency. This
|
|
// will cause regions with a lot of live objects and large RSets to
|
|
// end up at the end of the array. Given that we might skip collecting
|
|
// the last few old regions, if after a few mixed GCs the remaining
|
|
// have reclaimable bytes under a certain threshold, the hope is that
|
|
// the ones we'll skip are ones with both large RSets and a lot of
|
|
// live objects, not the ones with just a lot of live objects if we
|
|
// ordered according to the amount of reclaimable bytes per region.
|
|
static int orderRegions(HeapRegion* hr1, HeapRegion* hr2) {
|
|
if (hr1 == NULL) {
|
|
if (hr2 == NULL) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else if (hr2 == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
double gc_eff1 = hr1->gc_efficiency();
|
|
double gc_eff2 = hr2->gc_efficiency();
|
|
if (gc_eff1 > gc_eff2) {
|
|
return -1;
|
|
} if (gc_eff1 < gc_eff2) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int orderRegions(HeapRegion** hr1p, HeapRegion** hr2p) {
|
|
return orderRegions(*hr1p, *hr2p);
|
|
}
|
|
|
|
CollectionSetChooser::CollectionSetChooser() :
|
|
// The line below is the worst bit of C++ hackery I've ever written
|
|
// (Detlefs, 11/23). You should think of it as equivalent to
|
|
// "_regions(100, true)": initialize the growable array and inform it
|
|
// that it should allocate its elem array(s) on the C heap.
|
|
//
|
|
// The first argument, however, is actually a comma expression
|
|
// (set_allocation_type(this, C_HEAP), 100). The purpose of the
|
|
// set_allocation_type() call is to replace the default allocation
|
|
// type for embedded objects STACK_OR_EMBEDDED with C_HEAP. It will
|
|
// allow to pass the assert in GenericGrowableArray() which checks
|
|
// that a growable array object must be on C heap if elements are.
|
|
//
|
|
// Note: containing object is allocated on C heap since it is CHeapObj.
|
|
//
|
|
_markedRegions((ResourceObj::set_allocation_type((address)&_markedRegions,
|
|
ResourceObj::C_HEAP),
|
|
100), true /* C_Heap */),
|
|
_curr_index(0), _length(0),
|
|
_regionLiveThresholdBytes(0), _remainingReclaimableBytes(0),
|
|
_first_par_unreserved_idx(0) {
|
|
_regionLiveThresholdBytes =
|
|
HeapRegion::GrainBytes * (size_t) G1OldCSetRegionLiveThresholdPercent / 100;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
bool CollectionSetChooser::verify() {
|
|
guarantee(_length >= 0, err_msg("_length: %d", _length));
|
|
guarantee(0 <= _curr_index && _curr_index <= _length,
|
|
err_msg("_curr_index: %d _length: %d", _curr_index, _length));
|
|
int index = 0;
|
|
size_t sum_of_reclaimable_bytes = 0;
|
|
while (index < _curr_index) {
|
|
guarantee(_markedRegions.at(index) == NULL,
|
|
"all entries before _curr_index should be NULL");
|
|
index += 1;
|
|
}
|
|
HeapRegion *prev = NULL;
|
|
while (index < _length) {
|
|
HeapRegion *curr = _markedRegions.at(index++);
|
|
guarantee(curr != NULL, "Regions in _markedRegions array cannot be NULL");
|
|
int si = curr->sort_index();
|
|
guarantee(!curr->is_young(), "should not be young!");
|
|
guarantee(!curr->isHumongous(), "should not be humongous!");
|
|
guarantee(si > -1 && si == (index-1), "sort index invariant");
|
|
if (prev != NULL) {
|
|
guarantee(orderRegions(prev, curr) != 1,
|
|
err_msg("GC eff prev: %1.4f GC eff curr: %1.4f",
|
|
prev->gc_efficiency(), curr->gc_efficiency()));
|
|
}
|
|
sum_of_reclaimable_bytes += curr->reclaimable_bytes();
|
|
prev = curr;
|
|
}
|
|
guarantee(sum_of_reclaimable_bytes == _remainingReclaimableBytes,
|
|
err_msg("reclaimable bytes inconsistent, "
|
|
"remaining: "SIZE_FORMAT" sum: "SIZE_FORMAT,
|
|
_remainingReclaimableBytes, sum_of_reclaimable_bytes));
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void CollectionSetChooser::fillCache() {
|
|
guarantee(false, "fillCache: don't call this any more");
|
|
|
|
while (!_cache.is_full() && (_curr_index < _length)) {
|
|
HeapRegion* hr = _markedRegions.at(_curr_index);
|
|
assert(hr != NULL,
|
|
err_msg("Unexpected NULL hr in _markedRegions at index %d",
|
|
_curr_index));
|
|
_curr_index += 1;
|
|
assert(!hr->is_young(), "should not be young!");
|
|
assert(hr->sort_index() == _curr_index-1, "sort_index invariant");
|
|
_markedRegions.at_put(hr->sort_index(), NULL);
|
|
_cache.insert(hr);
|
|
assert(!_cache.is_empty(), "cache should not be empty");
|
|
}
|
|
assert(verify(), "cache should be consistent");
|
|
}
|
|
|
|
void CollectionSetChooser::sortMarkedHeapRegions() {
|
|
// First trim any unused portion of the top in the parallel case.
|
|
if (_first_par_unreserved_idx > 0) {
|
|
if (G1PrintParCleanupStats) {
|
|
gclog_or_tty->print(" Truncating _markedRegions from %d to %d.\n",
|
|
_markedRegions.length(), _first_par_unreserved_idx);
|
|
}
|
|
assert(_first_par_unreserved_idx <= _markedRegions.length(),
|
|
"Or we didn't reserved enough length");
|
|
_markedRegions.trunc_to(_first_par_unreserved_idx);
|
|
}
|
|
_markedRegions.sort(orderRegions);
|
|
assert(_length <= _markedRegions.length(), "Requirement");
|
|
assert(_length == 0 || _markedRegions.at(_length - 1) != NULL,
|
|
"Testing _length");
|
|
assert(_length == _markedRegions.length() ||
|
|
_markedRegions.at(_length) == NULL, "Testing _length");
|
|
if (G1PrintParCleanupStats) {
|
|
gclog_or_tty->print_cr(" Sorted %d marked regions.", _length);
|
|
}
|
|
for (int i = 0; i < _length; i++) {
|
|
assert(_markedRegions.at(i) != NULL, "Should be true by sorting!");
|
|
_markedRegions.at(i)->set_sort_index(i);
|
|
}
|
|
if (G1PrintRegionLivenessInfo) {
|
|
G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Sorting");
|
|
for (int i = 0; i < _length; ++i) {
|
|
HeapRegion* r = _markedRegions.at(i);
|
|
cl.doHeapRegion(r);
|
|
}
|
|
}
|
|
assert(verify(), "CSet chooser verification");
|
|
}
|
|
|
|
size_t CollectionSetChooser::calcMinOldCSetLength() {
|
|
// The min old CSet region bound is based on the maximum desired
|
|
// number of mixed GCs after a cycle. I.e., even if some old regions
|
|
// look expensive, we should add them to the CSet anyway to make
|
|
// sure we go through the available old regions in no more than the
|
|
// maximum desired number of mixed GCs.
|
|
//
|
|
// The calculation is based on the number of marked regions we added
|
|
// to the CSet chooser in the first place, not how many remain, so
|
|
// that the result is the same during all mixed GCs that follow a cycle.
|
|
|
|
const size_t region_num = (size_t) _length;
|
|
const size_t gc_num = (size_t) G1MixedGCCountTarget;
|
|
size_t result = region_num / gc_num;
|
|
// emulate ceiling
|
|
if (result * gc_num < region_num) {
|
|
result += 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
size_t CollectionSetChooser::calcMaxOldCSetLength() {
|
|
// The max old CSet region bound is based on the threshold expressed
|
|
// as a percentage of the heap size. I.e., it should bound the
|
|
// number of old regions added to the CSet irrespective of how many
|
|
// of them are available.
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
const size_t region_num = g1h->n_regions();
|
|
const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
|
|
size_t result = region_num * perc / 100;
|
|
// emulate ceiling
|
|
if (100 * result < region_num * perc) {
|
|
result += 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void CollectionSetChooser::addMarkedHeapRegion(HeapRegion* hr) {
|
|
assert(!hr->isHumongous(),
|
|
"Humongous regions shouldn't be added to the collection set");
|
|
assert(!hr->is_young(), "should not be young!");
|
|
_markedRegions.append(hr);
|
|
_length++;
|
|
_remainingReclaimableBytes += hr->reclaimable_bytes();
|
|
hr->calc_gc_efficiency();
|
|
}
|
|
|
|
void CollectionSetChooser::prepareForAddMarkedHeapRegionsPar(size_t n_regions,
|
|
size_t chunkSize) {
|
|
_first_par_unreserved_idx = 0;
|
|
int n_threads = ParallelGCThreads;
|
|
if (UseDynamicNumberOfGCThreads) {
|
|
assert(G1CollectedHeap::heap()->workers()->active_workers() > 0,
|
|
"Should have been set earlier");
|
|
// This is defensive code. As the assertion above says, the number
|
|
// of active threads should be > 0, but in case there is some path
|
|
// or some improperly initialized variable with leads to no
|
|
// active threads, protect against that in a product build.
|
|
n_threads = MAX2(G1CollectedHeap::heap()->workers()->active_workers(),
|
|
1U);
|
|
}
|
|
size_t max_waste = n_threads * chunkSize;
|
|
// it should be aligned with respect to chunkSize
|
|
size_t aligned_n_regions =
|
|
(n_regions + (chunkSize - 1)) / chunkSize * chunkSize;
|
|
assert( aligned_n_regions % chunkSize == 0, "should be aligned" );
|
|
_markedRegions.at_put_grow((int)(aligned_n_regions + max_waste - 1), NULL);
|
|
}
|
|
|
|
jint CollectionSetChooser::getParMarkedHeapRegionChunk(jint n_regions) {
|
|
// Don't do this assert because this can be called at a point
|
|
// where the loop up stream will not execute again but might
|
|
// try to claim more chunks (loop test has not been done yet).
|
|
// assert(_markedRegions.length() > _first_par_unreserved_idx,
|
|
// "Striding beyond the marked regions");
|
|
jint res = Atomic::add(n_regions, &_first_par_unreserved_idx);
|
|
assert(_markedRegions.length() > res + n_regions - 1,
|
|
"Should already have been expanded");
|
|
return res - n_regions;
|
|
}
|
|
|
|
void CollectionSetChooser::setMarkedHeapRegion(jint index, HeapRegion* hr) {
|
|
assert(_markedRegions.at(index) == NULL, "precondition");
|
|
assert(!hr->is_young(), "should not be young!");
|
|
_markedRegions.at_put(index, hr);
|
|
hr->calc_gc_efficiency();
|
|
}
|
|
|
|
void CollectionSetChooser::updateTotals(jint region_num,
|
|
size_t reclaimable_bytes) {
|
|
// Only take the lock if we actually need to update the totals.
|
|
if (region_num > 0) {
|
|
assert(reclaimable_bytes > 0, "invariant");
|
|
// We could have just used atomics instead of taking the
|
|
// lock. However, we currently don't have an atomic add for size_t.
|
|
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
|
|
_length += (int) region_num;
|
|
_remainingReclaimableBytes += reclaimable_bytes;
|
|
} else {
|
|
assert(reclaimable_bytes == 0, "invariant");
|
|
}
|
|
}
|
|
|
|
void CollectionSetChooser::clearMarkedHeapRegions() {
|
|
for (int i = 0; i < _markedRegions.length(); i++) {
|
|
HeapRegion* r = _markedRegions.at(i);
|
|
if (r != NULL) {
|
|
r->set_sort_index(-1);
|
|
}
|
|
}
|
|
_markedRegions.clear();
|
|
_curr_index = 0;
|
|
_length = 0;
|
|
_remainingReclaimableBytes = 0;
|
|
};
|