mirror of
https://github.com/openjdk/jdk.git
synced 2026-01-28 12:09:14 +00:00
Co-authored-by: Maurizio Cimadamore <mcimadamore@openjdk.org> Co-authored-by: Christian Hagedorn <chagedorn@openjdk.org> Reviewed-by: chagedorn, thartmann
641 lines
22 KiB
C++
641 lines
22 KiB
C++
/*
|
|
* Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "castnode.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/castnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "opto/type.hpp"
|
|
#include "utilities/checkedCast.hpp"
|
|
|
|
//=============================================================================
|
|
// If input is already higher or equal to cast type, then this is an identity.
|
|
Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
|
|
if (_dependency == UnconditionalDependency) {
|
|
return this;
|
|
}
|
|
Node* dom = dominating_cast(phase, phase);
|
|
if (dom != nullptr) {
|
|
return dom;
|
|
}
|
|
return higher_equal_types(phase, in(1)) ? in(1) : this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Take 'join' of input and cast-up type
|
|
const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
|
|
if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
|
|
|
|
const Type* in_type = phase->type(in(1));
|
|
const Type* ft = in_type->filter_speculative(_type);
|
|
|
|
// Check if both _type and in_type had a speculative type, but for the just
|
|
// computed ft the speculative type was dropped.
|
|
if (ft->speculative() == nullptr &&
|
|
_type->speculative() != nullptr &&
|
|
in_type->speculative() != nullptr) {
|
|
// Speculative type may have disagreed between cast and input, and was
|
|
// dropped in filtering. Recompute so that ft can take speculative type
|
|
// of in_type. If we did not do it now, a subsequent ::Value call would
|
|
// do it, and violate idempotence of ::Value.
|
|
ft = in_type->filter_speculative(ft);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Previous versions of this function had some special case logic,
|
|
// which is no longer necessary. Make sure of the required effects.
|
|
switch (Opcode()) {
|
|
case Op_CastII:
|
|
{
|
|
if (in_type == Type::TOP) {
|
|
assert(ft == Type::TOP, "special case #1");
|
|
}
|
|
const Type* rt = in_type->join_speculative(_type);
|
|
if (rt->empty()) {
|
|
assert(ft == Type::TOP, "special case #2");
|
|
}
|
|
break;
|
|
}
|
|
case Op_CastPP:
|
|
if (in_type == TypePtr::NULL_PTR &&
|
|
_type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull) {
|
|
assert(ft == Type::TOP, "special case #3");
|
|
break;
|
|
}
|
|
}
|
|
#endif //ASSERT
|
|
|
|
return ft;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node. Strip out
|
|
// control copies
|
|
Node* ConstraintCastNode::Ideal(PhaseGVN* phase, bool can_reshape) {
|
|
if (in(0) != nullptr && remove_dead_region(phase, can_reshape)) {
|
|
return this;
|
|
}
|
|
if (in(1) != nullptr && phase->type(in(1)) != Type::TOP) {
|
|
return TypeNode::Ideal(phase, can_reshape);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
uint ConstraintCastNode::hash() const {
|
|
return TypeNode::hash() + (int)_dependency + (_extra_types != nullptr ? _extra_types->hash() : 0);
|
|
}
|
|
|
|
bool ConstraintCastNode::cmp(const Node &n) const {
|
|
if (!TypeNode::cmp(n)) {
|
|
return false;
|
|
}
|
|
ConstraintCastNode& cast = (ConstraintCastNode&) n;
|
|
if (cast._dependency != _dependency) {
|
|
return false;
|
|
}
|
|
if (_extra_types == nullptr || cast._extra_types == nullptr) {
|
|
return _extra_types == cast._extra_types;
|
|
}
|
|
return _extra_types->eq(cast._extra_types);
|
|
}
|
|
|
|
uint ConstraintCastNode::size_of() const {
|
|
return sizeof(*this);
|
|
}
|
|
|
|
Node* ConstraintCastNode::make_cast_for_basic_type(Node* c, Node* n, const Type* t, DependencyType dependency, BasicType bt) {
|
|
switch(bt) {
|
|
case T_INT:
|
|
return new CastIINode(c, n, t, dependency);
|
|
case T_LONG:
|
|
return new CastLLNode(c, n, t, dependency);
|
|
default:
|
|
fatal("Bad basic type %s", type2name(bt));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
|
|
if (_dependency == UnconditionalDependency) {
|
|
return nullptr;
|
|
}
|
|
Node* val = in(1);
|
|
Node* ctl = in(0);
|
|
int opc = Opcode();
|
|
if (ctl == nullptr) {
|
|
return nullptr;
|
|
}
|
|
// Range check CastIIs may all end up under a single range check and
|
|
// in that case only the narrower CastII would be kept by the code
|
|
// below which would be incorrect.
|
|
if (is_CastII() && as_CastII()->has_range_check()) {
|
|
return nullptr;
|
|
}
|
|
if (type()->isa_rawptr() && (gvn->type_or_null(val) == nullptr || gvn->type(val)->isa_oopptr())) {
|
|
return nullptr;
|
|
}
|
|
for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
|
|
Node* u = val->fast_out(i);
|
|
if (u != this &&
|
|
u->outcnt() > 0 &&
|
|
u->Opcode() == opc &&
|
|
u->in(0) != nullptr &&
|
|
higher_equal_types(gvn, u)) {
|
|
if (pt->is_dominator(u->in(0), ctl)) {
|
|
return u->as_Type();
|
|
}
|
|
if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
|
|
u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
|
|
u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
|
|
// CheckCastPP following an allocation always dominates all
|
|
// use of the allocation result
|
|
return u->as_Type();
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool ConstraintCastNode::higher_equal_types(PhaseGVN* phase, const Node* other) const {
|
|
const Type* t = phase->type(other);
|
|
if (!t->higher_equal_speculative(type())) {
|
|
return false;
|
|
}
|
|
if (_extra_types != nullptr) {
|
|
for (uint i = 0; i < _extra_types->cnt(); ++i) {
|
|
if (!t->higher_equal_speculative(_extra_types->field_at(i))) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void ConstraintCastNode::dump_spec(outputStream *st) const {
|
|
TypeNode::dump_spec(st);
|
|
if (_extra_types != nullptr) {
|
|
st->print(" extra types: ");
|
|
_extra_types->dump_on(st);
|
|
}
|
|
if (_dependency != RegularDependency) {
|
|
st->print(" %s dependency", _dependency == StrongDependency ? "strong" : "unconditional");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
const Type* CastIINode::Value(PhaseGVN* phase) const {
|
|
const Type *res = ConstraintCastNode::Value(phase);
|
|
if (res == Type::TOP) {
|
|
return Type::TOP;
|
|
}
|
|
assert(res->isa_int(), "res must be int");
|
|
|
|
// Similar to ConvI2LNode::Value() for the same reasons
|
|
// see if we can remove type assertion after loop opts
|
|
res = widen_type(phase, res, T_INT);
|
|
|
|
return res;
|
|
}
|
|
|
|
Node* ConstraintCastNode::find_or_make_integer_cast(PhaseIterGVN* igvn, Node* parent, const TypeInteger* type) const {
|
|
Node* n = clone();
|
|
n->set_req(1, parent);
|
|
n->as_ConstraintCast()->set_type(type);
|
|
Node* existing = igvn->hash_find_insert(n);
|
|
if (existing != nullptr) {
|
|
n->destruct(igvn);
|
|
return existing;
|
|
}
|
|
return igvn->register_new_node_with_optimizer(n);
|
|
}
|
|
|
|
Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
|
|
if (progress != nullptr) {
|
|
return progress;
|
|
}
|
|
if (can_reshape && !phase->C->post_loop_opts_phase()) {
|
|
// makes sure we run ::Value to potentially remove type assertion after loop opts
|
|
phase->C->record_for_post_loop_opts_igvn(this);
|
|
}
|
|
if (!_range_check_dependency || phase->C->post_loop_opts_phase()) {
|
|
return optimize_integer_cast(phase, T_INT);
|
|
}
|
|
phase->C->record_for_post_loop_opts_igvn(this);
|
|
return nullptr;
|
|
}
|
|
|
|
Node* CastIINode::Identity(PhaseGVN* phase) {
|
|
Node* progress = ConstraintCastNode::Identity(phase);
|
|
if (progress != this) {
|
|
return progress;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
bool CastIINode::cmp(const Node &n) const {
|
|
return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
|
|
}
|
|
|
|
uint CastIINode::size_of() const {
|
|
return sizeof(*this);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void CastIINode::dump_spec(outputStream* st) const {
|
|
ConstraintCastNode::dump_spec(st);
|
|
if (_range_check_dependency) {
|
|
st->print(" range check dependency");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
CastIINode* CastIINode::pin_array_access_node() const {
|
|
assert(_dependency == RegularDependency, "already pinned");
|
|
if (has_range_check()) {
|
|
return new CastIINode(in(0), in(1), bottom_type(), StrongDependency, has_range_check());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void CastIINode::remove_range_check_cast(Compile* C) {
|
|
if (has_range_check()) {
|
|
// Range check CastII nodes feed into an address computation subgraph. Remove them to let that subgraph float freely.
|
|
// For memory access or integer divisions nodes that depend on the cast, record the dependency on the cast's control
|
|
// as a precedence edge, so they can't float above the cast in case that cast's narrowed type helped eliminate a
|
|
// range check or a null divisor check.
|
|
assert(in(0) != nullptr, "All RangeCheck CastII must have a control dependency");
|
|
ResourceMark rm;
|
|
Unique_Node_List wq;
|
|
wq.push(this);
|
|
for (uint next = 0; next < wq.size(); ++next) {
|
|
Node* m = wq.at(next);
|
|
for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
|
|
Node* use = m->fast_out(i);
|
|
if (use->is_Mem() || use->is_div_or_mod(T_INT) || use->is_div_or_mod(T_LONG)) {
|
|
use->ensure_control_or_add_prec(in(0));
|
|
} else if (!use->is_CFG() && !use->is_Phi()) {
|
|
wq.push(use);
|
|
}
|
|
}
|
|
}
|
|
subsume_by(in(1), C);
|
|
if (outcnt() == 0) {
|
|
disconnect_inputs(C);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const Type* CastLLNode::Value(PhaseGVN* phase) const {
|
|
const Type* res = ConstraintCastNode::Value(phase);
|
|
if (res == Type::TOP) {
|
|
return Type::TOP;
|
|
}
|
|
assert(res->isa_long(), "res must be long");
|
|
|
|
return widen_type(phase, res, T_LONG);
|
|
}
|
|
|
|
bool CastLLNode::is_inner_loop_backedge(ProjNode* proj) {
|
|
if (proj != nullptr) {
|
|
Node* ctrl_use = proj->unique_ctrl_out_or_null();
|
|
if (ctrl_use != nullptr && ctrl_use->Opcode() == Op_Loop &&
|
|
ctrl_use->in(2) == proj &&
|
|
ctrl_use->as_Loop()->is_loop_nest_inner_loop()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CastLLNode::cmp_used_at_inner_loop_exit_test(CmpNode* cmp) {
|
|
for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
|
|
Node* bol = cmp->fast_out(i);
|
|
if (bol->Opcode() == Op_Bool) {
|
|
for (DUIterator_Fast jmax, j = bol->fast_outs(jmax); j < jmax; j++) {
|
|
Node* iff = bol->fast_out(j);
|
|
if (iff->Opcode() == Op_If) {
|
|
ProjNode* true_proj = iff->as_If()->proj_out_or_null(true);
|
|
ProjNode* false_proj = iff->as_If()->proj_out_or_null(false);
|
|
if (is_inner_loop_backedge(true_proj) || is_inner_loop_backedge(false_proj)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Find if this is a cast node added by PhaseIdealLoop::create_loop_nest() to narrow the number of iterations of the
|
|
// inner loop
|
|
bool CastLLNode::used_at_inner_loop_exit_test() const {
|
|
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
|
|
Node* convl2i = fast_out(i);
|
|
if (convl2i->Opcode() == Op_ConvL2I) {
|
|
for (DUIterator_Fast jmax, j = convl2i->fast_outs(jmax); j < jmax; j++) {
|
|
Node* cmp_or_sub = convl2i->fast_out(j);
|
|
if (cmp_or_sub->Opcode() == Op_CmpI) {
|
|
if (cmp_used_at_inner_loop_exit_test(cmp_or_sub->as_Cmp())) {
|
|
// (Loop .. .. (IfProj (If (Bool (CmpI (ConvL2I (CastLL )))))))
|
|
return true;
|
|
}
|
|
} else if (cmp_or_sub->Opcode() == Op_SubI && cmp_or_sub->in(1)->find_int_con(-1) == 0) {
|
|
for (DUIterator_Fast kmax, k = cmp_or_sub->fast_outs(kmax); k < kmax; k++) {
|
|
Node* cmp = cmp_or_sub->fast_out(k);
|
|
if (cmp->Opcode() == Op_CmpI) {
|
|
if (cmp_used_at_inner_loop_exit_test(cmp->as_Cmp())) {
|
|
// (Loop .. .. (IfProj (If (Bool (CmpI (SubI 0 (ConvL2I (CastLL ))))))))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Node* CastLLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
|
|
Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
|
|
if (progress != nullptr) {
|
|
return progress;
|
|
}
|
|
if (!phase->C->post_loop_opts_phase()) {
|
|
// makes sure we run ::Value to potentially remove type assertion after loop opts
|
|
phase->C->record_for_post_loop_opts_igvn(this);
|
|
}
|
|
// transform (CastLL (ConvI2L ..)) into (ConvI2L (CastII ..)) if the type of the CastLL is narrower than the type of
|
|
// the ConvI2L.
|
|
Node* in1 = in(1);
|
|
if (in1 != nullptr && in1->Opcode() == Op_ConvI2L) {
|
|
const Type* t = Value(phase);
|
|
const Type* t_in = phase->type(in1);
|
|
if (t != Type::TOP && t_in != Type::TOP) {
|
|
const TypeLong* tl = t->is_long();
|
|
const TypeLong* t_in_l = t_in->is_long();
|
|
assert(tl->_lo >= t_in_l->_lo && tl->_hi <= t_in_l->_hi, "CastLL type should be narrower than or equal to the type of its input");
|
|
assert((tl != t_in_l) == (tl->_lo > t_in_l->_lo || tl->_hi < t_in_l->_hi), "if type differs then this nodes's type must be narrower");
|
|
if (tl != t_in_l) {
|
|
const TypeInt* ti = TypeInt::make(checked_cast<jint>(tl->_lo), checked_cast<jint>(tl->_hi), tl->_widen);
|
|
Node* castii = phase->transform(new CastIINode(in(0), in1->in(1), ti));
|
|
Node* convi2l = in1->clone();
|
|
convi2l->set_req(1, castii);
|
|
return convi2l;
|
|
}
|
|
}
|
|
}
|
|
// If it's a cast created by PhaseIdealLoop::short_running_loop(), don't transform it until the counted loop is created
|
|
// in next loop opts pass
|
|
if (!can_reshape || !used_at_inner_loop_exit_test()) {
|
|
return optimize_integer_cast(phase, T_LONG);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Take 'join' of input and cast-up type, unless working with an Interface
|
|
const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
|
|
if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
|
|
|
|
const Type *inn = phase->type(in(1));
|
|
if( inn == Type::TOP ) return Type::TOP; // No information yet
|
|
|
|
if (inn->isa_oopptr() && _type->isa_oopptr()) {
|
|
return ConstraintCastNode::Value(phase);
|
|
}
|
|
|
|
const TypePtr *in_type = inn->isa_ptr();
|
|
const TypePtr *my_type = _type->isa_ptr();
|
|
const Type *result = _type;
|
|
if (in_type != nullptr && my_type != nullptr) {
|
|
TypePtr::PTR in_ptr = in_type->ptr();
|
|
if (in_ptr == TypePtr::Null) {
|
|
result = in_type;
|
|
} else if (in_ptr != TypePtr::Constant) {
|
|
result = my_type->cast_to_ptr_type(my_type->join_ptr(in_ptr));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type* CastX2PNode::Value(PhaseGVN* phase) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
if (t->base() == Type_X && t->singleton()) {
|
|
uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
|
|
if (bits == 0) return TypePtr::NULL_PTR;
|
|
return TypeRawPtr::make((address) bits);
|
|
}
|
|
return CastX2PNode::bottom_type();
|
|
}
|
|
|
|
//------------------------------Idealize---------------------------------------
|
|
static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
|
|
if (t == Type::TOP) return false;
|
|
const TypeX* tl = t->is_intptr_t();
|
|
jint lo = min_jint;
|
|
jint hi = max_jint;
|
|
if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
|
|
return (tl->_lo >= lo) && (tl->_hi <= hi);
|
|
}
|
|
|
|
static inline Node* addP_of_X2P(PhaseGVN *phase,
|
|
Node* base,
|
|
Node* dispX,
|
|
bool negate = false) {
|
|
if (negate) {
|
|
dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
|
|
}
|
|
return new AddPNode(phase->C->top(),
|
|
phase->transform(new CastX2PNode(base)),
|
|
dispX);
|
|
}
|
|
|
|
Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
|
|
int op = in(1)->Opcode();
|
|
Node* x;
|
|
Node* y;
|
|
switch (op) {
|
|
case Op_SubX:
|
|
x = in(1)->in(1);
|
|
// Avoid ideal transformations ping-pong between this and AddP for raw pointers.
|
|
if (phase->find_intptr_t_con(x, -1) == 0)
|
|
break;
|
|
y = in(1)->in(2);
|
|
if (fits_in_int(phase->type(y), true)) {
|
|
return addP_of_X2P(phase, x, y, true);
|
|
}
|
|
break;
|
|
case Op_AddX:
|
|
x = in(1)->in(1);
|
|
y = in(1)->in(2);
|
|
if (fits_in_int(phase->type(y))) {
|
|
return addP_of_X2P(phase, x, y);
|
|
}
|
|
if (fits_in_int(phase->type(x))) {
|
|
return addP_of_X2P(phase, y, x);
|
|
}
|
|
break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node* CastX2PNode::Identity(PhaseGVN* phase) {
|
|
if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type* CastP2XNode::Value(PhaseGVN* phase) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
if (t->base() == Type::RawPtr && t->singleton()) {
|
|
uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
|
|
return TypeX::make(bits);
|
|
}
|
|
return CastP2XNode::bottom_type();
|
|
}
|
|
|
|
Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : nullptr;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node* CastP2XNode::Identity(PhaseGVN* phase) {
|
|
if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, DependencyType dependency,
|
|
const TypeTuple* types) {
|
|
if (type->isa_int()) {
|
|
return new CastIINode(c, in, type, dependency, false, types);
|
|
} else if (type->isa_long()) {
|
|
return new CastLLNode(c, in, type, dependency, types);
|
|
} else if (type->isa_half_float()) {
|
|
return new CastHHNode(c, in, type, dependency, types);
|
|
} else if (type->isa_float()) {
|
|
return new CastFFNode(c, in, type, dependency, types);
|
|
} else if (type->isa_double()) {
|
|
return new CastDDNode(c, in, type, dependency, types);
|
|
} else if (type->isa_vect()) {
|
|
return new CastVVNode(c, in, type, dependency, types);
|
|
} else if (type->isa_ptr()) {
|
|
return new CastPPNode(c, in, type, dependency, types);
|
|
}
|
|
fatal("unreachable. Invalid cast type.");
|
|
return nullptr;
|
|
}
|
|
|
|
Node* ConstraintCastNode::optimize_integer_cast(PhaseGVN* phase, BasicType bt) {
|
|
PhaseIterGVN *igvn = phase->is_IterGVN();
|
|
const TypeInteger* this_type = this->type()->isa_integer(bt);
|
|
if (this_type == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
Node* z = in(1);
|
|
const TypeInteger* rx = nullptr;
|
|
const TypeInteger* ry = nullptr;
|
|
// Similar to ConvI2LNode::Ideal() for the same reasons
|
|
if (Compile::push_thru_add(phase, z, this_type, rx, ry, bt, bt)) {
|
|
if (igvn == nullptr) {
|
|
// Postpone this optimization to iterative GVN, where we can handle deep
|
|
// AddI chains without an exponential number of recursive Ideal() calls.
|
|
phase->record_for_igvn(this);
|
|
return nullptr;
|
|
}
|
|
int op = z->Opcode();
|
|
Node* x = z->in(1);
|
|
Node* y = z->in(2);
|
|
|
|
Node* cx = find_or_make_integer_cast(igvn, x, rx);
|
|
Node* cy = find_or_make_integer_cast(igvn, y, ry);
|
|
if (op == Op_Add(bt)) {
|
|
return AddNode::make(cx, cy, bt);
|
|
} else {
|
|
assert(op == Op_Sub(bt), "");
|
|
return SubNode::make(cx, cy, bt);
|
|
}
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const Type* ConstraintCastNode::widen_type(const PhaseGVN* phase, const Type* res, BasicType bt) const {
|
|
if (!phase->C->post_loop_opts_phase()) {
|
|
return res;
|
|
}
|
|
|
|
// At VerifyConstraintCasts == 1, we verify the ConstraintCastNodes that are present during code
|
|
// emission. This allows us detecting possible mis-scheduling due to these nodes being pinned at
|
|
// the wrong control nodes.
|
|
// At VerifyConstraintCasts == 2, we do not perform widening so that we can verify the
|
|
// correctness of more ConstraintCastNodes. This further helps us detect possible
|
|
// mis-transformations that may happen due to these nodes being pinned at the wrong control
|
|
// nodes.
|
|
if (VerifyConstraintCasts > 1) {
|
|
return res;
|
|
}
|
|
|
|
const TypeInteger* this_type = res->is_integer(bt);
|
|
const TypeInteger* in_type = phase->type(in(1))->isa_integer(bt);
|
|
if (in_type != nullptr &&
|
|
(in_type->lo_as_long() != this_type->lo_as_long() ||
|
|
in_type->hi_as_long() != this_type->hi_as_long())) {
|
|
jlong lo1 = this_type->lo_as_long();
|
|
jlong hi1 = this_type->hi_as_long();
|
|
int w1 = this_type->_widen;
|
|
if (lo1 >= 0) {
|
|
// Keep a range assertion of >=0.
|
|
lo1 = 0; hi1 = max_signed_integer(bt);
|
|
} else if (hi1 < 0) {
|
|
// Keep a range assertion of <0.
|
|
lo1 = min_signed_integer(bt); hi1 = -1;
|
|
} else {
|
|
lo1 = min_signed_integer(bt); hi1 = max_signed_integer(bt);
|
|
}
|
|
return TypeInteger::make(MAX2(in_type->lo_as_long(), lo1),
|
|
MIN2(in_type->hi_as_long(), hi1),
|
|
MAX2((int)in_type->_widen, w1), bt);
|
|
}
|
|
return res;
|
|
}
|