jdk/src/hotspot/share/opto/addnode.cpp
Damon Fenacci 8e0d736b13 8373525: C2: assert(_base == Long) failed: Not a Long
Reviewed-by: chagedorn
Backport-of: a61a1d32a2bbf227081b9da6d101071ceb73076a
2025-12-23 07:34:15 +00:00

1889 lines
67 KiB
C++

/*
* Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/castnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/connode.hpp"
#include "opto/machnode.hpp"
#include "opto/movenode.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "opto/utilities/xor.hpp"
#include "runtime/stubRoutines.hpp"
// Portions of code courtesy of Clifford Click
// Classic Add functionality. This covers all the usual 'add' behaviors for
// an algebraic ring. Add-integer, add-float, add-double, and binary-or are
// all inherited from this class. The various identity values are supplied
// by virtual functions.
//=============================================================================
//------------------------------hash-------------------------------------------
// Hash function over AddNodes. Needs to be commutative; i.e., I swap
// (commute) inputs to AddNodes willy-nilly so the hash function must return
// the same value in the presence of edge swapping.
uint AddNode::hash() const {
return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
}
//------------------------------Identity---------------------------------------
// If either input is a constant 0, return the other input.
Node* AddNode::Identity(PhaseGVN* phase) {
const Type *zero = add_id(); // The additive identity
if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
return this;
}
//------------------------------commute----------------------------------------
// Commute operands to move loads and constants to the right.
static bool commute(PhaseGVN* phase, Node* add) {
Node *in1 = add->in(1);
Node *in2 = add->in(2);
// convert "max(a,b) + min(a,b)" into "a+b".
if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode())
|| (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) {
Node *in11 = in1->in(1);
Node *in12 = in1->in(2);
Node *in21 = in2->in(1);
Node *in22 = in2->in(2);
if ((in11 == in21 && in12 == in22) ||
(in11 == in22 && in12 == in21)) {
add->set_req_X(1, in11, phase);
add->set_req_X(2, in12, phase);
return true;
}
}
bool con_left = phase->type(in1)->singleton();
bool con_right = phase->type(in2)->singleton();
// Convert "1+x" into "x+1".
// Right is a constant; leave it
if( con_right ) return false;
// Left is a constant; move it right.
if( con_left ) {
add->swap_edges(1, 2);
return true;
}
// Convert "Load+x" into "x+Load".
// Now check for loads
if (in2->is_Load()) {
if (!in1->is_Load()) {
// already x+Load to return
return false;
}
// both are loads, so fall through to sort inputs by idx
} else if( in1->is_Load() ) {
// Left is a Load and Right is not; move it right.
add->swap_edges(1, 2);
return true;
}
PhiNode *phi;
// Check for tight loop increments: Loop-phi of Add of loop-phi
if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add)
return false;
if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) {
add->swap_edges(1, 2);
return true;
}
// Otherwise, sort inputs (commutativity) to help value numbering.
if( in1->_idx > in2->_idx ) {
add->swap_edges(1, 2);
return true;
}
return false;
}
//------------------------------Idealize---------------------------------------
// If we get here, we assume we are associative!
Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
const Type *t1 = phase->type(in(1));
const Type *t2 = phase->type(in(2));
bool con_left = t1->singleton();
bool con_right = t2->singleton();
// Check for commutative operation desired
if (commute(phase, this)) return this;
AddNode *progress = nullptr; // Progress flag
// Convert "(x+1)+2" into "x+(1+2)". If the right input is a
// constant, and the left input is an add of a constant, flatten the
// expression tree.
Node *add1 = in(1);
Node *add2 = in(2);
int add1_op = add1->Opcode();
int this_op = Opcode();
if (con_right && t2 != Type::TOP && // Right input is a constant?
add1_op == this_op) { // Left input is an Add?
// Type of left _in right input
const Type *t12 = phase->type(add1->in(2));
if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
// Check for rare case of closed data cycle which can happen inside
// unreachable loops. In these cases the computation is undefined.
#ifdef ASSERT
Node *add11 = add1->in(1);
int add11_op = add11->Opcode();
if ((add1 == add1->in(1))
|| (add11_op == this_op && add11->in(1) == add1)) {
assert(false, "dead loop in AddNode::Ideal");
}
#endif
// The Add of the flattened expression
Node *x1 = add1->in(1);
Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12));
set_req_X(2, x2, phase);
set_req_X(1, x1, phase);
progress = this; // Made progress
add1 = in(1);
add1_op = add1->Opcode();
}
}
// Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
if (add1_op == this_op && !con_right) {
Node *a12 = add1->in(2);
const Type *t12 = phase->type( a12 );
if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
!(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) {
assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
add2 = add1->clone();
add2->set_req(2, in(2));
add2 = phase->transform(add2);
set_req_X(1, add2, phase);
set_req_X(2, a12, phase);
progress = this;
add2 = a12;
}
}
// Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
int add2_op = add2->Opcode();
if (add2_op == this_op && !con_left) {
Node *a22 = add2->in(2);
const Type *t22 = phase->type( a22 );
if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
!(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) {
assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
Node *addx = add2->clone();
addx->set_req(1, in(1));
addx->set_req(2, add2->in(1));
addx = phase->transform(addx);
set_req_X(1, addx, phase);
set_req_X(2, a22, phase);
progress = this;
}
}
return progress;
}
//------------------------------Value-----------------------------------------
// An add node sums it's two _in. If one input is an RSD, we must mixin
// the other input's symbols.
const Type* AddNode::Value(PhaseGVN* phase) const {
// Either input is TOP ==> the result is TOP
const Type* t1 = phase->type(in(1));
const Type* t2 = phase->type(in(2));
if (t1 == Type::TOP || t2 == Type::TOP) {
return Type::TOP;
}
// Check for an addition involving the additive identity
const Type* tadd = add_of_identity(t1, t2);
if (tadd != nullptr) {
return tadd;
}
return add_ring(t1, t2); // Local flavor of type addition
}
//------------------------------add_identity-----------------------------------
// Check for addition of the identity
const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
const Type *zero = add_id(); // The additive identity
if( t1->higher_equal( zero ) ) return t2;
if( t2->higher_equal( zero ) ) return t1;
return nullptr;
}
AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) {
switch (bt) {
case T_INT:
return new AddINode(in1, in2);
case T_LONG:
return new AddLNode(in1, in2);
default:
fatal("Not implemented for %s", type2name(bt));
}
return nullptr;
}
bool AddNode::is_not(PhaseGVN* phase, Node* n, BasicType bt) {
return n->Opcode() == Op_Xor(bt) && phase->type(n->in(2)) == TypeInteger::minus_1(bt);
}
AddNode* AddNode::make_not(PhaseGVN* phase, Node* n, BasicType bt) {
switch (bt) {
case T_INT:
return new XorINode(n, phase->intcon(-1));
case T_LONG:
return new XorLNode(n, phase->longcon(-1L));
default:
fatal("Not implemented for %s", type2name(bt));
}
return nullptr;
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) {
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Fold (con1-x)+con2 into (con1+con2)-x
if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) {
// Swap edges to try optimizations below
in1 = in2;
in2 = in(1);
op1 = op2;
op2 = in2->Opcode();
}
if (op1 == Op_Sub(bt)) {
const Type* t_sub1 = phase->type(in1->in(1));
const Type* t_2 = phase->type(in2 );
if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) {
return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt);
}
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
if (op2 == Op_Sub(bt)) {
// Check for dead cycle: d = (a-b)+(c-d)
assert( in1->in(2) != this && in2->in(2) != this,
"dead loop in AddINode::Ideal" );
Node* sub = SubNode::make(nullptr, nullptr, bt);
Node* sub_in1;
PhaseIterGVN* igvn = phase->is_IterGVN();
// During IGVN, if both inputs of the new AddNode are a tree of SubNodes, this same transformation will be applied
// to every node of the tree. Calling transform() causes the transformation to be applied recursively, once per
// tree node whether some subtrees are identical or not. Pushing to the IGVN worklist instead, causes the transform
// to be applied once per unique subtrees (because all uses of a subtree are updated with the result of the
// transformation). In case of a large tree, this can make a difference in compilation time.
if (igvn != nullptr) {
sub_in1 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(1), in2->in(1), bt));
} else {
sub_in1 = phase->transform(AddNode::make(in1->in(1), in2->in(1), bt));
}
Node* sub_in2;
if (igvn != nullptr) {
sub_in2 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(2), in2->in(2), bt));
} else {
sub_in2 = phase->transform(AddNode::make(in1->in(2), in2->in(2), bt));
}
sub->init_req(1, sub_in1);
sub->init_req(2, sub_in2);
return sub;
}
// Convert "(a-b)+(b+c)" into "(a+c)"
if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal");
return AddNode::make(in1->in(1), in2->in(2), bt);
}
// Convert "(a-b)+(c+b)" into "(a+c)"
if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) {
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal");
return AddNode::make(in1->in(1), in2->in(1), bt);
}
}
// Convert (con - y) + x into "(x - y) + con"
if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt)
&& in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) {
return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt);
}
// Convert x + (con - y) into "(x - y) + con"
if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt)
&& in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) {
return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt);
}
// Associative
if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) {
Node* add_in1 = nullptr;
Node* add_in2 = nullptr;
Node* mul_in = nullptr;
if (in1->in(1) == in2->in(1)) {
// Convert "a*b+a*c into a*(b+c)
add_in1 = in1->in(2);
add_in2 = in2->in(2);
mul_in = in1->in(1);
} else if (in1->in(2) == in2->in(1)) {
// Convert a*b+b*c into b*(a+c)
add_in1 = in1->in(1);
add_in2 = in2->in(2);
mul_in = in1->in(2);
} else if (in1->in(2) == in2->in(2)) {
// Convert a*c+b*c into (a+b)*c
add_in1 = in1->in(1);
add_in2 = in2->in(1);
mul_in = in1->in(2);
} else if (in1->in(1) == in2->in(2)) {
// Convert a*b+c*a into a*(b+c)
add_in1 = in1->in(2);
add_in2 = in2->in(1);
mul_in = in1->in(1);
}
if (mul_in != nullptr) {
Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt));
return MulNode::make(mul_in, add, bt);
}
}
// Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift)
if (Matcher::match_rule_supported(Op_RotateRight) &&
((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) &&
in1->in(1) != nullptr && in1->in(1) == in2->in(1)) {
Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2);
Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2);
if (rshift != nullptr && lshift != nullptr) {
const TypeInt* rshift_t = phase->type(rshift)->isa_int();
const TypeInt* lshift_t = phase->type(lshift)->isa_int();
int bits = bt == T_INT ? 32 : 64;
int mask = bt == T_INT ? 0x1F : 0x3F;
if (lshift_t != nullptr && lshift_t->is_con() &&
rshift_t != nullptr && rshift_t->is_con() &&
((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) {
return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt));
}
}
}
// Collapse addition of the same terms into multiplications.
Node* collapsed = Ideal_collapse_variable_times_con(phase, bt);
if (collapsed != nullptr) {
return collapsed; // Skip AddNode::Ideal() since it may now be a multiplication node.
}
return AddNode::Ideal(phase, can_reshape);
}
// Try to collapse addition of the same terms into a single multiplication. On success, a new MulNode is returned.
// Examples of this conversion includes:
// - a + a + ... + a => CON*a
// - (a * CON) + a => (CON + 1) * a
// - a + (a * CON) => (CON + 1) * a
//
// We perform such conversions incrementally during IGVN by transforming left most nodes first and work up to the root
// of the expression. In other words, we convert, at each iteration:
// a + a + a + ... + a
// => 2*a + a + ... + a
// => 3*a + ... + a
// => n*a
//
// Due to the iterative nature of IGVN, MulNode transformed from first few AddNode terms may be further transformed into
// power-of-2 pattern. (e.g., 2 * a => a << 1, 3 * a => (a << 2) + a). We can't guarantee we'll always pick up
// transformed power-of-2 patterns when term `a` is complex.
//
// Note this also converts, for example, original expression `(a*3) + a` into `4*a` and `(a<<2) + a` into `5*a`. A more
// generalized pattern `(a*b) + (a*c)` into `a*(b + c)` is handled by AddNode::IdealIL().
Node* AddNode::Ideal_collapse_variable_times_con(PhaseGVN* phase, BasicType bt) {
// We need to make sure that the current AddNode is not part of a MulNode that has already been optimized to a
// power-of-2 addition (e.g., 3 * a => (a << 2) + a). Without this check, GVN would keep trying to optimize the same
// node and can't progress. For example, 3 * a => (a << 2) + a => 3 * a => (a << 2) + a => ...
if (Multiplication::find_power_of_two_addition_pattern(this, bt).is_valid()) {
return nullptr;
}
Node* lhs = in(1);
Node* rhs = in(2);
Multiplication mul = Multiplication::find_collapsible_addition_patterns(lhs, rhs, bt);
if (!mul.is_valid_with(rhs)) {
// Swap lhs and rhs then try again
mul = Multiplication::find_collapsible_addition_patterns(rhs, lhs, bt);
if (!mul.is_valid_with(lhs)) {
return nullptr;
}
}
Node* con;
if (bt == T_INT) {
con = phase->intcon(java_add(static_cast<jint>(mul.multiplier()), 1));
} else {
con = phase->longcon(java_add(mul.multiplier(), CONST64(1)));
}
return MulNode::make(con, mul.variable(), bt);
}
// Find a pattern of collapsable additions that can be converted to a multiplication.
// When matching the LHS `a * CON`, we match with best efforts by looking for the following patterns:
// - (1) Simple addition: LHS = a + a
// - (2) Simple lshift: LHS = a << CON
// - (3) Simple multiplication: LHS = CON * a
// - (4) Power-of-two addition: LHS = (a << CON1) + (a << CON2)
AddNode::Multiplication AddNode::Multiplication::find_collapsible_addition_patterns(const Node* a, const Node* pattern, BasicType bt) {
// (1) Simple addition pattern (e.g., lhs = a + a)
Multiplication mul = find_simple_addition_pattern(a, bt);
if (mul.is_valid_with(pattern)) {
return mul;
}
// (2) Simple lshift pattern (e.g., lhs = a << CON)
mul = find_simple_lshift_pattern(a, bt);
if (mul.is_valid_with(pattern)) {
return mul;
}
// (3) Simple multiplication pattern (e.g., lhs = CON * a)
mul = find_simple_multiplication_pattern(a, bt);
if (mul.is_valid_with(pattern)) {
return mul;
}
// (4) Power-of-two addition pattern (e.g., lhs = (a << CON1) + (a << CON2))
// While multiplications can be potentially optimized to power-of-2 subtractions (e.g., a * 7 => (a << 3) - a),
// (x - y) + y => x is already handled by the Identity() methods. So, we don't need to check for that pattern here.
mul = find_power_of_two_addition_pattern(a, bt);
if (mul.is_valid_with(pattern)) {
return mul;
}
// We've tried everything.
return make_invalid();
}
// Try to match `n = a + a`. On success, return a struct with `.valid = true`, `variable = a`, and `multiplier = 2`.
// The method matches `n` for pattern: a + a.
AddNode::Multiplication AddNode::Multiplication::find_simple_addition_pattern(const Node* n, BasicType bt) {
if (n->Opcode() == Op_Add(bt) && n->in(1) == n->in(2)) {
return Multiplication(n->in(1), 2);
}
return make_invalid();
}
// Try to match `n = a << CON`. On success, return a struct with `.valid = true`, `variable = a`, and
// `multiplier = 1 << CON`.
// Match `n` for pattern: a << CON.
// Note that the power-of-2 multiplication optimization could potentially convert a MulNode to this pattern.
AddNode::Multiplication AddNode::Multiplication::find_simple_lshift_pattern(const Node* n, BasicType bt) {
// Note that power-of-2 multiplication optimization could potentially convert a MulNode to this pattern
if (n->Opcode() == Op_LShift(bt) && n->in(2)->is_Con()) {
Node* con = n->in(2);
if (!con->is_top()) {
return Multiplication(n->in(1), java_shift_left(1, con->get_int(), bt));
}
}
return make_invalid();
}
// Try to match `n = CON * a`. On success, return a struct with `.valid = true`, `variable = a`, and `multiplier = CON`.
// Match `n` for patterns: CON * a
// Note that `CON` will always be the second input node of a Mul node canonicalized by Ideal(). If this is not the case,
// `n` has not been processed by iGVN. So we skip the optimization for the current add node and wait for to be added to
// the queue again.
AddNode::Multiplication AddNode::Multiplication::find_simple_multiplication_pattern(const Node* n, BasicType bt) {
if (n->Opcode() == Op_Mul(bt) && n->in(2)->is_Con()) {
Node* con = n->in(2);
Node* base = n->in(1);
if (!con->is_top()) {
return Multiplication(base, con->get_integer_as_long(bt));
}
}
return make_invalid();
}
// Try to match `n = (a << CON1) + (a << CON2)`. On success, return a struct with `.valid = true`, `variable = a`, and
// `multiplier = (1 << CON1) + (1 << CON2)`.
// Match `n` for patterns:
// - (1) (a << CON) + (a << CON)
// - (2) (a << CON) + a
// - (3) a + (a << CON)
// - (4) a + a
// Note that one or both of the term of the addition could simply be `a` (i.e., a << 0) as in pattern (4).
AddNode::Multiplication AddNode::Multiplication::find_power_of_two_addition_pattern(const Node* n, BasicType bt) {
if (n->Opcode() == Op_Add(bt) && n->in(1) != n->in(2)) {
const Multiplication lhs = find_simple_lshift_pattern(n->in(1), bt);
const Multiplication rhs = find_simple_lshift_pattern(n->in(2), bt);
// Pattern (1)
{
const Multiplication res = lhs.add(rhs);
if (res.is_valid()) {
return res;
}
}
// Pattern (2)
if (lhs.is_valid_with(n->in(2))) {
return Multiplication(lhs.variable(), java_add(lhs.multiplier(), CONST64(1)));
}
// Pattern (3)
if (rhs.is_valid_with(n->in(1))) {
return Multiplication(rhs.variable(), java_add(rhs.multiplier(), CONST64(1)));
}
// Pattern (4), which is equivalent to a simple addition pattern
return find_simple_addition_pattern(n, bt);
}
return make_invalid();
}
Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
// Helps with array allocation math constant folding
// See 4790063:
// Unrestricted transformation is unsafe for some runtime values of 'x'
// ( x == 0, z == 1, y == -1 ) fails
// ( x == -5, z == 1, y == 1 ) fails
// Transform works for small z and small negative y when the addition
// (x + (y << z)) does not cross zero.
// Implement support for negative y and (x >= -(y << z))
// Have not observed cases where type information exists to support
// positive y and (x <= -(y << z))
if (op1 == Op_URShiftI && op2 == Op_ConI &&
in1->in(2)->Opcode() == Op_ConI) {
jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
jint y = phase->type(in2)->is_int()->get_con();
if (z < 5 && -5 < y && y < 0) {
const Type* t_in11 = phase->type(in1->in(1));
if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) {
Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z)));
return new URShiftINode(a, in1->in(2));
}
}
}
return AddNode::IdealIL(phase, can_reshape, T_INT);
}
//------------------------------Identity---------------------------------------
// Fold (x-y)+y OR y+(x-y) into x
Node* AddINode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) {
return in(1)->in(1);
} else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) {
return in(2)->in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs. Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
int lo = java_add(r0->_lo, r1->_lo);
int hi = java_add(r0->_hi, r1->_hi);
if( !(r0->is_con() && r1->is_con()) ) {
// Not both constants, compute approximate result
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
lo = min_jint; hi = max_jint; // Underflow on the low side
}
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
lo = min_jint; hi = max_jint; // Overflow on the high side
}
if( lo > hi ) { // Handle overflow
lo = min_jint; hi = max_jint;
}
} else {
// both constants, compute precise result using 'lo' and 'hi'
// Semantics define overflow and underflow for integer addition
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
}
return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
return AddNode::IdealIL(phase, can_reshape, T_LONG);
}
//------------------------------Identity---------------------------------------
// Fold (x-y)+y OR y+(x-y) into x
Node* AddLNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) {
return in(1)->in(1);
} else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) {
return in(2)->in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs. Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
jlong lo = java_add(r0->_lo, r1->_lo);
jlong hi = java_add(r0->_hi, r1->_hi);
if( !(r0->is_con() && r1->is_con()) ) {
// Not both constants, compute approximate result
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
lo =min_jlong; hi = max_jlong; // Underflow on the low side
}
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
lo = min_jlong; hi = max_jlong; // Overflow on the high side
}
if( lo > hi ) { // Handle overflow
lo = min_jlong; hi = max_jlong;
}
} else {
// both constants, compute precise result using 'lo' and 'hi'
// Semantics define overflow and underflow for integer addition
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
}
return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
// x ADD 0 should return x unless 'x' is a -zero
//
// const Type *zero = add_id(); // The additive identity
// jfloat f1 = t1->getf();
// jfloat f2 = t2->getf();
//
// if( t1->higher_equal( zero ) ) return t2;
// if( t2->higher_equal( zero ) ) return t1;
return nullptr;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
if (!t0->isa_float_constant() || !t1->isa_float_constant()) {
return bottom_type();
}
return TypeF::make( t0->getf() + t1->getf() );
}
//------------------------------Ideal------------------------------------------
Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Floating point additions are not associative because of boundary conditions (infinity)
return commute(phase, this) ? this : nullptr;
}
//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type* AddHFNode::add_of_identity(const Type* t1, const Type* t2) const {
return nullptr;
}
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type* AddHFNode::add_ring(const Type* t0, const Type* t1) const {
if (!t0->isa_half_float_constant() || !t1->isa_half_float_constant()) {
return bottom_type();
}
return TypeH::make(t0->getf() + t1->getf());
}
//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
// x ADD 0 should return x unless 'x' is a -zero
//
// const Type *zero = add_id(); // The additive identity
// jfloat f1 = t1->getf();
// jfloat f2 = t2->getf();
//
// if( t1->higher_equal( zero ) ) return t2;
// if( t2->higher_equal( zero ) ) return t1;
return nullptr;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
if (!t0->isa_double_constant() || !t1->isa_double_constant()) {
return bottom_type();
}
return TypeD::make( t0->getd() + t1->getd() );
}
//------------------------------Ideal------------------------------------------
Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Floating point additions are not associative because of boundary conditions (infinity)
return commute(phase, this) ? this : nullptr;
}
//=============================================================================
//------------------------------Identity---------------------------------------
// If one input is a constant 0, return the other input.
Node* AddPNode::Identity(PhaseGVN* phase) {
return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
}
//------------------------------Idealize---------------------------------------
Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Bail out if dead inputs
if( phase->type( in(Address) ) == Type::TOP ) return nullptr;
// If the left input is an add of a constant, flatten the expression tree.
const Node *n = in(Address);
if (n->is_AddP() && n->in(Base) == in(Base)) {
const AddPNode *addp = n->as_AddP(); // Left input is an AddP
assert( !addp->in(Address)->is_AddP() ||
addp->in(Address)->as_AddP() != addp,
"dead loop in AddPNode::Ideal" );
// Type of left input's right input
const Type *t = phase->type( addp->in(Offset) );
if( t == Type::TOP ) return nullptr;
const TypeX *t12 = t->is_intptr_t();
if( t12->is_con() ) { // Left input is an add of a constant?
// If the right input is a constant, combine constants
const Type *temp_t2 = phase->type( in(Offset) );
if( temp_t2 == Type::TOP ) return nullptr;
const TypeX *t2 = temp_t2->is_intptr_t();
Node* address;
Node* offset;
if( t2->is_con() ) {
// The Add of the flattened expression
address = addp->in(Address);
offset = phase->MakeConX(t2->get_con() + t12->get_con());
} else {
// Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset)));
offset = addp->in(Offset);
}
set_req_X(Address, address, phase);
set_req_X(Offset, offset, phase);
return this;
}
}
// Raw pointers?
if( in(Base)->bottom_type() == Type::TOP ) {
// If this is a null+long form (from unsafe accesses), switch to a rawptr.
if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
Node* offset = in(Offset);
return new CastX2PNode(offset);
}
}
// If the right is an add of a constant, push the offset down.
// Convert: (ptr + (offset+con)) into (ptr+offset)+con.
// The idea is to merge array_base+scaled_index groups together,
// and only have different constant offsets from the same base.
const Node *add = in(Offset);
if( add->Opcode() == Op_AddX && add->in(1) != add ) {
const Type *t22 = phase->type( add->in(2) );
if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1))));
set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed
return this; // Made progress
}
}
return nullptr; // No progress
}
//------------------------------bottom_type------------------------------------
// Bottom-type is the pointer-type with unknown offset.
const Type *AddPNode::bottom_type() const {
if (in(Address) == nullptr) return TypePtr::BOTTOM;
const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
if( !tp ) return Type::TOP; // TOP input means TOP output
assert( in(Offset)->Opcode() != Op_ConP, "" );
const Type *t = in(Offset)->bottom_type();
if( t == Type::TOP )
return tp->add_offset(Type::OffsetTop);
const TypeX *tx = t->is_intptr_t();
intptr_t txoffset = Type::OffsetBot;
if (tx->is_con()) { // Left input is an add of a constant?
txoffset = tx->get_con();
}
return tp->add_offset(txoffset);
}
//------------------------------Value------------------------------------------
const Type* AddPNode::Value(PhaseGVN* phase) const {
// Either input is TOP ==> the result is TOP
const Type *t1 = phase->type( in(Address) );
const Type *t2 = phase->type( in(Offset) );
if( t1 == Type::TOP ) return Type::TOP;
if( t2 == Type::TOP ) return Type::TOP;
// Left input is a pointer
const TypePtr *p1 = t1->isa_ptr();
// Right input is an int
const TypeX *p2 = t2->is_intptr_t();
// Add 'em
intptr_t p2offset = Type::OffsetBot;
if (p2->is_con()) { // Left input is an add of a constant?
p2offset = p2->get_con();
}
return p1->add_offset(p2offset);
}
//------------------------Ideal_base_and_offset--------------------------------
// Split an oop pointer into a base and offset.
// (The offset might be Type::OffsetBot in the case of an array.)
// Return the base, or null if failure.
Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseValues* phase,
// second return value:
intptr_t& offset) {
if (ptr->is_AddP()) {
Node* base = ptr->in(AddPNode::Base);
Node* addr = ptr->in(AddPNode::Address);
Node* offs = ptr->in(AddPNode::Offset);
if (base == addr || base->is_top()) {
offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
if (offset != Type::OffsetBot) {
return addr;
}
}
}
offset = Type::OffsetBot;
return nullptr;
}
//------------------------------unpack_offsets----------------------------------
// Collect the AddP offset values into the elements array, giving up
// if there are more than length.
int AddPNode::unpack_offsets(Node* elements[], int length) const {
int count = 0;
Node const* addr = this;
Node* base = addr->in(AddPNode::Base);
while (addr->is_AddP()) {
if (addr->in(AddPNode::Base) != base) {
// give up
return -1;
}
elements[count++] = addr->in(AddPNode::Offset);
if (count == length) {
// give up
return -1;
}
addr = addr->in(AddPNode::Address);
}
if (addr != base) {
return -1;
}
return count;
}
//------------------------------match_edge-------------------------------------
// Do we Match on this edge index or not? Do not match base pointer edge
uint AddPNode::match_edge(uint idx) const {
return idx > Base;
}
//=============================================================================
//------------------------------Identity---------------------------------------
Node* OrINode::Identity(PhaseGVN* phase) {
// x | x => x
if (in(1) == in(2)) {
return in(1);
}
return AddNode::Identity(phase);
}
// Find shift value for Integer or Long OR.
static Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) {
// val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift
const TypeInt* lshift_t = phase->type(lshift)->isa_int();
const TypeInt* rshift_t = phase->type(rshift)->isa_int();
if (lshift_t != nullptr && lshift_t->is_con() &&
rshift_t != nullptr && rshift_t->is_con() &&
((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) {
return phase->intcon(lshift_t->get_con() & mask);
}
// val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift
if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){
const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int();
if (shift_t != nullptr && shift_t->is_con() &&
(shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) {
return lshift;
}
}
return nullptr;
}
Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) {
int lopcode = in(1)->Opcode();
int ropcode = in(2)->Opcode();
if (Matcher::match_rule_supported(Op_RotateLeft) &&
lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) {
Node* lshift = in(1)->in(2);
Node* rshift = in(2)->in(2);
Node* shift = rotate_shift(phase, lshift, rshift, 0x1F);
if (shift != nullptr) {
return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT);
}
return nullptr;
}
if (Matcher::match_rule_supported(Op_RotateRight) &&
lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) {
Node* rshift = in(1)->in(2);
Node* lshift = in(2)->in(2);
Node* shift = rotate_shift(phase, rshift, lshift, 0x1F);
if (shift != nullptr) {
return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT);
}
}
// Convert "~a | ~b" into "~(a & b)"
if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) {
Node* and_a_b = new AndINode(in(1)->in(1), in(2)->in(1));
Node* tn = phase->transform(and_a_b);
return AddNode::make_not(phase, tn, T_INT);
}
return AddNode::Ideal(phase, can_reshape);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// If both args are bool, can figure out better types
if ( r0 == TypeInt::BOOL ) {
if ( r1 == TypeInt::ONE) {
return TypeInt::ONE;
} else if ( r1 == TypeInt::BOOL ) {
return TypeInt::BOOL;
}
} else if ( r0 == TypeInt::ONE ) {
if ( r1 == TypeInt::BOOL ) {
return TypeInt::ONE;
}
}
// If either input is all ones, the output is all ones.
// x | ~0 == ~0 <==> x | -1 == -1
if (r0 == TypeInt::MINUS_1 || r1 == TypeInt::MINUS_1) {
return TypeInt::MINUS_1;
}
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeInt::INT; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeInt::make( r0->get_con() | r1->get_con() );
}
//=============================================================================
//------------------------------Identity---------------------------------------
Node* OrLNode::Identity(PhaseGVN* phase) {
// x | x => x
if (in(1) == in(2)) {
return in(1);
}
return AddNode::Identity(phase);
}
Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
int lopcode = in(1)->Opcode();
int ropcode = in(2)->Opcode();
if (Matcher::match_rule_supported(Op_RotateLeft) &&
lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) {
Node* lshift = in(1)->in(2);
Node* rshift = in(2)->in(2);
Node* shift = rotate_shift(phase, lshift, rshift, 0x3F);
if (shift != nullptr) {
return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG);
}
return nullptr;
}
if (Matcher::match_rule_supported(Op_RotateRight) &&
lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) {
Node* rshift = in(1)->in(2);
Node* lshift = in(2)->in(2);
Node* shift = rotate_shift(phase, rshift, lshift, 0x3F);
if (shift != nullptr) {
return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG);
}
}
// Convert "~a | ~b" into "~(a & b)"
if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) {
Node* and_a_b = new AndLNode(in(1)->in(1), in(2)->in(1));
Node* tn = phase->transform(and_a_b);
return AddNode::make_not(phase, tn, T_LONG);
}
return AddNode::Ideal(phase, can_reshape);
}
//------------------------------add_ring---------------------------------------
const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
// If either input is all ones, the output is all ones.
// x | ~0 == ~0 <==> x | -1 == -1
if (r0 == TypeLong::MINUS_1 || r1 == TypeLong::MINUS_1) {
return TypeLong::MINUS_1;
}
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeLong::LONG; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeLong::make( r0->get_con() | r1->get_con() );
}
//---------------------------Helper -------------------------------------------
/* Decide if the given node is used only in arithmetic expressions(add or sub).
*/
static bool is_used_in_only_arithmetic(Node* n, BasicType bt) {
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* u = n->fast_out(i);
if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) {
return false;
}
}
return true;
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
// Convert ~x into -1-x when ~x is used in an arithmetic expression
// or x itself is an expression.
if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS
if (phase->is_IterGVN()) {
if (is_used_in_only_arithmetic(this, T_INT)
// LHS is arithmetic
|| (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) {
return new SubINode(in2, in1);
}
} else {
// graph could be incomplete in GVN so we postpone to IGVN
phase->record_for_igvn(this);
}
}
// Propagate xor through constant cmoves. This pattern can occur after expansion of Conv2B nodes.
const TypeInt* in2_type = phase->type(in2)->isa_int();
if (in1->Opcode() == Op_CMoveI && in2_type != nullptr && in2_type->is_con()) {
int in2_val = in2_type->get_con();
// Get types of both sides of the CMove
const TypeInt* left = phase->type(in1->in(CMoveNode::IfFalse))->isa_int();
const TypeInt* right = phase->type(in1->in(CMoveNode::IfTrue))->isa_int();
// Ensure that both sides are int constants
if (left != nullptr && right != nullptr && left->is_con() && right->is_con()) {
Node* cond = in1->in(CMoveNode::Condition);
// Check that the comparison is a bool and that the cmp node type is correct
if (cond->is_Bool()) {
int cmp_op = cond->in(1)->Opcode();
if (cmp_op == Op_CmpI || cmp_op == Op_CmpP) {
int l_val = left->get_con();
int r_val = right->get_con();
return new CMoveINode(cond, phase->intcon(l_val ^ in2_val), phase->intcon(r_val ^ in2_val), TypeInt::INT);
}
}
}
}
return AddNode::Ideal(phase, can_reshape);
}
const Type* XorINode::Value(PhaseGVN* phase) const {
Node* in1 = in(1);
Node* in2 = in(2);
const Type* t1 = phase->type(in1);
const Type* t2 = phase->type(in2);
if (t1 == Type::TOP || t2 == Type::TOP) {
return Type::TOP;
}
// x ^ x ==> 0
if (in1->eqv_uncast(in2)) {
return add_id();
}
return AddNode::Value(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
if (r0->is_con() && r1->is_con()) {
// compute constant result
return TypeInt::make(r0->get_con() ^ r1->get_con());
}
// At least one of the arguments is not constant
if (r0->_lo >= 0 && r1->_lo >= 0) {
// Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound]
jint upper_bound = xor_upper_bound_for_ranges<jint, juint>(r0->_hi, r1->_hi);
return TypeInt::make(0, upper_bound, MAX2(r0->_widen, r1->_widen));
}
return TypeInt::INT;
}
//=============================================================================
//------------------------------add_ring---------------------------------------
const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
if (r0->is_con() && r1->is_con()) {
// compute constant result
return TypeLong::make(r0->get_con() ^ r1->get_con());
}
// At least one of the arguments is not constant
if (r0->_lo >= 0 && r1->_lo >= 0) {
// Combine [r0->_lo, r0->_hi] ^ [r0->_lo, r1->_hi] -> [0, upper_bound]
julong upper_bound = xor_upper_bound_for_ranges<jlong, julong>(r0->_hi, r1->_hi);
return TypeLong::make(0, upper_bound, MAX2(r0->_widen, r1->_widen));
}
return TypeLong::LONG;
}
Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
// Convert ~x into -1-x when ~x is used in an arithmetic expression
// or x itself is an arithmetic expression.
if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS
if (phase->is_IterGVN()) {
if (is_used_in_only_arithmetic(this, T_LONG)
// LHS is arithmetic
|| (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) {
return new SubLNode(in2, in1);
}
} else {
// graph could be incomplete in GVN so we postpone to IGVN
phase->record_for_igvn(this);
}
}
return AddNode::Ideal(phase, can_reshape);
}
const Type* XorLNode::Value(PhaseGVN* phase) const {
Node* in1 = in(1);
Node* in2 = in(2);
const Type* t1 = phase->type(in1);
const Type* t2 = phase->type(in2);
if (t1 == Type::TOP || t2 == Type::TOP) {
return Type::TOP;
}
// x ^ x ==> 0
if (in1->eqv_uncast(in2)) {
return add_id();
}
return AddNode::Value(phase);
}
Node* MaxNode::build_min_max_int(Node* a, Node* b, bool is_max) {
if (is_max) {
return new MaxINode(a, b);
} else {
return new MinINode(a, b);
}
}
Node* MaxNode::build_min_max_long(PhaseGVN* phase, Node* a, Node* b, bool is_max) {
if (is_max) {
return new MaxLNode(phase->C, a, b);
} else {
return new MinLNode(phase->C, a, b);
}
}
Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) {
bool is_int = gvn.type(a)->isa_int();
assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs");
BasicType bt = is_int ? T_INT: T_LONG;
Node* hook = nullptr;
if (gvn.is_IterGVN()) {
// Make sure a and b are not destroyed
hook = new Node(2);
hook->init_req(0, a);
hook->init_req(1, b);
}
Node* res = nullptr;
if (is_int && !is_unsigned) {
res = gvn.transform(build_min_max_int(a, b, is_max));
assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match");
} else {
Node* cmp = nullptr;
if (is_max) {
cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned));
} else {
cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned));
}
Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
res = gvn.transform(CMoveNode::make(bol, a, b, t));
}
if (hook != nullptr) {
hook->destruct(&gvn);
}
return res;
}
Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) {
bool is_int = gvn.type(a)->isa_int();
assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs");
BasicType bt = is_int ? T_INT: T_LONG;
Node* zero = gvn.integercon(0, bt);
Node* hook = nullptr;
if (gvn.is_IterGVN()) {
// Make sure a and b are not destroyed
hook = new Node(2);
hook->init_req(0, a);
hook->init_req(1, b);
}
Node* cmp = nullptr;
if (is_max) {
cmp = gvn.transform(CmpNode::make(a, b, bt, false));
} else {
cmp = gvn.transform(CmpNode::make(b, a, bt, false));
}
Node* sub = gvn.transform(SubNode::make(a, b, bt));
Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
Node* res = gvn.transform(CMoveNode::make(bol, sub, zero, t));
if (hook != nullptr) {
hook->destruct(&gvn);
}
return res;
}
// Check if addition of an integer with type 't' and a constant 'c' can overflow.
static bool can_overflow(const TypeInt* t, jint c) {
jint t_lo = t->_lo;
jint t_hi = t->_hi;
return ((c < 0 && (java_add(t_lo, c) > t_lo)) ||
(c > 0 && (java_add(t_hi, c) < t_hi)));
}
// Check if addition of a long with type 't' and a constant 'c' can overflow.
static bool can_overflow(const TypeLong* t, jlong c) {
jlong t_lo = t->_lo;
jlong t_hi = t->_hi;
return ((c < 0 && (java_add(t_lo, c) > t_lo)) ||
(c > 0 && (java_add(t_hi, c) < t_hi)));
}
// Let <x, x_off> = x_operands and <y, y_off> = y_operands.
// If x == y and neither add(x, x_off) nor add(y, y_off) overflow, return
// add(x, op(x_off, y_off)). Otherwise, return nullptr.
Node* MaxNode::extract_add(PhaseGVN* phase, ConstAddOperands x_operands, ConstAddOperands y_operands) {
Node* x = x_operands.first;
Node* y = y_operands.first;
int opcode = Opcode();
assert(opcode == Op_MaxI || opcode == Op_MinI, "Unexpected opcode");
const TypeInt* tx = phase->type(x)->isa_int();
jint x_off = x_operands.second;
jint y_off = y_operands.second;
if (x == y && tx != nullptr &&
!can_overflow(tx, x_off) &&
!can_overflow(tx, y_off)) {
jint c = opcode == Op_MinI ? MIN2(x_off, y_off) : MAX2(x_off, y_off);
return new AddINode(x, phase->intcon(c));
}
return nullptr;
}
// Try to cast n as an integer addition with a constant. Return:
// <x, C>, if n == add(x, C), where 'C' is a non-TOP constant;
// <nullptr, 0>, if n == add(x, C), where 'C' is a TOP constant; or
// <n, 0>, otherwise.
static ConstAddOperands as_add_with_constant(Node* n) {
if (n->Opcode() != Op_AddI) {
return ConstAddOperands(n, 0);
}
Node* x = n->in(1);
Node* c = n->in(2);
if (!c->is_Con()) {
return ConstAddOperands(n, 0);
}
const Type* c_type = c->bottom_type();
if (c_type == Type::TOP) {
return ConstAddOperands(nullptr, 0);
}
return ConstAddOperands(x, c_type->is_int()->get_con());
}
Node* MaxNode::IdealI(PhaseGVN* phase, bool can_reshape) {
int opcode = Opcode();
assert(opcode == Op_MinI || opcode == Op_MaxI, "Unexpected opcode");
// Try to transform the following pattern, in any of its four possible
// permutations induced by op's commutativity:
// op(op(add(inner, inner_off), inner_other), add(outer, outer_off))
// into
// op(add(inner, op(inner_off, outer_off)), inner_other),
// where:
// op is either MinI or MaxI, and
// inner == outer, and
// the additions cannot overflow.
for (uint inner_op_index = 1; inner_op_index <= 2; inner_op_index++) {
if (in(inner_op_index)->Opcode() != opcode) {
continue;
}
Node* outer_add = in(inner_op_index == 1 ? 2 : 1);
ConstAddOperands outer_add_operands = as_add_with_constant(outer_add);
if (outer_add_operands.first == nullptr) {
return nullptr; // outer_add has a TOP input, no need to continue.
}
// One operand is a MinI/MaxI and the other is an integer addition with
// constant. Test the operands of the inner MinI/MaxI.
for (uint inner_add_index = 1; inner_add_index <= 2; inner_add_index++) {
Node* inner_op = in(inner_op_index);
Node* inner_add = inner_op->in(inner_add_index);
ConstAddOperands inner_add_operands = as_add_with_constant(inner_add);
if (inner_add_operands.first == nullptr) {
return nullptr; // inner_add has a TOP input, no need to continue.
}
// Try to extract the inner add.
Node* add_extracted = extract_add(phase, inner_add_operands, outer_add_operands);
if (add_extracted == nullptr) {
continue;
}
Node* add_transformed = phase->transform(add_extracted);
Node* inner_other = inner_op->in(inner_add_index == 1 ? 2 : 1);
return build_min_max_int(add_transformed, inner_other, opcode == Op_MaxI);
}
}
// Try to transform
// op(add(x, x_off), add(y, y_off))
// into
// add(x, op(x_off, y_off)),
// where:
// op is either MinI or MaxI, and
// inner == outer, and
// the additions cannot overflow.
ConstAddOperands xC = as_add_with_constant(in(1));
ConstAddOperands yC = as_add_with_constant(in(2));
if (xC.first == nullptr || yC.first == nullptr) return nullptr;
return extract_add(phase, xC, yC);
}
// Ideal transformations for MaxINode
Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) {
return IdealI(phase, can_reshape);
}
Node* MaxINode::Identity(PhaseGVN* phase) {
const TypeInt* t1 = phase->type(in(1))->is_int();
const TypeInt* t2 = phase->type(in(2))->is_int();
// Can we determine the maximum statically?
if (t1->_lo >= t2->_hi) {
return in(1);
} else if (t2->_lo >= t1->_hi) {
return in(2);
}
return MaxNode::Identity(phase);
}
//=============================================================================
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Otherwise just MAX them bits.
return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------Idealize---------------------------------------
// MINs show up in range-check loop limit calculations. Look for
// "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
Node* MinINode::Ideal(PhaseGVN* phase, bool can_reshape) {
return IdealI(phase, can_reshape);
}
Node* MinINode::Identity(PhaseGVN* phase) {
const TypeInt* t1 = phase->type(in(1))->is_int();
const TypeInt* t2 = phase->type(in(2))->is_int();
// Can we determine the minimum statically?
if (t1->_lo >= t2->_hi) {
return in(2);
} else if (t2->_lo >= t1->_hi) {
return in(1);
}
return MaxNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Otherwise just MIN them bits.
return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}
// Collapse the "addition with overflow-protection" pattern, and the symmetrical
// "subtraction with underflow-protection" pattern. These are created during the
// unrolling, when we have to adjust the limit by subtracting the stride, but want
// to protect against underflow: MaxL(SubL(limit, stride), min_jint).
// If we have more than one of those in a sequence:
//
// x con2
// | |
// AddL clamp2
// | |
// Max/MinL con1
// | |
// AddL clamp1
// | |
// Max/MinL (n)
//
// We want to collapse it to:
//
// x con1 con2
// | | |
// | AddLNode (new_con)
// | |
// AddLNode clamp1
// | |
// Max/MinL (n)
//
// Note: we assume that SubL was already replaced by an AddL, and that the stride
// has its sign flipped: SubL(limit, stride) -> AddL(limit, -stride).
//
// Proof MaxL collapsed version equivalent to original (MinL version similar):
// is_sub_con ensures that con1, con2 ∈ [min_int, 0[
//
// Original:
// - AddL2 underflow => x + con2 ∈ ]max_long - min_int, max_long], ALWAYS BAILOUT as x + con1 + con2 surely fails can_overflow (*)
// - AddL2 no underflow => x + con2 ∈ [min_long, max_long]
// - MaxL2 clamp => min_int
// - AddL1 underflow: NOT POSSIBLE: cannot underflow since min_int + con1 ∈ [2 * min_int, min_int] always > min_long
// - AddL1 no underflow => min_int + con1 ∈ [2 * min_int, min_int]
// - MaxL1 clamp => min_int (RESULT 1)
// - MaxL1 no clamp: NOT POSSIBLE: min_int + con1 ∈ [2 * min_int, min_int] always <= min_int, so clamp always taken
// - MaxL2 no clamp => x + con2 ∈ [min_int, max_long]
// - AddL1 underflow: NOT POSSIBLE: cannot underflow since x + con2 + con1 ∈ [2 * min_int, max_long] always > min_long
// - AddL1 no underflow => x + con2 + con1 ∈ [2 * min_int, max_long]
// - MaxL1 clamp => min_int (RESULT 2)
// - MaxL1 no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3)
//
// Collapsed:
// - AddL2 (cannot underflow) => con2 + con1 ∈ [2 * min_int, 0]
// - AddL1 underflow: NOT POSSIBLE: would have bailed out at can_overflow (*)
// - AddL1 no underflow => x + con2 + con1 ∈ [min_long, max_long]
// - MaxL clamp => min_int (RESULT 1 and RESULT 2)
// - MaxL no clamp => x + con2 + con1 ∈ ]min_int, max_long] (RESULT 3)
//
static Node* fold_subI_no_underflow_pattern(Node* n, PhaseGVN* phase) {
assert(n->Opcode() == Op_MaxL || n->Opcode() == Op_MinL, "sanity");
// Check that the two clamps have the correct values.
jlong clamp = (n->Opcode() == Op_MaxL) ? min_jint : max_jint;
auto is_clamp = [&](Node* c) {
const TypeLong* t = phase->type(c)->isa_long();
return t != nullptr && t->is_con() &&
t->get_con() == clamp;
};
// Check that the constants are negative if MaxL, and positive if MinL.
auto is_sub_con = [&](Node* c) {
const TypeLong* t = phase->type(c)->isa_long();
return t != nullptr && t->is_con() &&
t->get_con() < max_jint && t->get_con() > min_jint &&
(t->get_con() < 0) == (n->Opcode() == Op_MaxL);
};
// Verify the graph level by level:
Node* add1 = n->in(1);
Node* clamp1 = n->in(2);
if (add1->Opcode() == Op_AddL && is_clamp(clamp1)) {
Node* max2 = add1->in(1);
Node* con1 = add1->in(2);
if (max2->Opcode() == n->Opcode() && is_sub_con(con1)) {
Node* add2 = max2->in(1);
Node* clamp2 = max2->in(2);
if (add2->Opcode() == Op_AddL && is_clamp(clamp2)) {
Node* x = add2->in(1);
Node* con2 = add2->in(2);
if (is_sub_con(con2)) {
// The graph could be dying (i.e. x is top) in which case type(x) is not a long.
const TypeLong* x_long = phase->type(x)->isa_long();
// Collapsed graph not equivalent if potential over/underflow -> bailing out (*)
if (x_long == nullptr || can_overflow(x_long, con1->get_long() + con2->get_long())) {
return nullptr;
}
Node* new_con = phase->transform(new AddLNode(con1, con2));
Node* new_sub = phase->transform(new AddLNode(x, new_con));
n->set_req_X(1, new_sub, phase);
return n;
}
}
}
}
return nullptr;
}
const Type* MaxLNode::add_ring(const Type* t0, const Type* t1) const {
const TypeLong* r0 = t0->is_long();
const TypeLong* r1 = t1->is_long();
return TypeLong::make(MAX2(r0->_lo, r1->_lo), MAX2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen));
}
Node* MaxLNode::Identity(PhaseGVN* phase) {
const TypeLong* t1 = phase->type(in(1))->is_long();
const TypeLong* t2 = phase->type(in(2))->is_long();
// Can we determine maximum statically?
if (t1->_lo >= t2->_hi) {
return in(1);
} else if (t2->_lo >= t1->_hi) {
return in(2);
}
return MaxNode::Identity(phase);
}
Node* MaxLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* n = AddNode::Ideal(phase, can_reshape);
if (n != nullptr) {
return n;
}
if (can_reshape) {
return fold_subI_no_underflow_pattern(this, phase);
}
return nullptr;
}
const Type* MinLNode::add_ring(const Type* t0, const Type* t1) const {
const TypeLong* r0 = t0->is_long();
const TypeLong* r1 = t1->is_long();
return TypeLong::make(MIN2(r0->_lo, r1->_lo), MIN2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen));
}
Node* MinLNode::Identity(PhaseGVN* phase) {
const TypeLong* t1 = phase->type(in(1))->is_long();
const TypeLong* t2 = phase->type(in(2))->is_long();
// Can we determine minimum statically?
if (t1->_lo >= t2->_hi) {
return in(2);
} else if (t2->_lo >= t1->_hi) {
return in(1);
}
return MaxNode::Identity(phase);
}
Node* MinLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* n = AddNode::Ideal(phase, can_reshape);
if (n != nullptr) {
return n;
}
if (can_reshape) {
return fold_subI_no_underflow_pattern(this, phase);
}
return nullptr;
}
int MaxNode::opposite_opcode() const {
if (Opcode() == max_opcode()) {
return min_opcode();
} else {
assert(Opcode() == min_opcode(), "Caller should be either %s or %s, but is %s", NodeClassNames[max_opcode()], NodeClassNames[min_opcode()], NodeClassNames[Opcode()]);
return max_opcode();
}
}
// Given a redundant structure such as Max/Min(A, Max/Min(B, C)) where A == B or A == C, return the useful part of the structure.
// 'operation' is the node expected to be the inner 'Max/Min(B, C)', and 'operand' is the node expected to be the 'A' operand of the outer node.
Node* MaxNode::find_identity_operation(Node* operation, Node* operand) {
if (operation->Opcode() == Opcode() || operation->Opcode() == opposite_opcode()) {
Node* n1 = operation->in(1);
Node* n2 = operation->in(2);
// Given Op(A, Op(B, C)), see if either A == B or A == C is true.
if (n1 == operand || n2 == operand) {
// If the operations are the same return the inner operation, as Max(A, Max(A, B)) == Max(A, B).
if (operation->Opcode() == Opcode()) {
return operation;
}
// If the operations are different return the operand 'A', as Max(A, Min(A, B)) == A if the value isn't floating point.
// With floating point values, the identity doesn't hold if B == NaN.
const Type* type = bottom_type();
if (type->isa_int() || type->isa_long()) {
return operand;
}
}
}
return nullptr;
}
Node* MaxNode::Identity(PhaseGVN* phase) {
if (in(1) == in(2)) {
return in(1);
}
Node* identity_1 = MaxNode::find_identity_operation(in(2), in(1));
if (identity_1 != nullptr) {
return identity_1;
}
Node* identity_2 = MaxNode::find_identity_operation(in(1), in(2));
if (identity_2 != nullptr) {
return identity_2;
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
const Type* MinHFNode::add_ring(const Type* t0, const Type* t1) const {
const TypeH* r0 = t0->isa_half_float_constant();
const TypeH* r1 = t1->isa_half_float_constant();
if (r0 == nullptr || r1 == nullptr) {
return bottom_type();
}
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
float f0 = r0->getf();
float f1 = r1->getf();
if (f0 != 0.0f || f1 != 0.0f) {
return f0 < f1 ? r0 : r1;
}
// As per IEEE 754 specification, floating point comparison consider +ve and -ve
// zeros as equals. Thus, performing signed integral comparison for min value
// detection.
return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type* MinFNode::add_ring(const Type* t0, const Type* t1 ) const {
const TypeF* r0 = t0->isa_float_constant();
const TypeF* r1 = t1->isa_float_constant();
if (r0 == nullptr || r1 == nullptr) {
return bottom_type();
}
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
float f0 = r0->getf();
float f1 = r1->getf();
if (f0 != 0.0f || f1 != 0.0f) {
return f0 < f1 ? r0 : r1;
}
// handle min of 0.0, -0.0 case.
return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type* MinDNode::add_ring(const Type* t0, const Type* t1) const {
const TypeD* r0 = t0->isa_double_constant();
const TypeD* r1 = t1->isa_double_constant();
if (r0 == nullptr || r1 == nullptr) {
return bottom_type();
}
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
double d0 = r0->getd();
double d1 = r1->getd();
if (d0 != 0.0 || d1 != 0.0) {
return d0 < d1 ? r0 : r1;
}
// handle min of 0.0, -0.0 case.
return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type* MaxHFNode::add_ring(const Type* t0, const Type* t1) const {
const TypeH* r0 = t0->isa_half_float_constant();
const TypeH* r1 = t1->isa_half_float_constant();
if (r0 == nullptr || r1 == nullptr) {
return bottom_type();
}
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
float f0 = r0->getf();
float f1 = r1->getf();
if (f0 != 0.0f || f1 != 0.0f) {
return f0 > f1 ? r0 : r1;
}
// As per IEEE 754 specification, floating point comparison consider +ve and -ve
// zeros as equals. Thus, performing signed integral comparison for max value
// detection.
return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type* MaxFNode::add_ring(const Type* t0, const Type* t1) const {
const TypeF* r0 = t0->isa_float_constant();
const TypeF* r1 = t1->isa_float_constant();
if (r0 == nullptr || r1 == nullptr) {
return bottom_type();
}
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
float f0 = r0->getf();
float f1 = r1->getf();
if (f0 != 0.0f || f1 != 0.0f) {
return f0 > f1 ? r0 : r1;
}
// handle max of 0.0,-0.0 case.
return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type* MaxDNode::add_ring(const Type* t0, const Type* t1) const {
const TypeD* r0 = t0->isa_double_constant();
const TypeD* r1 = t1->isa_double_constant();
if (r0 == nullptr || r1 == nullptr) {
return bottom_type();
}
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
double d0 = r0->getd();
double d1 = r1->getd();
if (d0 != 0.0 || d1 != 0.0) {
return d0 > d1 ? r0 : r1;
}
// handle max of 0.0, -0.0 case.
return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1;
}