jdk/src/jdk.crypto.ec/share/classes/sun/security/ec/ECDSAOperations.java
2021-04-14 06:01:00 +00:00

264 lines
9.8 KiB
Java

/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.ec;
import sun.security.ec.point.*;
import sun.security.util.ArrayUtil;
import sun.security.util.math.*;
import static sun.security.ec.ECOperations.IntermediateValueException;
import java.security.ProviderException;
import java.security.spec.*;
import java.util.Arrays;
import java.util.Optional;
public class ECDSAOperations {
public static class Seed {
private final byte[] seedValue;
public Seed(byte[] seedValue) {
this.seedValue = seedValue;
}
public byte[] getSeedValue() {
return seedValue;
}
}
public static class Nonce {
private final byte[] nonceValue;
public Nonce(byte[] nonceValue) {
this.nonceValue = nonceValue;
}
public byte[] getNonceValue() {
return nonceValue;
}
}
private final ECOperations ecOps;
private final AffinePoint basePoint;
public ECDSAOperations(ECOperations ecOps, ECPoint basePoint) {
this.ecOps = ecOps;
this.basePoint = toAffinePoint(basePoint, ecOps.getField());
}
public ECOperations getEcOperations() {
return ecOps;
}
public AffinePoint basePointMultiply(byte[] scalar) {
return ecOps.multiply(basePoint, scalar).asAffine();
}
public static AffinePoint toAffinePoint(ECPoint point,
IntegerFieldModuloP field) {
ImmutableIntegerModuloP affineX = field.getElement(point.getAffineX());
ImmutableIntegerModuloP affineY = field.getElement(point.getAffineY());
return new AffinePoint(affineX, affineY);
}
public static
Optional<ECDSAOperations> forParameters(ECParameterSpec ecParams) {
Optional<ECOperations> curveOps =
ECOperations.forParameters(ecParams);
return curveOps.map(
ops -> new ECDSAOperations(ops, ecParams.getGenerator())
);
}
/**
*
* Sign a digest using the provided private key and seed.
* IMPORTANT: The private key is a scalar represented using a
* little-endian byte array. This is backwards from the conventional
* representation in ECDSA. The routines that produce and consume this
* value uses little-endian, so this deviation from convention removes
* the requirement to swap the byte order. The returned signature is in
* the conventional byte order.
*
* @param privateKey the private key scalar as a little-endian byte array
* @param digest the digest to be signed
* @param seed the seed that will be used to produce the nonce. This object
* should contain an array that is at least 64 bits longer than
* the number of bits required to represent the group order.
* @return the ECDSA signature value
* @throws IntermediateValueException if the signature cannot be produced
* due to an unacceptable intermediate or final value. If this
* exception is thrown, then the caller should discard the nonnce and
* try again with an entirely new nonce value.
*/
public byte[] signDigest(byte[] privateKey, byte[] digest, Seed seed)
throws IntermediateValueException {
byte[] nonceArr = ecOps.seedToScalar(seed.getSeedValue());
Nonce nonce = new Nonce(nonceArr);
return signDigest(privateKey, digest, nonce);
}
/**
*
* Sign a digest using the provided private key and nonce.
* IMPORTANT: The private key and nonce are scalars represented by a
* little-endian byte array. This is backwards from the conventional
* representation in ECDSA. The routines that produce and consume these
* values use little-endian, so this deviation from convention removes
* the requirement to swap the byte order. The returned signature is in
* the conventional byte order.
*
* @param privateKey the private key scalar as a little-endian byte array
* @param digest the digest to be signed
* @param nonce the nonce object containing a little-endian scalar value.
* @return the ECDSA signature value
* @throws IntermediateValueException if the signature cannot be produced
* due to an unacceptable intermediate or final value. If this
* exception is thrown, then the caller should discard the nonnce and
* try again with an entirely new nonce value.
*/
public byte[] signDigest(byte[] privateKey, byte[] digest, Nonce nonce)
throws IntermediateValueException {
IntegerFieldModuloP orderField = ecOps.getOrderField();
int orderBits = orderField.getSize().bitLength();
if (orderBits % 8 != 0 && orderBits < digest.length * 8) {
// This implementation does not support truncating digests to
// a length that is not a multiple of 8.
throw new ProviderException("Invalid digest length");
}
byte[] k = nonce.getNonceValue();
// check nonce length
int length = (orderField.getSize().bitLength() + 7) / 8;
if (k.length != length) {
throw new ProviderException("Incorrect nonce length");
}
MutablePoint R = ecOps.multiply(basePoint, k);
IntegerModuloP r = R.asAffine().getX();
// put r into the correct field by fully reducing to an array
byte[] temp = new byte[length];
r = b2a(r, orderField, temp);
byte[] result = new byte[2 * length];
ArrayUtil.reverse(temp);
System.arraycopy(temp, 0, result, 0, length);
// compare r to 0
if (ECOperations.allZero(temp)) {
throw new IntermediateValueException();
}
IntegerModuloP dU = orderField.getElement(privateKey);
int lengthE = Math.min(length, digest.length);
byte[] E = new byte[lengthE];
System.arraycopy(digest, 0, E, 0, lengthE);
ArrayUtil.reverse(E);
IntegerModuloP e = orderField.getElement(E);
IntegerModuloP kElem = orderField.getElement(k);
IntegerModuloP kInv = kElem.multiplicativeInverse();
MutableIntegerModuloP s = r.mutable();
s.setProduct(dU).setSum(e).setProduct(kInv);
// store s in result
s.asByteArray(temp);
ArrayUtil.reverse(temp);
System.arraycopy(temp, 0, result, length, length);
// compare s to 0
if (ECOperations.allZero(temp)) {
throw new IntermediateValueException();
}
return result;
}
public boolean verifySignedDigest(byte[] digest, byte[] sig, ECPoint pp) {
IntegerFieldModuloP field = ecOps.getField();
IntegerFieldModuloP orderField = ecOps.getOrderField();
int length = (orderField.getSize().bitLength() + 7) / 8;
byte[] r;
byte[] s;
int encodeLength = sig.length / 2;
if (sig.length %2 != 0 || encodeLength > length) {
return false;
} else if (encodeLength == length) {
r = Arrays.copyOf(sig, length);
s = Arrays.copyOfRange(sig, length, length * 2);
} else {
r = new byte[length];
s = new byte[length];
System.arraycopy(sig, 0, r, length - encodeLength, encodeLength);
System.arraycopy(sig, encodeLength, s, length - encodeLength, encodeLength);
}
ArrayUtil.reverse(r);
ArrayUtil.reverse(s);
IntegerModuloP ri = orderField.getElement(r);
IntegerModuloP si = orderField.getElement(s);
// z
int lengthE = Math.min(length, digest.length);
byte[] E = new byte[lengthE];
System.arraycopy(digest, 0, E, 0, lengthE);
ArrayUtil.reverse(E);
IntegerModuloP e = orderField.getElement(E);
IntegerModuloP sInv = si.multiplicativeInverse();
ImmutableIntegerModuloP u1 = e.multiply(sInv);
ImmutableIntegerModuloP u2 = ri.multiply(sInv);
AffinePoint pub = new AffinePoint(field.getElement(pp.getAffineX()),
field.getElement(pp.getAffineY()));
byte[] temp1 = new byte[length];
b2a(u1, orderField, temp1);
byte[] temp2 = new byte[length];
b2a(u2, orderField, temp2);
MutablePoint p1 = ecOps.multiply(basePoint, temp1);
MutablePoint p2 = ecOps.multiply(pub, temp2);
ecOps.setSum(p1, p2.asAffine());
IntegerModuloP result = p1.asAffine().getX();
result = result.additiveInverse().add(ri);
b2a(result, orderField, temp1);
return ECOperations.allZero(temp1);
}
public static ImmutableIntegerModuloP b2a(IntegerModuloP b,
IntegerFieldModuloP orderField, byte[] temp1) {
b.asByteArray(temp1);
ImmutableIntegerModuloP b2 = orderField.getElement(temp1);
b2.asByteArray(temp1);
return b2;
}
}