jdk/src/hotspot/share/cds/aotMappedHeapWriter.cpp

1027 lines
41 KiB
C++

/*
* Copyright (c) 2023, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "cds/aotMappedHeapLoader.hpp"
#include "cds/aotMappedHeapWriter.hpp"
#include "cds/aotReferenceObjSupport.hpp"
#include "cds/cdsConfig.hpp"
#include "cds/filemap.hpp"
#include "cds/heapShared.inline.hpp"
#include "cds/regeneratedClasses.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/modules.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/iterator.inline.hpp"
#include "memory/oopFactory.hpp"
#include "memory/universe.hpp"
#include "oops/compressedOops.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oopHandle.inline.hpp"
#include "oops/typeArrayKlass.hpp"
#include "oops/typeArrayOop.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/bitMap.inline.hpp"
#if INCLUDE_G1GC
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/g1HeapRegion.hpp"
#endif
#if INCLUDE_CDS_JAVA_HEAP
GrowableArrayCHeap<u1, mtClassShared>* AOTMappedHeapWriter::_buffer = nullptr;
bool AOTMappedHeapWriter::_is_writing_deterministic_heap = false;
size_t AOTMappedHeapWriter::_buffer_used;
// Heap root segments
HeapRootSegments AOTMappedHeapWriter::_heap_root_segments;
address AOTMappedHeapWriter::_requested_bottom;
address AOTMappedHeapWriter::_requested_top;
GrowableArrayCHeap<AOTMappedHeapWriter::NativePointerInfo, mtClassShared>* AOTMappedHeapWriter::_native_pointers;
GrowableArrayCHeap<oop, mtClassShared>* AOTMappedHeapWriter::_source_objs;
GrowableArrayCHeap<AOTMappedHeapWriter::HeapObjOrder, mtClassShared>* AOTMappedHeapWriter::_source_objs_order;
AOTMappedHeapWriter::BufferOffsetToSourceObjectTable*
AOTMappedHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
DumpedInternedStrings *AOTMappedHeapWriter::_dumped_interned_strings = nullptr;
typedef HashTable<
size_t, // offset of a filler from AOTMappedHeapWriter::buffer_bottom()
size_t, // size of this filler (in bytes)
127, // prime number
AnyObj::C_HEAP,
mtClassShared> FillersTable;
static FillersTable* _fillers;
static int _num_native_ptrs = 0;
void AOTMappedHeapWriter::init() {
if (CDSConfig::is_dumping_heap()) {
Universe::heap()->collect(GCCause::_java_lang_system_gc);
_buffer_offset_to_source_obj_table = new (mtClassShared) BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
_dumped_interned_strings = new (mtClass)DumpedInternedStrings(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE);
_fillers = new (mtClassShared) FillersTable();
_requested_bottom = nullptr;
_requested_top = nullptr;
_native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
_source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
if (CDSConfig::old_cds_flags_used()) {
// With the old CDS workflow, we can guatantee determninistic output: given
// the same classlist file, we can generate the same static CDS archive.
// To ensure determinism, we always use the same compressed oop encoding
// (zero-based, no shift). See set_requested_address_range().
_is_writing_deterministic_heap = true;
} else {
// Determninistic output is not supported by the new AOT workflow, so
// we don't force the (zero-based, no shift) encoding. This way, it is more
// likely that we can avoid oop relocation in the production run.
_is_writing_deterministic_heap = false;
}
}
}
// For AOTMappedHeapWriter::narrow_oop_{mode, base, shift}(), see comments
// in AOTMappedHeapWriter::set_requested_address_range(),
CompressedOops::Mode AOTMappedHeapWriter::narrow_oop_mode() {
if (is_writing_deterministic_heap()) {
return CompressedOops::UnscaledNarrowOop;
} else {
return CompressedOops::mode();
}
}
address AOTMappedHeapWriter::narrow_oop_base() {
if (is_writing_deterministic_heap()) {
return nullptr;
} else {
return CompressedOops::base();
}
}
int AOTMappedHeapWriter::narrow_oop_shift() {
if (is_writing_deterministic_heap()) {
return 0;
} else {
return CompressedOops::shift();
}
}
void AOTMappedHeapWriter::delete_tables_with_raw_oops() {
delete _source_objs;
_source_objs = nullptr;
delete _dumped_interned_strings;
_dumped_interned_strings = nullptr;
}
void AOTMappedHeapWriter::add_source_obj(oop src_obj) {
_source_objs->append(src_obj);
}
void AOTMappedHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
ArchiveMappedHeapInfo* heap_info) {
assert(CDSConfig::is_dumping_heap(), "sanity");
allocate_buffer();
copy_source_objs_to_buffer(roots);
set_requested_address_range(heap_info);
relocate_embedded_oops(roots, heap_info);
}
bool AOTMappedHeapWriter::is_too_large_to_archive(oop o) {
return is_too_large_to_archive(o->size());
}
bool AOTMappedHeapWriter::is_string_too_large_to_archive(oop string) {
typeArrayOop value = java_lang_String::value_no_keepalive(string);
return is_too_large_to_archive(value);
}
bool AOTMappedHeapWriter::is_too_large_to_archive(size_t size) {
assert(size > 0, "no zero-size object");
assert(size * HeapWordSize > size, "no overflow");
static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
size_t byte_size = size * HeapWordSize;
if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
return true;
} else {
return false;
}
}
// Keep track of the contents of the archived interned string table. This table
// is used only by CDSHeapVerifier.
void AOTMappedHeapWriter::add_to_dumped_interned_strings(oop string) {
assert_at_safepoint(); // DumpedInternedStrings uses raw oops
assert(!is_string_too_large_to_archive(string), "must be");
bool created;
_dumped_interned_strings->put_if_absent(string, true, &created);
if (created) {
// Prevent string deduplication from changing the value field to
// something not in the archive.
java_lang_String::set_deduplication_forbidden(string);
_dumped_interned_strings->maybe_grow();
}
}
bool AOTMappedHeapWriter::is_dumped_interned_string(oop o) {
return _dumped_interned_strings->get(o) != nullptr;
}
// Various lookup functions between source_obj, buffered_obj and requested_obj
bool AOTMappedHeapWriter::is_in_requested_range(oop o) {
assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
address a = cast_from_oop<address>(o);
return (_requested_bottom <= a && a < _requested_top);
}
oop AOTMappedHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
oop req_obj = cast_to_oop(_requested_bottom + offset);
assert(is_in_requested_range(req_obj), "must be");
return req_obj;
}
oop AOTMappedHeapWriter::source_obj_to_requested_obj(oop src_obj) {
assert(CDSConfig::is_dumping_heap(), "dump-time only");
HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
if (p != nullptr) {
return requested_obj_from_buffer_offset(p->buffer_offset());
} else {
return nullptr;
}
}
oop AOTMappedHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
if (oh != nullptr) {
return oh->resolve();
} else {
return nullptr;
}
}
Klass* AOTMappedHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
oop p = buffered_addr_to_source_obj(buffered_addr);
if (p != nullptr) {
return p->klass();
} else if (get_filler_size_at(buffered_addr) > 0) {
return Universe::fillerArrayKlass();
} else {
// This is one of the root segments
return Universe::objectArrayKlass();
}
}
size_t AOTMappedHeapWriter::size_of_buffered_oop(address buffered_addr) {
oop p = buffered_addr_to_source_obj(buffered_addr);
if (p != nullptr) {
return p->size();
}
size_t nbytes = get_filler_size_at(buffered_addr);
if (nbytes > 0) {
assert((nbytes % BytesPerWord) == 0, "should be aligned");
return nbytes / BytesPerWord;
}
address hrs = buffer_bottom();
for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
nbytes = _heap_root_segments.size_in_bytes(seg_idx);
if (hrs == buffered_addr) {
assert((nbytes % BytesPerWord) == 0, "should be aligned");
return nbytes / BytesPerWord;
}
hrs += nbytes;
}
ShouldNotReachHere();
return 0;
}
address AOTMappedHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
return _requested_bottom + buffered_address_to_offset(buffered_addr);
}
address AOTMappedHeapWriter::requested_address() {
assert(_buffer != nullptr, "must be initialized");
return _requested_bottom;
}
void AOTMappedHeapWriter::allocate_buffer() {
int initial_buffer_size = 100000;
_buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
_buffer_used = 0;
ensure_buffer_space(1); // so that buffer_bottom() works
}
void AOTMappedHeapWriter::ensure_buffer_space(size_t min_bytes) {
// We usually have very small heaps. If we get a huge one it's probably caused by a bug.
guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
_buffer->at_grow(to_array_index(min_bytes));
}
objArrayOop AOTMappedHeapWriter::allocate_root_segment(size_t offset, int element_count) {
HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
memset(mem, 0, objArrayOopDesc::object_size(element_count));
// The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
if (UseCompactObjectHeaders) {
oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
} else {
oopDesc::set_mark(mem, markWord::prototype());
oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
}
arrayOopDesc::set_length(mem, element_count);
return objArrayOop(cast_to_oop(mem));
}
void AOTMappedHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
// Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
if (UseCompressedOops) {
*segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
} else {
*segment->obj_at_addr<oop>(index) = root;
}
}
void AOTMappedHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
// Depending on the number of classes we are archiving, a single roots array may be
// larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
// allows us to chop the large array into a series of "segments". Current layout
// starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
// with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
// This is simple and efficient. We do not need filler objects anywhere between the segments,
// or immediately after the last segment. This allows starting the object dump immediately
// after the roots.
assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
"Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
"Should match exactly");
HeapRootSegments segments(_buffer_used,
roots->length(),
MIN_GC_REGION_ALIGNMENT,
max_elem_count);
int root_index = 0;
for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
int size_elems = segments.size_in_elems(seg_idx);
size_t size_bytes = segments.size_in_bytes(seg_idx);
size_t oop_offset = _buffer_used;
_buffer_used = oop_offset + size_bytes;
ensure_buffer_space(_buffer_used);
assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
"Roots segment %zu start is not aligned: %zu",
segments.count(), oop_offset);
objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
for (int i = 0; i < size_elems; i++) {
root_segment_at_put(seg_oop, i, roots->at(root_index++));
}
log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
size_elems, size_bytes, p2i(seg_oop));
}
assert(root_index == roots->length(), "Post-condition: All roots are handled");
_heap_root_segments = segments;
}
// The goal is to sort the objects in increasing order of:
// - objects that have only oop pointers
// - objects that have both native and oop pointers
// - objects that have only native pointers
// - objects that have no pointers
static int oop_sorting_rank(oop o) {
bool has_oop_ptr, has_native_ptr;
HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
if (has_oop_ptr) {
if (!has_native_ptr) {
return 0;
} else {
return 1;
}
} else {
if (has_native_ptr) {
return 2;
} else {
return 3;
}
}
}
int AOTMappedHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
int rank_a = a->_rank;
int rank_b = b->_rank;
if (rank_a != rank_b) {
return rank_a - rank_b;
} else {
// If they are the same rank, sort them by their position in the _source_objs array
return a->_index - b->_index;
}
}
void AOTMappedHeapWriter::sort_source_objs() {
log_info(aot)("sorting heap objects");
int len = _source_objs->length();
_source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
for (int i = 0; i < len; i++) {
oop o = _source_objs->at(i);
int rank = oop_sorting_rank(o);
HeapObjOrder os = {i, rank};
_source_objs_order->append(os);
}
log_info(aot)("computed ranks");
_source_objs_order->sort(compare_objs_by_oop_fields);
log_info(aot)("sorting heap objects done");
}
void AOTMappedHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
// There could be multiple root segments, which we want to be aligned by region.
// Putting them ahead of objects makes sure we waste no space.
copy_roots_to_buffer(roots);
sort_source_objs();
for (int i = 0; i < _source_objs_order->length(); i++) {
int src_obj_index = _source_objs_order->at(i)._index;
oop src_obj = _source_objs->at(src_obj_index);
HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
assert(info != nullptr, "must be");
size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
info->set_buffer_offset(buffer_offset);
OopHandle handle(Universe::vm_global(), src_obj);
_buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
_buffer_offset_to_source_obj_table->maybe_grow();
if (java_lang_Module::is_instance(src_obj)) {
Modules::check_archived_module_oop(src_obj);
}
}
log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
_buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
}
size_t AOTMappedHeapWriter::filler_array_byte_size(int length) {
size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
return byte_size;
}
int AOTMappedHeapWriter::filler_array_length(size_t fill_bytes) {
assert(is_object_aligned(fill_bytes), "must be");
size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
int initial_length = to_array_length(fill_bytes / elemSize);
for (int length = initial_length; length >= 0; length --) {
size_t array_byte_size = filler_array_byte_size(length);
if (array_byte_size == fill_bytes) {
return length;
}
}
ShouldNotReachHere();
return -1;
}
HeapWord* AOTMappedHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
memset(mem, 0, fill_bytes);
narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
if (UseCompactObjectHeaders) {
oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
} else {
oopDesc::set_mark(mem, markWord::prototype());
cast_to_oop(mem)->set_narrow_klass(nk);
}
arrayOopDesc::set_length(mem, array_length);
return mem;
}
void AOTMappedHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
// We fill only with arrays (so we don't need to use a single HeapWord filler if the
// leftover space is smaller than a zero-sized array object). Therefore, we need to
// make sure there's enough space of min_filler_byte_size in the current region after
// required_byte_size has been allocated. If not, fill the remainder of the current
// region.
size_t min_filler_byte_size = filler_array_byte_size(0);
size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
if (cur_min_region_bottom != next_min_region_bottom) {
// Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
// we can map the region in any region-based collector.
assert(next_min_region_bottom > cur_min_region_bottom, "must be");
assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
"no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT);
const size_t filler_end = next_min_region_bottom;
const size_t fill_bytes = filler_end - _buffer_used;
assert(fill_bytes > 0, "must be");
ensure_buffer_space(filler_end);
int array_length = filler_array_length(fill_bytes);
log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
array_length, fill_bytes, _buffer_used);
HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
_buffer_used = filler_end;
_fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
}
}
size_t AOTMappedHeapWriter::get_filler_size_at(address buffered_addr) {
size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
if (p != nullptr) {
assert(*p > 0, "filler must be larger than zero bytes");
return *p;
} else {
return 0; // buffered_addr is not a filler
}
}
template <typename T>
void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
*field_addr = value;
}
size_t AOTMappedHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
assert(!is_too_large_to_archive(src_obj), "already checked");
size_t byte_size = src_obj->size() * HeapWordSize;
assert(byte_size > 0, "no zero-size objects");
// For region-based collectors such as G1, the archive heap may be mapped into
// multiple regions. We need to make sure that we don't have an object that can possible
// span across two regions.
maybe_fill_gc_region_gap(byte_size);
size_t new_used = _buffer_used + byte_size;
assert(new_used > _buffer_used, "no wrap around");
size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
ensure_buffer_space(new_used);
address from = cast_from_oop<address>(src_obj);
address to = offset_to_buffered_address<address>(_buffer_used);
assert(is_object_aligned(_buffer_used), "sanity");
assert(is_object_aligned(byte_size), "sanity");
memcpy(to, from, byte_size);
// These native pointers will be restored explicitly at run time.
if (java_lang_Module::is_instance(src_obj)) {
update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
} else if (java_lang_ClassLoader::is_instance(src_obj)) {
#ifdef ASSERT
// We only archive these loaders
if (src_obj != SystemDictionary::java_platform_loader() &&
src_obj != SystemDictionary::java_system_loader()) {
assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
}
#endif
update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
}
size_t buffered_obj_offset = _buffer_used;
_buffer_used = new_used;
return buffered_obj_offset;
}
// Set the range [_requested_bottom, _requested_top), the requested address range of all
// the archived heap objects in the production run.
//
// (1) UseCompressedOops == true && !is_writing_deterministic_heap()
//
// The archived objects are stored using the COOPS encoding of the assembly phase.
// We pick a range within the heap used by the assembly phase.
//
// In the production run, if different COOPS encodings are used:
// - The heap contents needs to be relocated.
//
// (2) UseCompressedOops == true && is_writing_deterministic_heap()
//
// We always use zero-based, zero-shift encoding. _requested_top is aligned to 0x10000000.
//
// (3) UseCompressedOops == false:
//
// In the production run, the heap range is usually picked (randomly) by the OS, so we
// will almost always need to perform relocation, regardless of how we pick the requested
// address range.
//
// So we just hard code it to NOCOOPS_REQUESTED_BASE.
//
void AOTMappedHeapWriter::set_requested_address_range(ArchiveMappedHeapInfo* info) {
assert(!info->is_used(), "only set once");
size_t heap_region_byte_size = _buffer_used;
assert(heap_region_byte_size > 0, "must archived at least one object!");
if (UseCompressedOops) {
if (is_writing_deterministic_heap()) {
// Pick a heap range so that requested addresses can be encoded with zero-base/no shift.
// We align the requested bottom to at least 1 MB: if the production run uses G1 with a small
// heap (e.g., -Xmx256m), it's likely that we can map the archived objects at the
// requested location to avoid relocation.
//
// For other collectors or larger heaps, relocation is unavoidable, but is usually
// quite cheap. If you really want to avoid relocation, use the AOT workflow instead.
address heap_end = (address)0x100000000;
size_t alignment = MAX2(MIN_GC_REGION_ALIGNMENT, 1024 * 1024);
if (align_up(heap_region_byte_size, alignment) >= (size_t)heap_end) {
log_error(aot, heap)("cached heap space is too large: %zu bytes", heap_region_byte_size);
AOTMetaspace::unrecoverable_writing_error();
}
_requested_bottom = align_down(heap_end - heap_region_byte_size, alignment);
} else if (UseG1GC) {
// For G1, pick the range at the top of the current heap. If the exact same heap sizes
// are used in the production run, it's likely that we can map the archived objects
// at the requested location to avoid relocation.
address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
log_info(aot, heap)("Heap end = %p", heap_end);
_requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
_requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
} else {
_requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
}
} else {
// We always write the objects as if the heap started at this address. This
// makes the contents of the archive heap deterministic.
//
// Note that at runtime, the heap address is selected by the OS, so the archive
// heap will not be mapped at 0x10000000, and the contents need to be patched.
_requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
}
assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
_requested_top = _requested_bottom + _buffer_used;
info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
offset_to_buffered_address<HeapWord*>(_buffer_used)));
info->set_root_segments(_heap_root_segments);
}
// Oop relocation
template <typename T> T* AOTMappedHeapWriter::requested_addr_to_buffered_addr(T* p) {
assert(is_in_requested_range(cast_to_oop(p)), "must be");
address addr = address(p);
assert(addr >= _requested_bottom, "must be");
size_t offset = addr - _requested_bottom;
return offset_to_buffered_address<T*>(offset);
}
template <typename T> oop AOTMappedHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
oop o = load_oop_from_buffer(buffered_addr);
assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
return o;
}
template <typename T> void AOTMappedHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
oop request_oop) {
assert(request_oop == nullptr || is_in_requested_range(request_oop), "must be");
store_oop_in_buffer(buffered_addr, request_oop);
}
inline void AOTMappedHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
*buffered_addr = requested_obj;
}
inline void AOTMappedHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
narrowOop val = CompressedOops::encode(requested_obj);
*buffered_addr = val;
}
oop AOTMappedHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
return *buffered_addr;
}
oop AOTMappedHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
return CompressedOops::decode(*buffered_addr);
}
template <typename T> void AOTMappedHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, oop source_referent, CHeapBitMap* oopmap) {
oop request_referent = source_obj_to_requested_obj(source_referent);
if (UseCompressedOops && is_writing_deterministic_heap()) {
// We use zero-based, 0-shift encoding, so the narrowOop is just the lower
// 32 bits of request_referent
intptr_t addr = cast_from_oop<intptr_t>(request_referent);
*((narrowOop*)field_addr_in_buffer) = CompressedOops::narrow_oop_cast(addr);
} else {
store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
}
if (request_referent != nullptr) {
mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
}
}
template <typename T> void AOTMappedHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
address requested_region_bottom;
assert(request_p >= (T*)_requested_bottom, "sanity");
assert(request_p < (T*)_requested_top, "sanity");
requested_region_bottom = _requested_bottom;
// Mark the pointer in the oopmap
T* region_bottom = (T*)requested_region_bottom;
assert(request_p >= region_bottom, "must be");
BitMap::idx_t idx = request_p - region_bottom;
assert(idx < oopmap->size(), "overflow");
oopmap->set_bit(idx);
}
void AOTMappedHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) {
assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
oop fake_oop = cast_to_oop(buffered_addr);
if (UseCompactObjectHeaders) {
fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
} else {
fake_oop->set_narrow_klass(nk);
}
if (src_obj == nullptr) {
return;
}
// We need to retain the identity_hash, because it may have been used by some hashtables
// in the shared heap.
if (!src_obj->fast_no_hash_check()) {
intptr_t src_hash = src_obj->identity_hash();
if (UseCompactObjectHeaders) {
fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
} else {
fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
}
assert(fake_oop->mark().is_unlocked(), "sanity");
DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
}
// Strip age bits.
fake_oop->set_mark(fake_oop->mark().set_age(0));
}
class AOTMappedHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
oop _src_obj;
address _buffered_obj;
CHeapBitMap* _oopmap;
bool _is_java_lang_ref;
public:
EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
_src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
{
_is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
}
void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
private:
template <class T> void do_oop_work(T *p) {
int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
T* field_addr = (T*)(_buffered_obj + field_offset);
oop referent = load_source_oop_from_buffer<T>(field_addr);
referent = HeapShared::maybe_remap_referent(_is_java_lang_ref, field_offset, referent);
AOTMappedHeapWriter::relocate_field_in_buffer<T>(field_addr, referent, _oopmap);
}
};
static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
// The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
size_t start = bitmap->find_first_set_bit(0);
size_t end = bitmap->size();
log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
start, end,
start * 100 / total_bits,
end * 100 / total_bits,
(end - start) * 100 / total_bits);
}
// Update all oop fields embedded in the buffered objects
void AOTMappedHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
ArchiveMappedHeapInfo* heap_info) {
size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
size_t heap_region_byte_size = _buffer_used;
heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit);
for (int i = 0; i < _source_objs_order->length(); i++) {
int src_obj_index = _source_objs_order->at(i)._index;
oop src_obj = _source_objs->at(src_obj_index);
HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
assert(info != nullptr, "must be");
oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
src_obj->oop_iterate(&relocator);
mark_native_pointers(src_obj);
};
// Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
// doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
address buffered_obj = offset_to_buffered_address<address>(seg_offset);
int length = _heap_root_segments.size_in_elems(seg_idx);
size_t elem_size = UseCompressedOops ? sizeof(narrowOop) : sizeof(oop);
for (int i = 0; i < length; i++) {
// There is no source object; these are native oops - load, translate and
// write back
size_t elem_offset = objArrayOopDesc::base_offset_in_bytes() + elem_size * i;
HeapWord* elem_addr = (HeapWord*)(buffered_obj + elem_offset);
oop obj = NativeAccess<>::oop_load(elem_addr);
obj = HeapShared::maybe_remap_referent(false /* is_reference_field */, elem_offset, obj);
if (UseCompressedOops) {
relocate_field_in_buffer<narrowOop>((narrowOop*)elem_addr, obj, heap_info->oopmap());
} else {
relocate_field_in_buffer<oop>((oop*)elem_addr, obj, heap_info->oopmap());
}
}
}
compute_ptrmap(heap_info);
size_t total_bytes = (size_t)_buffer->length();
log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
}
void AOTMappedHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
if (ptr != nullptr) {
NativePointerInfo info;
info._src_obj = src_obj;
info._field_offset = field_offset;
_native_pointers->append(info);
HeapShared::set_has_native_pointers(src_obj);
_num_native_ptrs ++;
}
}
void AOTMappedHeapWriter::mark_native_pointers(oop orig_obj) {
HeapShared::do_metadata_offsets(orig_obj, [&](int offset) {
mark_native_pointer(orig_obj, offset);
});
}
void AOTMappedHeapWriter::compute_ptrmap(ArchiveMappedHeapInfo* heap_info) {
int num_non_null_ptrs = 0;
Metadata** bottom = (Metadata**) _requested_bottom;
Metadata** top = (Metadata**) _requested_top; // exclusive
heap_info->ptrmap()->resize(top - bottom);
BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
for (int i = 0; i < _native_pointers->length(); i++) {
NativePointerInfo info = _native_pointers->at(i);
oop src_obj = info._src_obj;
int field_offset = info._field_offset;
HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
// requested_field_addr = the address of this field in the requested space
oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
// Mark this field in the bitmap
BitMap::idx_t idx = requested_field_addr - bottom;
heap_info->ptrmap()->set_bit(idx);
num_non_null_ptrs ++;
max_idx = MAX2(max_idx, idx);
// Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
// this address if the RO/RW regions are mapped at the default location).
Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
Metadata* native_ptr = *buffered_field_addr;
guarantee(native_ptr != nullptr, "sanity");
if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
}
guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
"Metadata %p should have been archived", native_ptr);
address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
*buffered_field_addr = (Metadata*)requested_native_ptr;
}
heap_info->ptrmap()->resize(max_idx + 1);
log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
}
AOTMapLogger::OopDataIterator* AOTMappedHeapWriter::oop_iterator(ArchiveMappedHeapInfo* heap_info) {
class MappedWriterOopIterator : public AOTMapLogger::OopDataIterator {
private:
address _current;
address _next;
address _buffer_start;
address _buffer_end;
uint64_t _buffer_start_narrow_oop;
intptr_t _buffer_to_requested_delta;
int _requested_shift;
size_t _num_root_segments;
size_t _num_obj_arrays_logged;
public:
MappedWriterOopIterator(address buffer_start,
address buffer_end,
uint64_t buffer_start_narrow_oop,
intptr_t buffer_to_requested_delta,
int requested_shift,
size_t num_root_segments)
: _current(nullptr),
_next(buffer_start),
_buffer_start(buffer_start),
_buffer_end(buffer_end),
_buffer_start_narrow_oop(buffer_start_narrow_oop),
_buffer_to_requested_delta(buffer_to_requested_delta),
_requested_shift(requested_shift),
_num_root_segments(num_root_segments),
_num_obj_arrays_logged(0) {
}
AOTMapLogger::OopData capture(address buffered_addr) {
oopDesc* raw_oop = (oopDesc*)buffered_addr;
size_t size = size_of_buffered_oop(buffered_addr);
address requested_addr = buffered_addr_to_requested_addr(buffered_addr);
intptr_t target_location = (intptr_t)requested_addr;
uint64_t pd = (uint64_t)(pointer_delta(buffered_addr, _buffer_start, 1));
uint32_t narrow_location = checked_cast<uint32_t>(_buffer_start_narrow_oop + (pd >> _requested_shift));
Klass* klass = real_klass_of_buffered_oop(buffered_addr);
return { buffered_addr,
requested_addr,
target_location,
narrow_location,
raw_oop,
klass,
size,
false };
}
bool has_next() override {
return _next < _buffer_end;
}
AOTMapLogger::OopData next() override {
_current = _next;
AOTMapLogger::OopData result = capture(_current);
if (result._klass->is_objArray_klass()) {
result._is_root_segment = _num_obj_arrays_logged++ < _num_root_segments;
}
_next = _current + result._size * BytesPerWord;
return result;
}
AOTMapLogger::OopData obj_at(narrowOop* addr) override {
uint64_t n = (uint64_t)(*addr);
if (n == 0) {
return null_data();
} else {
precond(n >= _buffer_start_narrow_oop);
address buffer_addr = _buffer_start + ((n - _buffer_start_narrow_oop) << _requested_shift);
return capture(buffer_addr);
}
}
AOTMapLogger::OopData obj_at(oop* addr) override {
address requested_value = cast_from_oop<address>(*addr);
if (requested_value == nullptr) {
return null_data();
} else {
address buffer_addr = requested_value - _buffer_to_requested_delta;
return capture(buffer_addr);
}
}
GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
return new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
}
};
MemRegion r = heap_info->buffer_region();
address buffer_start = address(r.start());
address buffer_end = address(r.end());
address requested_base = UseCompressedOops ? AOTMappedHeapWriter::narrow_oop_base() : (address)AOTMappedHeapWriter::NOCOOPS_REQUESTED_BASE;
address requested_start = UseCompressedOops ? AOTMappedHeapWriter::buffered_addr_to_requested_addr(buffer_start) : requested_base;
int requested_shift = AOTMappedHeapWriter::narrow_oop_shift();
intptr_t buffer_to_requested_delta = requested_start - buffer_start;
uint64_t buffer_start_narrow_oop = 0xdeadbeed;
if (UseCompressedOops) {
buffer_start_narrow_oop = (uint64_t)(pointer_delta(requested_start, requested_base, 1)) >> requested_shift;
assert(buffer_start_narrow_oop < 0xffffffff, "sanity");
}
return new MappedWriterOopIterator(buffer_start,
buffer_end,
buffer_start_narrow_oop,
buffer_to_requested_delta,
requested_shift,
heap_info->root_segments().count());
}
#endif // INCLUDE_CDS_JAVA_HEAP