jdk/src/hotspot/share/runtime/handshake.cpp
2020-09-07 13:59:24 +00:00

526 lines
18 KiB
C++

/*
* Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/atomic.hpp"
#include "runtime/handshake.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/osThread.hpp"
#include "runtime/semaphore.inline.hpp"
#include "runtime/task.hpp"
#include "runtime/thread.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/preserveException.hpp"
class HandshakeOperation: public StackObj {
HandshakeClosure* _handshake_cl;
int32_t _pending_threads;
bool _executed;
bool _is_direct;
public:
HandshakeOperation(HandshakeClosure* cl, bool is_direct = false) :
_handshake_cl(cl),
_pending_threads(1),
_executed(false),
_is_direct(is_direct) {}
void do_handshake(JavaThread* thread);
bool is_completed() {
int32_t val = Atomic::load(&_pending_threads);
assert(val >= 0, "_pending_threads=%d cannot be negative", val);
return val == 0;
}
void add_target_count(int count) { Atomic::add(&_pending_threads, count, memory_order_relaxed); }
bool executed() const { return _executed; }
const char* name() { return _handshake_cl->name(); }
bool is_direct() { return _is_direct; }
};
// Performing handshakes requires a custom yielding strategy because without it
// there is a clear performance regression vs plain spinning. We keep track of
// when we last saw progress by looking at why each targeted thread has not yet
// completed its handshake. After spinning for a while with no progress we will
// yield, but as long as there is progress, we keep spinning. Thus we avoid
// yielding when there is potential work to be done or the handshake is close
// to being finished.
class HandshakeSpinYield : public StackObj {
private:
jlong _start_time_ns;
jlong _last_spin_start_ns;
jlong _spin_time_ns;
int _result_count[2][HandshakeState::_number_states];
int _prev_result_pos;
int prev_result_pos() { return _prev_result_pos & 0x1; }
int current_result_pos() { return (_prev_result_pos + 1) & 0x1; }
void wait_raw(jlong now) {
// We start with fine-grained nanosleeping until a millisecond has
// passed, at which point we resort to plain naked_short_sleep.
if (now - _start_time_ns < NANOSECS_PER_MILLISEC) {
os::naked_short_nanosleep(10 * (NANOUNITS / MICROUNITS));
} else {
os::naked_short_sleep(1);
}
}
void wait_blocked(JavaThread* self, jlong now) {
ThreadBlockInVM tbivm(self);
wait_raw(now);
}
bool state_changed() {
for (int i = 0; i < HandshakeState::_number_states; i++) {
if (_result_count[0][i] != _result_count[1][i]) {
return true;
}
}
return false;
}
void reset_state() {
_prev_result_pos++;
for (int i = 0; i < HandshakeState::_number_states; i++) {
_result_count[current_result_pos()][i] = 0;
}
}
public:
HandshakeSpinYield(jlong start_time) :
_start_time_ns(start_time), _last_spin_start_ns(start_time),
_spin_time_ns(0), _result_count(), _prev_result_pos(0) {
const jlong max_spin_time_ns = 100 /* us */ * (NANOUNITS / MICROUNITS);
int free_cpus = os::active_processor_count() - 1;
_spin_time_ns = (5 /* us */ * (NANOUNITS / MICROUNITS)) * free_cpus; // zero on UP
_spin_time_ns = _spin_time_ns > max_spin_time_ns ? max_spin_time_ns : _spin_time_ns;
}
void add_result(HandshakeState::ProcessResult pr) {
_result_count[current_result_pos()][pr]++;
}
void process() {
jlong now = os::javaTimeNanos();
if (state_changed()) {
reset_state();
// We spin for x amount of time since last state change.
_last_spin_start_ns = now;
return;
}
jlong wait_target = _last_spin_start_ns + _spin_time_ns;
if (wait_target < now) {
// On UP this is always true.
Thread* self = Thread::current();
if (self->is_Java_thread()) {
wait_blocked((JavaThread*)self, now);
} else {
wait_raw(now);
}
_last_spin_start_ns = os::javaTimeNanos();
}
reset_state();
}
};
class VM_Handshake: public VM_Operation {
const jlong _handshake_timeout;
public:
bool evaluate_at_safepoint() const { return false; }
protected:
HandshakeOperation* const _op;
VM_Handshake(HandshakeOperation* op) :
_handshake_timeout(TimeHelper::millis_to_counter(HandshakeTimeout)), _op(op) {}
bool handshake_has_timed_out(jlong start_time);
static void handle_timeout();
};
bool VM_Handshake::handshake_has_timed_out(jlong start_time) {
// Check if handshake operation has timed out
if (_handshake_timeout > 0) {
return os::javaTimeNanos() >= (start_time + _handshake_timeout);
}
return false;
}
void VM_Handshake::handle_timeout() {
LogStreamHandle(Warning, handshake) log_stream;
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thr = jtiwh.next(); ) {
if (thr->has_handshake()) {
log_stream.print("Thread " PTR_FORMAT " has not cleared its handshake op", p2i(thr));
thr->print_thread_state_on(&log_stream);
}
}
log_stream.flush();
fatal("Handshake operation timed out");
}
static void log_handshake_info(jlong start_time_ns, const char* name, int targets, int vmt_executed, const char* extra = NULL) {
if (start_time_ns != 0) {
jlong completion_time = os::javaTimeNanos() - start_time_ns;
log_info(handshake)("Handshake \"%s\", Targeted threads: %d, Executed by targeted threads: %d, Total completion time: " JLONG_FORMAT " ns%s%s",
name, targets,
targets - vmt_executed,
completion_time,
extra != NULL ? ", " : "",
extra != NULL ? extra : "");
}
}
class VM_HandshakeOneThread: public VM_Handshake {
JavaThread* _target;
public:
VM_HandshakeOneThread(HandshakeOperation* op, JavaThread* target) :
VM_Handshake(op), _target(target) {}
void doit() {
jlong start_time_ns = os::javaTimeNanos();
ThreadsListHandle tlh;
if (tlh.includes(_target)) {
_target->set_handshake_operation(_op);
} else {
log_handshake_info(start_time_ns, _op->name(), 0, 0, "(thread dead)");
return;
}
log_trace(handshake)("JavaThread " INTPTR_FORMAT " signaled, begin attempt to process by VMThtread", p2i(_target));
HandshakeState::ProcessResult pr = HandshakeState::_no_operation;
HandshakeSpinYield hsy(start_time_ns);
do {
if (handshake_has_timed_out(start_time_ns)) {
handle_timeout();
}
pr = _target->handshake_try_process(_op);
hsy.add_result(pr);
hsy.process();
} while (!_op->is_completed());
// This pairs up with the release store in do_handshake(). It prevents future
// loads from floating above the load of _pending_threads in is_completed()
// and thus prevents reading stale data modified in the handshake closure
// by the Handshakee.
OrderAccess::acquire();
log_handshake_info(start_time_ns, _op->name(), 1, (pr == HandshakeState::_success) ? 1 : 0);
}
VMOp_Type type() const { return VMOp_HandshakeOneThread; }
bool executed() const { return _op->executed(); }
};
class VM_HandshakeAllThreads: public VM_Handshake {
public:
VM_HandshakeAllThreads(HandshakeOperation* op) : VM_Handshake(op) {}
void doit() {
jlong start_time_ns = os::javaTimeNanos();
int handshake_executed_by_vm_thread = 0;
JavaThreadIteratorWithHandle jtiwh;
int number_of_threads_issued = 0;
for (JavaThread *thr = jtiwh.next(); thr != NULL; thr = jtiwh.next()) {
thr->set_handshake_operation(_op);
number_of_threads_issued++;
}
if (number_of_threads_issued < 1) {
log_handshake_info(start_time_ns, _op->name(), 0, 0);
return;
}
// _op was created with a count == 1 so don't double count.
_op->add_target_count(number_of_threads_issued - 1);
log_trace(handshake)("Threads signaled, begin processing blocked threads by VMThread");
HandshakeSpinYield hsy(start_time_ns);
do {
// Check if handshake operation has timed out
if (handshake_has_timed_out(start_time_ns)) {
handle_timeout();
}
// Have VM thread perform the handshake operation for blocked threads.
// Observing a blocked state may of course be transient but the processing is guarded
// by semaphores and we optimistically begin by working on the blocked threads
jtiwh.rewind();
for (JavaThread *thr = jtiwh.next(); thr != NULL; thr = jtiwh.next()) {
// A new thread on the ThreadsList will not have an operation,
// hence it is skipped in handshake_try_process.
HandshakeState::ProcessResult pr = thr->handshake_try_process(_op);
if (pr == HandshakeState::_success) {
handshake_executed_by_vm_thread++;
}
hsy.add_result(pr);
}
hsy.process();
} while (!_op->is_completed());
// This pairs up with the release store in do_handshake(). It prevents future
// loads from floating above the load of _pending_threads in is_completed()
// and thus prevents reading stale data modified in the handshake closure
// by the Handshakee.
OrderAccess::acquire();
log_handshake_info(start_time_ns, _op->name(), number_of_threads_issued, handshake_executed_by_vm_thread);
}
VMOp_Type type() const { return VMOp_HandshakeAllThreads; }
};
void HandshakeOperation::do_handshake(JavaThread* thread) {
jlong start_time_ns = 0;
if (log_is_enabled(Debug, handshake, task)) {
start_time_ns = os::javaTimeNanos();
}
// Only actually execute the operation for non terminated threads.
if (!thread->is_terminated()) {
_handshake_cl->do_thread(thread);
_executed = true;
}
if (start_time_ns != 0) {
jlong completion_time = os::javaTimeNanos() - start_time_ns;
log_debug(handshake, task)("Operation: %s for thread " PTR_FORMAT ", is_vm_thread: %s, completed in " JLONG_FORMAT " ns",
name(), p2i(thread), BOOL_TO_STR(Thread::current()->is_VM_thread()), completion_time);
}
// Inform VMThread/Handshaker that we have completed the operation.
// When this is executed by the Handshakee we need a release store
// here to make sure memory operations executed in the handshake
// closure are visible to the VMThread/Handshaker after it reads
// that the operation has completed.
Atomic::dec(&_pending_threads, memory_order_release);
// It is no longer safe to refer to 'this' as the VMThread/Handshaker may have destroyed this operation
}
void Handshake::execute(HandshakeClosure* thread_cl) {
HandshakeOperation cto(thread_cl);
VM_HandshakeAllThreads handshake(&cto);
VMThread::execute(&handshake);
}
bool Handshake::execute(HandshakeClosure* thread_cl, JavaThread* target) {
HandshakeOperation cto(thread_cl);
VM_HandshakeOneThread handshake(&cto, target);
VMThread::execute(&handshake);
return handshake.executed();
}
bool Handshake::execute_direct(HandshakeClosure* thread_cl, JavaThread* target) {
JavaThread* self = JavaThread::current();
HandshakeOperation op(thread_cl, /*is_direct*/ true);
jlong start_time_ns = os::javaTimeNanos();
ThreadsListHandle tlh;
if (tlh.includes(target)) {
target->set_handshake_operation(&op);
} else {
log_handshake_info(start_time_ns, op.name(), 0, 0, "(thread dead)");
return false;
}
HandshakeState::ProcessResult pr = HandshakeState::_no_operation;
HandshakeSpinYield hsy(start_time_ns);
while (!op.is_completed()) {
HandshakeState::ProcessResult pr = target->handshake_try_process(&op);
hsy.add_result(pr);
// Check for pending handshakes to avoid possible deadlocks where our
// target is trying to handshake us.
if (SafepointMechanism::should_process(self)) {
ThreadBlockInVM tbivm(self);
}
hsy.process();
}
// This pairs up with the release store in do_handshake(). It prevents future
// loads from floating above the load of _pending_threads in is_completed()
// and thus prevents reading stale data modified in the handshake closure
// by the Handshakee.
OrderAccess::acquire();
log_handshake_info(start_time_ns, op.name(), 1, (pr == HandshakeState::_success) ? 1 : 0);
return op.executed();
}
HandshakeState::HandshakeState() :
_operation(NULL),
_operation_direct(NULL),
_handshake_turn_sem(1),
_processing_sem(1),
_thread_in_process_handshake(false),
_active_handshaker(NULL)
{
}
void HandshakeState::set_operation(HandshakeOperation* op) {
if (!op->is_direct()) {
assert(Thread::current()->is_VM_thread(), "should be the VMThread");
_operation = op;
} else {
assert(Thread::current()->is_Java_thread(), "should be a JavaThread");
// Serialize direct handshakes so that only one proceeds at a time for a given target
_handshake_turn_sem.wait_with_safepoint_check(JavaThread::current());
_operation_direct = op;
}
SafepointMechanism::arm_local_poll_release(_handshakee);
}
void HandshakeState::clear_handshake(bool is_direct) {
if (!is_direct) {
_operation = NULL;
} else {
_operation_direct = NULL;
_handshake_turn_sem.signal();
}
}
void HandshakeState::process_self_inner() {
assert(Thread::current() == _handshakee, "should call from _handshakee");
assert(!_handshakee->is_terminated(), "should not be a terminated thread");
assert(_handshakee->thread_state() != _thread_blocked, "should not be in a blocked state");
assert(_handshakee->thread_state() != _thread_in_native, "should not be in native");
JavaThread* self = _handshakee;
do {
ThreadInVMForHandshake tivm(self);
if (!_processing_sem.trywait()) {
_processing_sem.wait_with_safepoint_check(self);
}
if (has_operation()) {
HandleMark hm(self);
CautiouslyPreserveExceptionMark pem(self);
HandshakeOperation * op = _operation;
if (op != NULL) {
// Disarm before executing the operation
clear_handshake(/*is_direct*/ false);
op->do_handshake(self);
}
op = _operation_direct;
if (op != NULL) {
// Disarm before executing the operation
clear_handshake(/*is_direct*/ true);
op->do_handshake(self);
}
}
_processing_sem.signal();
} while (has_operation());
}
bool HandshakeState::can_process_handshake() {
// handshake_safe may only be called with polls armed.
// Handshaker controls this by first claiming the handshake via claim_handshake().
return SafepointSynchronize::handshake_safe(_handshakee);
}
bool HandshakeState::possibly_can_process_handshake() {
// Note that this method is allowed to produce false positives.
if (_handshakee->is_terminated()) {
return true;
}
switch (_handshakee->thread_state()) {
case _thread_in_native:
// native threads are safe if they have no java stack or have walkable stack
return !_handshakee->has_last_Java_frame() || _handshakee->frame_anchor()->walkable();
case _thread_blocked:
return true;
default:
return false;
}
}
bool HandshakeState::claim_handshake(bool is_direct) {
if (!_processing_sem.trywait()) {
return false;
}
if (has_specific_operation(is_direct)){
return true;
}
_processing_sem.signal();
return false;
}
HandshakeState::ProcessResult HandshakeState::try_process(HandshakeOperation* op) {
bool is_direct = op->is_direct();
if (!has_specific_operation(is_direct)){
// JT has already cleared its handshake
return _no_operation;
}
if (!possibly_can_process_handshake()) {
// JT is observed in an unsafe state, it must notice the handshake itself
return _not_safe;
}
// Claim the semaphore if there still an operation to be executed.
if (!claim_handshake(is_direct)) {
return _state_busy;
}
// Check if the handshake operation is the same as the one we meant to execute. The
// handshake could have been already processed by the handshakee and a new handshake
// by another JavaThread might be in progress.
if (is_direct && op != _operation_direct) {
_processing_sem.signal();
return _no_operation;
}
// If we own the semaphore at this point and while owning the semaphore
// can observe a safe state the thread cannot possibly continue without
// getting caught by the semaphore.
ProcessResult pr = _not_safe;
if (can_process_handshake()) {
guarantee(!_processing_sem.trywait(), "we should already own the semaphore");
log_trace(handshake)("Processing handshake by %s", Thread::current()->is_VM_thread() ? "VMThread" : "Handshaker");
_active_handshaker = Thread::current();
op->do_handshake(_handshakee);
_active_handshaker = NULL;
// Disarm after we have executed the operation.
clear_handshake(is_direct);
pr = _success;
}
// Release the thread
_processing_sem.signal();
return pr;
}