mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
1027 lines
41 KiB
C++
1027 lines
41 KiB
C++
/*
|
|
* Copyright (c) 2023, 2026, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "cds/aotMappedHeapLoader.hpp"
|
|
#include "cds/aotMappedHeapWriter.hpp"
|
|
#include "cds/aotReferenceObjSupport.hpp"
|
|
#include "cds/cdsConfig.hpp"
|
|
#include "cds/filemap.hpp"
|
|
#include "cds/heapShared.inline.hpp"
|
|
#include "cds/regeneratedClasses.hpp"
|
|
#include "classfile/javaClasses.hpp"
|
|
#include "classfile/modules.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/iterator.inline.hpp"
|
|
#include "memory/oopFactory.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/compressedOops.hpp"
|
|
#include "oops/objArrayOop.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "oops/oopHandle.inline.hpp"
|
|
#include "oops/typeArrayKlass.hpp"
|
|
#include "oops/typeArrayOop.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "utilities/bitMap.inline.hpp"
|
|
#if INCLUDE_G1GC
|
|
#include "gc/g1/g1CollectedHeap.hpp"
|
|
#include "gc/g1/g1HeapRegion.hpp"
|
|
#endif
|
|
|
|
#if INCLUDE_CDS_JAVA_HEAP
|
|
|
|
GrowableArrayCHeap<u1, mtClassShared>* AOTMappedHeapWriter::_buffer = nullptr;
|
|
|
|
bool AOTMappedHeapWriter::_is_writing_deterministic_heap = false;
|
|
size_t AOTMappedHeapWriter::_buffer_used;
|
|
|
|
// Heap root segments
|
|
HeapRootSegments AOTMappedHeapWriter::_heap_root_segments;
|
|
|
|
address AOTMappedHeapWriter::_requested_bottom;
|
|
address AOTMappedHeapWriter::_requested_top;
|
|
|
|
GrowableArrayCHeap<AOTMappedHeapWriter::NativePointerInfo, mtClassShared>* AOTMappedHeapWriter::_native_pointers;
|
|
GrowableArrayCHeap<oop, mtClassShared>* AOTMappedHeapWriter::_source_objs;
|
|
GrowableArrayCHeap<AOTMappedHeapWriter::HeapObjOrder, mtClassShared>* AOTMappedHeapWriter::_source_objs_order;
|
|
|
|
AOTMappedHeapWriter::BufferOffsetToSourceObjectTable*
|
|
AOTMappedHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
|
|
|
|
DumpedInternedStrings *AOTMappedHeapWriter::_dumped_interned_strings = nullptr;
|
|
|
|
typedef HashTable<
|
|
size_t, // offset of a filler from AOTMappedHeapWriter::buffer_bottom()
|
|
size_t, // size of this filler (in bytes)
|
|
127, // prime number
|
|
AnyObj::C_HEAP,
|
|
mtClassShared> FillersTable;
|
|
static FillersTable* _fillers;
|
|
static int _num_native_ptrs = 0;
|
|
|
|
void AOTMappedHeapWriter::init() {
|
|
if (CDSConfig::is_dumping_heap()) {
|
|
Universe::heap()->collect(GCCause::_java_lang_system_gc);
|
|
|
|
_buffer_offset_to_source_obj_table = new (mtClassShared) BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
|
|
_dumped_interned_strings = new (mtClass)DumpedInternedStrings(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE);
|
|
_fillers = new (mtClassShared) FillersTable();
|
|
_requested_bottom = nullptr;
|
|
_requested_top = nullptr;
|
|
|
|
_native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
|
|
_source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
|
|
|
|
guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
|
|
|
|
if (CDSConfig::old_cds_flags_used()) {
|
|
// With the old CDS workflow, we can guatantee determninistic output: given
|
|
// the same classlist file, we can generate the same static CDS archive.
|
|
// To ensure determinism, we always use the same compressed oop encoding
|
|
// (zero-based, no shift). See set_requested_address_range().
|
|
_is_writing_deterministic_heap = true;
|
|
} else {
|
|
// Determninistic output is not supported by the new AOT workflow, so
|
|
// we don't force the (zero-based, no shift) encoding. This way, it is more
|
|
// likely that we can avoid oop relocation in the production run.
|
|
_is_writing_deterministic_heap = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For AOTMappedHeapWriter::narrow_oop_{mode, base, shift}(), see comments
|
|
// in AOTMappedHeapWriter::set_requested_address_range(),
|
|
CompressedOops::Mode AOTMappedHeapWriter::narrow_oop_mode() {
|
|
if (is_writing_deterministic_heap()) {
|
|
return CompressedOops::UnscaledNarrowOop;
|
|
} else {
|
|
return CompressedOops::mode();
|
|
}
|
|
}
|
|
|
|
address AOTMappedHeapWriter::narrow_oop_base() {
|
|
if (is_writing_deterministic_heap()) {
|
|
return nullptr;
|
|
} else {
|
|
return CompressedOops::base();
|
|
}
|
|
}
|
|
|
|
int AOTMappedHeapWriter::narrow_oop_shift() {
|
|
if (is_writing_deterministic_heap()) {
|
|
return 0;
|
|
} else {
|
|
return CompressedOops::shift();
|
|
}
|
|
}
|
|
|
|
void AOTMappedHeapWriter::delete_tables_with_raw_oops() {
|
|
delete _source_objs;
|
|
_source_objs = nullptr;
|
|
|
|
delete _dumped_interned_strings;
|
|
_dumped_interned_strings = nullptr;
|
|
}
|
|
|
|
void AOTMappedHeapWriter::add_source_obj(oop src_obj) {
|
|
_source_objs->append(src_obj);
|
|
}
|
|
|
|
void AOTMappedHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
|
|
ArchiveMappedHeapInfo* heap_info) {
|
|
assert(CDSConfig::is_dumping_heap(), "sanity");
|
|
allocate_buffer();
|
|
copy_source_objs_to_buffer(roots);
|
|
set_requested_address_range(heap_info);
|
|
relocate_embedded_oops(roots, heap_info);
|
|
}
|
|
|
|
bool AOTMappedHeapWriter::is_too_large_to_archive(oop o) {
|
|
return is_too_large_to_archive(o->size());
|
|
}
|
|
|
|
bool AOTMappedHeapWriter::is_string_too_large_to_archive(oop string) {
|
|
typeArrayOop value = java_lang_String::value_no_keepalive(string);
|
|
return is_too_large_to_archive(value);
|
|
}
|
|
|
|
bool AOTMappedHeapWriter::is_too_large_to_archive(size_t size) {
|
|
assert(size > 0, "no zero-size object");
|
|
assert(size * HeapWordSize > size, "no overflow");
|
|
static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
|
|
|
|
size_t byte_size = size * HeapWordSize;
|
|
if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Keep track of the contents of the archived interned string table. This table
|
|
// is used only by CDSHeapVerifier.
|
|
void AOTMappedHeapWriter::add_to_dumped_interned_strings(oop string) {
|
|
assert_at_safepoint(); // DumpedInternedStrings uses raw oops
|
|
assert(!is_string_too_large_to_archive(string), "must be");
|
|
bool created;
|
|
_dumped_interned_strings->put_if_absent(string, true, &created);
|
|
if (created) {
|
|
// Prevent string deduplication from changing the value field to
|
|
// something not in the archive.
|
|
java_lang_String::set_deduplication_forbidden(string);
|
|
_dumped_interned_strings->maybe_grow();
|
|
}
|
|
}
|
|
|
|
bool AOTMappedHeapWriter::is_dumped_interned_string(oop o) {
|
|
return _dumped_interned_strings->get(o) != nullptr;
|
|
}
|
|
|
|
// Various lookup functions between source_obj, buffered_obj and requested_obj
|
|
bool AOTMappedHeapWriter::is_in_requested_range(oop o) {
|
|
assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
|
|
address a = cast_from_oop<address>(o);
|
|
return (_requested_bottom <= a && a < _requested_top);
|
|
}
|
|
|
|
oop AOTMappedHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
|
|
oop req_obj = cast_to_oop(_requested_bottom + offset);
|
|
assert(is_in_requested_range(req_obj), "must be");
|
|
return req_obj;
|
|
}
|
|
|
|
oop AOTMappedHeapWriter::source_obj_to_requested_obj(oop src_obj) {
|
|
assert(CDSConfig::is_dumping_heap(), "dump-time only");
|
|
HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
|
|
if (p != nullptr) {
|
|
return requested_obj_from_buffer_offset(p->buffer_offset());
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
oop AOTMappedHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
|
|
OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
|
|
if (oh != nullptr) {
|
|
return oh->resolve();
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
Klass* AOTMappedHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
|
|
oop p = buffered_addr_to_source_obj(buffered_addr);
|
|
if (p != nullptr) {
|
|
return p->klass();
|
|
} else if (get_filler_size_at(buffered_addr) > 0) {
|
|
return Universe::fillerArrayKlass();
|
|
} else {
|
|
// This is one of the root segments
|
|
return Universe::objectArrayKlass();
|
|
}
|
|
}
|
|
|
|
size_t AOTMappedHeapWriter::size_of_buffered_oop(address buffered_addr) {
|
|
oop p = buffered_addr_to_source_obj(buffered_addr);
|
|
if (p != nullptr) {
|
|
return p->size();
|
|
}
|
|
|
|
size_t nbytes = get_filler_size_at(buffered_addr);
|
|
if (nbytes > 0) {
|
|
assert((nbytes % BytesPerWord) == 0, "should be aligned");
|
|
return nbytes / BytesPerWord;
|
|
}
|
|
|
|
address hrs = buffer_bottom();
|
|
for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
|
|
nbytes = _heap_root_segments.size_in_bytes(seg_idx);
|
|
if (hrs == buffered_addr) {
|
|
assert((nbytes % BytesPerWord) == 0, "should be aligned");
|
|
return nbytes / BytesPerWord;
|
|
}
|
|
hrs += nbytes;
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
return 0;
|
|
}
|
|
|
|
address AOTMappedHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
|
|
return _requested_bottom + buffered_address_to_offset(buffered_addr);
|
|
}
|
|
|
|
address AOTMappedHeapWriter::requested_address() {
|
|
assert(_buffer != nullptr, "must be initialized");
|
|
return _requested_bottom;
|
|
}
|
|
|
|
void AOTMappedHeapWriter::allocate_buffer() {
|
|
int initial_buffer_size = 100000;
|
|
_buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
|
|
_buffer_used = 0;
|
|
ensure_buffer_space(1); // so that buffer_bottom() works
|
|
}
|
|
|
|
void AOTMappedHeapWriter::ensure_buffer_space(size_t min_bytes) {
|
|
// We usually have very small heaps. If we get a huge one it's probably caused by a bug.
|
|
guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
|
|
_buffer->at_grow(to_array_index(min_bytes));
|
|
}
|
|
|
|
objArrayOop AOTMappedHeapWriter::allocate_root_segment(size_t offset, int element_count) {
|
|
HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
|
|
memset(mem, 0, objArrayOopDesc::object_size(element_count));
|
|
|
|
// The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
|
|
if (UseCompactObjectHeaders) {
|
|
oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
|
|
} else {
|
|
oopDesc::set_mark(mem, markWord::prototype());
|
|
oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
|
|
}
|
|
arrayOopDesc::set_length(mem, element_count);
|
|
return objArrayOop(cast_to_oop(mem));
|
|
}
|
|
|
|
void AOTMappedHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
|
|
// Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
|
|
if (UseCompressedOops) {
|
|
*segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
|
|
} else {
|
|
*segment->obj_at_addr<oop>(index) = root;
|
|
}
|
|
}
|
|
|
|
void AOTMappedHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
|
|
// Depending on the number of classes we are archiving, a single roots array may be
|
|
// larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
|
|
// allows us to chop the large array into a series of "segments". Current layout
|
|
// starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
|
|
// with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
|
|
// This is simple and efficient. We do not need filler objects anywhere between the segments,
|
|
// or immediately after the last segment. This allows starting the object dump immediately
|
|
// after the roots.
|
|
|
|
assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
|
|
"Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
|
|
|
|
int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
|
|
assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
|
|
"Should match exactly");
|
|
|
|
HeapRootSegments segments(_buffer_used,
|
|
roots->length(),
|
|
MIN_GC_REGION_ALIGNMENT,
|
|
max_elem_count);
|
|
|
|
int root_index = 0;
|
|
for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
|
|
int size_elems = segments.size_in_elems(seg_idx);
|
|
size_t size_bytes = segments.size_in_bytes(seg_idx);
|
|
|
|
size_t oop_offset = _buffer_used;
|
|
_buffer_used = oop_offset + size_bytes;
|
|
ensure_buffer_space(_buffer_used);
|
|
|
|
assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
|
|
"Roots segment %zu start is not aligned: %zu",
|
|
segments.count(), oop_offset);
|
|
|
|
objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
|
|
for (int i = 0; i < size_elems; i++) {
|
|
root_segment_at_put(seg_oop, i, roots->at(root_index++));
|
|
}
|
|
|
|
log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
|
|
size_elems, size_bytes, p2i(seg_oop));
|
|
}
|
|
|
|
assert(root_index == roots->length(), "Post-condition: All roots are handled");
|
|
|
|
_heap_root_segments = segments;
|
|
}
|
|
|
|
// The goal is to sort the objects in increasing order of:
|
|
// - objects that have only oop pointers
|
|
// - objects that have both native and oop pointers
|
|
// - objects that have only native pointers
|
|
// - objects that have no pointers
|
|
static int oop_sorting_rank(oop o) {
|
|
bool has_oop_ptr, has_native_ptr;
|
|
HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
|
|
|
|
if (has_oop_ptr) {
|
|
if (!has_native_ptr) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (has_native_ptr) {
|
|
return 2;
|
|
} else {
|
|
return 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
int AOTMappedHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
|
|
int rank_a = a->_rank;
|
|
int rank_b = b->_rank;
|
|
|
|
if (rank_a != rank_b) {
|
|
return rank_a - rank_b;
|
|
} else {
|
|
// If they are the same rank, sort them by their position in the _source_objs array
|
|
return a->_index - b->_index;
|
|
}
|
|
}
|
|
|
|
void AOTMappedHeapWriter::sort_source_objs() {
|
|
log_info(aot)("sorting heap objects");
|
|
int len = _source_objs->length();
|
|
_source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
|
|
|
|
for (int i = 0; i < len; i++) {
|
|
oop o = _source_objs->at(i);
|
|
int rank = oop_sorting_rank(o);
|
|
HeapObjOrder os = {i, rank};
|
|
_source_objs_order->append(os);
|
|
}
|
|
log_info(aot)("computed ranks");
|
|
_source_objs_order->sort(compare_objs_by_oop_fields);
|
|
log_info(aot)("sorting heap objects done");
|
|
}
|
|
|
|
void AOTMappedHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
|
|
// There could be multiple root segments, which we want to be aligned by region.
|
|
// Putting them ahead of objects makes sure we waste no space.
|
|
copy_roots_to_buffer(roots);
|
|
|
|
sort_source_objs();
|
|
for (int i = 0; i < _source_objs_order->length(); i++) {
|
|
int src_obj_index = _source_objs_order->at(i)._index;
|
|
oop src_obj = _source_objs->at(src_obj_index);
|
|
HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
|
|
assert(info != nullptr, "must be");
|
|
size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
|
|
info->set_buffer_offset(buffer_offset);
|
|
|
|
OopHandle handle(Universe::vm_global(), src_obj);
|
|
_buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
|
|
_buffer_offset_to_source_obj_table->maybe_grow();
|
|
|
|
if (java_lang_Module::is_instance(src_obj)) {
|
|
Modules::check_archived_module_oop(src_obj);
|
|
}
|
|
}
|
|
|
|
log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
|
|
_buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
|
|
}
|
|
|
|
size_t AOTMappedHeapWriter::filler_array_byte_size(int length) {
|
|
size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
|
|
return byte_size;
|
|
}
|
|
|
|
int AOTMappedHeapWriter::filler_array_length(size_t fill_bytes) {
|
|
assert(is_object_aligned(fill_bytes), "must be");
|
|
size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
|
|
|
|
int initial_length = to_array_length(fill_bytes / elemSize);
|
|
for (int length = initial_length; length >= 0; length --) {
|
|
size_t array_byte_size = filler_array_byte_size(length);
|
|
if (array_byte_size == fill_bytes) {
|
|
return length;
|
|
}
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
return -1;
|
|
}
|
|
|
|
HeapWord* AOTMappedHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
|
|
assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
|
|
Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
|
|
HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
|
|
memset(mem, 0, fill_bytes);
|
|
narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
|
|
if (UseCompactObjectHeaders) {
|
|
oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
|
|
} else {
|
|
oopDesc::set_mark(mem, markWord::prototype());
|
|
cast_to_oop(mem)->set_narrow_klass(nk);
|
|
}
|
|
arrayOopDesc::set_length(mem, array_length);
|
|
return mem;
|
|
}
|
|
|
|
void AOTMappedHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
|
|
// We fill only with arrays (so we don't need to use a single HeapWord filler if the
|
|
// leftover space is smaller than a zero-sized array object). Therefore, we need to
|
|
// make sure there's enough space of min_filler_byte_size in the current region after
|
|
// required_byte_size has been allocated. If not, fill the remainder of the current
|
|
// region.
|
|
size_t min_filler_byte_size = filler_array_byte_size(0);
|
|
size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
|
|
|
|
const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
|
|
const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
|
|
|
|
if (cur_min_region_bottom != next_min_region_bottom) {
|
|
// Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
|
|
// we can map the region in any region-based collector.
|
|
assert(next_min_region_bottom > cur_min_region_bottom, "must be");
|
|
assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
|
|
"no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT);
|
|
|
|
const size_t filler_end = next_min_region_bottom;
|
|
const size_t fill_bytes = filler_end - _buffer_used;
|
|
assert(fill_bytes > 0, "must be");
|
|
ensure_buffer_space(filler_end);
|
|
|
|
int array_length = filler_array_length(fill_bytes);
|
|
log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
|
|
array_length, fill_bytes, _buffer_used);
|
|
HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
|
|
_buffer_used = filler_end;
|
|
_fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
|
|
}
|
|
}
|
|
|
|
size_t AOTMappedHeapWriter::get_filler_size_at(address buffered_addr) {
|
|
size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
|
|
if (p != nullptr) {
|
|
assert(*p > 0, "filler must be larger than zero bytes");
|
|
return *p;
|
|
} else {
|
|
return 0; // buffered_addr is not a filler
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
|
|
T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
|
|
*field_addr = value;
|
|
}
|
|
|
|
size_t AOTMappedHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
|
|
assert(!is_too_large_to_archive(src_obj), "already checked");
|
|
size_t byte_size = src_obj->size() * HeapWordSize;
|
|
assert(byte_size > 0, "no zero-size objects");
|
|
|
|
// For region-based collectors such as G1, the archive heap may be mapped into
|
|
// multiple regions. We need to make sure that we don't have an object that can possible
|
|
// span across two regions.
|
|
maybe_fill_gc_region_gap(byte_size);
|
|
|
|
size_t new_used = _buffer_used + byte_size;
|
|
assert(new_used > _buffer_used, "no wrap around");
|
|
|
|
size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
|
|
size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
|
|
assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
|
|
|
|
ensure_buffer_space(new_used);
|
|
|
|
address from = cast_from_oop<address>(src_obj);
|
|
address to = offset_to_buffered_address<address>(_buffer_used);
|
|
assert(is_object_aligned(_buffer_used), "sanity");
|
|
assert(is_object_aligned(byte_size), "sanity");
|
|
memcpy(to, from, byte_size);
|
|
|
|
// These native pointers will be restored explicitly at run time.
|
|
if (java_lang_Module::is_instance(src_obj)) {
|
|
update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
|
|
} else if (java_lang_ClassLoader::is_instance(src_obj)) {
|
|
#ifdef ASSERT
|
|
// We only archive these loaders
|
|
if (src_obj != SystemDictionary::java_platform_loader() &&
|
|
src_obj != SystemDictionary::java_system_loader()) {
|
|
assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
|
|
}
|
|
#endif
|
|
update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
|
|
}
|
|
|
|
size_t buffered_obj_offset = _buffer_used;
|
|
_buffer_used = new_used;
|
|
|
|
return buffered_obj_offset;
|
|
}
|
|
|
|
// Set the range [_requested_bottom, _requested_top), the requested address range of all
|
|
// the archived heap objects in the production run.
|
|
//
|
|
// (1) UseCompressedOops == true && !is_writing_deterministic_heap()
|
|
//
|
|
// The archived objects are stored using the COOPS encoding of the assembly phase.
|
|
// We pick a range within the heap used by the assembly phase.
|
|
//
|
|
// In the production run, if different COOPS encodings are used:
|
|
// - The heap contents needs to be relocated.
|
|
//
|
|
// (2) UseCompressedOops == true && is_writing_deterministic_heap()
|
|
//
|
|
// We always use zero-based, zero-shift encoding. _requested_top is aligned to 0x10000000.
|
|
//
|
|
// (3) UseCompressedOops == false:
|
|
//
|
|
// In the production run, the heap range is usually picked (randomly) by the OS, so we
|
|
// will almost always need to perform relocation, regardless of how we pick the requested
|
|
// address range.
|
|
//
|
|
// So we just hard code it to NOCOOPS_REQUESTED_BASE.
|
|
//
|
|
void AOTMappedHeapWriter::set_requested_address_range(ArchiveMappedHeapInfo* info) {
|
|
assert(!info->is_used(), "only set once");
|
|
|
|
size_t heap_region_byte_size = _buffer_used;
|
|
assert(heap_region_byte_size > 0, "must archived at least one object!");
|
|
|
|
if (UseCompressedOops) {
|
|
if (is_writing_deterministic_heap()) {
|
|
// Pick a heap range so that requested addresses can be encoded with zero-base/no shift.
|
|
// We align the requested bottom to at least 1 MB: if the production run uses G1 with a small
|
|
// heap (e.g., -Xmx256m), it's likely that we can map the archived objects at the
|
|
// requested location to avoid relocation.
|
|
//
|
|
// For other collectors or larger heaps, relocation is unavoidable, but is usually
|
|
// quite cheap. If you really want to avoid relocation, use the AOT workflow instead.
|
|
address heap_end = (address)0x100000000;
|
|
size_t alignment = MAX2(MIN_GC_REGION_ALIGNMENT, 1024 * 1024);
|
|
if (align_up(heap_region_byte_size, alignment) >= (size_t)heap_end) {
|
|
log_error(aot, heap)("cached heap space is too large: %zu bytes", heap_region_byte_size);
|
|
AOTMetaspace::unrecoverable_writing_error();
|
|
}
|
|
_requested_bottom = align_down(heap_end - heap_region_byte_size, alignment);
|
|
} else if (UseG1GC) {
|
|
// For G1, pick the range at the top of the current heap. If the exact same heap sizes
|
|
// are used in the production run, it's likely that we can map the archived objects
|
|
// at the requested location to avoid relocation.
|
|
address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
|
|
log_info(aot, heap)("Heap end = %p", heap_end);
|
|
_requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
|
|
_requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
|
|
assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
|
|
} else {
|
|
_requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
|
|
}
|
|
} else {
|
|
// We always write the objects as if the heap started at this address. This
|
|
// makes the contents of the archive heap deterministic.
|
|
//
|
|
// Note that at runtime, the heap address is selected by the OS, so the archive
|
|
// heap will not be mapped at 0x10000000, and the contents need to be patched.
|
|
_requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
|
|
}
|
|
|
|
assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
|
|
|
|
_requested_top = _requested_bottom + _buffer_used;
|
|
|
|
info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
|
|
offset_to_buffered_address<HeapWord*>(_buffer_used)));
|
|
info->set_root_segments(_heap_root_segments);
|
|
}
|
|
|
|
// Oop relocation
|
|
|
|
template <typename T> T* AOTMappedHeapWriter::requested_addr_to_buffered_addr(T* p) {
|
|
assert(is_in_requested_range(cast_to_oop(p)), "must be");
|
|
|
|
address addr = address(p);
|
|
assert(addr >= _requested_bottom, "must be");
|
|
size_t offset = addr - _requested_bottom;
|
|
return offset_to_buffered_address<T*>(offset);
|
|
}
|
|
|
|
template <typename T> oop AOTMappedHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
|
|
oop o = load_oop_from_buffer(buffered_addr);
|
|
assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
|
|
return o;
|
|
}
|
|
|
|
template <typename T> void AOTMappedHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
|
|
oop request_oop) {
|
|
assert(request_oop == nullptr || is_in_requested_range(request_oop), "must be");
|
|
store_oop_in_buffer(buffered_addr, request_oop);
|
|
}
|
|
|
|
inline void AOTMappedHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
|
|
*buffered_addr = requested_obj;
|
|
}
|
|
|
|
inline void AOTMappedHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
|
|
narrowOop val = CompressedOops::encode(requested_obj);
|
|
*buffered_addr = val;
|
|
}
|
|
|
|
oop AOTMappedHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
|
|
return *buffered_addr;
|
|
}
|
|
|
|
oop AOTMappedHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
|
|
return CompressedOops::decode(*buffered_addr);
|
|
}
|
|
|
|
template <typename T> void AOTMappedHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, oop source_referent, CHeapBitMap* oopmap) {
|
|
oop request_referent = source_obj_to_requested_obj(source_referent);
|
|
if (UseCompressedOops && is_writing_deterministic_heap()) {
|
|
// We use zero-based, 0-shift encoding, so the narrowOop is just the lower
|
|
// 32 bits of request_referent
|
|
intptr_t addr = cast_from_oop<intptr_t>(request_referent);
|
|
*((narrowOop*)field_addr_in_buffer) = CompressedOops::narrow_oop_cast(addr);
|
|
} else {
|
|
store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
|
|
}
|
|
if (request_referent != nullptr) {
|
|
mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
|
|
}
|
|
}
|
|
|
|
template <typename T> void AOTMappedHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
|
|
T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
|
|
address requested_region_bottom;
|
|
|
|
assert(request_p >= (T*)_requested_bottom, "sanity");
|
|
assert(request_p < (T*)_requested_top, "sanity");
|
|
requested_region_bottom = _requested_bottom;
|
|
|
|
// Mark the pointer in the oopmap
|
|
T* region_bottom = (T*)requested_region_bottom;
|
|
assert(request_p >= region_bottom, "must be");
|
|
BitMap::idx_t idx = request_p - region_bottom;
|
|
assert(idx < oopmap->size(), "overflow");
|
|
oopmap->set_bit(idx);
|
|
}
|
|
|
|
void AOTMappedHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) {
|
|
assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
|
|
narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
|
|
address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
|
|
|
|
oop fake_oop = cast_to_oop(buffered_addr);
|
|
if (UseCompactObjectHeaders) {
|
|
fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
|
|
} else {
|
|
fake_oop->set_narrow_klass(nk);
|
|
}
|
|
|
|
if (src_obj == nullptr) {
|
|
return;
|
|
}
|
|
// We need to retain the identity_hash, because it may have been used by some hashtables
|
|
// in the shared heap.
|
|
if (!src_obj->fast_no_hash_check()) {
|
|
intptr_t src_hash = src_obj->identity_hash();
|
|
if (UseCompactObjectHeaders) {
|
|
fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
|
|
} else {
|
|
fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
|
|
}
|
|
assert(fake_oop->mark().is_unlocked(), "sanity");
|
|
|
|
DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
|
|
assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
|
|
}
|
|
// Strip age bits.
|
|
fake_oop->set_mark(fake_oop->mark().set_age(0));
|
|
}
|
|
|
|
class AOTMappedHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
|
|
oop _src_obj;
|
|
address _buffered_obj;
|
|
CHeapBitMap* _oopmap;
|
|
bool _is_java_lang_ref;
|
|
public:
|
|
EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
|
|
_src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
|
|
{
|
|
_is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
|
|
}
|
|
|
|
void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
|
|
void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
|
|
|
|
private:
|
|
template <class T> void do_oop_work(T *p) {
|
|
int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
|
|
T* field_addr = (T*)(_buffered_obj + field_offset);
|
|
oop referent = load_source_oop_from_buffer<T>(field_addr);
|
|
referent = HeapShared::maybe_remap_referent(_is_java_lang_ref, field_offset, referent);
|
|
AOTMappedHeapWriter::relocate_field_in_buffer<T>(field_addr, referent, _oopmap);
|
|
}
|
|
};
|
|
|
|
static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
|
|
// The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
|
|
size_t start = bitmap->find_first_set_bit(0);
|
|
size_t end = bitmap->size();
|
|
log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
|
|
start, end,
|
|
start * 100 / total_bits,
|
|
end * 100 / total_bits,
|
|
(end - start) * 100 / total_bits);
|
|
}
|
|
|
|
// Update all oop fields embedded in the buffered objects
|
|
void AOTMappedHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
|
|
ArchiveMappedHeapInfo* heap_info) {
|
|
size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
|
|
size_t heap_region_byte_size = _buffer_used;
|
|
heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit);
|
|
|
|
for (int i = 0; i < _source_objs_order->length(); i++) {
|
|
int src_obj_index = _source_objs_order->at(i)._index;
|
|
oop src_obj = _source_objs->at(src_obj_index);
|
|
HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
|
|
assert(info != nullptr, "must be");
|
|
oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
|
|
update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
|
|
address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
|
|
EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
|
|
src_obj->oop_iterate(&relocator);
|
|
mark_native_pointers(src_obj);
|
|
};
|
|
|
|
// Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
|
|
// doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
|
|
for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
|
|
size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
|
|
|
|
objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
|
|
update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
|
|
address buffered_obj = offset_to_buffered_address<address>(seg_offset);
|
|
int length = _heap_root_segments.size_in_elems(seg_idx);
|
|
|
|
size_t elem_size = UseCompressedOops ? sizeof(narrowOop) : sizeof(oop);
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
// There is no source object; these are native oops - load, translate and
|
|
// write back
|
|
size_t elem_offset = objArrayOopDesc::base_offset_in_bytes() + elem_size * i;
|
|
HeapWord* elem_addr = (HeapWord*)(buffered_obj + elem_offset);
|
|
oop obj = NativeAccess<>::oop_load(elem_addr);
|
|
obj = HeapShared::maybe_remap_referent(false /* is_reference_field */, elem_offset, obj);
|
|
if (UseCompressedOops) {
|
|
relocate_field_in_buffer<narrowOop>((narrowOop*)elem_addr, obj, heap_info->oopmap());
|
|
} else {
|
|
relocate_field_in_buffer<oop>((oop*)elem_addr, obj, heap_info->oopmap());
|
|
}
|
|
}
|
|
}
|
|
|
|
compute_ptrmap(heap_info);
|
|
|
|
size_t total_bytes = (size_t)_buffer->length();
|
|
log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
|
|
log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
|
|
}
|
|
|
|
void AOTMappedHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
|
|
Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
|
|
if (ptr != nullptr) {
|
|
NativePointerInfo info;
|
|
info._src_obj = src_obj;
|
|
info._field_offset = field_offset;
|
|
_native_pointers->append(info);
|
|
HeapShared::set_has_native_pointers(src_obj);
|
|
_num_native_ptrs ++;
|
|
}
|
|
}
|
|
|
|
void AOTMappedHeapWriter::mark_native_pointers(oop orig_obj) {
|
|
HeapShared::do_metadata_offsets(orig_obj, [&](int offset) {
|
|
mark_native_pointer(orig_obj, offset);
|
|
});
|
|
}
|
|
|
|
void AOTMappedHeapWriter::compute_ptrmap(ArchiveMappedHeapInfo* heap_info) {
|
|
int num_non_null_ptrs = 0;
|
|
Metadata** bottom = (Metadata**) _requested_bottom;
|
|
Metadata** top = (Metadata**) _requested_top; // exclusive
|
|
heap_info->ptrmap()->resize(top - bottom);
|
|
|
|
BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
|
|
for (int i = 0; i < _native_pointers->length(); i++) {
|
|
NativePointerInfo info = _native_pointers->at(i);
|
|
oop src_obj = info._src_obj;
|
|
int field_offset = info._field_offset;
|
|
HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
|
|
// requested_field_addr = the address of this field in the requested space
|
|
oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
|
|
Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
|
|
assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
|
|
|
|
// Mark this field in the bitmap
|
|
BitMap::idx_t idx = requested_field_addr - bottom;
|
|
heap_info->ptrmap()->set_bit(idx);
|
|
num_non_null_ptrs ++;
|
|
max_idx = MAX2(max_idx, idx);
|
|
|
|
// Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
|
|
// this address if the RO/RW regions are mapped at the default location).
|
|
|
|
Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
|
|
Metadata* native_ptr = *buffered_field_addr;
|
|
guarantee(native_ptr != nullptr, "sanity");
|
|
|
|
if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
|
|
native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
|
|
}
|
|
|
|
guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
|
|
"Metadata %p should have been archived", native_ptr);
|
|
|
|
address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
|
|
address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
|
|
*buffered_field_addr = (Metadata*)requested_native_ptr;
|
|
}
|
|
|
|
heap_info->ptrmap()->resize(max_idx + 1);
|
|
log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
|
|
num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
|
|
}
|
|
|
|
AOTMapLogger::OopDataIterator* AOTMappedHeapWriter::oop_iterator(ArchiveMappedHeapInfo* heap_info) {
|
|
class MappedWriterOopIterator : public AOTMapLogger::OopDataIterator {
|
|
private:
|
|
address _current;
|
|
address _next;
|
|
|
|
address _buffer_start;
|
|
address _buffer_end;
|
|
uint64_t _buffer_start_narrow_oop;
|
|
intptr_t _buffer_to_requested_delta;
|
|
int _requested_shift;
|
|
|
|
size_t _num_root_segments;
|
|
size_t _num_obj_arrays_logged;
|
|
|
|
public:
|
|
MappedWriterOopIterator(address buffer_start,
|
|
address buffer_end,
|
|
uint64_t buffer_start_narrow_oop,
|
|
intptr_t buffer_to_requested_delta,
|
|
int requested_shift,
|
|
size_t num_root_segments)
|
|
: _current(nullptr),
|
|
_next(buffer_start),
|
|
_buffer_start(buffer_start),
|
|
_buffer_end(buffer_end),
|
|
_buffer_start_narrow_oop(buffer_start_narrow_oop),
|
|
_buffer_to_requested_delta(buffer_to_requested_delta),
|
|
_requested_shift(requested_shift),
|
|
_num_root_segments(num_root_segments),
|
|
_num_obj_arrays_logged(0) {
|
|
}
|
|
|
|
AOTMapLogger::OopData capture(address buffered_addr) {
|
|
oopDesc* raw_oop = (oopDesc*)buffered_addr;
|
|
size_t size = size_of_buffered_oop(buffered_addr);
|
|
address requested_addr = buffered_addr_to_requested_addr(buffered_addr);
|
|
intptr_t target_location = (intptr_t)requested_addr;
|
|
uint64_t pd = (uint64_t)(pointer_delta(buffered_addr, _buffer_start, 1));
|
|
uint32_t narrow_location = checked_cast<uint32_t>(_buffer_start_narrow_oop + (pd >> _requested_shift));
|
|
Klass* klass = real_klass_of_buffered_oop(buffered_addr);
|
|
|
|
return { buffered_addr,
|
|
requested_addr,
|
|
target_location,
|
|
narrow_location,
|
|
raw_oop,
|
|
klass,
|
|
size,
|
|
false };
|
|
}
|
|
|
|
bool has_next() override {
|
|
return _next < _buffer_end;
|
|
}
|
|
|
|
AOTMapLogger::OopData next() override {
|
|
_current = _next;
|
|
AOTMapLogger::OopData result = capture(_current);
|
|
if (result._klass->is_objArray_klass()) {
|
|
result._is_root_segment = _num_obj_arrays_logged++ < _num_root_segments;
|
|
}
|
|
_next = _current + result._size * BytesPerWord;
|
|
return result;
|
|
}
|
|
|
|
AOTMapLogger::OopData obj_at(narrowOop* addr) override {
|
|
uint64_t n = (uint64_t)(*addr);
|
|
if (n == 0) {
|
|
return null_data();
|
|
} else {
|
|
precond(n >= _buffer_start_narrow_oop);
|
|
address buffer_addr = _buffer_start + ((n - _buffer_start_narrow_oop) << _requested_shift);
|
|
return capture(buffer_addr);
|
|
}
|
|
}
|
|
|
|
AOTMapLogger::OopData obj_at(oop* addr) override {
|
|
address requested_value = cast_from_oop<address>(*addr);
|
|
if (requested_value == nullptr) {
|
|
return null_data();
|
|
} else {
|
|
address buffer_addr = requested_value - _buffer_to_requested_delta;
|
|
return capture(buffer_addr);
|
|
}
|
|
}
|
|
|
|
GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
|
|
return new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
|
|
}
|
|
};
|
|
|
|
MemRegion r = heap_info->buffer_region();
|
|
address buffer_start = address(r.start());
|
|
address buffer_end = address(r.end());
|
|
|
|
address requested_base = UseCompressedOops ? AOTMappedHeapWriter::narrow_oop_base() : (address)AOTMappedHeapWriter::NOCOOPS_REQUESTED_BASE;
|
|
address requested_start = UseCompressedOops ? AOTMappedHeapWriter::buffered_addr_to_requested_addr(buffer_start) : requested_base;
|
|
int requested_shift = AOTMappedHeapWriter::narrow_oop_shift();
|
|
intptr_t buffer_to_requested_delta = requested_start - buffer_start;
|
|
uint64_t buffer_start_narrow_oop = 0xdeadbeed;
|
|
if (UseCompressedOops) {
|
|
buffer_start_narrow_oop = (uint64_t)(pointer_delta(requested_start, requested_base, 1)) >> requested_shift;
|
|
assert(buffer_start_narrow_oop < 0xffffffff, "sanity");
|
|
}
|
|
|
|
return new MappedWriterOopIterator(buffer_start,
|
|
buffer_end,
|
|
buffer_start_narrow_oop,
|
|
buffer_to_requested_delta,
|
|
requested_shift,
|
|
heap_info->root_segments().count());
|
|
}
|
|
|
|
#endif // INCLUDE_CDS_JAVA_HEAP
|