jdk/src/hotspot/os/linux/gc/z/zPhysicalMemoryBacking_linux.cpp
Jonas Norlinder 56545328f8 8375297: ZGC: Remove obsolete O_CLOEXEC definition
Reviewed-by: tschatzl, eosterlund
2026-01-14 16:54:24 +00:00

708 lines
25 KiB
C++

/*
* Copyright (c) 2015, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "gc/shared/gcLogPrecious.hpp"
#include "gc/z/zAddress.inline.hpp"
#include "gc/z/zArray.inline.hpp"
#include "gc/z/zErrno.hpp"
#include "gc/z/zGlobals.hpp"
#include "gc/z/zInitialize.hpp"
#include "gc/z/zLargePages.inline.hpp"
#include "gc/z/zMountPoint_linux.hpp"
#include "gc/z/zNUMA.inline.hpp"
#include "gc/z/zPhysicalMemoryBacking_linux.hpp"
#include "gc/z/zSyscall_linux.hpp"
#include "hugepages.hpp"
#include "logging/log.hpp"
#include "os_linux.hpp"
#include "runtime/init.hpp"
#include "runtime/os.hpp"
#include "runtime/safefetch.hpp"
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
#include "utilities/growableArray.hpp"
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/types.h>
#include <unistd.h>
//
// Support for building on older Linux systems
//
// memfd_create(2) flags
#ifndef MFD_CLOEXEC
#define MFD_CLOEXEC 0x0001U
#endif
#ifndef MFD_HUGETLB
#define MFD_HUGETLB 0x0004U
#endif
#ifndef MFD_HUGE_2MB
#define MFD_HUGE_2MB 0x54000000U
#endif
// open(2) flags
#ifndef O_TMPFILE
#define O_TMPFILE (020000000 | O_DIRECTORY)
#endif
// fallocate(2) flags
#ifndef FALLOC_FL_KEEP_SIZE
#define FALLOC_FL_KEEP_SIZE 0x01
#endif
#ifndef FALLOC_FL_PUNCH_HOLE
#define FALLOC_FL_PUNCH_HOLE 0x02
#endif
// Filesystem types, see statfs(2)
#ifndef TMPFS_MAGIC
#define TMPFS_MAGIC 0x01021994
#endif
#ifndef HUGETLBFS_MAGIC
#define HUGETLBFS_MAGIC 0x958458f6
#endif
// Filesystem names
#define ZFILESYSTEM_TMPFS "tmpfs"
#define ZFILESYSTEM_HUGETLBFS "hugetlbfs"
// Proc file entry for max map mount
#define ZFILENAME_PROC_MAX_MAP_COUNT "/proc/sys/vm/max_map_count"
// Sysfs file for transparent huge page on tmpfs
#define ZFILENAME_SHMEM_ENABLED "/sys/kernel/mm/transparent_hugepage/shmem_enabled"
// Java heap filename
#define ZFILENAME_HEAP "java_heap"
// Preferred tmpfs mount points, ordered by priority
static const char* ZPreferredTmpfsMountpoints[] = {
"/dev/shm",
"/run/shm",
nullptr
};
// Preferred hugetlbfs mount points, ordered by priority
static const char* ZPreferredHugetlbfsMountpoints[] = {
"/dev/hugepages",
"/hugepages",
nullptr
};
static int z_fallocate_hugetlbfs_attempts = 3;
static bool z_fallocate_supported = true;
ZPhysicalMemoryBacking::ZPhysicalMemoryBacking(size_t max_capacity)
: _fd(-1),
_filesystem(0),
_block_size(0),
_available(0),
_initialized(false) {
// Create backing file
_fd = create_fd(ZFILENAME_HEAP);
if (_fd == -1) {
ZInitialize::error("Failed to create heap backing file");
return;
}
// Truncate backing file
while (ftruncate(_fd, max_capacity) == -1) {
if (errno != EINTR) {
ZErrno err;
ZInitialize::error("Failed to truncate backing file (%s)", err.to_string());
return;
}
}
// Get filesystem statistics
struct statfs buf;
if (fstatfs(_fd, &buf) == -1) {
ZErrno err;
ZInitialize::error("Failed to determine filesystem type for backing file (%s)", err.to_string());
return;
}
_filesystem = buf.f_type;
_block_size = buf.f_bsize;
_available = buf.f_bavail * _block_size;
log_info_p(gc, init)("Heap Backing Filesystem: %s (" UINT64_FORMAT_X ")",
is_tmpfs() ? ZFILESYSTEM_TMPFS : is_hugetlbfs() ? ZFILESYSTEM_HUGETLBFS : "other", _filesystem);
// Make sure the filesystem type matches requested large page type
if (ZLargePages::is_transparent() && !is_tmpfs()) {
ZInitialize::error("-XX:+UseTransparentHugePages can only be enabled when using a %s filesystem",
ZFILESYSTEM_TMPFS);
return;
}
if (ZLargePages::is_transparent() && !tmpfs_supports_transparent_huge_pages()) {
ZInitialize::error("-XX:+UseTransparentHugePages on a %s filesystem not supported by kernel",
ZFILESYSTEM_TMPFS);
return;
}
if (ZLargePages::is_explicit() && !is_hugetlbfs()) {
ZInitialize::error("-XX:+UseLargePages (without -XX:+UseTransparentHugePages) can only be enabled "
"when using a %s filesystem", ZFILESYSTEM_HUGETLBFS);
return;
}
if (!ZLargePages::is_explicit() && is_hugetlbfs()) {
ZInitialize::error("-XX:+UseLargePages must be enabled when using a %s filesystem",
ZFILESYSTEM_HUGETLBFS);
return;
}
// Make sure the filesystem block size is compatible
if (ZGranuleSize % _block_size != 0) {
ZInitialize::error("Filesystem backing the heap has incompatible block size (%zu)",
_block_size);
return;
}
if (is_hugetlbfs() && _block_size != ZGranuleSize) {
ZInitialize::error("%s filesystem has unexpected block size %zu (expected %zu)",
ZFILESYSTEM_HUGETLBFS, _block_size, ZGranuleSize);
return;
}
// Successfully initialized
_initialized = true;
}
int ZPhysicalMemoryBacking::create_mem_fd(const char* name) const {
assert(ZGranuleSize == 2 * M, "Granule size must match MFD_HUGE_2MB");
// Create file name
char filename[PATH_MAX];
os::snprintf_checked(filename, sizeof(filename), "%s%s", name, ZLargePages::is_explicit() ? ".hugetlb" : "");
// Create file
const int extra_flags = ZLargePages::is_explicit() ? (MFD_HUGETLB | MFD_HUGE_2MB) : 0;
const int fd = ZSyscall::memfd_create(filename, MFD_CLOEXEC | extra_flags);
if (fd == -1) {
ZErrno err;
log_debug_p(gc, init)("Failed to create memfd file (%s)",
(ZLargePages::is_explicit() && (err == EINVAL || err == ENODEV)) ?
"Hugepages (2M) not available" : err.to_string());
return -1;
}
log_info_p(gc, init)("Heap Backing File: /memfd:%s", filename);
return fd;
}
int ZPhysicalMemoryBacking::create_file_fd(const char* name) const {
const char* const filesystem = ZLargePages::is_explicit()
? ZFILESYSTEM_HUGETLBFS
: ZFILESYSTEM_TMPFS;
const char** const preferred_mountpoints = ZLargePages::is_explicit()
? ZPreferredHugetlbfsMountpoints
: ZPreferredTmpfsMountpoints;
// Find mountpoint
ZMountPoint mountpoint(filesystem, preferred_mountpoints);
if (mountpoint.get() == nullptr) {
log_error_p(gc)("Use -XX:AllocateHeapAt to specify the path to a %s filesystem", filesystem);
return -1;
}
// Try to create an anonymous file using the O_TMPFILE flag. Note that this
// flag requires kernel >= 3.11. If this fails we fall back to open/unlink.
const int fd_anon = os::open(mountpoint.get(), O_TMPFILE|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR);
if (fd_anon == -1) {
ZErrno err;
log_debug_p(gc, init)("Failed to create anonymous file in %s (%s)", mountpoint.get(),
(err == EINVAL ? "Not supported" : err.to_string()));
} else {
// Get inode number for anonymous file
struct stat stat_buf;
if (fstat(fd_anon, &stat_buf) == -1) {
ZErrno err;
log_error_pd(gc)("Failed to determine inode number for anonymous file (%s)", err.to_string());
return -1;
}
log_info_p(gc, init)("Heap Backing File: %s/#" UINT64_FORMAT, mountpoint.get(), (uint64_t)stat_buf.st_ino);
return fd_anon;
}
log_debug_p(gc, init)("Falling back to open/unlink");
// Create file name
char filename[PATH_MAX];
os::snprintf_checked(filename, sizeof(filename), "%s/%s.%d", mountpoint.get(), name, os::current_process_id());
// Create file
const int fd = os::open(filename, O_CREAT|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR);
if (fd == -1) {
ZErrno err;
log_error_p(gc)("Failed to create file %s (%s)", filename, err.to_string());
return -1;
}
// Unlink file
if (unlink(filename) == -1) {
ZErrno err;
log_error_p(gc)("Failed to unlink file %s (%s)", filename, err.to_string());
return -1;
}
log_info_p(gc, init)("Heap Backing File: %s", filename);
return fd;
}
int ZPhysicalMemoryBacking::create_fd(const char* name) const {
if (AllocateHeapAt == nullptr) {
// If the path is not explicitly specified, then we first try to create a memfd file
// instead of looking for a tmpfd/hugetlbfs mount point. Note that memfd_create() might
// not be supported at all (requires kernel >= 3.17), or it might not support large
// pages (requires kernel >= 4.14). If memfd_create() fails, then we try to create a
// file on an accessible tmpfs or hugetlbfs mount point.
const int fd = create_mem_fd(name);
if (fd != -1) {
return fd;
}
log_debug_p(gc)("Falling back to searching for an accessible mount point");
}
return create_file_fd(name);
}
bool ZPhysicalMemoryBacking::is_initialized() const {
return _initialized;
}
void ZPhysicalMemoryBacking::warn_available_space(size_t max_capacity) const {
// Note that the available space on a tmpfs or a hugetlbfs filesystem
// will be zero if no size limit was specified when it was mounted.
if (_available == 0) {
// No size limit set, skip check
log_info_p(gc, init)("Available space on backing filesystem: N/A");
return;
}
log_info_p(gc, init)("Available space on backing filesystem: %zuM", _available / M);
// Warn if the filesystem doesn't currently have enough space available to hold
// the max heap size. The max heap size will be capped if we later hit this limit
// when trying to expand the heap.
if (_available < max_capacity) {
log_warning_p(gc)("***** WARNING! INCORRECT SYSTEM CONFIGURATION DETECTED! *****");
log_warning_p(gc)("Not enough space available on the backing filesystem to hold the current max Java heap");
log_warning_p(gc)("size (%zuM). Please adjust the size of the backing filesystem accordingly "
"(available", max_capacity / M);
log_warning_p(gc)("space is currently %zuM). Continuing execution with the current filesystem "
"size could", _available / M);
log_warning_p(gc)("lead to a premature OutOfMemoryError being thrown, due to failure to commit memory.");
}
}
void ZPhysicalMemoryBacking::warn_max_map_count(size_t max_capacity) const {
const char* const filename = ZFILENAME_PROC_MAX_MAP_COUNT;
FILE* const file = os::fopen(filename, "r");
if (file == nullptr) {
// Failed to open file, skip check
log_debug_p(gc, init)("Failed to open %s", filename);
return;
}
size_t actual_max_map_count = 0;
const int result = fscanf(file, "%zu", &actual_max_map_count);
fclose(file);
if (result != 1) {
// Failed to read file, skip check
log_debug_p(gc, init)("Failed to read %s", filename);
return;
}
// The required max map count is impossible to calculate exactly since subsystems
// other than ZGC are also creating memory mappings, and we have no control over that.
// However, ZGC tends to create the most mappings and dominate the total count.
// In the worst cases, ZGC will map each granule three times, i.e. once per heap view.
// We speculate that we need another 20% to allow for non-ZGC subsystems to map memory.
const size_t required_max_map_count = (max_capacity / ZGranuleSize) * 3 * 1.2;
if (actual_max_map_count < required_max_map_count) {
log_warning_p(gc)("***** WARNING! INCORRECT SYSTEM CONFIGURATION DETECTED! *****");
log_warning_p(gc)("The system limit on number of memory mappings per process might be too low for the given");
log_warning_p(gc)("max Java heap size (%zuM). Please adjust %s to allow for at",
max_capacity / M, filename);
log_warning_p(gc)("least %zu mappings (current limit is %zu). Continuing execution "
"with the current", required_max_map_count, actual_max_map_count);
log_warning_p(gc)("limit could lead to a premature OutOfMemoryError being thrown, due to failure to map memory.");
}
}
void ZPhysicalMemoryBacking::warn_commit_limits(size_t max_capacity) const {
// Warn if available space is too low
warn_available_space(max_capacity);
// Warn if max map count is too low
warn_max_map_count(max_capacity);
}
bool ZPhysicalMemoryBacking::is_tmpfs() const {
return _filesystem == TMPFS_MAGIC;
}
bool ZPhysicalMemoryBacking::is_hugetlbfs() const {
return _filesystem == HUGETLBFS_MAGIC;
}
bool ZPhysicalMemoryBacking::tmpfs_supports_transparent_huge_pages() const {
// If the shmem_enabled file exists and is readable then we
// know the kernel supports transparent huge pages for tmpfs.
return access(ZFILENAME_SHMEM_ENABLED, R_OK) == 0;
}
ZErrno ZPhysicalMemoryBacking::fallocate_compat_mmap_hugetlbfs(zbacking_offset offset, size_t length, bool touch) const {
// On hugetlbfs, mapping a file segment will fail immediately, without
// the need to touch the mapped pages first, if there aren't enough huge
// pages available to back the mapping.
void* const addr = mmap(nullptr, length, PROT_READ|PROT_WRITE, MAP_SHARED, _fd, untype(offset));
if (addr == MAP_FAILED) {
// Failed
return errno;
}
// Once mapped, the huge pages are only reserved. We need to touch them
// to associate them with the file segment. Note that we can not punch
// hole in file segments which only have reserved pages.
if (touch) {
char* const start = (char*)addr;
char* const end = start + length;
os::pretouch_memory(start, end, _block_size);
}
// Unmap again. From now on, the huge pages that were mapped are allocated
// to this file. There's no risk of getting a SIGBUS when mapping and
// touching these pages again.
if (munmap(addr, length) == -1) {
// Failed
return errno;
}
// Success
return 0;
}
static bool safe_touch_mapping(void* addr, size_t length, size_t page_size) {
char* const start = (char*)addr;
char* const end = start + length;
// Touching a mapping that can't be backed by memory will generate a
// SIGBUS. By using SafeFetch32 any SIGBUS will be safely caught and
// handled. On tmpfs, doing a fetch (rather than a store) is enough
// to cause backing pages to be allocated (there's no zero-page to
// worry about).
for (char *p = start; p < end; p += page_size) {
if (SafeFetch32((int*)p, -1) == -1) {
// Failed
return false;
}
}
// Success
return true;
}
ZErrno ZPhysicalMemoryBacking::fallocate_compat_mmap_tmpfs(zbacking_offset offset, size_t length) const {
// On tmpfs, we need to touch the mapped pages to figure out
// if there are enough pages available to back the mapping.
void* const addr = mmap(nullptr, length, PROT_READ|PROT_WRITE, MAP_SHARED, _fd, untype(offset));
if (addr == MAP_FAILED) {
// Failed
return errno;
}
// Maybe madvise the mapping to use transparent huge pages
if (os::Linux::should_madvise_shmem_thps()) {
os::Linux::madvise_transparent_huge_pages(addr, length);
}
// Touch the mapping (safely) to make sure it's backed by memory
const bool backed = safe_touch_mapping(addr, length, _block_size);
// Unmap again. If successfully touched, the backing memory will
// be allocated to this file. There's no risk of getting a SIGBUS
// when mapping and touching these pages again.
if (munmap(addr, length) == -1) {
// Failed
return errno;
}
// Success
return backed ? 0 : ENOMEM;
}
ZErrno ZPhysicalMemoryBacking::fallocate_compat_pwrite(zbacking_offset offset, size_t length) const {
uint8_t data = 0;
// Allocate backing memory by writing to each block
for (zbacking_offset pos = offset; pos < offset + length; pos += _block_size) {
if (pwrite(_fd, &data, sizeof(data), untype(pos)) == -1) {
// Failed
return errno;
}
}
// Success
return 0;
}
ZErrno ZPhysicalMemoryBacking::fallocate_fill_hole_compat(zbacking_offset offset, size_t length) const {
// fallocate(2) is only supported by tmpfs since Linux 3.5, and by hugetlbfs
// since Linux 4.3. When fallocate(2) is not supported we emulate it using
// mmap/munmap (for hugetlbfs and tmpfs with transparent huge pages) or pwrite
// (for tmpfs without transparent huge pages and other filesystem types).
if (ZLargePages::is_explicit()) {
return fallocate_compat_mmap_hugetlbfs(offset, length, false /* touch */);
} else if (ZLargePages::is_transparent()) {
return fallocate_compat_mmap_tmpfs(offset, length);
} else {
return fallocate_compat_pwrite(offset, length);
}
}
ZErrno ZPhysicalMemoryBacking::fallocate_fill_hole_syscall(zbacking_offset offset, size_t length) const {
const int mode = 0; // Allocate
const int res = ZSyscall::fallocate(_fd, mode, untype(offset), length);
if (res == -1) {
// Failed
return errno;
}
// Success
return 0;
}
ZErrno ZPhysicalMemoryBacking::fallocate_fill_hole(zbacking_offset offset, size_t length) const {
// Using compat mode is more efficient when allocating space on hugetlbfs.
// Note that allocating huge pages this way will only reserve them, and not
// associate them with segments of the file. We must guarantee that we at
// some point touch these segments, otherwise we can not punch hole in them.
// Also note that we need to use compat mode when using transparent huge pages,
// since we need to use madvise(2) on the mapping before the page is allocated.
if (z_fallocate_supported && !ZLargePages::is_enabled()) {
const ZErrno err = fallocate_fill_hole_syscall(offset, length);
if (!err) {
// Success
return 0;
}
if (err != ENOSYS && err != EOPNOTSUPP) {
// Failed
return err;
}
// Not supported
log_debug_p(gc)("Falling back to fallocate() compatibility mode");
z_fallocate_supported = false;
}
return fallocate_fill_hole_compat(offset, length);
}
ZErrno ZPhysicalMemoryBacking::fallocate_punch_hole(zbacking_offset offset, size_t length) const {
if (ZLargePages::is_explicit()) {
// We can only punch hole in pages that have been touched. Non-touched
// pages are only reserved, and not associated with any specific file
// segment. We don't know which pages have been previously touched, so
// we always touch them here to guarantee that we can punch hole.
const ZErrno err = fallocate_compat_mmap_hugetlbfs(offset, length, true /* touch */);
if (err) {
// Failed
return err;
}
}
const int mode = FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE;
if (ZSyscall::fallocate(_fd, mode, untype(offset), length) == -1) {
// Failed
return errno;
}
// Success
return 0;
}
ZErrno ZPhysicalMemoryBacking::split_and_fallocate(bool punch_hole, zbacking_offset offset, size_t length) const {
// Try first half
const zbacking_offset offset0 = offset;
const size_t length0 = align_up(length / 2, _block_size);
const ZErrno err0 = fallocate(punch_hole, offset0, length0);
if (err0) {
return err0;
}
// Try second half
const zbacking_offset offset1 = offset0 + length0;
const size_t length1 = length - length0;
const ZErrno err1 = fallocate(punch_hole, offset1, length1);
if (err1) {
return err1;
}
// Success
return 0;
}
ZErrno ZPhysicalMemoryBacking::fallocate(bool punch_hole, zbacking_offset offset, size_t length) const {
assert(is_aligned(untype(offset), _block_size), "Invalid offset");
assert(is_aligned(length, _block_size), "Invalid length");
const ZErrno err = punch_hole ? fallocate_punch_hole(offset, length) : fallocate_fill_hole(offset, length);
if (err == EINTR && length > _block_size) {
// Calling fallocate(2) with a large length can take a long time to
// complete. When running profilers, such as VTune, this syscall will
// be constantly interrupted by signals. Expanding the file in smaller
// steps avoids this problem.
return split_and_fallocate(punch_hole, offset, length);
}
return err;
}
bool ZPhysicalMemoryBacking::commit_inner(zbacking_offset offset, size_t length) const {
log_trace(gc, heap)("Committing memory: %zuM-%zuM (%zuM)",
untype(offset) / M, untype(to_zbacking_offset_end(offset, length)) / M, length / M);
retry:
const ZErrno err = fallocate(false /* punch_hole */, offset, length);
if (err) {
if (err == ENOSPC && !is_init_completed() && ZLargePages::is_explicit() && z_fallocate_hugetlbfs_attempts-- > 0) {
// If we fail to allocate during initialization, due to lack of space on
// the hugetlbfs filesystem, then we wait and retry a few times before
// giving up. Otherwise there is a risk that running JVMs back-to-back
// will fail, since there is a delay between process termination and the
// huge pages owned by that process being returned to the huge page pool
// and made available for new allocations.
log_debug_p(gc, init)("Failed to commit memory (%s), retrying", err.to_string());
// Wait and retry in one second, in the hope that huge pages will be
// available by then.
sleep(1);
goto retry;
}
// Failed
log_error_p(gc)("Failed to commit memory (%s)", err.to_string());
return false;
}
// Success
return true;
}
size_t ZPhysicalMemoryBacking::commit_numa_preferred(zbacking_offset offset, size_t length, uint32_t numa_id) const {
// Setup NUMA policy to allocate memory from a preferred node
os::Linux::numa_set_preferred(ZNUMA::numa_id_to_node(numa_id));
const size_t committed = commit_default(offset, length);
// Restore NUMA policy
os::Linux::numa_set_preferred(-1);
return committed;
}
size_t ZPhysicalMemoryBacking::commit_default(zbacking_offset offset, size_t length) const {
// Try to commit the whole region
if (commit_inner(offset, length)) {
// Success
return length;
}
// Failed, try to commit as much as possible
zbacking_offset start = offset;
zbacking_offset_end end = to_zbacking_offset_end(offset, length);
for (;;) {
length = align_down((end - start) / 2, ZGranuleSize);
if (length < ZGranuleSize) {
// Done, don't commit more
return start - offset;
}
if (commit_inner(start, length)) {
// Success, try commit more
start += length;
} else {
// Failed, try commit less
end -= length;
}
}
}
size_t ZPhysicalMemoryBacking::commit(zbacking_offset offset, size_t length, uint32_t numa_id) const {
if (ZNUMA::is_enabled() && !ZLargePages::is_explicit()) {
// The memory is required to be preferred at the time it is paged in. As a
// consequence we must prefer the memory when committing non-large pages.
return commit_numa_preferred(offset, length, numa_id);
}
return commit_default(offset, length);
}
size_t ZPhysicalMemoryBacking::uncommit(zbacking_offset offset, size_t length) const {
log_trace(gc, heap)("Uncommitting memory: %zuM-%zuM (%zuM)",
untype(offset) / M, untype(to_zbacking_offset_end(offset, length)) / M, length / M);
const ZErrno err = fallocate(true /* punch_hole */, offset, length);
if (err) {
log_error(gc)("Failed to uncommit memory (%s)", err.to_string());
return 0;
}
return length;
}
void ZPhysicalMemoryBacking::map(zaddress_unsafe addr, size_t size, zbacking_offset offset) const {
const void* const res = mmap((void*)untype(addr), size, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_SHARED, _fd, untype(offset));
if (res == MAP_FAILED) {
ZErrno err;
fatal("Failed to map memory (%s)", err.to_string());
}
}
void ZPhysicalMemoryBacking::unmap(zaddress_unsafe addr, size_t size) const {
// Note that we must keep the address space reservation intact and just detach
// the backing memory. For this reason we map a new anonymous, non-accessible
// and non-reserved page over the mapping instead of actually unmapping.
const void* const res = mmap((void*)untype(addr), size, PROT_NONE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
if (res == MAP_FAILED) {
ZErrno err;
fatal("Failed to map memory (%s)", err.to_string());
}
}