mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-06 00:18:34 +00:00
Collect remembered sets for discovered fields while adding them to the list of discovered references. Reviewed-by: kbarrett, eosterlund
1392 lines
54 KiB
C++
1392 lines
54 KiB
C++
/*
|
|
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/javaClasses.inline.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "gc/shared/gcTimer.hpp"
|
|
#include "gc/shared/gcTraceTime.inline.hpp"
|
|
#include "gc/shared/referencePolicy.hpp"
|
|
#include "gc/shared/referenceProcessor.inline.hpp"
|
|
#include "gc/shared/referenceProcessorPhaseTimes.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/access.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
|
|
ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
|
|
ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy = NULL;
|
|
jlong ReferenceProcessor::_soft_ref_timestamp_clock = 0;
|
|
|
|
void referenceProcessor_init() {
|
|
ReferenceProcessor::init_statics();
|
|
}
|
|
|
|
void ReferenceProcessor::init_statics() {
|
|
// We need a monotonically non-decreasing time in ms but
|
|
// os::javaTimeMillis() does not guarantee monotonicity.
|
|
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
|
|
|
|
// Initialize the soft ref timestamp clock.
|
|
_soft_ref_timestamp_clock = now;
|
|
// Also update the soft ref clock in j.l.r.SoftReference
|
|
java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
|
|
|
|
_always_clear_soft_ref_policy = new AlwaysClearPolicy();
|
|
if (is_server_compilation_mode_vm()) {
|
|
_default_soft_ref_policy = new LRUMaxHeapPolicy();
|
|
} else {
|
|
_default_soft_ref_policy = new LRUCurrentHeapPolicy();
|
|
}
|
|
if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
|
|
vm_exit_during_initialization("Could not allocate reference policy object");
|
|
}
|
|
guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
|
|
RefDiscoveryPolicy == ReferentBasedDiscovery,
|
|
"Unrecognized RefDiscoveryPolicy");
|
|
}
|
|
|
|
void ReferenceProcessor::enable_discovery(bool check_no_refs) {
|
|
#ifdef ASSERT
|
|
// Verify that we're not currently discovering refs
|
|
assert(!_discovering_refs, "nested call?");
|
|
|
|
if (check_no_refs) {
|
|
// Verify that the discovered lists are empty
|
|
verify_no_references_recorded();
|
|
}
|
|
#endif // ASSERT
|
|
|
|
// Someone could have modified the value of the static
|
|
// field in the j.l.r.SoftReference class that holds the
|
|
// soft reference timestamp clock using reflection or
|
|
// Unsafe between GCs. Unconditionally update the static
|
|
// field in ReferenceProcessor here so that we use the new
|
|
// value during reference discovery.
|
|
|
|
_soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
|
|
_discovering_refs = true;
|
|
}
|
|
|
|
ReferenceProcessor::ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery,
|
|
bool mt_processing,
|
|
uint mt_processing_degree,
|
|
bool mt_discovery,
|
|
uint mt_discovery_degree,
|
|
bool atomic_discovery,
|
|
BoolObjectClosure* is_alive_non_header,
|
|
bool adjust_no_of_processing_threads) :
|
|
_is_subject_to_discovery(is_subject_to_discovery),
|
|
_discovering_refs(false),
|
|
_enqueuing_is_done(false),
|
|
_is_alive_non_header(is_alive_non_header),
|
|
_processing_is_mt(mt_processing),
|
|
_next_id(0),
|
|
_adjust_no_of_processing_threads(adjust_no_of_processing_threads)
|
|
{
|
|
assert(is_subject_to_discovery != NULL, "must be set");
|
|
|
|
_discovery_is_atomic = atomic_discovery;
|
|
_discovery_is_mt = mt_discovery;
|
|
_num_queues = MAX2(1U, mt_processing_degree);
|
|
_max_num_queues = MAX2(_num_queues, mt_discovery_degree);
|
|
_discovered_refs = NEW_C_HEAP_ARRAY(DiscoveredList,
|
|
_max_num_queues * number_of_subclasses_of_ref(), mtGC);
|
|
|
|
if (_discovered_refs == NULL) {
|
|
vm_exit_during_initialization("Could not allocated RefProc Array");
|
|
}
|
|
_discoveredSoftRefs = &_discovered_refs[0];
|
|
_discoveredWeakRefs = &_discoveredSoftRefs[_max_num_queues];
|
|
_discoveredFinalRefs = &_discoveredWeakRefs[_max_num_queues];
|
|
_discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_queues];
|
|
|
|
// Initialize all entries to NULL
|
|
for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
|
|
_discovered_refs[i].clear();
|
|
}
|
|
|
|
setup_policy(false /* default soft ref policy */);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void ReferenceProcessor::verify_no_references_recorded() {
|
|
guarantee(!_discovering_refs, "Discovering refs?");
|
|
for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
|
|
guarantee(_discovered_refs[i].is_empty(),
|
|
"Found non-empty discovered list at %u", i);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void ReferenceProcessor::weak_oops_do(OopClosure* f) {
|
|
for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
|
|
if (UseCompressedOops) {
|
|
f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
|
|
} else {
|
|
f->do_oop((oop*)_discovered_refs[i].adr_head());
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReferenceProcessor::update_soft_ref_master_clock() {
|
|
// Update (advance) the soft ref master clock field. This must be done
|
|
// after processing the soft ref list.
|
|
|
|
// We need a monotonically non-decreasing time in ms but
|
|
// os::javaTimeMillis() does not guarantee monotonicity.
|
|
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
|
|
jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
|
|
assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
|
|
|
|
NOT_PRODUCT(
|
|
if (now < _soft_ref_timestamp_clock) {
|
|
log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
|
|
_soft_ref_timestamp_clock, now);
|
|
}
|
|
)
|
|
// The values of now and _soft_ref_timestamp_clock are set using
|
|
// javaTimeNanos(), which is guaranteed to be monotonically
|
|
// non-decreasing provided the underlying platform provides such
|
|
// a time source (and it is bug free).
|
|
// In product mode, however, protect ourselves from non-monotonicity.
|
|
if (now > _soft_ref_timestamp_clock) {
|
|
_soft_ref_timestamp_clock = now;
|
|
java_lang_ref_SoftReference::set_clock(now);
|
|
}
|
|
// Else leave clock stalled at its old value until time progresses
|
|
// past clock value.
|
|
}
|
|
|
|
size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const {
|
|
size_t total = 0;
|
|
for (uint i = 0; i < _max_num_queues; ++i) {
|
|
total += lists[i].length();
|
|
}
|
|
return total;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void ReferenceProcessor::verify_total_count_zero(DiscoveredList lists[], const char* type) {
|
|
size_t count = total_count(lists);
|
|
assert(count == 0, "%ss must be empty but has " SIZE_FORMAT " elements", type, count);
|
|
}
|
|
#endif
|
|
|
|
ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
|
|
BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc,
|
|
AbstractRefProcTaskExecutor* task_executor,
|
|
ReferenceProcessorPhaseTimes* phase_times) {
|
|
|
|
double start_time = os::elapsedTime();
|
|
|
|
assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
|
|
// Stop treating discovered references specially.
|
|
disable_discovery();
|
|
|
|
// If discovery was concurrent, someone could have modified
|
|
// the value of the static field in the j.l.r.SoftReference
|
|
// class that holds the soft reference timestamp clock using
|
|
// reflection or Unsafe between when discovery was enabled and
|
|
// now. Unconditionally update the static field in ReferenceProcessor
|
|
// here so that we use the new value during processing of the
|
|
// discovered soft refs.
|
|
|
|
_soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
|
|
|
|
ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
|
|
total_count(_discoveredWeakRefs),
|
|
total_count(_discoveredFinalRefs),
|
|
total_count(_discoveredPhantomRefs));
|
|
|
|
{
|
|
RefProcTotalPhaseTimesTracker tt(RefPhase1, phase_times, this);
|
|
process_soft_ref_reconsider(is_alive, keep_alive, complete_gc,
|
|
task_executor, phase_times);
|
|
}
|
|
|
|
update_soft_ref_master_clock();
|
|
|
|
{
|
|
RefProcTotalPhaseTimesTracker tt(RefPhase2, phase_times, this);
|
|
process_soft_weak_final_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times);
|
|
}
|
|
|
|
{
|
|
RefProcTotalPhaseTimesTracker tt(RefPhase3, phase_times, this);
|
|
process_final_keep_alive(keep_alive, complete_gc, task_executor, phase_times);
|
|
}
|
|
|
|
{
|
|
RefProcTotalPhaseTimesTracker tt(RefPhase4, phase_times, this);
|
|
process_phantom_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times);
|
|
}
|
|
|
|
if (task_executor != NULL) {
|
|
// Record the work done by the parallel workers.
|
|
task_executor->set_single_threaded_mode();
|
|
}
|
|
|
|
phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000);
|
|
|
|
return stats;
|
|
}
|
|
|
|
void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
|
|
_current_discovered_addr = java_lang_ref_Reference::discovered_addr_raw(_current_discovered);
|
|
oop discovered = java_lang_ref_Reference::discovered(_current_discovered);
|
|
assert(_current_discovered_addr && oopDesc::is_oop_or_null(discovered),
|
|
"Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
|
|
_next_discovered = discovered;
|
|
|
|
_referent_addr = java_lang_ref_Reference::referent_addr_raw(_current_discovered);
|
|
_referent = java_lang_ref_Reference::referent(_current_discovered);
|
|
assert(Universe::heap()->is_in_reserved_or_null(_referent),
|
|
"Wrong oop found in java.lang.Reference object");
|
|
assert(allow_null_referent ?
|
|
oopDesc::is_oop_or_null(_referent)
|
|
: oopDesc::is_oop(_referent),
|
|
"Expected an oop%s for referent field at " PTR_FORMAT,
|
|
(allow_null_referent ? " or NULL" : ""),
|
|
p2i(_referent));
|
|
}
|
|
|
|
void DiscoveredListIterator::remove() {
|
|
assert(oopDesc::is_oop(_current_discovered), "Dropping a bad reference");
|
|
RawAccess<>::oop_store(_current_discovered_addr, oop(NULL));
|
|
|
|
// First _prev_next ref actually points into DiscoveredList (gross).
|
|
oop new_next;
|
|
if (_next_discovered == _current_discovered) {
|
|
// At the end of the list, we should make _prev point to itself.
|
|
// If _ref is the first ref, then _prev_next will be in the DiscoveredList,
|
|
// and _prev will be NULL.
|
|
new_next = _prev_discovered;
|
|
} else {
|
|
new_next = _next_discovered;
|
|
}
|
|
// Remove Reference object from discovered list. Note that G1 does not need a
|
|
// pre-barrier here because we know the Reference has already been found/marked,
|
|
// that's how it ended up in the discovered list in the first place.
|
|
RawAccess<>::oop_store(_prev_discovered_addr, new_next);
|
|
_removed++;
|
|
_refs_list.dec_length(1);
|
|
}
|
|
|
|
void DiscoveredListIterator::clear_referent() {
|
|
RawAccess<>::oop_store(_referent_addr, oop(NULL));
|
|
}
|
|
|
|
void DiscoveredListIterator::enqueue() {
|
|
HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_current_discovered,
|
|
java_lang_ref_Reference::discovered_offset,
|
|
_next_discovered);
|
|
}
|
|
|
|
void DiscoveredListIterator::complete_enqueue() {
|
|
if (_prev_discovered != NULL) {
|
|
// This is the last object.
|
|
// Swap refs_list into pending list and set obj's
|
|
// discovered to what we read from the pending list.
|
|
oop old = Universe::swap_reference_pending_list(_refs_list.head());
|
|
HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_prev_discovered, java_lang_ref_Reference::discovered_offset, old);
|
|
}
|
|
}
|
|
|
|
inline void log_dropped_ref(const DiscoveredListIterator& iter, const char* reason) {
|
|
if (log_develop_is_enabled(Trace, gc, ref)) {
|
|
ResourceMark rm;
|
|
log_develop_trace(gc, ref)("Dropping %s reference " PTR_FORMAT ": %s",
|
|
reason, p2i(iter.obj()),
|
|
iter.obj()->klass()->internal_name());
|
|
}
|
|
}
|
|
|
|
inline void log_enqueued_ref(const DiscoveredListIterator& iter, const char* reason) {
|
|
if (log_develop_is_enabled(Trace, gc, ref)) {
|
|
ResourceMark rm;
|
|
log_develop_trace(gc, ref)("Enqueue %s reference (" INTPTR_FORMAT ": %s)",
|
|
reason, p2i(iter.obj()), iter.obj()->klass()->internal_name());
|
|
}
|
|
assert(oopDesc::is_oop(iter.obj(), UseConcMarkSweepGC), "Adding a bad reference");
|
|
}
|
|
|
|
size_t ReferenceProcessor::process_soft_ref_reconsider_work(DiscoveredList& refs_list,
|
|
ReferencePolicy* policy,
|
|
BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc) {
|
|
assert(policy != NULL, "Must have a non-NULL policy");
|
|
DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
|
|
// Decide which softly reachable refs should be kept alive.
|
|
while (iter.has_next()) {
|
|
iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
|
|
bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
|
|
if (referent_is_dead &&
|
|
!policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
|
|
log_dropped_ref(iter, "by policy");
|
|
// Remove Reference object from list
|
|
iter.remove();
|
|
// keep the referent around
|
|
iter.make_referent_alive();
|
|
iter.move_to_next();
|
|
} else {
|
|
iter.next();
|
|
}
|
|
}
|
|
// Close the reachable set
|
|
complete_gc->do_void();
|
|
|
|
log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
|
|
iter.removed(), iter.processed(), p2i(&refs_list));
|
|
return iter.removed();
|
|
}
|
|
|
|
size_t ReferenceProcessor::process_soft_weak_final_refs_work(DiscoveredList& refs_list,
|
|
BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
bool do_enqueue_and_clear) {
|
|
DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
|
|
while (iter.has_next()) {
|
|
iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
|
|
if (iter.referent() == NULL) {
|
|
// Reference has been cleared since discovery; only possible if
|
|
// discovery is not atomic (checked by load_ptrs). Remove
|
|
// reference from list.
|
|
log_dropped_ref(iter, "cleared");
|
|
iter.remove();
|
|
iter.move_to_next();
|
|
} else if (iter.is_referent_alive()) {
|
|
// The referent is reachable after all.
|
|
// Remove reference from list.
|
|
log_dropped_ref(iter, "reachable");
|
|
iter.remove();
|
|
// Update the referent pointer as necessary. Note that this
|
|
// should not entail any recursive marking because the
|
|
// referent must already have been traversed.
|
|
iter.make_referent_alive();
|
|
iter.move_to_next();
|
|
} else {
|
|
if (do_enqueue_and_clear) {
|
|
iter.clear_referent();
|
|
iter.enqueue();
|
|
log_enqueued_ref(iter, "cleared");
|
|
}
|
|
// Keep in discovered list
|
|
iter.next();
|
|
}
|
|
}
|
|
if (do_enqueue_and_clear) {
|
|
iter.complete_enqueue();
|
|
refs_list.clear();
|
|
}
|
|
|
|
log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
|
|
" Refs in discovered list " INTPTR_FORMAT,
|
|
iter.removed(), iter.processed(), p2i(&refs_list));
|
|
return iter.removed();
|
|
}
|
|
|
|
size_t ReferenceProcessor::process_final_keep_alive_work(DiscoveredList& refs_list,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc) {
|
|
DiscoveredListIterator iter(refs_list, keep_alive, NULL);
|
|
while (iter.has_next()) {
|
|
iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
|
|
// keep the referent and followers around
|
|
iter.make_referent_alive();
|
|
|
|
// Self-loop next, to mark the FinalReference not active.
|
|
assert(java_lang_ref_Reference::next(iter.obj()) == NULL, "enqueued FinalReference");
|
|
java_lang_ref_Reference::set_next_raw(iter.obj(), iter.obj());
|
|
|
|
iter.enqueue();
|
|
log_enqueued_ref(iter, "Final");
|
|
iter.next();
|
|
}
|
|
iter.complete_enqueue();
|
|
// Close the reachable set
|
|
complete_gc->do_void();
|
|
refs_list.clear();
|
|
|
|
assert(iter.removed() == 0, "This phase does not remove anything.");
|
|
return iter.removed();
|
|
}
|
|
|
|
size_t ReferenceProcessor::process_phantom_refs_work(DiscoveredList& refs_list,
|
|
BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc) {
|
|
DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
|
|
while (iter.has_next()) {
|
|
iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
|
|
|
|
oop const referent = iter.referent();
|
|
|
|
if (referent == NULL || iter.is_referent_alive()) {
|
|
iter.make_referent_alive();
|
|
iter.remove();
|
|
iter.move_to_next();
|
|
} else {
|
|
iter.clear_referent();
|
|
iter.enqueue();
|
|
log_enqueued_ref(iter, "cleared Phantom");
|
|
iter.next();
|
|
}
|
|
}
|
|
iter.complete_enqueue();
|
|
// Close the reachable set; needed for collectors which keep_alive_closure do
|
|
// not immediately complete their work.
|
|
complete_gc->do_void();
|
|
refs_list.clear();
|
|
|
|
return iter.removed();
|
|
}
|
|
|
|
void
|
|
ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
|
|
oop obj = NULL;
|
|
oop next = refs_list.head();
|
|
while (next != obj) {
|
|
obj = next;
|
|
next = java_lang_ref_Reference::discovered(obj);
|
|
java_lang_ref_Reference::set_discovered_raw(obj, NULL);
|
|
}
|
|
refs_list.clear();
|
|
}
|
|
|
|
void ReferenceProcessor::abandon_partial_discovery() {
|
|
// loop over the lists
|
|
for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
|
|
if ((i % _max_num_queues) == 0) {
|
|
log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
|
|
}
|
|
clear_discovered_references(_discovered_refs[i]);
|
|
}
|
|
}
|
|
|
|
size_t ReferenceProcessor::total_reference_count(ReferenceType type) const {
|
|
DiscoveredList* list = NULL;
|
|
|
|
switch (type) {
|
|
case REF_SOFT:
|
|
list = _discoveredSoftRefs;
|
|
break;
|
|
case REF_WEAK:
|
|
list = _discoveredWeakRefs;
|
|
break;
|
|
case REF_FINAL:
|
|
list = _discoveredFinalRefs;
|
|
break;
|
|
case REF_PHANTOM:
|
|
list = _discoveredPhantomRefs;
|
|
break;
|
|
case REF_OTHER:
|
|
case REF_NONE:
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
return total_count(list);
|
|
}
|
|
|
|
class RefProcPhase1Task : public AbstractRefProcTaskExecutor::ProcessTask {
|
|
public:
|
|
RefProcPhase1Task(ReferenceProcessor& ref_processor,
|
|
ReferenceProcessorPhaseTimes* phase_times,
|
|
ReferencePolicy* policy)
|
|
: ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times),
|
|
_policy(policy) { }
|
|
|
|
virtual void work(uint worker_id,
|
|
BoolObjectClosure& is_alive,
|
|
OopClosure& keep_alive,
|
|
VoidClosure& complete_gc)
|
|
{
|
|
RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase1, _phase_times, worker_id);
|
|
size_t const removed = _ref_processor.process_soft_ref_reconsider_work(_ref_processor._discoveredSoftRefs[worker_id],
|
|
_policy,
|
|
&is_alive,
|
|
&keep_alive,
|
|
&complete_gc);
|
|
_phase_times->add_ref_cleared(REF_SOFT, removed);
|
|
}
|
|
private:
|
|
ReferencePolicy* _policy;
|
|
};
|
|
|
|
class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
|
|
void run_phase2(uint worker_id,
|
|
DiscoveredList list[],
|
|
BoolObjectClosure& is_alive,
|
|
OopClosure& keep_alive,
|
|
bool do_enqueue_and_clear,
|
|
ReferenceType ref_type) {
|
|
size_t const removed = _ref_processor.process_soft_weak_final_refs_work(list[worker_id],
|
|
&is_alive,
|
|
&keep_alive,
|
|
do_enqueue_and_clear);
|
|
_phase_times->add_ref_cleared(ref_type, removed);
|
|
}
|
|
|
|
public:
|
|
RefProcPhase2Task(ReferenceProcessor& ref_processor,
|
|
ReferenceProcessorPhaseTimes* phase_times)
|
|
: ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { }
|
|
|
|
virtual void work(uint worker_id,
|
|
BoolObjectClosure& is_alive,
|
|
OopClosure& keep_alive,
|
|
VoidClosure& complete_gc) {
|
|
RefProcWorkerTimeTracker t(_phase_times->phase2_worker_time_sec(), worker_id);
|
|
{
|
|
RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase2, _phase_times, worker_id);
|
|
run_phase2(worker_id, _ref_processor._discoveredSoftRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_SOFT);
|
|
}
|
|
{
|
|
RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::WeakRefSubPhase2, _phase_times, worker_id);
|
|
run_phase2(worker_id, _ref_processor._discoveredWeakRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_WEAK);
|
|
}
|
|
{
|
|
RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase2, _phase_times, worker_id);
|
|
run_phase2(worker_id, _ref_processor._discoveredFinalRefs, is_alive, keep_alive, false /* do_enqueue_and_clear */, REF_FINAL);
|
|
}
|
|
// Close the reachable set; needed for collectors which keep_alive_closure do
|
|
// not immediately complete their work.
|
|
complete_gc.do_void();
|
|
}
|
|
};
|
|
|
|
class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
|
|
public:
|
|
RefProcPhase3Task(ReferenceProcessor& ref_processor,
|
|
ReferenceProcessorPhaseTimes* phase_times)
|
|
: ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times) { }
|
|
|
|
virtual void work(uint worker_id,
|
|
BoolObjectClosure& is_alive,
|
|
OopClosure& keep_alive,
|
|
VoidClosure& complete_gc)
|
|
{
|
|
RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase3, _phase_times, worker_id);
|
|
_ref_processor.process_final_keep_alive_work(_ref_processor._discoveredFinalRefs[worker_id], &keep_alive, &complete_gc);
|
|
}
|
|
};
|
|
|
|
class RefProcPhase4Task: public AbstractRefProcTaskExecutor::ProcessTask {
|
|
public:
|
|
RefProcPhase4Task(ReferenceProcessor& ref_processor,
|
|
ReferenceProcessorPhaseTimes* phase_times)
|
|
: ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { }
|
|
|
|
virtual void work(uint worker_id,
|
|
BoolObjectClosure& is_alive,
|
|
OopClosure& keep_alive,
|
|
VoidClosure& complete_gc)
|
|
{
|
|
RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::PhantomRefSubPhase4, _phase_times, worker_id);
|
|
size_t const removed = _ref_processor.process_phantom_refs_work(_ref_processor._discoveredPhantomRefs[worker_id],
|
|
&is_alive,
|
|
&keep_alive,
|
|
&complete_gc);
|
|
_phase_times->add_ref_cleared(REF_PHANTOM, removed);
|
|
}
|
|
};
|
|
|
|
void ReferenceProcessor::log_reflist(const char* prefix, DiscoveredList list[], uint num_active_queues) {
|
|
LogTarget(Trace, gc, ref) lt;
|
|
|
|
if (!lt.is_enabled()) {
|
|
return;
|
|
}
|
|
|
|
size_t total = 0;
|
|
|
|
LogStream ls(lt);
|
|
ls.print("%s", prefix);
|
|
for (uint i = 0; i < num_active_queues; i++) {
|
|
ls.print(SIZE_FORMAT " ", list[i].length());
|
|
total += list[i].length();
|
|
}
|
|
ls.print_cr("(" SIZE_FORMAT ")", total);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint num_active_queues) {
|
|
if (!log_is_enabled(Trace, gc, ref)) {
|
|
return;
|
|
}
|
|
|
|
log_reflist("", ref_lists, num_active_queues);
|
|
#ifdef ASSERT
|
|
for (uint i = num_active_queues; i < _max_num_queues; i++) {
|
|
assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
|
|
ref_lists[i].length(), i);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void ReferenceProcessor::set_active_mt_degree(uint v) {
|
|
_num_queues = v;
|
|
_next_id = 0;
|
|
}
|
|
|
|
bool ReferenceProcessor::need_balance_queues(DiscoveredList refs_lists[]) {
|
|
assert(_processing_is_mt, "why balance non-mt processing?");
|
|
// _num_queues is the processing degree. Only list entries up to
|
|
// _num_queues will be processed, so any non-empty lists beyond
|
|
// that must be redistributed to lists in that range. Even if not
|
|
// needed for that, balancing may be desirable to eliminate poor
|
|
// distribution of references among the lists.
|
|
if (ParallelRefProcBalancingEnabled) {
|
|
return true; // Configuration says do it.
|
|
} else {
|
|
// Configuration says don't balance, but if there are non-empty
|
|
// lists beyond the processing degree, then must ignore the
|
|
// configuration and balance anyway.
|
|
for (uint i = _num_queues; i < _max_num_queues; ++i) {
|
|
if (!refs_lists[i].is_empty()) {
|
|
return true; // Must balance despite configuration.
|
|
}
|
|
}
|
|
return false; // Safe to obey configuration and not balance.
|
|
}
|
|
}
|
|
|
|
void ReferenceProcessor::maybe_balance_queues(DiscoveredList refs_lists[]) {
|
|
assert(_processing_is_mt, "Should not call this otherwise");
|
|
if (need_balance_queues(refs_lists)) {
|
|
balance_queues(refs_lists);
|
|
}
|
|
}
|
|
|
|
// Balances reference queues.
|
|
// Move entries from all queues[0, 1, ..., _max_num_q-1] to
|
|
// queues[0, 1, ..., _num_q-1] because only the first _num_q
|
|
// corresponding to the active workers will be processed.
|
|
void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
|
|
{
|
|
// calculate total length
|
|
size_t total_refs = 0;
|
|
log_develop_trace(gc, ref)("Balance ref_lists ");
|
|
|
|
log_reflist_counts(ref_lists, _max_num_queues);
|
|
|
|
for (uint i = 0; i < _max_num_queues; ++i) {
|
|
total_refs += ref_lists[i].length();
|
|
}
|
|
size_t avg_refs = total_refs / _num_queues + 1;
|
|
uint to_idx = 0;
|
|
for (uint from_idx = 0; from_idx < _max_num_queues; from_idx++) {
|
|
bool move_all = false;
|
|
if (from_idx >= _num_queues) {
|
|
move_all = ref_lists[from_idx].length() > 0;
|
|
}
|
|
while ((ref_lists[from_idx].length() > avg_refs) ||
|
|
move_all) {
|
|
assert(to_idx < _num_queues, "Sanity Check!");
|
|
if (ref_lists[to_idx].length() < avg_refs) {
|
|
// move superfluous refs
|
|
size_t refs_to_move;
|
|
// Move all the Ref's if the from queue will not be processed.
|
|
if (move_all) {
|
|
refs_to_move = MIN2(ref_lists[from_idx].length(),
|
|
avg_refs - ref_lists[to_idx].length());
|
|
} else {
|
|
refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
|
|
avg_refs - ref_lists[to_idx].length());
|
|
}
|
|
|
|
assert(refs_to_move > 0, "otherwise the code below will fail");
|
|
|
|
oop move_head = ref_lists[from_idx].head();
|
|
oop move_tail = move_head;
|
|
oop new_head = move_head;
|
|
// find an element to split the list on
|
|
for (size_t j = 0; j < refs_to_move; ++j) {
|
|
move_tail = new_head;
|
|
new_head = java_lang_ref_Reference::discovered(new_head);
|
|
}
|
|
|
|
// Add the chain to the to list.
|
|
if (ref_lists[to_idx].head() == NULL) {
|
|
// to list is empty. Make a loop at the end.
|
|
java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
|
|
} else {
|
|
java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
|
|
}
|
|
ref_lists[to_idx].set_head(move_head);
|
|
ref_lists[to_idx].inc_length(refs_to_move);
|
|
|
|
// Remove the chain from the from list.
|
|
if (move_tail == new_head) {
|
|
// We found the end of the from list.
|
|
ref_lists[from_idx].set_head(NULL);
|
|
} else {
|
|
ref_lists[from_idx].set_head(new_head);
|
|
}
|
|
ref_lists[from_idx].dec_length(refs_to_move);
|
|
if (ref_lists[from_idx].length() == 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
to_idx = (to_idx + 1) % _num_queues;
|
|
}
|
|
}
|
|
}
|
|
#ifdef ASSERT
|
|
log_reflist_counts(ref_lists, _num_queues);
|
|
size_t balanced_total_refs = 0;
|
|
for (uint i = 0; i < _num_queues; ++i) {
|
|
balanced_total_refs += ref_lists[i].length();
|
|
}
|
|
assert(total_refs == balanced_total_refs, "Balancing was incomplete");
|
|
#endif
|
|
}
|
|
|
|
bool ReferenceProcessor::is_mt_processing_set_up(AbstractRefProcTaskExecutor* task_executor) const {
|
|
return task_executor != NULL && _processing_is_mt;
|
|
}
|
|
|
|
void ReferenceProcessor::process_soft_ref_reconsider(BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc,
|
|
AbstractRefProcTaskExecutor* task_executor,
|
|
ReferenceProcessorPhaseTimes* phase_times) {
|
|
assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
|
|
|
|
size_t const num_soft_refs = total_count(_discoveredSoftRefs);
|
|
phase_times->set_ref_discovered(REF_SOFT, num_soft_refs);
|
|
|
|
phase_times->set_processing_is_mt(_processing_is_mt);
|
|
|
|
if (num_soft_refs == 0 || _current_soft_ref_policy == NULL) {
|
|
log_debug(gc, ref)("Skipped phase1 of Reference Processing due to unavailable references");
|
|
return;
|
|
}
|
|
|
|
RefProcMTDegreeAdjuster a(this, RefPhase1, num_soft_refs);
|
|
|
|
if (_processing_is_mt) {
|
|
RefProcBalanceQueuesTimeTracker tt(RefPhase1, phase_times);
|
|
maybe_balance_queues(_discoveredSoftRefs);
|
|
}
|
|
|
|
RefProcPhaseTimeTracker tt(RefPhase1, phase_times);
|
|
|
|
log_reflist("Phase1 Soft before", _discoveredSoftRefs, _max_num_queues);
|
|
if (_processing_is_mt) {
|
|
RefProcPhase1Task phase1(*this, phase_times, _current_soft_ref_policy);
|
|
task_executor->execute(phase1, num_queues());
|
|
} else {
|
|
size_t removed = 0;
|
|
|
|
RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase1, phase_times, 0);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
removed += process_soft_ref_reconsider_work(_discoveredSoftRefs[i], _current_soft_ref_policy,
|
|
is_alive, keep_alive, complete_gc);
|
|
}
|
|
|
|
phase_times->add_ref_cleared(REF_SOFT, removed);
|
|
}
|
|
log_reflist("Phase1 Soft after", _discoveredSoftRefs, _max_num_queues);
|
|
}
|
|
|
|
void ReferenceProcessor::process_soft_weak_final_refs(BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc,
|
|
AbstractRefProcTaskExecutor* task_executor,
|
|
ReferenceProcessorPhaseTimes* phase_times) {
|
|
assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
|
|
|
|
size_t const num_soft_refs = total_count(_discoveredSoftRefs);
|
|
size_t const num_weak_refs = total_count(_discoveredWeakRefs);
|
|
size_t const num_final_refs = total_count(_discoveredFinalRefs);
|
|
size_t const num_total_refs = num_soft_refs + num_weak_refs + num_final_refs;
|
|
phase_times->set_ref_discovered(REF_WEAK, num_weak_refs);
|
|
phase_times->set_ref_discovered(REF_FINAL, num_final_refs);
|
|
|
|
phase_times->set_processing_is_mt(_processing_is_mt);
|
|
|
|
if (num_total_refs == 0) {
|
|
log_debug(gc, ref)("Skipped phase2 of Reference Processing due to unavailable references");
|
|
return;
|
|
}
|
|
|
|
RefProcMTDegreeAdjuster a(this, RefPhase2, num_total_refs);
|
|
|
|
if (_processing_is_mt) {
|
|
RefProcBalanceQueuesTimeTracker tt(RefPhase2, phase_times);
|
|
maybe_balance_queues(_discoveredSoftRefs);
|
|
maybe_balance_queues(_discoveredWeakRefs);
|
|
maybe_balance_queues(_discoveredFinalRefs);
|
|
}
|
|
|
|
RefProcPhaseTimeTracker tt(RefPhase2, phase_times);
|
|
|
|
log_reflist("Phase2 Soft before", _discoveredSoftRefs, _max_num_queues);
|
|
log_reflist("Phase2 Weak before", _discoveredWeakRefs, _max_num_queues);
|
|
log_reflist("Phase2 Final before", _discoveredFinalRefs, _max_num_queues);
|
|
if (_processing_is_mt) {
|
|
RefProcPhase2Task phase2(*this, phase_times);
|
|
task_executor->execute(phase2, num_queues());
|
|
} else {
|
|
RefProcWorkerTimeTracker t(phase_times->phase2_worker_time_sec(), 0);
|
|
{
|
|
size_t removed = 0;
|
|
|
|
RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase2, phase_times, 0);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
removed += process_soft_weak_final_refs_work(_discoveredSoftRefs[i], is_alive, keep_alive, true /* do_enqueue */);
|
|
}
|
|
|
|
phase_times->add_ref_cleared(REF_SOFT, removed);
|
|
}
|
|
{
|
|
size_t removed = 0;
|
|
|
|
RefProcSubPhasesWorkerTimeTracker tt2(WeakRefSubPhase2, phase_times, 0);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
removed += process_soft_weak_final_refs_work(_discoveredWeakRefs[i], is_alive, keep_alive, true /* do_enqueue */);
|
|
}
|
|
|
|
phase_times->add_ref_cleared(REF_WEAK, removed);
|
|
}
|
|
{
|
|
size_t removed = 0;
|
|
|
|
RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase2, phase_times, 0);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
removed += process_soft_weak_final_refs_work(_discoveredFinalRefs[i], is_alive, keep_alive, false /* do_enqueue */);
|
|
}
|
|
|
|
phase_times->add_ref_cleared(REF_FINAL, removed);
|
|
}
|
|
complete_gc->do_void();
|
|
}
|
|
verify_total_count_zero(_discoveredSoftRefs, "SoftReference");
|
|
verify_total_count_zero(_discoveredWeakRefs, "WeakReference");
|
|
log_reflist("Phase2 Final after", _discoveredFinalRefs, _max_num_queues);
|
|
}
|
|
|
|
void ReferenceProcessor::process_final_keep_alive(OopClosure* keep_alive,
|
|
VoidClosure* complete_gc,
|
|
AbstractRefProcTaskExecutor* task_executor,
|
|
ReferenceProcessorPhaseTimes* phase_times) {
|
|
assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
|
|
|
|
size_t const num_final_refs = total_count(_discoveredFinalRefs);
|
|
|
|
phase_times->set_processing_is_mt(_processing_is_mt);
|
|
|
|
if (num_final_refs == 0) {
|
|
log_debug(gc, ref)("Skipped phase3 of Reference Processing due to unavailable references");
|
|
return;
|
|
}
|
|
|
|
RefProcMTDegreeAdjuster a(this, RefPhase3, num_final_refs);
|
|
|
|
if (_processing_is_mt) {
|
|
RefProcBalanceQueuesTimeTracker tt(RefPhase3, phase_times);
|
|
maybe_balance_queues(_discoveredFinalRefs);
|
|
}
|
|
|
|
// Phase 3:
|
|
// . Traverse referents of final references and keep them and followers alive.
|
|
RefProcPhaseTimeTracker tt(RefPhase3, phase_times);
|
|
|
|
if (_processing_is_mt) {
|
|
RefProcPhase3Task phase3(*this, phase_times);
|
|
task_executor->execute(phase3, num_queues());
|
|
} else {
|
|
RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase3, phase_times, 0);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
process_final_keep_alive_work(_discoveredFinalRefs[i], keep_alive, complete_gc);
|
|
}
|
|
}
|
|
verify_total_count_zero(_discoveredFinalRefs, "FinalReference");
|
|
}
|
|
|
|
void ReferenceProcessor::process_phantom_refs(BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc,
|
|
AbstractRefProcTaskExecutor* task_executor,
|
|
ReferenceProcessorPhaseTimes* phase_times) {
|
|
assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
|
|
|
|
size_t const num_phantom_refs = total_count(_discoveredPhantomRefs);
|
|
phase_times->set_ref_discovered(REF_PHANTOM, num_phantom_refs);
|
|
|
|
phase_times->set_processing_is_mt(_processing_is_mt);
|
|
|
|
if (num_phantom_refs == 0) {
|
|
log_debug(gc, ref)("Skipped phase4 of Reference Processing due to unavailable references");
|
|
return;
|
|
}
|
|
|
|
RefProcMTDegreeAdjuster a(this, RefPhase4, num_phantom_refs);
|
|
|
|
if (_processing_is_mt) {
|
|
RefProcBalanceQueuesTimeTracker tt(RefPhase4, phase_times);
|
|
maybe_balance_queues(_discoveredPhantomRefs);
|
|
}
|
|
|
|
// Phase 4: Walk phantom references appropriately.
|
|
RefProcPhaseTimeTracker tt(RefPhase4, phase_times);
|
|
|
|
log_reflist("Phase4 Phantom before", _discoveredPhantomRefs, _max_num_queues);
|
|
if (_processing_is_mt) {
|
|
RefProcPhase4Task phase4(*this, phase_times);
|
|
task_executor->execute(phase4, num_queues());
|
|
} else {
|
|
size_t removed = 0;
|
|
|
|
RefProcSubPhasesWorkerTimeTracker tt(PhantomRefSubPhase4, phase_times, 0);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
removed += process_phantom_refs_work(_discoveredPhantomRefs[i], is_alive, keep_alive, complete_gc);
|
|
}
|
|
|
|
phase_times->add_ref_cleared(REF_PHANTOM, removed);
|
|
}
|
|
verify_total_count_zero(_discoveredPhantomRefs, "PhantomReference");
|
|
}
|
|
|
|
inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
|
|
uint id = 0;
|
|
// Determine the queue index to use for this object.
|
|
if (_discovery_is_mt) {
|
|
// During a multi-threaded discovery phase,
|
|
// each thread saves to its "own" list.
|
|
Thread* thr = Thread::current();
|
|
id = thr->as_Worker_thread()->id();
|
|
} else {
|
|
// single-threaded discovery, we save in round-robin
|
|
// fashion to each of the lists.
|
|
if (_processing_is_mt) {
|
|
id = next_id();
|
|
}
|
|
}
|
|
assert(id < _max_num_queues, "Id is out of bounds id %u and max id %u)", id, _max_num_queues);
|
|
|
|
// Get the discovered queue to which we will add
|
|
DiscoveredList* list = NULL;
|
|
switch (rt) {
|
|
case REF_OTHER:
|
|
// Unknown reference type, no special treatment
|
|
break;
|
|
case REF_SOFT:
|
|
list = &_discoveredSoftRefs[id];
|
|
break;
|
|
case REF_WEAK:
|
|
list = &_discoveredWeakRefs[id];
|
|
break;
|
|
case REF_FINAL:
|
|
list = &_discoveredFinalRefs[id];
|
|
break;
|
|
case REF_PHANTOM:
|
|
list = &_discoveredPhantomRefs[id];
|
|
break;
|
|
case REF_NONE:
|
|
// we should not reach here if we are an InstanceRefKlass
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
|
|
return list;
|
|
}
|
|
|
|
inline void
|
|
ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
|
|
oop obj,
|
|
HeapWord* discovered_addr) {
|
|
assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
|
|
// First we must make sure this object is only enqueued once. CAS in a non null
|
|
// discovered_addr.
|
|
oop current_head = refs_list.head();
|
|
// The last ref must have its discovered field pointing to itself.
|
|
oop next_discovered = (current_head != NULL) ? current_head : obj;
|
|
|
|
oop retest = HeapAccess<AS_NO_KEEPALIVE>::oop_atomic_cmpxchg(next_discovered, discovered_addr, oop(NULL));
|
|
|
|
if (retest == NULL) {
|
|
// This thread just won the right to enqueue the object.
|
|
// We have separate lists for enqueueing, so no synchronization
|
|
// is necessary.
|
|
refs_list.set_head(obj);
|
|
refs_list.inc_length(1);
|
|
|
|
log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
|
|
p2i(obj), obj->klass()->internal_name());
|
|
} else {
|
|
// If retest was non NULL, another thread beat us to it:
|
|
// The reference has already been discovered...
|
|
log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
|
|
p2i(obj), obj->klass()->internal_name());
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Non-atomic (i.e. concurrent) discovery might allow us
|
|
// to observe j.l.References with NULL referents, being those
|
|
// cleared concurrently by mutators during (or after) discovery.
|
|
void ReferenceProcessor::verify_referent(oop obj) {
|
|
bool da = discovery_is_atomic();
|
|
oop referent = java_lang_ref_Reference::referent(obj);
|
|
assert(da ? oopDesc::is_oop(referent) : oopDesc::is_oop_or_null(referent),
|
|
"Bad referent " INTPTR_FORMAT " found in Reference "
|
|
INTPTR_FORMAT " during %satomic discovery ",
|
|
p2i(referent), p2i(obj), da ? "" : "non-");
|
|
}
|
|
#endif
|
|
|
|
bool ReferenceProcessor::is_subject_to_discovery(oop const obj) const {
|
|
return _is_subject_to_discovery->do_object_b(obj);
|
|
}
|
|
|
|
// We mention two of several possible choices here:
|
|
// #0: if the reference object is not in the "originating generation"
|
|
// (or part of the heap being collected, indicated by our "span"
|
|
// we don't treat it specially (i.e. we scan it as we would
|
|
// a normal oop, treating its references as strong references).
|
|
// This means that references can't be discovered unless their
|
|
// referent is also in the same span. This is the simplest,
|
|
// most "local" and most conservative approach, albeit one
|
|
// that may cause weak references to be enqueued least promptly.
|
|
// We call this choice the "ReferenceBasedDiscovery" policy.
|
|
// #1: the reference object may be in any generation (span), but if
|
|
// the referent is in the generation (span) being currently collected
|
|
// then we can discover the reference object, provided
|
|
// the object has not already been discovered by
|
|
// a different concurrently running collector (as may be the
|
|
// case, for instance, if the reference object is in CMS and
|
|
// the referent in DefNewGeneration), and provided the processing
|
|
// of this reference object by the current collector will
|
|
// appear atomic to every other collector in the system.
|
|
// (Thus, for instance, a concurrent collector may not
|
|
// discover references in other generations even if the
|
|
// referent is in its own generation). This policy may,
|
|
// in certain cases, enqueue references somewhat sooner than
|
|
// might Policy #0 above, but at marginally increased cost
|
|
// and complexity in processing these references.
|
|
// We call this choice the "RefeferentBasedDiscovery" policy.
|
|
bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
|
|
// Make sure we are discovering refs (rather than processing discovered refs).
|
|
if (!_discovering_refs || !RegisterReferences) {
|
|
return false;
|
|
}
|
|
|
|
if ((rt == REF_FINAL) && (java_lang_ref_Reference::next(obj) != NULL)) {
|
|
// Don't rediscover non-active FinalReferences.
|
|
return false;
|
|
}
|
|
|
|
if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
|
|
!is_subject_to_discovery(obj)) {
|
|
// Reference is not in the originating generation;
|
|
// don't treat it specially (i.e. we want to scan it as a normal
|
|
// object with strong references).
|
|
return false;
|
|
}
|
|
|
|
// We only discover references whose referents are not (yet)
|
|
// known to be strongly reachable.
|
|
if (is_alive_non_header() != NULL) {
|
|
verify_referent(obj);
|
|
if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
|
|
return false; // referent is reachable
|
|
}
|
|
}
|
|
if (rt == REF_SOFT) {
|
|
// For soft refs we can decide now if these are not
|
|
// current candidates for clearing, in which case we
|
|
// can mark through them now, rather than delaying that
|
|
// to the reference-processing phase. Since all current
|
|
// time-stamp policies advance the soft-ref clock only
|
|
// at a full collection cycle, this is always currently
|
|
// accurate.
|
|
if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ResourceMark rm; // Needed for tracing.
|
|
|
|
HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr_raw(obj);
|
|
const oop discovered = java_lang_ref_Reference::discovered(obj);
|
|
assert(oopDesc::is_oop_or_null(discovered), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
|
|
if (discovered != NULL) {
|
|
// The reference has already been discovered...
|
|
log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
|
|
p2i(obj), obj->klass()->internal_name());
|
|
if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
|
|
// assumes that an object is not processed twice;
|
|
// if it's been already discovered it must be on another
|
|
// generation's discovered list; so we won't discover it.
|
|
return false;
|
|
} else {
|
|
assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
|
|
"Unrecognized policy");
|
|
// Check assumption that an object is not potentially
|
|
// discovered twice except by concurrent collectors that potentially
|
|
// trace the same Reference object twice.
|
|
assert(UseConcMarkSweepGC || UseG1GC,
|
|
"Only possible with a concurrent marking collector");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
|
|
verify_referent(obj);
|
|
// Discover if and only if EITHER:
|
|
// .. reference is in our span, OR
|
|
// .. we are an atomic collector and referent is in our span
|
|
if (is_subject_to_discovery(obj) ||
|
|
(discovery_is_atomic() &&
|
|
is_subject_to_discovery(java_lang_ref_Reference::referent(obj)))) {
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
|
|
is_subject_to_discovery(obj), "code inconsistency");
|
|
}
|
|
|
|
// Get the right type of discovered queue head.
|
|
DiscoveredList* list = get_discovered_list(rt);
|
|
if (list == NULL) {
|
|
return false; // nothing special needs to be done
|
|
}
|
|
|
|
if (_discovery_is_mt) {
|
|
add_to_discovered_list_mt(*list, obj, discovered_addr);
|
|
} else {
|
|
// We do a raw store here: the field will be visited later when processing
|
|
// the discovered references.
|
|
oop current_head = list->head();
|
|
// The last ref must have its discovered field pointing to itself.
|
|
oop next_discovered = (current_head != NULL) ? current_head : obj;
|
|
|
|
assert(discovered == NULL, "control point invariant");
|
|
RawAccess<>::oop_store(discovered_addr, next_discovered);
|
|
list->set_head(obj);
|
|
list->inc_length(1);
|
|
|
|
log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
|
|
}
|
|
assert(oopDesc::is_oop(obj), "Discovered a bad reference");
|
|
verify_referent(obj);
|
|
return true;
|
|
}
|
|
|
|
bool ReferenceProcessor::has_discovered_references() {
|
|
for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
|
|
if (!_discovered_refs[i].is_empty()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ReferenceProcessor::preclean_discovered_references(BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc,
|
|
YieldClosure* yield,
|
|
GCTimer* gc_timer) {
|
|
// These lists can be handled here in any order and, indeed, concurrently.
|
|
|
|
// Soft references
|
|
{
|
|
GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
|
|
log_reflist("SoftRef before: ", _discoveredSoftRefs, _max_num_queues);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
if (yield->should_return()) {
|
|
return;
|
|
}
|
|
if (preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
|
|
keep_alive, complete_gc, yield)) {
|
|
log_reflist("SoftRef abort: ", _discoveredSoftRefs, _max_num_queues);
|
|
return;
|
|
}
|
|
}
|
|
log_reflist("SoftRef after: ", _discoveredSoftRefs, _max_num_queues);
|
|
}
|
|
|
|
// Weak references
|
|
{
|
|
GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
|
|
log_reflist("WeakRef before: ", _discoveredWeakRefs, _max_num_queues);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
if (yield->should_return()) {
|
|
return;
|
|
}
|
|
if (preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
|
|
keep_alive, complete_gc, yield)) {
|
|
log_reflist("WeakRef abort: ", _discoveredWeakRefs, _max_num_queues);
|
|
return;
|
|
}
|
|
}
|
|
log_reflist("WeakRef after: ", _discoveredWeakRefs, _max_num_queues);
|
|
}
|
|
|
|
// Final references
|
|
{
|
|
GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
|
|
log_reflist("FinalRef before: ", _discoveredFinalRefs, _max_num_queues);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
if (yield->should_return()) {
|
|
return;
|
|
}
|
|
if (preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
|
|
keep_alive, complete_gc, yield)) {
|
|
log_reflist("FinalRef abort: ", _discoveredFinalRefs, _max_num_queues);
|
|
return;
|
|
}
|
|
}
|
|
log_reflist("FinalRef after: ", _discoveredFinalRefs, _max_num_queues);
|
|
}
|
|
|
|
// Phantom references
|
|
{
|
|
GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
|
|
log_reflist("PhantomRef before: ", _discoveredPhantomRefs, _max_num_queues);
|
|
for (uint i = 0; i < _max_num_queues; i++) {
|
|
if (yield->should_return()) {
|
|
return;
|
|
}
|
|
if (preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
|
|
keep_alive, complete_gc, yield)) {
|
|
log_reflist("PhantomRef abort: ", _discoveredPhantomRefs, _max_num_queues);
|
|
return;
|
|
}
|
|
}
|
|
log_reflist("PhantomRef after: ", _discoveredPhantomRefs, _max_num_queues);
|
|
}
|
|
}
|
|
|
|
// Walk the given discovered ref list, and remove all reference objects
|
|
// whose referents are still alive, whose referents are NULL or which
|
|
// are not active (have a non-NULL next field). NOTE: When we are
|
|
// thus precleaning the ref lists (which happens single-threaded today),
|
|
// we do not disable refs discovery to honor the correct semantics of
|
|
// java.lang.Reference. As a result, we need to be careful below
|
|
// that ref removal steps interleave safely with ref discovery steps
|
|
// (in this thread).
|
|
bool ReferenceProcessor::preclean_discovered_reflist(DiscoveredList& refs_list,
|
|
BoolObjectClosure* is_alive,
|
|
OopClosure* keep_alive,
|
|
VoidClosure* complete_gc,
|
|
YieldClosure* yield) {
|
|
DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
|
|
while (iter.has_next()) {
|
|
if (yield->should_return_fine_grain()) {
|
|
return true;
|
|
}
|
|
iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
|
|
if (iter.referent() == NULL || iter.is_referent_alive()) {
|
|
// The referent has been cleared, or is alive; we need to trace
|
|
// and mark its cohort.
|
|
log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
|
|
p2i(iter.obj()), iter.obj()->klass()->internal_name());
|
|
// Remove Reference object from list
|
|
iter.remove();
|
|
// Keep alive its cohort.
|
|
iter.make_referent_alive();
|
|
iter.move_to_next();
|
|
} else {
|
|
iter.next();
|
|
}
|
|
}
|
|
// Close the reachable set
|
|
complete_gc->do_void();
|
|
|
|
if (iter.processed() > 0) {
|
|
log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
|
|
iter.removed(), iter.processed(), p2i(&refs_list));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const char* ReferenceProcessor::list_name(uint i) {
|
|
assert(i <= _max_num_queues * number_of_subclasses_of_ref(),
|
|
"Out of bounds index");
|
|
|
|
int j = i / _max_num_queues;
|
|
switch (j) {
|
|
case 0: return "SoftRef";
|
|
case 1: return "WeakRef";
|
|
case 2: return "FinalRef";
|
|
case 3: return "PhantomRef";
|
|
}
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
uint RefProcMTDegreeAdjuster::ergo_proc_thread_count(size_t ref_count,
|
|
uint max_threads,
|
|
RefProcPhases phase) const {
|
|
assert(0 < max_threads, "must allow at least one thread");
|
|
|
|
if (use_max_threads(phase) || (ReferencesPerThread == 0)) {
|
|
return max_threads;
|
|
}
|
|
|
|
size_t thread_count = 1 + (ref_count / ReferencesPerThread);
|
|
return (uint)MIN3(thread_count,
|
|
static_cast<size_t>(max_threads),
|
|
(size_t)os::active_processor_count());
|
|
}
|
|
|
|
bool RefProcMTDegreeAdjuster::use_max_threads(RefProcPhases phase) const {
|
|
// Even a small number of references in either of those cases could produce large amounts of work.
|
|
return (phase == ReferenceProcessor::RefPhase1 || phase == ReferenceProcessor::RefPhase3);
|
|
}
|
|
|
|
RefProcMTDegreeAdjuster::RefProcMTDegreeAdjuster(ReferenceProcessor* rp,
|
|
RefProcPhases phase,
|
|
size_t ref_count):
|
|
_rp(rp),
|
|
_saved_mt_processing(_rp->processing_is_mt()),
|
|
_saved_num_queues(_rp->num_queues()) {
|
|
if (!_rp->processing_is_mt() || !_rp->adjust_no_of_processing_threads() || (ReferencesPerThread == 0)) {
|
|
return;
|
|
}
|
|
|
|
uint workers = ergo_proc_thread_count(ref_count, _rp->num_queues(), phase);
|
|
|
|
_rp->set_mt_processing(workers > 1);
|
|
_rp->set_active_mt_degree(workers);
|
|
}
|
|
|
|
RefProcMTDegreeAdjuster::~RefProcMTDegreeAdjuster() {
|
|
// Revert to previous status.
|
|
_rp->set_mt_processing(_saved_mt_processing);
|
|
_rp->set_active_mt_degree(_saved_num_queues);
|
|
}
|