mirror of
https://github.com/openjdk/jdk.git
synced 2026-02-10 18:38:27 +00:00
3280 lines
106 KiB
C++
3280 lines
106 KiB
C++
/*
|
|
* Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/macroAssembler.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "classfile/vmIntrinsics.hpp"
|
|
#include "code/codeBlob.hpp"
|
|
#include "compiler/compilerDefinitions.inline.hpp"
|
|
#include "jvm.h"
|
|
#include "logging/log.hpp"
|
|
#include "logging/logStream.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/os.inline.hpp"
|
|
#include "runtime/stubCodeGenerator.hpp"
|
|
#include "runtime/vm_version.hpp"
|
|
#include "utilities/checkedCast.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
#include "utilities/virtualizationSupport.hpp"
|
|
|
|
int VM_Version::_cpu;
|
|
int VM_Version::_model;
|
|
int VM_Version::_stepping;
|
|
bool VM_Version::_has_intel_jcc_erratum;
|
|
VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
|
|
|
|
#define DECLARE_CPU_FEATURE_NAME(id, name, bit) name,
|
|
const char* VM_Version::_features_names[] = { CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_NAME)};
|
|
#undef DECLARE_CPU_FEATURE_FLAG
|
|
|
|
// Address of instruction which causes SEGV
|
|
address VM_Version::_cpuinfo_segv_addr = 0;
|
|
// Address of instruction after the one which causes SEGV
|
|
address VM_Version::_cpuinfo_cont_addr = 0;
|
|
|
|
static BufferBlob* stub_blob;
|
|
static const int stub_size = 2000;
|
|
|
|
extern "C" {
|
|
typedef void (*get_cpu_info_stub_t)(void*);
|
|
typedef void (*detect_virt_stub_t)(uint32_t, uint32_t*);
|
|
}
|
|
static get_cpu_info_stub_t get_cpu_info_stub = nullptr;
|
|
static detect_virt_stub_t detect_virt_stub = nullptr;
|
|
|
|
#ifdef _LP64
|
|
|
|
bool VM_Version::supports_clflush() {
|
|
// clflush should always be available on x86_64
|
|
// if not we are in real trouble because we rely on it
|
|
// to flush the code cache.
|
|
// Unfortunately, Assembler::clflush is currently called as part
|
|
// of generation of the code cache flush routine. This happens
|
|
// under Universe::init before the processor features are set
|
|
// up. Assembler::flush calls this routine to check that clflush
|
|
// is allowed. So, we give the caller a free pass if Universe init
|
|
// is still in progress.
|
|
assert ((!Universe::is_fully_initialized() || (_features & CPU_FLUSH) != 0), "clflush should be available");
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#define CPUID_STANDARD_FN 0x0
|
|
#define CPUID_STANDARD_FN_1 0x1
|
|
#define CPUID_STANDARD_FN_4 0x4
|
|
#define CPUID_STANDARD_FN_B 0xb
|
|
|
|
#define CPUID_EXTENDED_FN 0x80000000
|
|
#define CPUID_EXTENDED_FN_1 0x80000001
|
|
#define CPUID_EXTENDED_FN_2 0x80000002
|
|
#define CPUID_EXTENDED_FN_3 0x80000003
|
|
#define CPUID_EXTENDED_FN_4 0x80000004
|
|
#define CPUID_EXTENDED_FN_7 0x80000007
|
|
#define CPUID_EXTENDED_FN_8 0x80000008
|
|
|
|
class VM_Version_StubGenerator: public StubCodeGenerator {
|
|
public:
|
|
|
|
VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
|
|
|
|
address generate_get_cpu_info() {
|
|
// Flags to test CPU type.
|
|
const uint32_t HS_EFL_AC = 0x40000;
|
|
const uint32_t HS_EFL_ID = 0x200000;
|
|
// Values for when we don't have a CPUID instruction.
|
|
const int CPU_FAMILY_SHIFT = 8;
|
|
const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
|
|
const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
|
|
bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2);
|
|
|
|
Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
|
|
Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, ext_cpuid8, done, wrapup;
|
|
Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
|
|
|
|
StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
|
|
# define __ _masm->
|
|
|
|
address start = __ pc();
|
|
|
|
//
|
|
// void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
|
|
//
|
|
// LP64: rcx and rdx are first and second argument registers on windows
|
|
|
|
__ push(rbp);
|
|
#ifdef _LP64
|
|
__ mov(rbp, c_rarg0); // cpuid_info address
|
|
#else
|
|
__ movptr(rbp, Address(rsp, 8)); // cpuid_info address
|
|
#endif
|
|
__ push(rbx);
|
|
__ push(rsi);
|
|
__ pushf(); // preserve rbx, and flags
|
|
__ pop(rax);
|
|
__ push(rax);
|
|
__ mov(rcx, rax);
|
|
//
|
|
// if we are unable to change the AC flag, we have a 386
|
|
//
|
|
__ xorl(rax, HS_EFL_AC);
|
|
__ push(rax);
|
|
__ popf();
|
|
__ pushf();
|
|
__ pop(rax);
|
|
__ cmpptr(rax, rcx);
|
|
__ jccb(Assembler::notEqual, detect_486);
|
|
|
|
__ movl(rax, CPU_FAMILY_386);
|
|
__ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
|
|
__ jmp(done);
|
|
|
|
//
|
|
// If we are unable to change the ID flag, we have a 486 which does
|
|
// not support the "cpuid" instruction.
|
|
//
|
|
__ bind(detect_486);
|
|
__ mov(rax, rcx);
|
|
__ xorl(rax, HS_EFL_ID);
|
|
__ push(rax);
|
|
__ popf();
|
|
__ pushf();
|
|
__ pop(rax);
|
|
__ cmpptr(rcx, rax);
|
|
__ jccb(Assembler::notEqual, detect_586);
|
|
|
|
__ bind(cpu486);
|
|
__ movl(rax, CPU_FAMILY_486);
|
|
__ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
|
|
__ jmp(done);
|
|
|
|
//
|
|
// At this point, we have a chip which supports the "cpuid" instruction
|
|
//
|
|
__ bind(detect_586);
|
|
__ xorl(rax, rax);
|
|
__ cpuid();
|
|
__ orl(rax, rax);
|
|
__ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input
|
|
// value of at least 1, we give up and
|
|
// assume a 486
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
__ cmpl(rax, 0xa); // Is cpuid(0xB) supported?
|
|
__ jccb(Assembler::belowEqual, std_cpuid4);
|
|
|
|
//
|
|
// cpuid(0xB) Processor Topology
|
|
//
|
|
__ movl(rax, 0xb);
|
|
__ xorl(rcx, rcx); // Threads level
|
|
__ cpuid();
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
__ movl(rax, 0xb);
|
|
__ movl(rcx, 1); // Cores level
|
|
__ cpuid();
|
|
__ push(rax);
|
|
__ andl(rax, 0x1f); // Determine if valid topology level
|
|
__ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
|
|
__ andl(rax, 0xffff);
|
|
__ pop(rax);
|
|
__ jccb(Assembler::equal, std_cpuid4);
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
__ movl(rax, 0xb);
|
|
__ movl(rcx, 2); // Packages level
|
|
__ cpuid();
|
|
__ push(rax);
|
|
__ andl(rax, 0x1f); // Determine if valid topology level
|
|
__ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
|
|
__ andl(rax, 0xffff);
|
|
__ pop(rax);
|
|
__ jccb(Assembler::equal, std_cpuid4);
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// cpuid(0x4) Deterministic cache params
|
|
//
|
|
__ bind(std_cpuid4);
|
|
__ movl(rax, 4);
|
|
__ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
|
|
__ jccb(Assembler::greater, std_cpuid1);
|
|
|
|
__ xorl(rcx, rcx); // L1 cache
|
|
__ cpuid();
|
|
__ push(rax);
|
|
__ andl(rax, 0x1f); // Determine if valid cache parameters used
|
|
__ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache
|
|
__ pop(rax);
|
|
__ jccb(Assembler::equal, std_cpuid1);
|
|
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Standard cpuid(0x1)
|
|
//
|
|
__ bind(std_cpuid1);
|
|
__ movl(rax, 1);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Check if OS has enabled XGETBV instruction to access XCR0
|
|
// (OSXSAVE feature flag) and CPU supports AVX
|
|
//
|
|
__ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
|
|
__ cmpl(rcx, 0x18000000);
|
|
__ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
|
|
|
|
//
|
|
// XCR0, XFEATURE_ENABLED_MASK register
|
|
//
|
|
__ xorl(rcx, rcx); // zero for XCR0 register
|
|
__ xgetbv();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rdx);
|
|
|
|
//
|
|
// cpuid(0x7) Structured Extended Features
|
|
//
|
|
__ bind(sef_cpuid);
|
|
__ movl(rax, 7);
|
|
__ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
|
|
__ jccb(Assembler::greater, ext_cpuid);
|
|
// ECX = 0
|
|
__ xorl(rcx, rcx);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi, 12), rdx);
|
|
|
|
// ECX = 1
|
|
__ movl(rax, 7);
|
|
__ movl(rcx, 1);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_ecx1_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
|
|
//
|
|
// Extended cpuid(0x80000000)
|
|
//
|
|
__ bind(ext_cpuid);
|
|
__ movl(rax, 0x80000000);
|
|
__ cpuid();
|
|
__ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported?
|
|
__ jcc(Assembler::belowEqual, done);
|
|
__ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported?
|
|
__ jcc(Assembler::belowEqual, ext_cpuid1);
|
|
__ cmpl(rax, 0x80000006); // Is cpuid(0x80000007) supported?
|
|
__ jccb(Assembler::belowEqual, ext_cpuid5);
|
|
__ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported?
|
|
__ jccb(Assembler::belowEqual, ext_cpuid7);
|
|
__ cmpl(rax, 0x80000008); // Is cpuid(0x80000009 and above) supported?
|
|
__ jccb(Assembler::belowEqual, ext_cpuid8);
|
|
__ cmpl(rax, 0x8000001E); // Is cpuid(0x8000001E) supported?
|
|
__ jccb(Assembler::below, ext_cpuid8);
|
|
//
|
|
// Extended cpuid(0x8000001E)
|
|
//
|
|
__ movl(rax, 0x8000001E);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1E_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000008)
|
|
//
|
|
__ bind(ext_cpuid8);
|
|
__ movl(rax, 0x80000008);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000007)
|
|
//
|
|
__ bind(ext_cpuid7);
|
|
__ movl(rax, 0x80000007);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000005)
|
|
//
|
|
__ bind(ext_cpuid5);
|
|
__ movl(rax, 0x80000005);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000001)
|
|
//
|
|
__ bind(ext_cpuid1);
|
|
__ movl(rax, 0x80000001);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi,12), rdx);
|
|
|
|
//
|
|
// Check if OS has enabled XGETBV instruction to access XCR0
|
|
// (OSXSAVE feature flag) and CPU supports AVX
|
|
//
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
|
|
__ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
|
|
__ cmpl(rcx, 0x18000000);
|
|
__ jccb(Assembler::notEqual, done); // jump if AVX is not supported
|
|
|
|
__ movl(rax, 0x6);
|
|
__ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0x6);
|
|
__ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
|
|
|
|
// we need to bridge farther than imm8, so we use this island as a thunk
|
|
__ bind(done);
|
|
__ jmp(wrapup);
|
|
|
|
__ bind(start_simd_check);
|
|
//
|
|
// Some OSs have a bug when upper 128/256bits of YMM/ZMM
|
|
// registers are not restored after a signal processing.
|
|
// Generate SEGV here (reference through null)
|
|
// and check upper YMM/ZMM bits after it.
|
|
//
|
|
int saved_useavx = UseAVX;
|
|
int saved_usesse = UseSSE;
|
|
|
|
// If UseAVX is uninitialized or is set by the user to include EVEX
|
|
if (use_evex) {
|
|
// check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
|
|
__ movl(rax, 0x10000);
|
|
__ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0x10000);
|
|
__ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
|
|
// check _cpuid_info.xem_xcr0_eax.bits.opmask
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm512
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm32
|
|
__ movl(rax, 0xE0);
|
|
__ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0xE0);
|
|
__ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
|
|
|
|
if (FLAG_IS_DEFAULT(UseAVX)) {
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(rax, Address(rsi, 0));
|
|
__ cmpl(rax, 0x50654); // If it is Skylake
|
|
__ jcc(Assembler::equal, legacy_setup);
|
|
}
|
|
// EVEX setup: run in lowest evex mode
|
|
VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 3;
|
|
UseSSE = 2;
|
|
#ifdef _WINDOWS
|
|
// xmm5-xmm15 are not preserved by caller on windows
|
|
// https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
|
|
__ subptr(rsp, 64);
|
|
__ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit);
|
|
#ifdef _LP64
|
|
__ subptr(rsp, 64);
|
|
__ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit);
|
|
__ subptr(rsp, 64);
|
|
__ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit);
|
|
#endif // _LP64
|
|
#endif // _WINDOWS
|
|
|
|
// load value into all 64 bytes of zmm7 register
|
|
__ movl(rcx, VM_Version::ymm_test_value());
|
|
__ movdl(xmm0, rcx);
|
|
__ vpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
|
|
__ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
|
|
#ifdef _LP64
|
|
__ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
|
|
__ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
|
|
#endif
|
|
VM_Version::clean_cpuFeatures();
|
|
__ jmp(save_restore_except);
|
|
}
|
|
|
|
__ bind(legacy_setup);
|
|
// AVX setup
|
|
VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 1;
|
|
UseSSE = 2;
|
|
#ifdef _WINDOWS
|
|
__ subptr(rsp, 32);
|
|
__ vmovdqu(Address(rsp, 0), xmm7);
|
|
#ifdef _LP64
|
|
__ subptr(rsp, 32);
|
|
__ vmovdqu(Address(rsp, 0), xmm8);
|
|
__ subptr(rsp, 32);
|
|
__ vmovdqu(Address(rsp, 0), xmm15);
|
|
#endif // _LP64
|
|
#endif // _WINDOWS
|
|
|
|
// load value into all 32 bytes of ymm7 register
|
|
__ movl(rcx, VM_Version::ymm_test_value());
|
|
|
|
__ movdl(xmm0, rcx);
|
|
__ pshufd(xmm0, xmm0, 0x00);
|
|
__ vinsertf128_high(xmm0, xmm0);
|
|
__ vmovdqu(xmm7, xmm0);
|
|
#ifdef _LP64
|
|
__ vmovdqu(xmm8, xmm0);
|
|
__ vmovdqu(xmm15, xmm0);
|
|
#endif
|
|
VM_Version::clean_cpuFeatures();
|
|
|
|
__ bind(save_restore_except);
|
|
__ xorl(rsi, rsi);
|
|
VM_Version::set_cpuinfo_segv_addr(__ pc());
|
|
// Generate SEGV
|
|
__ movl(rax, Address(rsi, 0));
|
|
|
|
VM_Version::set_cpuinfo_cont_addr(__ pc());
|
|
// Returns here after signal. Save xmm0 to check it later.
|
|
|
|
// If UseAVX is uninitialized or is set by the user to include EVEX
|
|
if (use_evex) {
|
|
// check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
|
|
__ movl(rax, 0x10000);
|
|
__ andl(rax, Address(rsi, 4));
|
|
__ cmpl(rax, 0x10000);
|
|
__ jcc(Assembler::notEqual, legacy_save_restore);
|
|
// check _cpuid_info.xem_xcr0_eax.bits.opmask
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm512
|
|
// check _cpuid_info.xem_xcr0_eax.bits.zmm32
|
|
__ movl(rax, 0xE0);
|
|
__ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
|
|
__ cmpl(rax, 0xE0);
|
|
__ jcc(Assembler::notEqual, legacy_save_restore);
|
|
|
|
if (FLAG_IS_DEFAULT(UseAVX)) {
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ movl(rax, Address(rsi, 0));
|
|
__ cmpl(rax, 0x50654); // If it is Skylake
|
|
__ jcc(Assembler::equal, legacy_save_restore);
|
|
}
|
|
// EVEX check: run in lowest evex mode
|
|
VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 3;
|
|
UseSSE = 2;
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
|
|
__ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
|
|
__ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
|
|
#ifdef _LP64
|
|
__ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
|
|
__ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
|
|
#endif
|
|
|
|
#ifdef _WINDOWS
|
|
#ifdef _LP64
|
|
__ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit);
|
|
__ addptr(rsp, 64);
|
|
__ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit);
|
|
__ addptr(rsp, 64);
|
|
#endif // _LP64
|
|
__ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit);
|
|
__ addptr(rsp, 64);
|
|
#endif // _WINDOWS
|
|
generate_vzeroupper(wrapup);
|
|
VM_Version::clean_cpuFeatures();
|
|
UseAVX = saved_useavx;
|
|
UseSSE = saved_usesse;
|
|
__ jmp(wrapup);
|
|
}
|
|
|
|
__ bind(legacy_save_restore);
|
|
// AVX check
|
|
VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
|
|
UseAVX = 1;
|
|
UseSSE = 2;
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
|
|
__ vmovdqu(Address(rsi, 0), xmm0);
|
|
__ vmovdqu(Address(rsi, 32), xmm7);
|
|
#ifdef _LP64
|
|
__ vmovdqu(Address(rsi, 64), xmm8);
|
|
__ vmovdqu(Address(rsi, 96), xmm15);
|
|
#endif
|
|
|
|
#ifdef _WINDOWS
|
|
#ifdef _LP64
|
|
__ vmovdqu(xmm15, Address(rsp, 0));
|
|
__ addptr(rsp, 32);
|
|
__ vmovdqu(xmm8, Address(rsp, 0));
|
|
__ addptr(rsp, 32);
|
|
#endif // _LP64
|
|
__ vmovdqu(xmm7, Address(rsp, 0));
|
|
__ addptr(rsp, 32);
|
|
#endif // _WINDOWS
|
|
generate_vzeroupper(wrapup);
|
|
VM_Version::clean_cpuFeatures();
|
|
UseAVX = saved_useavx;
|
|
UseSSE = saved_usesse;
|
|
|
|
__ bind(wrapup);
|
|
__ popf();
|
|
__ pop(rsi);
|
|
__ pop(rbx);
|
|
__ pop(rbp);
|
|
__ ret(0);
|
|
|
|
# undef __
|
|
|
|
return start;
|
|
};
|
|
void generate_vzeroupper(Label& L_wrapup) {
|
|
# define __ _masm->
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
|
|
__ cmpl(Address(rsi, 4), 0x756e6547); // 'uneG'
|
|
__ jcc(Assembler::notEqual, L_wrapup);
|
|
__ movl(rcx, 0x0FFF0FF0);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
|
|
__ andl(rcx, Address(rsi, 0));
|
|
__ cmpl(rcx, 0x00050670); // If it is Xeon Phi 3200/5200/7200
|
|
__ jcc(Assembler::equal, L_wrapup);
|
|
__ cmpl(rcx, 0x00080650); // If it is Future Xeon Phi
|
|
__ jcc(Assembler::equal, L_wrapup);
|
|
// vzeroupper() will use a pre-computed instruction sequence that we
|
|
// can't compute until after we've determined CPU capabilities. Use
|
|
// uncached variant here directly to be able to bootstrap correctly
|
|
__ vzeroupper_uncached();
|
|
# undef __
|
|
}
|
|
address generate_detect_virt() {
|
|
StubCodeMark mark(this, "VM_Version", "detect_virt_stub");
|
|
# define __ _masm->
|
|
|
|
address start = __ pc();
|
|
|
|
// Evacuate callee-saved registers
|
|
__ push(rbp);
|
|
__ push(rbx);
|
|
__ push(rsi); // for Windows
|
|
|
|
#ifdef _LP64
|
|
__ mov(rax, c_rarg0); // CPUID leaf
|
|
__ mov(rsi, c_rarg1); // register array address (eax, ebx, ecx, edx)
|
|
#else
|
|
__ movptr(rax, Address(rsp, 16)); // CPUID leaf
|
|
__ movptr(rsi, Address(rsp, 20)); // register array address
|
|
#endif
|
|
|
|
__ cpuid();
|
|
|
|
// Store result to register array
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ movl(Address(rsi, 4), rbx);
|
|
__ movl(Address(rsi, 8), rcx);
|
|
__ movl(Address(rsi, 12), rdx);
|
|
|
|
// Epilogue
|
|
__ pop(rsi);
|
|
__ pop(rbx);
|
|
__ pop(rbp);
|
|
__ ret(0);
|
|
|
|
# undef __
|
|
|
|
return start;
|
|
};
|
|
|
|
|
|
address generate_getCPUIDBrandString(void) {
|
|
// Flags to test CPU type.
|
|
const uint32_t HS_EFL_AC = 0x40000;
|
|
const uint32_t HS_EFL_ID = 0x200000;
|
|
// Values for when we don't have a CPUID instruction.
|
|
const int CPU_FAMILY_SHIFT = 8;
|
|
const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
|
|
const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
|
|
|
|
Label detect_486, cpu486, detect_586, done, ext_cpuid;
|
|
|
|
StubCodeMark mark(this, "VM_Version", "getCPUIDNameInfo_stub");
|
|
# define __ _masm->
|
|
|
|
address start = __ pc();
|
|
|
|
//
|
|
// void getCPUIDBrandString(VM_Version::CpuidInfo* cpuid_info);
|
|
//
|
|
// LP64: rcx and rdx are first and second argument registers on windows
|
|
|
|
__ push(rbp);
|
|
#ifdef _LP64
|
|
__ mov(rbp, c_rarg0); // cpuid_info address
|
|
#else
|
|
__ movptr(rbp, Address(rsp, 8)); // cpuid_info address
|
|
#endif
|
|
__ push(rbx);
|
|
__ push(rsi);
|
|
__ pushf(); // preserve rbx, and flags
|
|
__ pop(rax);
|
|
__ push(rax);
|
|
__ mov(rcx, rax);
|
|
//
|
|
// if we are unable to change the AC flag, we have a 386
|
|
//
|
|
__ xorl(rax, HS_EFL_AC);
|
|
__ push(rax);
|
|
__ popf();
|
|
__ pushf();
|
|
__ pop(rax);
|
|
__ cmpptr(rax, rcx);
|
|
__ jccb(Assembler::notEqual, detect_486);
|
|
|
|
__ movl(rax, CPU_FAMILY_386);
|
|
__ jmp(done);
|
|
|
|
//
|
|
// If we are unable to change the ID flag, we have a 486 which does
|
|
// not support the "cpuid" instruction.
|
|
//
|
|
__ bind(detect_486);
|
|
__ mov(rax, rcx);
|
|
__ xorl(rax, HS_EFL_ID);
|
|
__ push(rax);
|
|
__ popf();
|
|
__ pushf();
|
|
__ pop(rax);
|
|
__ cmpptr(rcx, rax);
|
|
__ jccb(Assembler::notEqual, detect_586);
|
|
|
|
__ bind(cpu486);
|
|
__ movl(rax, CPU_FAMILY_486);
|
|
__ jmp(done);
|
|
|
|
//
|
|
// At this point, we have a chip which supports the "cpuid" instruction
|
|
//
|
|
__ bind(detect_586);
|
|
__ xorl(rax, rax);
|
|
__ cpuid();
|
|
__ orl(rax, rax);
|
|
__ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input
|
|
// value of at least 1, we give up and
|
|
// assume a 486
|
|
|
|
//
|
|
// Extended cpuid(0x80000000) for processor brand string detection
|
|
//
|
|
__ bind(ext_cpuid);
|
|
__ movl(rax, CPUID_EXTENDED_FN);
|
|
__ cpuid();
|
|
__ cmpl(rax, CPUID_EXTENDED_FN_4);
|
|
__ jcc(Assembler::below, done);
|
|
|
|
//
|
|
// Extended cpuid(0x80000002) // first 16 bytes in brand string
|
|
//
|
|
__ movl(rax, CPUID_EXTENDED_FN_2);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_0_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_1_offset())));
|
|
__ movl(Address(rsi, 0), rbx);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_2_offset())));
|
|
__ movl(Address(rsi, 0), rcx);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_3_offset())));
|
|
__ movl(Address(rsi,0), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000003) // next 16 bytes in brand string
|
|
//
|
|
__ movl(rax, CPUID_EXTENDED_FN_3);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_4_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_5_offset())));
|
|
__ movl(Address(rsi, 0), rbx);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_6_offset())));
|
|
__ movl(Address(rsi, 0), rcx);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_7_offset())));
|
|
__ movl(Address(rsi,0), rdx);
|
|
|
|
//
|
|
// Extended cpuid(0x80000004) // last 16 bytes in brand string
|
|
//
|
|
__ movl(rax, CPUID_EXTENDED_FN_4);
|
|
__ cpuid();
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_8_offset())));
|
|
__ movl(Address(rsi, 0), rax);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_9_offset())));
|
|
__ movl(Address(rsi, 0), rbx);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_10_offset())));
|
|
__ movl(Address(rsi, 0), rcx);
|
|
__ lea(rsi, Address(rbp, in_bytes(VM_Version::proc_name_11_offset())));
|
|
__ movl(Address(rsi,0), rdx);
|
|
|
|
//
|
|
// return
|
|
//
|
|
__ bind(done);
|
|
__ popf();
|
|
__ pop(rsi);
|
|
__ pop(rbx);
|
|
__ pop(rbp);
|
|
__ ret(0);
|
|
|
|
# undef __
|
|
|
|
return start;
|
|
};
|
|
};
|
|
|
|
void VM_Version::get_processor_features() {
|
|
|
|
_cpu = 4; // 486 by default
|
|
_model = 0;
|
|
_stepping = 0;
|
|
_features = 0;
|
|
_logical_processors_per_package = 1;
|
|
// i486 internal cache is both I&D and has a 16-byte line size
|
|
_L1_data_cache_line_size = 16;
|
|
|
|
// Get raw processor info
|
|
|
|
get_cpu_info_stub(&_cpuid_info);
|
|
|
|
assert_is_initialized();
|
|
_cpu = extended_cpu_family();
|
|
_model = extended_cpu_model();
|
|
_stepping = cpu_stepping();
|
|
|
|
if (cpu_family() > 4) { // it supports CPUID
|
|
_features = _cpuid_info.feature_flags(); // These can be changed by VM settings
|
|
_cpu_features = _features; // Preserve features
|
|
// Logical processors are only available on P4s and above,
|
|
// and only if hyperthreading is available.
|
|
_logical_processors_per_package = logical_processor_count();
|
|
_L1_data_cache_line_size = L1_line_size();
|
|
}
|
|
|
|
// xchg and xadd instructions
|
|
_supports_atomic_getset4 = true;
|
|
_supports_atomic_getadd4 = true;
|
|
LP64_ONLY(_supports_atomic_getset8 = true);
|
|
LP64_ONLY(_supports_atomic_getadd8 = true);
|
|
|
|
#ifdef _LP64
|
|
// OS should support SSE for x64 and hardware should support at least SSE2.
|
|
if (!VM_Version::supports_sse2()) {
|
|
vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
|
|
}
|
|
// in 64 bit the use of SSE2 is the minimum
|
|
if (UseSSE < 2) UseSSE = 2;
|
|
#endif
|
|
|
|
#ifdef AMD64
|
|
// flush_icache_stub have to be generated first.
|
|
// That is why Icache line size is hard coded in ICache class,
|
|
// see icache_x86.hpp. It is also the reason why we can't use
|
|
// clflush instruction in 32-bit VM since it could be running
|
|
// on CPU which does not support it.
|
|
//
|
|
// The only thing we can do is to verify that flushed
|
|
// ICache::line_size has correct value.
|
|
guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
|
|
// clflush_size is size in quadwords (8 bytes).
|
|
guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
|
|
#endif
|
|
|
|
#ifdef _LP64
|
|
// assigning this field effectively enables Unsafe.writebackMemory()
|
|
// by initing UnsafeConstant.DATA_CACHE_LINE_FLUSH_SIZE to non-zero
|
|
// that is only implemented on x86_64 and only if the OS plays ball
|
|
if (os::supports_map_sync()) {
|
|
// publish data cache line flush size to generic field, otherwise
|
|
// let if default to zero thereby disabling writeback
|
|
_data_cache_line_flush_size = _cpuid_info.std_cpuid1_ebx.bits.clflush_size * 8;
|
|
}
|
|
#endif
|
|
|
|
// Check if processor has Intel Ecore
|
|
if (FLAG_IS_DEFAULT(EnableX86ECoreOpts) && is_intel() && cpu_family() == 6 &&
|
|
(_model == 0x97 || _model == 0xAA || _model == 0xAC || _model == 0xAF)) {
|
|
FLAG_SET_DEFAULT(EnableX86ECoreOpts, true);
|
|
}
|
|
|
|
if (UseSSE < 4) {
|
|
_features &= ~CPU_SSE4_1;
|
|
_features &= ~CPU_SSE4_2;
|
|
}
|
|
|
|
if (UseSSE < 3) {
|
|
_features &= ~CPU_SSE3;
|
|
_features &= ~CPU_SSSE3;
|
|
_features &= ~CPU_SSE4A;
|
|
}
|
|
|
|
if (UseSSE < 2)
|
|
_features &= ~CPU_SSE2;
|
|
|
|
if (UseSSE < 1)
|
|
_features &= ~CPU_SSE;
|
|
|
|
//since AVX instructions is slower than SSE in some ZX cpus, force USEAVX=0.
|
|
if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7))) {
|
|
UseAVX = 0;
|
|
}
|
|
|
|
// UseSSE is set to the smaller of what hardware supports and what
|
|
// the command line requires. I.e., you cannot set UseSSE to 2 on
|
|
// older Pentiums which do not support it.
|
|
int use_sse_limit = 0;
|
|
if (UseSSE > 0) {
|
|
if (UseSSE > 3 && supports_sse4_1()) {
|
|
use_sse_limit = 4;
|
|
} else if (UseSSE > 2 && supports_sse3()) {
|
|
use_sse_limit = 3;
|
|
} else if (UseSSE > 1 && supports_sse2()) {
|
|
use_sse_limit = 2;
|
|
} else if (UseSSE > 0 && supports_sse()) {
|
|
use_sse_limit = 1;
|
|
} else {
|
|
use_sse_limit = 0;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseSSE)) {
|
|
FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
|
|
} else if (UseSSE > use_sse_limit) {
|
|
warning("UseSSE=%d is not supported on this CPU, setting it to UseSSE=%d", UseSSE, use_sse_limit);
|
|
FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
|
|
}
|
|
|
|
// first try initial setting and detect what we can support
|
|
int use_avx_limit = 0;
|
|
if (UseAVX > 0) {
|
|
if (UseSSE < 4) {
|
|
// Don't use AVX if SSE is unavailable or has been disabled.
|
|
use_avx_limit = 0;
|
|
} else if (UseAVX > 2 && supports_evex()) {
|
|
use_avx_limit = 3;
|
|
} else if (UseAVX > 1 && supports_avx2()) {
|
|
use_avx_limit = 2;
|
|
} else if (UseAVX > 0 && supports_avx()) {
|
|
use_avx_limit = 1;
|
|
} else {
|
|
use_avx_limit = 0;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseAVX)) {
|
|
// Don't use AVX-512 on older Skylakes unless explicitly requested.
|
|
if (use_avx_limit > 2 && is_intel_skylake() && _stepping < 5) {
|
|
FLAG_SET_DEFAULT(UseAVX, 2);
|
|
} else {
|
|
FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
|
|
}
|
|
}
|
|
if (UseAVX > use_avx_limit) {
|
|
if (UseSSE < 4) {
|
|
warning("UseAVX=%d requires UseSSE=4, setting it to UseAVX=0", UseAVX);
|
|
} else {
|
|
warning("UseAVX=%d is not supported on this CPU, setting it to UseAVX=%d", UseAVX, use_avx_limit);
|
|
}
|
|
FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
|
|
}
|
|
|
|
if (UseAVX < 3) {
|
|
_features &= ~CPU_AVX512F;
|
|
_features &= ~CPU_AVX512DQ;
|
|
_features &= ~CPU_AVX512CD;
|
|
_features &= ~CPU_AVX512BW;
|
|
_features &= ~CPU_AVX512VL;
|
|
_features &= ~CPU_AVX512_VPOPCNTDQ;
|
|
_features &= ~CPU_AVX512_VPCLMULQDQ;
|
|
_features &= ~CPU_AVX512_VAES;
|
|
_features &= ~CPU_AVX512_VNNI;
|
|
_features &= ~CPU_AVX512_VBMI;
|
|
_features &= ~CPU_AVX512_VBMI2;
|
|
_features &= ~CPU_AVX512_BITALG;
|
|
_features &= ~CPU_AVX512_IFMA;
|
|
}
|
|
|
|
if (UseAVX < 2) {
|
|
_features &= ~CPU_AVX2;
|
|
_features &= ~CPU_AVX_IFMA;
|
|
}
|
|
|
|
if (UseAVX < 1) {
|
|
_features &= ~CPU_AVX;
|
|
_features &= ~CPU_VZEROUPPER;
|
|
_features &= ~CPU_F16C;
|
|
}
|
|
|
|
if (logical_processors_per_package() == 1) {
|
|
// HT processor could be installed on a system which doesn't support HT.
|
|
_features &= ~CPU_HT;
|
|
}
|
|
|
|
if (is_intel()) { // Intel cpus specific settings
|
|
if (is_knights_family()) {
|
|
_features &= ~CPU_VZEROUPPER;
|
|
_features &= ~CPU_AVX512BW;
|
|
_features &= ~CPU_AVX512VL;
|
|
_features &= ~CPU_AVX512DQ;
|
|
_features &= ~CPU_AVX512_VNNI;
|
|
_features &= ~CPU_AVX512_VAES;
|
|
_features &= ~CPU_AVX512_VPOPCNTDQ;
|
|
_features &= ~CPU_AVX512_VPCLMULQDQ;
|
|
_features &= ~CPU_AVX512_VBMI;
|
|
_features &= ~CPU_AVX512_VBMI2;
|
|
_features &= ~CPU_CLWB;
|
|
_features &= ~CPU_FLUSHOPT;
|
|
_features &= ~CPU_GFNI;
|
|
_features &= ~CPU_AVX512_BITALG;
|
|
_features &= ~CPU_AVX512_IFMA;
|
|
_features &= ~CPU_AVX_IFMA;
|
|
}
|
|
}
|
|
|
|
// APX support not enabled yet
|
|
if (UseAPX) {
|
|
if (!FLAG_IS_DEFAULT(UseAPX)) {
|
|
warning("APX is not supported on this CPU.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAPX, false);
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(IntelJccErratumMitigation)) {
|
|
_has_intel_jcc_erratum = compute_has_intel_jcc_erratum();
|
|
} else {
|
|
_has_intel_jcc_erratum = IntelJccErratumMitigation;
|
|
}
|
|
|
|
char buf[1024];
|
|
int res = jio_snprintf(
|
|
buf, sizeof(buf),
|
|
"(%u cores per cpu, %u threads per core) family %d model %d stepping %d microcode 0x%x",
|
|
cores_per_cpu(), threads_per_core(),
|
|
cpu_family(), _model, _stepping, os::cpu_microcode_revision());
|
|
assert(res > 0, "not enough temporary space allocated");
|
|
insert_features_names(buf + res, sizeof(buf) - res, _features_names);
|
|
|
|
_features_string = os::strdup(buf);
|
|
|
|
// Use AES instructions if available.
|
|
if (supports_aes()) {
|
|
if (FLAG_IS_DEFAULT(UseAES)) {
|
|
FLAG_SET_DEFAULT(UseAES, true);
|
|
}
|
|
if (!UseAES) {
|
|
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
|
|
} else {
|
|
if (UseSSE > 2) {
|
|
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, true);
|
|
}
|
|
} else {
|
|
// The AES intrinsic stubs require AES instruction support (of course)
|
|
// but also require sse3 mode or higher for instructions it use.
|
|
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
|
|
}
|
|
|
|
// --AES-CTR begins--
|
|
if (!UseAESIntrinsics) {
|
|
if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
|
|
}
|
|
} else {
|
|
if (supports_sse4_1()) {
|
|
if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
|
|
}
|
|
} else {
|
|
// The AES-CTR intrinsic stubs require AES instruction support (of course)
|
|
// but also require sse4.1 mode or higher for instructions it use.
|
|
if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
|
|
}
|
|
}
|
|
// --AES-CTR ends--
|
|
}
|
|
} else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
|
|
if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
|
|
warning("AES instructions are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseAES, false);
|
|
}
|
|
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("AES intrinsics are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
|
|
}
|
|
if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
|
|
warning("AES-CTR intrinsics are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
|
|
}
|
|
}
|
|
|
|
// Use CLMUL instructions if available.
|
|
if (supports_clmul()) {
|
|
if (FLAG_IS_DEFAULT(UseCLMUL)) {
|
|
UseCLMUL = true;
|
|
}
|
|
} else if (UseCLMUL) {
|
|
if (!FLAG_IS_DEFAULT(UseCLMUL))
|
|
warning("CLMUL instructions not available on this CPU (AVX may also be required)");
|
|
FLAG_SET_DEFAULT(UseCLMUL, false);
|
|
}
|
|
|
|
if (UseCLMUL && (UseSSE > 2)) {
|
|
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
|
|
UseCRC32Intrinsics = true;
|
|
}
|
|
} else if (UseCRC32Intrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
|
|
warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
|
|
FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
|
|
}
|
|
|
|
#ifdef _LP64
|
|
if (supports_avx2()) {
|
|
if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) {
|
|
UseAdler32Intrinsics = true;
|
|
}
|
|
} else if (UseAdler32Intrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseAdler32Intrinsics)) {
|
|
warning("Adler32 Intrinsics requires avx2 instructions (not available on this CPU)");
|
|
}
|
|
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
|
|
}
|
|
#else
|
|
if (UseAdler32Intrinsics) {
|
|
warning("Adler32Intrinsics not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
|
|
}
|
|
#endif
|
|
|
|
if (supports_sse4_2() && supports_clmul()) {
|
|
if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
|
|
UseCRC32CIntrinsics = true;
|
|
}
|
|
} else if (UseCRC32CIntrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
|
|
warning("CRC32C intrinsics are not available on this CPU");
|
|
}
|
|
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
|
|
}
|
|
|
|
// GHASH/GCM intrinsics
|
|
if (UseCLMUL && (UseSSE > 2)) {
|
|
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
|
|
UseGHASHIntrinsics = true;
|
|
}
|
|
} else if (UseGHASHIntrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
|
|
warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
|
|
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// ChaCha20 Intrinsics
|
|
// As long as the system supports AVX as a baseline we can do a
|
|
// SIMD-enabled block function. StubGenerator makes the determination
|
|
// based on the VM capabilities whether to use an AVX2 or AVX512-enabled
|
|
// version.
|
|
if (UseAVX >= 1) {
|
|
if (FLAG_IS_DEFAULT(UseChaCha20Intrinsics)) {
|
|
UseChaCha20Intrinsics = true;
|
|
}
|
|
} else if (UseChaCha20Intrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseChaCha20Intrinsics)) {
|
|
warning("ChaCha20 intrinsic requires AVX instructions");
|
|
}
|
|
FLAG_SET_DEFAULT(UseChaCha20Intrinsics, false);
|
|
}
|
|
#else
|
|
// No support currently for ChaCha20 intrinsics on 32-bit platforms
|
|
if (UseChaCha20Intrinsics) {
|
|
warning("ChaCha20 intrinsics are not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseChaCha20Intrinsics, false);
|
|
}
|
|
#endif // _LP64
|
|
|
|
// Base64 Intrinsics (Check the condition for which the intrinsic will be active)
|
|
if (UseAVX >= 2) {
|
|
if (FLAG_IS_DEFAULT(UseBASE64Intrinsics)) {
|
|
UseBASE64Intrinsics = true;
|
|
}
|
|
} else if (UseBASE64Intrinsics) {
|
|
if (!FLAG_IS_DEFAULT(UseBASE64Intrinsics))
|
|
warning("Base64 intrinsic requires EVEX instructions on this CPU");
|
|
FLAG_SET_DEFAULT(UseBASE64Intrinsics, false);
|
|
}
|
|
|
|
if (supports_fma() && UseSSE >= 2) { // Check UseSSE since FMA code uses SSE instructions
|
|
if (FLAG_IS_DEFAULT(UseFMA)) {
|
|
UseFMA = true;
|
|
}
|
|
} else if (UseFMA) {
|
|
warning("FMA instructions are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseFMA, false);
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(UseMD5Intrinsics)) {
|
|
UseMD5Intrinsics = true;
|
|
}
|
|
|
|
if (supports_sha() LP64_ONLY(|| (supports_avx2() && supports_bmi2()))) {
|
|
if (FLAG_IS_DEFAULT(UseSHA)) {
|
|
UseSHA = true;
|
|
}
|
|
} else if (UseSHA) {
|
|
warning("SHA instructions are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseSHA, false);
|
|
}
|
|
|
|
if (supports_sha() && supports_sse4_1() && UseSHA) {
|
|
if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
|
|
}
|
|
} else if (UseSHA1Intrinsics) {
|
|
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
|
|
}
|
|
|
|
if (supports_sse4_1() && UseSHA) {
|
|
if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
|
|
}
|
|
} else if (UseSHA256Intrinsics) {
|
|
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// These are only supported on 64-bit
|
|
if (UseSHA && supports_avx2() && supports_bmi2()) {
|
|
if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
|
|
}
|
|
} else
|
|
#endif
|
|
if (UseSHA512Intrinsics) {
|
|
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
|
|
}
|
|
|
|
if (UseSHA3Intrinsics) {
|
|
warning("Intrinsics for SHA3-224, SHA3-256, SHA3-384 and SHA3-512 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseSHA3Intrinsics, false);
|
|
}
|
|
|
|
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSHA, false);
|
|
}
|
|
|
|
if (!supports_rtm() && UseRTMLocking) {
|
|
vm_exit_during_initialization("RTM instructions are not available on this CPU");
|
|
}
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
if (UseRTMLocking) {
|
|
if (!CompilerConfig::is_c2_enabled()) {
|
|
// Only C2 does RTM locking optimization.
|
|
vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
|
|
}
|
|
if (is_intel_family_core()) {
|
|
if ((_model == CPU_MODEL_HASWELL_E3) ||
|
|
(_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
|
|
(_model == CPU_MODEL_BROADWELL && _stepping < 4)) {
|
|
// currently a collision between SKL and HSW_E3
|
|
if (!UnlockExperimentalVMOptions && UseAVX < 3) {
|
|
vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this "
|
|
"platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
|
|
} else {
|
|
warning("UseRTMLocking is only available as experimental option on this platform.");
|
|
}
|
|
}
|
|
}
|
|
if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
|
|
// RTM locking should be used only for applications with
|
|
// high lock contention. For now we do not use it by default.
|
|
vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
|
|
}
|
|
} else { // !UseRTMLocking
|
|
if (UseRTMForStackLocks) {
|
|
if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
|
|
warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
|
|
}
|
|
FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
|
|
}
|
|
if (UseRTMDeopt) {
|
|
FLAG_SET_DEFAULT(UseRTMDeopt, false);
|
|
}
|
|
if (PrintPreciseRTMLockingStatistics) {
|
|
FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
|
|
}
|
|
}
|
|
#else
|
|
if (UseRTMLocking) {
|
|
// Only C2 does RTM locking optimization.
|
|
vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
|
|
}
|
|
#endif
|
|
|
|
#ifdef COMPILER2
|
|
if (UseFPUForSpilling) {
|
|
if (UseSSE < 2) {
|
|
// Only supported with SSE2+
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, false);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if COMPILER2_OR_JVMCI
|
|
int max_vector_size = 0;
|
|
if (UseSSE < 2) {
|
|
// Vectors (in XMM) are only supported with SSE2+
|
|
// SSE is always 2 on x64.
|
|
max_vector_size = 0;
|
|
} else if (UseAVX == 0 || !os_supports_avx_vectors()) {
|
|
// 16 byte vectors (in XMM) are supported with SSE2+
|
|
max_vector_size = 16;
|
|
} else if (UseAVX == 1 || UseAVX == 2) {
|
|
// 32 bytes vectors (in YMM) are only supported with AVX+
|
|
max_vector_size = 32;
|
|
} else if (UseAVX > 2) {
|
|
// 64 bytes vectors (in ZMM) are only supported with AVX 3
|
|
max_vector_size = 64;
|
|
}
|
|
|
|
#ifdef _LP64
|
|
int min_vector_size = 4; // We require MaxVectorSize to be at least 4 on 64bit
|
|
#else
|
|
int min_vector_size = 0;
|
|
#endif
|
|
|
|
if (!FLAG_IS_DEFAULT(MaxVectorSize)) {
|
|
if (MaxVectorSize < min_vector_size) {
|
|
warning("MaxVectorSize must be at least %i on this platform", min_vector_size);
|
|
FLAG_SET_DEFAULT(MaxVectorSize, min_vector_size);
|
|
}
|
|
if (MaxVectorSize > max_vector_size) {
|
|
warning("MaxVectorSize must be at most %i on this platform", max_vector_size);
|
|
FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
|
|
}
|
|
if (!is_power_of_2(MaxVectorSize)) {
|
|
warning("MaxVectorSize must be a power of 2, setting to default: %i", max_vector_size);
|
|
FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
|
|
}
|
|
} else {
|
|
// If default, use highest supported configuration
|
|
FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
|
|
}
|
|
|
|
#if defined(COMPILER2) && defined(ASSERT)
|
|
if (MaxVectorSize > 0) {
|
|
if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
|
|
tty->print_cr("State of YMM registers after signal handle:");
|
|
int nreg = 2 LP64_ONLY(+2);
|
|
const char* ymm_name[4] = {"0", "7", "8", "15"};
|
|
for (int i = 0; i < nreg; i++) {
|
|
tty->print("YMM%s:", ymm_name[i]);
|
|
for (int j = 7; j >=0; j--) {
|
|
tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
|
|
}
|
|
tty->cr();
|
|
}
|
|
}
|
|
}
|
|
#endif // COMPILER2 && ASSERT
|
|
|
|
#ifdef _LP64
|
|
if ((supports_avx512ifma() && supports_avx512vlbw()) || supports_avxifma()) {
|
|
if (FLAG_IS_DEFAULT(UsePoly1305Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UsePoly1305Intrinsics, true);
|
|
}
|
|
} else
|
|
#endif
|
|
if (UsePoly1305Intrinsics) {
|
|
warning("Intrinsics for Poly1305 crypto hash functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UsePoly1305Intrinsics, false);
|
|
}
|
|
|
|
#ifdef _LP64
|
|
if (supports_avx512ifma() && supports_avx512vlbw()) {
|
|
if (FLAG_IS_DEFAULT(UseIntPolyIntrinsics)) {
|
|
FLAG_SET_DEFAULT(UseIntPolyIntrinsics, true);
|
|
}
|
|
} else
|
|
#endif
|
|
if (UseIntPolyIntrinsics) {
|
|
warning("Intrinsics for Polynomial crypto functions not available on this CPU.");
|
|
FLAG_SET_DEFAULT(UseIntPolyIntrinsics, false);
|
|
}
|
|
|
|
#ifdef _LP64
|
|
if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
|
|
UseMultiplyToLenIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
|
|
UseSquareToLenIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
|
|
UseMulAddIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
|
|
UseMontgomeryMultiplyIntrinsic = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
|
|
UseMontgomerySquareIntrinsic = true;
|
|
}
|
|
#else
|
|
if (UseMultiplyToLenIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
|
|
warning("multiplyToLen intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
|
|
}
|
|
if (UseMontgomeryMultiplyIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
|
|
warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
|
|
}
|
|
if (UseMontgomerySquareIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
|
|
warning("montgomerySquare intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
|
|
}
|
|
if (UseSquareToLenIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
|
|
warning("squareToLen intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
|
|
}
|
|
if (UseMulAddIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
|
|
warning("mulAdd intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
|
|
}
|
|
#endif // _LP64
|
|
#endif // COMPILER2_OR_JVMCI
|
|
|
|
// On new cpus instructions which update whole XMM register should be used
|
|
// to prevent partial register stall due to dependencies on high half.
|
|
//
|
|
// UseXmmLoadAndClearUpper == true --> movsd(xmm, mem)
|
|
// UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
|
|
// UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm).
|
|
// UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm).
|
|
|
|
|
|
if (is_zx()) { // ZX cpus specific settings
|
|
if (FLAG_IS_DEFAULT(UseStoreImmI16)) {
|
|
UseStoreImmI16 = false; // don't use it on ZX cpus
|
|
}
|
|
if ((cpu_family() == 6) || (cpu_family() == 7)) {
|
|
if (FLAG_IS_DEFAULT(UseAddressNop)) {
|
|
// Use it on all ZX cpus
|
|
UseAddressNop = true;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
|
|
UseXmmLoadAndClearUpper = true; // use movsd on all ZX cpus
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
|
|
if (supports_sse3()) {
|
|
UseXmmRegToRegMoveAll = true; // use movaps, movapd on new ZX cpus
|
|
} else {
|
|
UseXmmRegToRegMoveAll = false;
|
|
}
|
|
}
|
|
if (((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse3()) { // new ZX cpus
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(MaxLoopPad)) {
|
|
// For new ZX cpus do the next optimization:
|
|
// don't align the beginning of a loop if there are enough instructions
|
|
// left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
|
|
// in current fetch line (OptoLoopAlignment) or the padding
|
|
// is big (> MaxLoopPad).
|
|
// Set MaxLoopPad to 11 for new ZX cpus to reduce number of
|
|
// generated NOP instructions. 11 is the largest size of one
|
|
// address NOP instruction '0F 1F' (see Assembler::nop(i)).
|
|
MaxLoopPad = 11;
|
|
}
|
|
#endif // COMPILER2
|
|
if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
UseXMMForArrayCopy = true; // use SSE2 movq on new ZX cpus
|
|
}
|
|
if (supports_sse4_2()) { // new ZX cpus
|
|
if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
UseUnalignedLoadStores = true; // use movdqu on newest ZX cpus
|
|
}
|
|
}
|
|
if (supports_sse4_2()) {
|
|
if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
|
|
}
|
|
} else {
|
|
if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
|
|
}
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
}
|
|
|
|
if (is_amd_family()) { // AMD cpus specific settings
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop)) {
|
|
// Use it on new AMD cpus starting from Opteron.
|
|
UseAddressNop = true;
|
|
}
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift)) {
|
|
// Use it on new AMD cpus starting from Opteron.
|
|
UseNewLongLShift = true;
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
|
|
} else {
|
|
UseXmmLoadAndClearUpper = false;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
|
|
} else {
|
|
UseXmmRegToRegMoveAll = false;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmI2F)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmI2F = true;
|
|
} else {
|
|
UseXmmI2F = false;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmI2D)) {
|
|
if (supports_sse4a()) {
|
|
UseXmmI2D = true;
|
|
} else {
|
|
UseXmmI2D = false;
|
|
}
|
|
}
|
|
if (supports_sse4_2()) {
|
|
if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
|
|
}
|
|
} else {
|
|
if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
|
|
}
|
|
|
|
// some defaults for AMD family 15h
|
|
if (cpu_family() == 0x15) {
|
|
// On family 15h processors default is no sw prefetch
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
|
|
}
|
|
// Also, if some other prefetch style is specified, default instruction type is PREFETCHW
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
// On family 15h processors use XMM and UnalignedLoadStores for Array Copy
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
|
|
}
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
|
|
}
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (cpu_family() < 0x17 && MaxVectorSize > 16) {
|
|
// Limit vectors size to 16 bytes on AMD cpus < 17h.
|
|
FLAG_SET_DEFAULT(MaxVectorSize, 16);
|
|
}
|
|
#endif // COMPILER2
|
|
|
|
// Some defaults for AMD family >= 17h && Hygon family 18h
|
|
if (cpu_family() >= 0x17) {
|
|
// On family >=17h processors use XMM and UnalignedLoadStores
|
|
// for Array Copy
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
|
|
}
|
|
if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
|
|
}
|
|
#ifdef COMPILER2
|
|
if (supports_sse4_2() && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (is_intel()) { // Intel cpus specific settings
|
|
if (FLAG_IS_DEFAULT(UseStoreImmI16)) {
|
|
UseStoreImmI16 = false; // don't use it on Intel cpus
|
|
}
|
|
if (cpu_family() == 6 || cpu_family() == 15) {
|
|
if (FLAG_IS_DEFAULT(UseAddressNop)) {
|
|
// Use it on all Intel cpus starting from PentiumPro
|
|
UseAddressNop = true;
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
|
|
UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
|
|
if (supports_sse3()) {
|
|
UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
|
|
} else {
|
|
UseXmmRegToRegMoveAll = false;
|
|
}
|
|
}
|
|
if (cpu_family() == 6 && supports_sse3()) { // New Intel cpus
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(MaxLoopPad)) {
|
|
// For new Intel cpus do the next optimization:
|
|
// don't align the beginning of a loop if there are enough instructions
|
|
// left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
|
|
// in current fetch line (OptoLoopAlignment) or the padding
|
|
// is big (> MaxLoopPad).
|
|
// Set MaxLoopPad to 11 for new Intel cpus to reduce number of
|
|
// generated NOP instructions. 11 is the largest size of one
|
|
// address NOP instruction '0F 1F' (see Assembler::nop(i)).
|
|
MaxLoopPad = 11;
|
|
}
|
|
#endif // COMPILER2
|
|
|
|
if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
|
UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
|
|
}
|
|
if ((supports_sse4_2() && supports_ht()) || supports_avx()) { // Newest Intel cpus
|
|
if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
|
|
}
|
|
}
|
|
if (supports_sse4_2()) {
|
|
if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
|
|
}
|
|
} else {
|
|
if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
|
|
warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
|
|
}
|
|
FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
|
|
}
|
|
}
|
|
if (is_atom_family() || is_knights_family()) {
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(OptoScheduling)) {
|
|
OptoScheduling = true;
|
|
}
|
|
#endif
|
|
if (supports_sse4_2()) { // Silvermont
|
|
if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
|
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseIncDec)) {
|
|
FLAG_SET_DEFAULT(UseIncDec, false);
|
|
}
|
|
}
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
#ifdef COMPILER2
|
|
if (UseAVX > 2) {
|
|
if (FLAG_IS_DEFAULT(ArrayOperationPartialInlineSize) ||
|
|
(!FLAG_IS_DEFAULT(ArrayOperationPartialInlineSize) &&
|
|
ArrayOperationPartialInlineSize != 0 &&
|
|
ArrayOperationPartialInlineSize != 16 &&
|
|
ArrayOperationPartialInlineSize != 32 &&
|
|
ArrayOperationPartialInlineSize != 64)) {
|
|
int inline_size = 0;
|
|
if (MaxVectorSize >= 64 && AVX3Threshold == 0) {
|
|
inline_size = 64;
|
|
} else if (MaxVectorSize >= 32) {
|
|
inline_size = 32;
|
|
} else if (MaxVectorSize >= 16) {
|
|
inline_size = 16;
|
|
}
|
|
if(!FLAG_IS_DEFAULT(ArrayOperationPartialInlineSize)) {
|
|
warning("Setting ArrayOperationPartialInlineSize as %d", inline_size);
|
|
}
|
|
ArrayOperationPartialInlineSize = inline_size;
|
|
}
|
|
|
|
if (ArrayOperationPartialInlineSize > MaxVectorSize) {
|
|
ArrayOperationPartialInlineSize = MaxVectorSize >= 16 ? MaxVectorSize : 0;
|
|
if (ArrayOperationPartialInlineSize) {
|
|
warning("Setting ArrayOperationPartialInlineSize as MaxVectorSize" INTX_FORMAT ")", MaxVectorSize);
|
|
} else {
|
|
warning("Setting ArrayOperationPartialInlineSize as " INTX_FORMAT, ArrayOperationPartialInlineSize);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(OptimizeFill)) {
|
|
if (MaxVectorSize < 32 || !VM_Version::supports_avx512vlbw()) {
|
|
OptimizeFill = false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _LP64
|
|
if (UseSSE42Intrinsics) {
|
|
if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
|
|
UseVectorizedMismatchIntrinsic = true;
|
|
}
|
|
} else if (UseVectorizedMismatchIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
|
|
warning("vectorizedMismatch intrinsics are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
|
|
}
|
|
if (UseAVX >= 2) {
|
|
FLAG_SET_DEFAULT(UseVectorizedHashCodeIntrinsic, true);
|
|
} else if (UseVectorizedHashCodeIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseVectorizedHashCodeIntrinsic))
|
|
warning("vectorizedHashCode intrinsics are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseVectorizedHashCodeIntrinsic, false);
|
|
}
|
|
#else
|
|
if (UseVectorizedMismatchIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
|
|
warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
|
|
}
|
|
if (UseVectorizedHashCodeIntrinsic) {
|
|
if (!FLAG_IS_DEFAULT(UseVectorizedHashCodeIntrinsic)) {
|
|
warning("vectorizedHashCode intrinsic is not available in 32-bit VM");
|
|
}
|
|
FLAG_SET_DEFAULT(UseVectorizedHashCodeIntrinsic, false);
|
|
}
|
|
#endif // _LP64
|
|
|
|
// Use count leading zeros count instruction if available.
|
|
if (supports_lzcnt()) {
|
|
if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
|
|
UseCountLeadingZerosInstruction = true;
|
|
}
|
|
} else if (UseCountLeadingZerosInstruction) {
|
|
warning("lzcnt instruction is not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
|
|
}
|
|
|
|
// Use count trailing zeros instruction if available
|
|
if (supports_bmi1()) {
|
|
// tzcnt does not require VEX prefix
|
|
if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
|
|
if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
|
|
// Don't use tzcnt if BMI1 is switched off on command line.
|
|
UseCountTrailingZerosInstruction = false;
|
|
} else {
|
|
UseCountTrailingZerosInstruction = true;
|
|
}
|
|
}
|
|
} else if (UseCountTrailingZerosInstruction) {
|
|
warning("tzcnt instruction is not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
|
|
}
|
|
|
|
// BMI instructions (except tzcnt) use an encoding with VEX prefix.
|
|
// VEX prefix is generated only when AVX > 0.
|
|
if (supports_bmi1() && supports_avx()) {
|
|
if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
|
|
UseBMI1Instructions = true;
|
|
}
|
|
} else if (UseBMI1Instructions) {
|
|
warning("BMI1 instructions are not available on this CPU (AVX is also required)");
|
|
FLAG_SET_DEFAULT(UseBMI1Instructions, false);
|
|
}
|
|
|
|
if (supports_bmi2() && supports_avx()) {
|
|
if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
|
|
UseBMI2Instructions = true;
|
|
}
|
|
} else if (UseBMI2Instructions) {
|
|
warning("BMI2 instructions are not available on this CPU (AVX is also required)");
|
|
FLAG_SET_DEFAULT(UseBMI2Instructions, false);
|
|
}
|
|
|
|
// Use population count instruction if available.
|
|
if (supports_popcnt()) {
|
|
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
|
|
UsePopCountInstruction = true;
|
|
}
|
|
} else if (UsePopCountInstruction) {
|
|
warning("POPCNT instruction is not available on this CPU");
|
|
FLAG_SET_DEFAULT(UsePopCountInstruction, false);
|
|
}
|
|
|
|
// Use fast-string operations if available.
|
|
if (supports_erms()) {
|
|
if (FLAG_IS_DEFAULT(UseFastStosb)) {
|
|
UseFastStosb = true;
|
|
}
|
|
} else if (UseFastStosb) {
|
|
warning("fast-string operations are not available on this CPU");
|
|
FLAG_SET_DEFAULT(UseFastStosb, false);
|
|
}
|
|
|
|
// For AMD Processors use XMM/YMM MOVDQU instructions
|
|
// for Object Initialization as default
|
|
if (is_amd() && cpu_family() >= 0x19) {
|
|
if (FLAG_IS_DEFAULT(UseFastStosb)) {
|
|
UseFastStosb = false;
|
|
}
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (is_intel() && MaxVectorSize > 16) {
|
|
if (FLAG_IS_DEFAULT(UseFastStosb)) {
|
|
UseFastStosb = false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Use XMM/YMM MOVDQU instruction for Object Initialization
|
|
if (!UseFastStosb && UseSSE >= 2 && UseUnalignedLoadStores) {
|
|
if (FLAG_IS_DEFAULT(UseXMMForObjInit)) {
|
|
UseXMMForObjInit = true;
|
|
}
|
|
} else if (UseXMMForObjInit) {
|
|
warning("UseXMMForObjInit requires SSE2 and unaligned load/stores. Feature is switched off.");
|
|
FLAG_SET_DEFAULT(UseXMMForObjInit, false);
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(AlignVector)) {
|
|
// Modern processors allow misaligned memory operations for vectors.
|
|
AlignVector = !UseUnalignedLoadStores;
|
|
}
|
|
#endif // COMPILER2
|
|
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
|
|
if (AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
|
|
} else if (!supports_sse() && supports_3dnow_prefetch()) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
|
|
}
|
|
}
|
|
|
|
// Allocation prefetch settings
|
|
int cache_line_size = checked_cast<int>(prefetch_data_size());
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize) &&
|
|
(cache_line_size > AllocatePrefetchStepSize)) {
|
|
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
|
|
}
|
|
|
|
if ((AllocatePrefetchDistance == 0) && (AllocatePrefetchStyle != 0)) {
|
|
assert(!FLAG_IS_DEFAULT(AllocatePrefetchDistance), "default value should not be 0");
|
|
if (!FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
|
|
warning("AllocatePrefetchDistance is set to 0 which disable prefetching. Ignoring AllocatePrefetchStyle flag.");
|
|
}
|
|
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
|
|
bool use_watermark_prefetch = (AllocatePrefetchStyle == 2);
|
|
FLAG_SET_DEFAULT(AllocatePrefetchDistance, allocate_prefetch_distance(use_watermark_prefetch));
|
|
}
|
|
|
|
if (is_intel() && cpu_family() == 6 && supports_sse3()) {
|
|
if (FLAG_IS_DEFAULT(AllocatePrefetchLines) &&
|
|
supports_sse4_2() && supports_ht()) { // Nehalem based cpus
|
|
FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
|
|
}
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(UseFPUForSpilling) && supports_sse4_2()) {
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse4_2()) {
|
|
#ifdef COMPILER2
|
|
if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
|
|
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// Prefetch settings
|
|
|
|
// Prefetch interval for gc copy/scan == 9 dcache lines. Derived from
|
|
// 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
|
|
// Tested intervals from 128 to 2048 in increments of 64 == one cache line.
|
|
// 256 bytes (4 dcache lines) was the nearest runner-up to 576.
|
|
|
|
// gc copy/scan is disabled if prefetchw isn't supported, because
|
|
// Prefetch::write emits an inlined prefetchw on Linux.
|
|
// Do not use the 3dnow prefetchw instruction. It isn't supported on em64t.
|
|
// The used prefetcht0 instruction works for both amd64 and em64t.
|
|
|
|
if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes)) {
|
|
FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 576);
|
|
}
|
|
if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes)) {
|
|
FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 576);
|
|
}
|
|
#endif
|
|
|
|
if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
|
|
(cache_line_size > ContendedPaddingWidth))
|
|
ContendedPaddingWidth = cache_line_size;
|
|
|
|
// This machine allows unaligned memory accesses
|
|
if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
|
|
FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (log_is_enabled(Info, os, cpu)) {
|
|
LogStream ls(Log(os, cpu)::info());
|
|
outputStream* log = &ls;
|
|
log->print_cr("Logical CPUs per core: %u",
|
|
logical_processors_per_package());
|
|
log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
|
|
log->print("UseSSE=%d", UseSSE);
|
|
if (UseAVX > 0) {
|
|
log->print(" UseAVX=%d", UseAVX);
|
|
}
|
|
if (UseAES) {
|
|
log->print(" UseAES=1");
|
|
}
|
|
#ifdef COMPILER2
|
|
if (MaxVectorSize > 0) {
|
|
log->print(" MaxVectorSize=%d", (int) MaxVectorSize);
|
|
}
|
|
#endif
|
|
log->cr();
|
|
log->print("Allocation");
|
|
if (AllocatePrefetchStyle <= 0 || (UseSSE == 0 && !supports_3dnow_prefetch())) {
|
|
log->print_cr(": no prefetching");
|
|
} else {
|
|
log->print(" prefetching: ");
|
|
if (UseSSE == 0 && supports_3dnow_prefetch()) {
|
|
log->print("PREFETCHW");
|
|
} else if (UseSSE >= 1) {
|
|
if (AllocatePrefetchInstr == 0) {
|
|
log->print("PREFETCHNTA");
|
|
} else if (AllocatePrefetchInstr == 1) {
|
|
log->print("PREFETCHT0");
|
|
} else if (AllocatePrefetchInstr == 2) {
|
|
log->print("PREFETCHT2");
|
|
} else if (AllocatePrefetchInstr == 3) {
|
|
log->print("PREFETCHW");
|
|
}
|
|
}
|
|
if (AllocatePrefetchLines > 1) {
|
|
log->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
|
|
} else {
|
|
log->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
|
|
}
|
|
}
|
|
|
|
if (PrefetchCopyIntervalInBytes > 0) {
|
|
log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
|
|
}
|
|
if (PrefetchScanIntervalInBytes > 0) {
|
|
log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
|
|
}
|
|
if (ContendedPaddingWidth > 0) {
|
|
log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
|
|
}
|
|
}
|
|
#endif // !PRODUCT
|
|
if (FLAG_IS_DEFAULT(UseSignumIntrinsic)) {
|
|
FLAG_SET_DEFAULT(UseSignumIntrinsic, true);
|
|
}
|
|
if (FLAG_IS_DEFAULT(UseCopySignIntrinsic)) {
|
|
FLAG_SET_DEFAULT(UseCopySignIntrinsic, true);
|
|
}
|
|
}
|
|
|
|
void VM_Version::print_platform_virtualization_info(outputStream* st) {
|
|
VirtualizationType vrt = VM_Version::get_detected_virtualization();
|
|
if (vrt == XenHVM) {
|
|
st->print_cr("Xen hardware-assisted virtualization detected");
|
|
} else if (vrt == KVM) {
|
|
st->print_cr("KVM virtualization detected");
|
|
} else if (vrt == VMWare) {
|
|
st->print_cr("VMWare virtualization detected");
|
|
VirtualizationSupport::print_virtualization_info(st);
|
|
} else if (vrt == HyperV) {
|
|
st->print_cr("Hyper-V virtualization detected");
|
|
} else if (vrt == HyperVRole) {
|
|
st->print_cr("Hyper-V role detected");
|
|
}
|
|
}
|
|
|
|
bool VM_Version::compute_has_intel_jcc_erratum() {
|
|
if (!is_intel_family_core()) {
|
|
// Only Intel CPUs are affected.
|
|
return false;
|
|
}
|
|
// The following table of affected CPUs is based on the following document released by Intel:
|
|
// https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf
|
|
switch (_model) {
|
|
case 0x8E:
|
|
// 06_8EH | 9 | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Amber Lake Y
|
|
// 06_8EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake U
|
|
// 06_8EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake U 23e
|
|
// 06_8EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake Y
|
|
// 06_8EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake U43e
|
|
// 06_8EH | B | 8th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Whiskey Lake U
|
|
// 06_8EH | C | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Amber Lake Y
|
|
// 06_8EH | C | 10th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Comet Lake U42
|
|
// 06_8EH | C | 8th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Whiskey Lake U
|
|
return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xC;
|
|
case 0x4E:
|
|
// 06_4E | 3 | 6th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Skylake U
|
|
// 06_4E | 3 | 6th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Skylake U23e
|
|
// 06_4E | 3 | 6th Generation Intel(R) Core(TM) Processors based on microarchitecture code name Skylake Y
|
|
return _stepping == 0x3;
|
|
case 0x55:
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Processor D Family based on microarchitecture code name Skylake D, Bakerville
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Scalable Processors based on microarchitecture code name Skylake Server
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Processor W Family based on microarchitecture code name Skylake W
|
|
// 06_55H | 4 | Intel(R) Core(TM) X-series Processors based on microarchitecture code name Skylake X
|
|
// 06_55H | 4 | Intel(R) Xeon(R) Processor E3 v5 Family based on microarchitecture code name Skylake Xeon E3
|
|
// 06_55 | 7 | 2nd Generation Intel(R) Xeon(R) Scalable Processors based on microarchitecture code name Cascade Lake (server)
|
|
return _stepping == 0x4 || _stepping == 0x7;
|
|
case 0x5E:
|
|
// 06_5E | 3 | 6th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Skylake H
|
|
// 06_5E | 3 | 6th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Skylake S
|
|
return _stepping == 0x3;
|
|
case 0x9E:
|
|
// 06_9EH | 9 | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake G
|
|
// 06_9EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake H
|
|
// 06_9EH | 9 | 7th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake S
|
|
// 06_9EH | 9 | Intel(R) Core(TM) X-series Processors based on microarchitecture code name Kaby Lake X
|
|
// 06_9EH | 9 | Intel(R) Xeon(R) Processor E3 v6 Family Kaby Lake Xeon E3
|
|
// 06_9EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake H
|
|
// 06_9EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S
|
|
// 06_9EH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S (6+2) x/KBP
|
|
// 06_9EH | A | Intel(R) Xeon(R) Processor E Family based on microarchitecture code name Coffee Lake S (6+2)
|
|
// 06_9EH | A | Intel(R) Xeon(R) Processor E Family based on microarchitecture code name Coffee Lake S (4+2)
|
|
// 06_9EH | B | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S (4+2)
|
|
// 06_9EH | B | Intel(R) Celeron(R) Processor G Series based on microarchitecture code name Coffee Lake S (4+2)
|
|
// 06_9EH | D | 9th Generation Intel(R) Core(TM) Processor Family based on microarchitecturecode name Coffee Lake H (8+2)
|
|
// 06_9EH | D | 9th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Coffee Lake S (8+2)
|
|
return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xD;
|
|
case 0xA5:
|
|
// Not in Intel documentation.
|
|
// 06_A5H | | 10th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Comet Lake S/H
|
|
return true;
|
|
case 0xA6:
|
|
// 06_A6H | 0 | 10th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Comet Lake U62
|
|
return _stepping == 0x0;
|
|
case 0xAE:
|
|
// 06_AEH | A | 8th Generation Intel(R) Core(TM) Processor Family based on microarchitecture code name Kaby Lake Refresh U (4+2)
|
|
return _stepping == 0xA;
|
|
default:
|
|
// If we are running on another intel machine not recognized in the table, we are okay.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// On Xen, the cpuid instruction returns
|
|
// eax / registers[0]: Version of Xen
|
|
// ebx / registers[1]: chars 'XenV'
|
|
// ecx / registers[2]: chars 'MMXe'
|
|
// edx / registers[3]: chars 'nVMM'
|
|
//
|
|
// On KVM / VMWare / MS Hyper-V, the cpuid instruction returns
|
|
// ebx / registers[1]: chars 'KVMK' / 'VMwa' / 'Micr'
|
|
// ecx / registers[2]: chars 'VMKV' / 'reVM' / 'osof'
|
|
// edx / registers[3]: chars 'M' / 'ware' / 't Hv'
|
|
//
|
|
// more information :
|
|
// https://kb.vmware.com/s/article/1009458
|
|
//
|
|
void VM_Version::check_virtualizations() {
|
|
uint32_t registers[4] = {0};
|
|
char signature[13] = {0};
|
|
|
|
// Xen cpuid leaves can be found 0x100 aligned boundary starting
|
|
// from 0x40000000 until 0x40010000.
|
|
// https://lists.linuxfoundation.org/pipermail/virtualization/2012-May/019974.html
|
|
for (int leaf = 0x40000000; leaf < 0x40010000; leaf += 0x100) {
|
|
detect_virt_stub(leaf, registers);
|
|
memcpy(signature, ®isters[1], 12);
|
|
|
|
if (strncmp("VMwareVMware", signature, 12) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = VMWare;
|
|
// check for extended metrics from guestlib
|
|
VirtualizationSupport::initialize();
|
|
} else if (strncmp("Microsoft Hv", signature, 12) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = HyperV;
|
|
#ifdef _WINDOWS
|
|
// CPUID leaf 0x40000007 is available to the root partition only.
|
|
// See Hypervisor Top Level Functional Specification section 2.4.8 for more details.
|
|
// https://github.com/MicrosoftDocs/Virtualization-Documentation/raw/master/tlfs/Hypervisor%20Top%20Level%20Functional%20Specification%20v6.0b.pdf
|
|
detect_virt_stub(0x40000007, registers);
|
|
if ((registers[0] != 0x0) ||
|
|
(registers[1] != 0x0) ||
|
|
(registers[2] != 0x0) ||
|
|
(registers[3] != 0x0)) {
|
|
Abstract_VM_Version::_detected_virtualization = HyperVRole;
|
|
}
|
|
#endif
|
|
} else if (strncmp("KVMKVMKVM", signature, 9) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = KVM;
|
|
} else if (strncmp("XenVMMXenVMM", signature, 12) == 0) {
|
|
Abstract_VM_Version::_detected_virtualization = XenHVM;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
// Determine if it's running on Cascade Lake using default options.
|
|
bool VM_Version::is_default_intel_cascade_lake() {
|
|
return FLAG_IS_DEFAULT(UseAVX) &&
|
|
FLAG_IS_DEFAULT(MaxVectorSize) &&
|
|
UseAVX > 2 &&
|
|
is_intel_cascade_lake();
|
|
}
|
|
#endif
|
|
|
|
bool VM_Version::is_intel_cascade_lake() {
|
|
return is_intel_skylake() && _stepping >= 5;
|
|
}
|
|
|
|
// avx3_threshold() sets the threshold at which 64-byte instructions are used
|
|
// for implementing the array copy and clear operations.
|
|
// The Intel platforms that supports the serialize instruction
|
|
// has improved implementation of 64-byte load/stores and so the default
|
|
// threshold is set to 0 for these platforms.
|
|
int VM_Version::avx3_threshold() {
|
|
return (is_intel_family_core() &&
|
|
supports_serialize() &&
|
|
FLAG_IS_DEFAULT(AVX3Threshold)) ? 0 : AVX3Threshold;
|
|
}
|
|
|
|
static bool _vm_version_initialized = false;
|
|
|
|
void VM_Version::initialize() {
|
|
ResourceMark rm;
|
|
// Making this stub must be FIRST use of assembler
|
|
stub_blob = BufferBlob::create("VM_Version stub", stub_size);
|
|
if (stub_blob == nullptr) {
|
|
vm_exit_during_initialization("Unable to allocate stub for VM_Version");
|
|
}
|
|
CodeBuffer c(stub_blob);
|
|
VM_Version_StubGenerator g(&c);
|
|
|
|
get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
|
|
g.generate_get_cpu_info());
|
|
detect_virt_stub = CAST_TO_FN_PTR(detect_virt_stub_t,
|
|
g.generate_detect_virt());
|
|
|
|
get_processor_features();
|
|
|
|
LP64_ONLY(Assembler::precompute_instructions();)
|
|
|
|
if (VM_Version::supports_hv()) { // Supports hypervisor
|
|
check_virtualizations();
|
|
}
|
|
_vm_version_initialized = true;
|
|
}
|
|
|
|
typedef enum {
|
|
CPU_FAMILY_8086_8088 = 0,
|
|
CPU_FAMILY_INTEL_286 = 2,
|
|
CPU_FAMILY_INTEL_386 = 3,
|
|
CPU_FAMILY_INTEL_486 = 4,
|
|
CPU_FAMILY_PENTIUM = 5,
|
|
CPU_FAMILY_PENTIUMPRO = 6, // Same family several models
|
|
CPU_FAMILY_PENTIUM_4 = 0xF
|
|
} FamilyFlag;
|
|
|
|
typedef enum {
|
|
RDTSCP_FLAG = 0x08000000, // bit 27
|
|
INTEL64_FLAG = 0x20000000 // bit 29
|
|
} _featureExtendedEdxFlag;
|
|
|
|
typedef enum {
|
|
FPU_FLAG = 0x00000001,
|
|
VME_FLAG = 0x00000002,
|
|
DE_FLAG = 0x00000004,
|
|
PSE_FLAG = 0x00000008,
|
|
TSC_FLAG = 0x00000010,
|
|
MSR_FLAG = 0x00000020,
|
|
PAE_FLAG = 0x00000040,
|
|
MCE_FLAG = 0x00000080,
|
|
CX8_FLAG = 0x00000100,
|
|
APIC_FLAG = 0x00000200,
|
|
SEP_FLAG = 0x00000800,
|
|
MTRR_FLAG = 0x00001000,
|
|
PGE_FLAG = 0x00002000,
|
|
MCA_FLAG = 0x00004000,
|
|
CMOV_FLAG = 0x00008000,
|
|
PAT_FLAG = 0x00010000,
|
|
PSE36_FLAG = 0x00020000,
|
|
PSNUM_FLAG = 0x00040000,
|
|
CLFLUSH_FLAG = 0x00080000,
|
|
DTS_FLAG = 0x00200000,
|
|
ACPI_FLAG = 0x00400000,
|
|
MMX_FLAG = 0x00800000,
|
|
FXSR_FLAG = 0x01000000,
|
|
SSE_FLAG = 0x02000000,
|
|
SSE2_FLAG = 0x04000000,
|
|
SS_FLAG = 0x08000000,
|
|
HTT_FLAG = 0x10000000,
|
|
TM_FLAG = 0x20000000
|
|
} FeatureEdxFlag;
|
|
|
|
static BufferBlob* cpuid_brand_string_stub_blob;
|
|
static const int cpuid_brand_string_stub_size = 550;
|
|
|
|
extern "C" {
|
|
typedef void (*getCPUIDBrandString_stub_t)(void*);
|
|
}
|
|
|
|
static getCPUIDBrandString_stub_t getCPUIDBrandString_stub = nullptr;
|
|
|
|
// VM_Version statics
|
|
enum {
|
|
ExtendedFamilyIdLength_INTEL = 16,
|
|
ExtendedFamilyIdLength_AMD = 24
|
|
};
|
|
|
|
const size_t VENDOR_LENGTH = 13;
|
|
const size_t CPU_EBS_MAX_LENGTH = (3 * 4 * 4 + 1);
|
|
static char* _cpu_brand_string = nullptr;
|
|
static int64_t _max_qualified_cpu_frequency = 0;
|
|
|
|
static int _no_of_threads = 0;
|
|
static int _no_of_cores = 0;
|
|
|
|
const char* const _family_id_intel[ExtendedFamilyIdLength_INTEL] = {
|
|
"8086/8088",
|
|
"",
|
|
"286",
|
|
"386",
|
|
"486",
|
|
"Pentium",
|
|
"Pentium Pro", //or Pentium-M/Woodcrest depending on model
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Pentium 4"
|
|
};
|
|
|
|
const char* const _family_id_amd[ExtendedFamilyIdLength_AMD] = {
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"5x86",
|
|
"K5/K6",
|
|
"Athlon/AthlonXP",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Opteron/Athlon64",
|
|
"Opteron QC/Phenom", // Barcelona et.al.
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Zen"
|
|
};
|
|
// Partially from Intel 64 and IA-32 Architecture Software Developer's Manual,
|
|
// September 2013, Vol 3C Table 35-1
|
|
const char* const _model_id_pentium_pro[] = {
|
|
"",
|
|
"Pentium Pro",
|
|
"",
|
|
"Pentium II model 3",
|
|
"",
|
|
"Pentium II model 5/Xeon/Celeron",
|
|
"Celeron",
|
|
"Pentium III/Pentium III Xeon",
|
|
"Pentium III/Pentium III Xeon",
|
|
"Pentium M model 9", // Yonah
|
|
"Pentium III, model A",
|
|
"Pentium III, model B",
|
|
"",
|
|
"Pentium M model D", // Dothan
|
|
"",
|
|
"Core 2", // 0xf Woodcrest/Conroe/Merom/Kentsfield/Clovertown
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Celeron", // 0x16 Celeron 65nm
|
|
"Core 2", // 0x17 Penryn / Harpertown
|
|
"",
|
|
"",
|
|
"Core i7", // 0x1A CPU_MODEL_NEHALEM_EP
|
|
"Atom", // 0x1B Z5xx series Silverthorn
|
|
"",
|
|
"Core 2", // 0x1D Dunnington (6-core)
|
|
"Nehalem", // 0x1E CPU_MODEL_NEHALEM
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Westmere", // 0x25 CPU_MODEL_WESTMERE
|
|
"",
|
|
"",
|
|
"", // 0x28
|
|
"",
|
|
"Sandy Bridge", // 0x2a "2nd Generation Intel Core i7, i5, i3"
|
|
"",
|
|
"Westmere-EP", // 0x2c CPU_MODEL_WESTMERE_EP
|
|
"Sandy Bridge-EP", // 0x2d CPU_MODEL_SANDYBRIDGE_EP
|
|
"Nehalem-EX", // 0x2e CPU_MODEL_NEHALEM_EX
|
|
"Westmere-EX", // 0x2f CPU_MODEL_WESTMERE_EX
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Ivy Bridge", // 0x3a
|
|
"",
|
|
"Haswell", // 0x3c "4th Generation Intel Core Processor"
|
|
"", // 0x3d "Next Generation Intel Core Processor"
|
|
"Ivy Bridge-EP", // 0x3e "Next Generation Intel Xeon Processor E7 Family"
|
|
"", // 0x3f "Future Generation Intel Xeon Processor"
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Haswell", // 0x45 "4th Generation Intel Core Processor"
|
|
"Haswell", // 0x46 "4th Generation Intel Core Processor"
|
|
nullptr
|
|
};
|
|
|
|
/* Brand ID is for back compatibility
|
|
* Newer CPUs uses the extended brand string */
|
|
const char* const _brand_id[] = {
|
|
"",
|
|
"Celeron processor",
|
|
"Pentium III processor",
|
|
"Intel Pentium III Xeon processor",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Intel Pentium 4 processor",
|
|
nullptr
|
|
};
|
|
|
|
|
|
const char* const _feature_edx_id[] = {
|
|
"On-Chip FPU",
|
|
"Virtual Mode Extensions",
|
|
"Debugging Extensions",
|
|
"Page Size Extensions",
|
|
"Time Stamp Counter",
|
|
"Model Specific Registers",
|
|
"Physical Address Extension",
|
|
"Machine Check Exceptions",
|
|
"CMPXCHG8B Instruction",
|
|
"On-Chip APIC",
|
|
"",
|
|
"Fast System Call",
|
|
"Memory Type Range Registers",
|
|
"Page Global Enable",
|
|
"Machine Check Architecture",
|
|
"Conditional Mov Instruction",
|
|
"Page Attribute Table",
|
|
"36-bit Page Size Extension",
|
|
"Processor Serial Number",
|
|
"CLFLUSH Instruction",
|
|
"",
|
|
"Debug Trace Store feature",
|
|
"ACPI registers in MSR space",
|
|
"Intel Architecture MMX Technology",
|
|
"Fast Float Point Save and Restore",
|
|
"Streaming SIMD extensions",
|
|
"Streaming SIMD extensions 2",
|
|
"Self-Snoop",
|
|
"Hyper Threading",
|
|
"Thermal Monitor",
|
|
"",
|
|
"Pending Break Enable"
|
|
};
|
|
|
|
const char* const _feature_extended_edx_id[] = {
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"SYSCALL/SYSRET",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"Execute Disable Bit",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"RDTSCP",
|
|
"",
|
|
"Intel 64 Architecture",
|
|
"",
|
|
""
|
|
};
|
|
|
|
const char* const _feature_ecx_id[] = {
|
|
"Streaming SIMD Extensions 3",
|
|
"PCLMULQDQ",
|
|
"64-bit DS Area",
|
|
"MONITOR/MWAIT instructions",
|
|
"CPL Qualified Debug Store",
|
|
"Virtual Machine Extensions",
|
|
"Safer Mode Extensions",
|
|
"Enhanced Intel SpeedStep technology",
|
|
"Thermal Monitor 2",
|
|
"Supplemental Streaming SIMD Extensions 3",
|
|
"L1 Context ID",
|
|
"",
|
|
"Fused Multiply-Add",
|
|
"CMPXCHG16B",
|
|
"xTPR Update Control",
|
|
"Perfmon and Debug Capability",
|
|
"",
|
|
"Process-context identifiers",
|
|
"Direct Cache Access",
|
|
"Streaming SIMD extensions 4.1",
|
|
"Streaming SIMD extensions 4.2",
|
|
"x2APIC",
|
|
"MOVBE",
|
|
"Popcount instruction",
|
|
"TSC-Deadline",
|
|
"AESNI",
|
|
"XSAVE",
|
|
"OSXSAVE",
|
|
"AVX",
|
|
"F16C",
|
|
"RDRAND",
|
|
""
|
|
};
|
|
|
|
const char* const _feature_extended_ecx_id[] = {
|
|
"LAHF/SAHF instruction support",
|
|
"Core multi-processor legacy mode",
|
|
"",
|
|
"",
|
|
"",
|
|
"Advanced Bit Manipulations: LZCNT",
|
|
"SSE4A: MOVNTSS, MOVNTSD, EXTRQ, INSERTQ",
|
|
"Misaligned SSE mode",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
""
|
|
};
|
|
|
|
void VM_Version::initialize_tsc(void) {
|
|
ResourceMark rm;
|
|
|
|
cpuid_brand_string_stub_blob = BufferBlob::create("getCPUIDBrandString_stub", cpuid_brand_string_stub_size);
|
|
if (cpuid_brand_string_stub_blob == nullptr) {
|
|
vm_exit_during_initialization("Unable to allocate getCPUIDBrandString_stub");
|
|
}
|
|
CodeBuffer c(cpuid_brand_string_stub_blob);
|
|
VM_Version_StubGenerator g(&c);
|
|
getCPUIDBrandString_stub = CAST_TO_FN_PTR(getCPUIDBrandString_stub_t,
|
|
g.generate_getCPUIDBrandString());
|
|
}
|
|
|
|
const char* VM_Version::cpu_model_description(void) {
|
|
uint32_t cpu_family = extended_cpu_family();
|
|
uint32_t cpu_model = extended_cpu_model();
|
|
const char* model = nullptr;
|
|
|
|
if (cpu_family == CPU_FAMILY_PENTIUMPRO) {
|
|
for (uint32_t i = 0; i <= cpu_model; i++) {
|
|
model = _model_id_pentium_pro[i];
|
|
if (model == nullptr) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return model;
|
|
}
|
|
|
|
const char* VM_Version::cpu_brand_string(void) {
|
|
if (_cpu_brand_string == nullptr) {
|
|
_cpu_brand_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, CPU_EBS_MAX_LENGTH, mtInternal);
|
|
if (nullptr == _cpu_brand_string) {
|
|
return nullptr;
|
|
}
|
|
int ret_val = cpu_extended_brand_string(_cpu_brand_string, CPU_EBS_MAX_LENGTH);
|
|
if (ret_val != OS_OK) {
|
|
FREE_C_HEAP_ARRAY(char, _cpu_brand_string);
|
|
_cpu_brand_string = nullptr;
|
|
}
|
|
}
|
|
return _cpu_brand_string;
|
|
}
|
|
|
|
const char* VM_Version::cpu_brand(void) {
|
|
const char* brand = nullptr;
|
|
|
|
if ((_cpuid_info.std_cpuid1_ebx.value & 0xFF) > 0) {
|
|
int brand_num = _cpuid_info.std_cpuid1_ebx.value & 0xFF;
|
|
brand = _brand_id[0];
|
|
for (int i = 0; brand != nullptr && i <= brand_num; i += 1) {
|
|
brand = _brand_id[i];
|
|
}
|
|
}
|
|
return brand;
|
|
}
|
|
|
|
bool VM_Version::cpu_is_em64t(void) {
|
|
return ((_cpuid_info.ext_cpuid1_edx.value & INTEL64_FLAG) == INTEL64_FLAG);
|
|
}
|
|
|
|
bool VM_Version::is_netburst(void) {
|
|
return (is_intel() && (extended_cpu_family() == CPU_FAMILY_PENTIUM_4));
|
|
}
|
|
|
|
bool VM_Version::supports_tscinv_ext(void) {
|
|
if (!supports_tscinv_bit()) {
|
|
return false;
|
|
}
|
|
|
|
if (is_intel()) {
|
|
return true;
|
|
}
|
|
|
|
if (is_amd()) {
|
|
return !is_amd_Barcelona();
|
|
}
|
|
|
|
if (is_hygon()) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void VM_Version::resolve_cpu_information_details(void) {
|
|
|
|
// in future we want to base this information on proper cpu
|
|
// and cache topology enumeration such as:
|
|
// Intel 64 Architecture Processor Topology Enumeration
|
|
// which supports system cpu and cache topology enumeration
|
|
// either using 2xAPICIDs or initial APICIDs
|
|
|
|
// currently only rough cpu information estimates
|
|
// which will not necessarily reflect the exact configuration of the system
|
|
|
|
// this is the number of logical hardware threads
|
|
// visible to the operating system
|
|
_no_of_threads = os::processor_count();
|
|
|
|
// find out number of threads per cpu package
|
|
int threads_per_package = threads_per_core() * cores_per_cpu();
|
|
|
|
// use amount of threads visible to the process in order to guess number of sockets
|
|
_no_of_sockets = _no_of_threads / threads_per_package;
|
|
|
|
// process might only see a subset of the total number of threads
|
|
// from a single processor package. Virtualization/resource management for example.
|
|
// If so then just write a hard 1 as num of pkgs.
|
|
if (0 == _no_of_sockets) {
|
|
_no_of_sockets = 1;
|
|
}
|
|
|
|
// estimate the number of cores
|
|
_no_of_cores = cores_per_cpu() * _no_of_sockets;
|
|
}
|
|
|
|
|
|
const char* VM_Version::cpu_family_description(void) {
|
|
int cpu_family_id = extended_cpu_family();
|
|
if (is_amd()) {
|
|
if (cpu_family_id < ExtendedFamilyIdLength_AMD) {
|
|
return _family_id_amd[cpu_family_id];
|
|
}
|
|
}
|
|
if (is_intel()) {
|
|
if (cpu_family_id == CPU_FAMILY_PENTIUMPRO) {
|
|
return cpu_model_description();
|
|
}
|
|
if (cpu_family_id < ExtendedFamilyIdLength_INTEL) {
|
|
return _family_id_intel[cpu_family_id];
|
|
}
|
|
}
|
|
if (is_hygon()) {
|
|
return "Dhyana";
|
|
}
|
|
return "Unknown x86";
|
|
}
|
|
|
|
int VM_Version::cpu_type_description(char* const buf, size_t buf_len) {
|
|
assert(buf != nullptr, "buffer is null!");
|
|
assert(buf_len >= CPU_TYPE_DESC_BUF_SIZE, "buffer len should at least be == CPU_TYPE_DESC_BUF_SIZE!");
|
|
|
|
const char* cpu_type = nullptr;
|
|
const char* x64 = nullptr;
|
|
|
|
if (is_intel()) {
|
|
cpu_type = "Intel";
|
|
x64 = cpu_is_em64t() ? " Intel64" : "";
|
|
} else if (is_amd()) {
|
|
cpu_type = "AMD";
|
|
x64 = cpu_is_em64t() ? " AMD64" : "";
|
|
} else if (is_hygon()) {
|
|
cpu_type = "Hygon";
|
|
x64 = cpu_is_em64t() ? " AMD64" : "";
|
|
} else {
|
|
cpu_type = "Unknown x86";
|
|
x64 = cpu_is_em64t() ? " x86_64" : "";
|
|
}
|
|
|
|
jio_snprintf(buf, buf_len, "%s %s%s SSE SSE2%s%s%s%s%s%s%s%s",
|
|
cpu_type,
|
|
cpu_family_description(),
|
|
supports_ht() ? " (HT)" : "",
|
|
supports_sse3() ? " SSE3" : "",
|
|
supports_ssse3() ? " SSSE3" : "",
|
|
supports_sse4_1() ? " SSE4.1" : "",
|
|
supports_sse4_2() ? " SSE4.2" : "",
|
|
supports_sse4a() ? " SSE4A" : "",
|
|
is_netburst() ? " Netburst" : "",
|
|
is_intel_family_core() ? " Core" : "",
|
|
x64);
|
|
|
|
return OS_OK;
|
|
}
|
|
|
|
int VM_Version::cpu_extended_brand_string(char* const buf, size_t buf_len) {
|
|
assert(buf != nullptr, "buffer is null!");
|
|
assert(buf_len >= CPU_EBS_MAX_LENGTH, "buffer len should at least be == CPU_EBS_MAX_LENGTH!");
|
|
assert(getCPUIDBrandString_stub != nullptr, "not initialized");
|
|
|
|
// invoke newly generated asm code to fetch CPU Brand String
|
|
getCPUIDBrandString_stub(&_cpuid_info);
|
|
|
|
// fetch results into buffer
|
|
*((uint32_t*) &buf[0]) = _cpuid_info.proc_name_0;
|
|
*((uint32_t*) &buf[4]) = _cpuid_info.proc_name_1;
|
|
*((uint32_t*) &buf[8]) = _cpuid_info.proc_name_2;
|
|
*((uint32_t*) &buf[12]) = _cpuid_info.proc_name_3;
|
|
*((uint32_t*) &buf[16]) = _cpuid_info.proc_name_4;
|
|
*((uint32_t*) &buf[20]) = _cpuid_info.proc_name_5;
|
|
*((uint32_t*) &buf[24]) = _cpuid_info.proc_name_6;
|
|
*((uint32_t*) &buf[28]) = _cpuid_info.proc_name_7;
|
|
*((uint32_t*) &buf[32]) = _cpuid_info.proc_name_8;
|
|
*((uint32_t*) &buf[36]) = _cpuid_info.proc_name_9;
|
|
*((uint32_t*) &buf[40]) = _cpuid_info.proc_name_10;
|
|
*((uint32_t*) &buf[44]) = _cpuid_info.proc_name_11;
|
|
|
|
return OS_OK;
|
|
}
|
|
|
|
size_t VM_Version::cpu_write_support_string(char* const buf, size_t buf_len) {
|
|
guarantee(buf != nullptr, "buffer is null!");
|
|
guarantee(buf_len > 0, "buffer len not enough!");
|
|
|
|
unsigned int flag = 0;
|
|
unsigned int fi = 0;
|
|
size_t written = 0;
|
|
const char* prefix = "";
|
|
|
|
#define WRITE_TO_BUF(string) \
|
|
{ \
|
|
int res = jio_snprintf(&buf[written], buf_len - written, "%s%s", prefix, string); \
|
|
if (res < 0) { \
|
|
return buf_len - 1; \
|
|
} \
|
|
written += res; \
|
|
if (prefix[0] == '\0') { \
|
|
prefix = ", "; \
|
|
} \
|
|
}
|
|
|
|
for (flag = 1, fi = 0; flag <= 0x20000000 ; flag <<= 1, fi++) {
|
|
if (flag == HTT_FLAG && (((_cpuid_info.std_cpuid1_ebx.value >> 16) & 0xff) <= 1)) {
|
|
continue; /* no hyperthreading */
|
|
} else if (flag == SEP_FLAG && (cpu_family() == CPU_FAMILY_PENTIUMPRO && ((_cpuid_info.std_cpuid1_eax.value & 0xff) < 0x33))) {
|
|
continue; /* no fast system call */
|
|
}
|
|
if ((_cpuid_info.std_cpuid1_edx.value & flag) && strlen(_feature_edx_id[fi]) > 0) {
|
|
WRITE_TO_BUF(_feature_edx_id[fi]);
|
|
}
|
|
}
|
|
|
|
for (flag = 1, fi = 0; flag <= 0x20000000; flag <<= 1, fi++) {
|
|
if ((_cpuid_info.std_cpuid1_ecx.value & flag) && strlen(_feature_ecx_id[fi]) > 0) {
|
|
WRITE_TO_BUF(_feature_ecx_id[fi]);
|
|
}
|
|
}
|
|
|
|
for (flag = 1, fi = 0; flag <= 0x20000000 ; flag <<= 1, fi++) {
|
|
if ((_cpuid_info.ext_cpuid1_ecx.value & flag) && strlen(_feature_extended_ecx_id[fi]) > 0) {
|
|
WRITE_TO_BUF(_feature_extended_ecx_id[fi]);
|
|
}
|
|
}
|
|
|
|
for (flag = 1, fi = 0; flag <= 0x20000000; flag <<= 1, fi++) {
|
|
if ((_cpuid_info.ext_cpuid1_edx.value & flag) && strlen(_feature_extended_edx_id[fi]) > 0) {
|
|
WRITE_TO_BUF(_feature_extended_edx_id[fi]);
|
|
}
|
|
}
|
|
|
|
if (supports_tscinv_bit()) {
|
|
WRITE_TO_BUF("Invariant TSC");
|
|
}
|
|
|
|
return written;
|
|
}
|
|
|
|
/**
|
|
* Write a detailed description of the cpu to a given buffer, including
|
|
* feature set.
|
|
*/
|
|
int VM_Version::cpu_detailed_description(char* const buf, size_t buf_len) {
|
|
assert(buf != nullptr, "buffer is null!");
|
|
assert(buf_len >= CPU_DETAILED_DESC_BUF_SIZE, "buffer len should at least be == CPU_DETAILED_DESC_BUF_SIZE!");
|
|
|
|
static const char* unknown = "<unknown>";
|
|
char vendor_id[VENDOR_LENGTH];
|
|
const char* family = nullptr;
|
|
const char* model = nullptr;
|
|
const char* brand = nullptr;
|
|
int outputLen = 0;
|
|
|
|
family = cpu_family_description();
|
|
if (family == nullptr) {
|
|
family = unknown;
|
|
}
|
|
|
|
model = cpu_model_description();
|
|
if (model == nullptr) {
|
|
model = unknown;
|
|
}
|
|
|
|
brand = cpu_brand_string();
|
|
|
|
if (brand == nullptr) {
|
|
brand = cpu_brand();
|
|
if (brand == nullptr) {
|
|
brand = unknown;
|
|
}
|
|
}
|
|
|
|
*((uint32_t*) &vendor_id[0]) = _cpuid_info.std_vendor_name_0;
|
|
*((uint32_t*) &vendor_id[4]) = _cpuid_info.std_vendor_name_2;
|
|
*((uint32_t*) &vendor_id[8]) = _cpuid_info.std_vendor_name_1;
|
|
vendor_id[VENDOR_LENGTH-1] = '\0';
|
|
|
|
outputLen = jio_snprintf(buf, buf_len, "Brand: %s, Vendor: %s\n"
|
|
"Family: %s (0x%x), Model: %s (0x%x), Stepping: 0x%x\n"
|
|
"Ext. family: 0x%x, Ext. model: 0x%x, Type: 0x%x, Signature: 0x%8.8x\n"
|
|
"Features: ebx: 0x%8.8x, ecx: 0x%8.8x, edx: 0x%8.8x\n"
|
|
"Ext. features: eax: 0x%8.8x, ebx: 0x%8.8x, ecx: 0x%8.8x, edx: 0x%8.8x\n"
|
|
"Supports: ",
|
|
brand,
|
|
vendor_id,
|
|
family,
|
|
extended_cpu_family(),
|
|
model,
|
|
extended_cpu_model(),
|
|
cpu_stepping(),
|
|
_cpuid_info.std_cpuid1_eax.bits.ext_family,
|
|
_cpuid_info.std_cpuid1_eax.bits.ext_model,
|
|
_cpuid_info.std_cpuid1_eax.bits.proc_type,
|
|
_cpuid_info.std_cpuid1_eax.value,
|
|
_cpuid_info.std_cpuid1_ebx.value,
|
|
_cpuid_info.std_cpuid1_ecx.value,
|
|
_cpuid_info.std_cpuid1_edx.value,
|
|
_cpuid_info.ext_cpuid1_eax,
|
|
_cpuid_info.ext_cpuid1_ebx,
|
|
_cpuid_info.ext_cpuid1_ecx,
|
|
_cpuid_info.ext_cpuid1_edx);
|
|
|
|
if (outputLen < 0 || (size_t) outputLen >= buf_len - 1) {
|
|
if (buf_len > 0) { buf[buf_len-1] = '\0'; }
|
|
return OS_ERR;
|
|
}
|
|
|
|
cpu_write_support_string(&buf[outputLen], buf_len - outputLen);
|
|
|
|
return OS_OK;
|
|
}
|
|
|
|
|
|
// Fill in Abstract_VM_Version statics
|
|
void VM_Version::initialize_cpu_information() {
|
|
assert(_vm_version_initialized, "should have initialized VM_Version long ago");
|
|
assert(!_initialized, "shouldn't be initialized yet");
|
|
resolve_cpu_information_details();
|
|
|
|
// initialize cpu_name and cpu_desc
|
|
cpu_type_description(_cpu_name, CPU_TYPE_DESC_BUF_SIZE);
|
|
cpu_detailed_description(_cpu_desc, CPU_DETAILED_DESC_BUF_SIZE);
|
|
_initialized = true;
|
|
}
|
|
|
|
/**
|
|
* For information about extracting the frequency from the cpu brand string, please see:
|
|
*
|
|
* Intel Processor Identification and the CPUID Instruction
|
|
* Application Note 485
|
|
* May 2012
|
|
*
|
|
* The return value is the frequency in Hz.
|
|
*/
|
|
int64_t VM_Version::max_qualified_cpu_freq_from_brand_string(void) {
|
|
const char* const brand_string = cpu_brand_string();
|
|
if (brand_string == nullptr) {
|
|
return 0;
|
|
}
|
|
const int64_t MEGA = 1000000;
|
|
int64_t multiplier = 0;
|
|
int64_t frequency = 0;
|
|
uint8_t idx = 0;
|
|
// The brand string buffer is at most 48 bytes.
|
|
// -2 is to prevent buffer overrun when looking for y in yHz, as z is +2 from y.
|
|
for (; idx < 48-2; ++idx) {
|
|
// Format is either "x.xxyHz" or "xxxxyHz", where y=M, G, T and x are digits.
|
|
// Search brand string for "yHz" where y is M, G, or T.
|
|
if (brand_string[idx+1] == 'H' && brand_string[idx+2] == 'z') {
|
|
if (brand_string[idx] == 'M') {
|
|
multiplier = MEGA;
|
|
} else if (brand_string[idx] == 'G') {
|
|
multiplier = MEGA * 1000;
|
|
} else if (brand_string[idx] == 'T') {
|
|
multiplier = MEGA * MEGA;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (multiplier > 0) {
|
|
// Compute frequency (in Hz) from brand string.
|
|
if (brand_string[idx-3] == '.') { // if format is "x.xx"
|
|
frequency = (brand_string[idx-4] - '0') * multiplier;
|
|
frequency += (brand_string[idx-2] - '0') * multiplier / 10;
|
|
frequency += (brand_string[idx-1] - '0') * multiplier / 100;
|
|
} else { // format is "xxxx"
|
|
frequency = (brand_string[idx-4] - '0') * 1000;
|
|
frequency += (brand_string[idx-3] - '0') * 100;
|
|
frequency += (brand_string[idx-2] - '0') * 10;
|
|
frequency += (brand_string[idx-1] - '0');
|
|
frequency *= multiplier;
|
|
}
|
|
}
|
|
return frequency;
|
|
}
|
|
|
|
|
|
int64_t VM_Version::maximum_qualified_cpu_frequency(void) {
|
|
if (_max_qualified_cpu_frequency == 0) {
|
|
_max_qualified_cpu_frequency = max_qualified_cpu_freq_from_brand_string();
|
|
}
|
|
return _max_qualified_cpu_frequency;
|
|
}
|
|
|
|
uint64_t VM_Version::CpuidInfo::feature_flags() const {
|
|
uint64_t result = 0;
|
|
if (std_cpuid1_edx.bits.cmpxchg8 != 0)
|
|
result |= CPU_CX8;
|
|
if (std_cpuid1_edx.bits.cmov != 0)
|
|
result |= CPU_CMOV;
|
|
if (std_cpuid1_edx.bits.clflush != 0)
|
|
result |= CPU_FLUSH;
|
|
#ifdef _LP64
|
|
// clflush should always be available on x86_64
|
|
// if not we are in real trouble because we rely on it
|
|
// to flush the code cache.
|
|
assert ((result & CPU_FLUSH) != 0, "clflush should be available");
|
|
#endif
|
|
if (std_cpuid1_edx.bits.fxsr != 0 || (is_amd_family() &&
|
|
ext_cpuid1_edx.bits.fxsr != 0))
|
|
result |= CPU_FXSR;
|
|
// HT flag is set for multi-core processors also.
|
|
if (threads_per_core() > 1)
|
|
result |= CPU_HT;
|
|
if (std_cpuid1_edx.bits.mmx != 0 || (is_amd_family() &&
|
|
ext_cpuid1_edx.bits.mmx != 0))
|
|
result |= CPU_MMX;
|
|
if (std_cpuid1_edx.bits.sse != 0)
|
|
result |= CPU_SSE;
|
|
if (std_cpuid1_edx.bits.sse2 != 0)
|
|
result |= CPU_SSE2;
|
|
if (std_cpuid1_ecx.bits.sse3 != 0)
|
|
result |= CPU_SSE3;
|
|
if (std_cpuid1_ecx.bits.ssse3 != 0)
|
|
result |= CPU_SSSE3;
|
|
if (std_cpuid1_ecx.bits.sse4_1 != 0)
|
|
result |= CPU_SSE4_1;
|
|
if (std_cpuid1_ecx.bits.sse4_2 != 0)
|
|
result |= CPU_SSE4_2;
|
|
if (std_cpuid1_ecx.bits.popcnt != 0)
|
|
result |= CPU_POPCNT;
|
|
if (std_cpuid1_ecx.bits.avx != 0 &&
|
|
std_cpuid1_ecx.bits.osxsave != 0 &&
|
|
xem_xcr0_eax.bits.sse != 0 &&
|
|
xem_xcr0_eax.bits.ymm != 0) {
|
|
result |= CPU_AVX;
|
|
result |= CPU_VZEROUPPER;
|
|
if (std_cpuid1_ecx.bits.f16c != 0)
|
|
result |= CPU_F16C;
|
|
if (sef_cpuid7_ebx.bits.avx2 != 0) {
|
|
result |= CPU_AVX2;
|
|
if (sef_cpuid7_ecx1_eax.bits.avx_ifma != 0)
|
|
result |= CPU_AVX_IFMA;
|
|
}
|
|
if (sef_cpuid7_ecx.bits.gfni != 0)
|
|
result |= CPU_GFNI;
|
|
if (sef_cpuid7_ebx.bits.avx512f != 0 &&
|
|
xem_xcr0_eax.bits.opmask != 0 &&
|
|
xem_xcr0_eax.bits.zmm512 != 0 &&
|
|
xem_xcr0_eax.bits.zmm32 != 0) {
|
|
result |= CPU_AVX512F;
|
|
if (sef_cpuid7_ebx.bits.avx512cd != 0)
|
|
result |= CPU_AVX512CD;
|
|
if (sef_cpuid7_ebx.bits.avx512dq != 0)
|
|
result |= CPU_AVX512DQ;
|
|
if (sef_cpuid7_ebx.bits.avx512ifma != 0)
|
|
result |= CPU_AVX512_IFMA;
|
|
if (sef_cpuid7_ebx.bits.avx512pf != 0)
|
|
result |= CPU_AVX512PF;
|
|
if (sef_cpuid7_ebx.bits.avx512er != 0)
|
|
result |= CPU_AVX512ER;
|
|
if (sef_cpuid7_ebx.bits.avx512bw != 0)
|
|
result |= CPU_AVX512BW;
|
|
if (sef_cpuid7_ebx.bits.avx512vl != 0)
|
|
result |= CPU_AVX512VL;
|
|
if (sef_cpuid7_ecx.bits.avx512_vpopcntdq != 0)
|
|
result |= CPU_AVX512_VPOPCNTDQ;
|
|
if (sef_cpuid7_ecx.bits.avx512_vpclmulqdq != 0)
|
|
result |= CPU_AVX512_VPCLMULQDQ;
|
|
if (sef_cpuid7_ecx.bits.vaes != 0)
|
|
result |= CPU_AVX512_VAES;
|
|
if (sef_cpuid7_ecx.bits.avx512_vnni != 0)
|
|
result |= CPU_AVX512_VNNI;
|
|
if (sef_cpuid7_ecx.bits.avx512_bitalg != 0)
|
|
result |= CPU_AVX512_BITALG;
|
|
if (sef_cpuid7_ecx.bits.avx512_vbmi != 0)
|
|
result |= CPU_AVX512_VBMI;
|
|
if (sef_cpuid7_ecx.bits.avx512_vbmi2 != 0)
|
|
result |= CPU_AVX512_VBMI2;
|
|
}
|
|
}
|
|
if (std_cpuid1_ecx.bits.hv != 0)
|
|
result |= CPU_HV;
|
|
if (sef_cpuid7_ebx.bits.bmi1 != 0)
|
|
result |= CPU_BMI1;
|
|
if (std_cpuid1_edx.bits.tsc != 0)
|
|
result |= CPU_TSC;
|
|
if (ext_cpuid7_edx.bits.tsc_invariance != 0)
|
|
result |= CPU_TSCINV_BIT;
|
|
if (std_cpuid1_ecx.bits.aes != 0)
|
|
result |= CPU_AES;
|
|
if (sef_cpuid7_ebx.bits.erms != 0)
|
|
result |= CPU_ERMS;
|
|
if (sef_cpuid7_edx.bits.fast_short_rep_mov != 0)
|
|
result |= CPU_FSRM;
|
|
if (std_cpuid1_ecx.bits.clmul != 0)
|
|
result |= CPU_CLMUL;
|
|
if (sef_cpuid7_ebx.bits.rtm != 0)
|
|
result |= CPU_RTM;
|
|
if (sef_cpuid7_ebx.bits.adx != 0)
|
|
result |= CPU_ADX;
|
|
if (sef_cpuid7_ebx.bits.bmi2 != 0)
|
|
result |= CPU_BMI2;
|
|
if (sef_cpuid7_ebx.bits.sha != 0)
|
|
result |= CPU_SHA;
|
|
if (std_cpuid1_ecx.bits.fma != 0)
|
|
result |= CPU_FMA;
|
|
if (sef_cpuid7_ebx.bits.clflushopt != 0)
|
|
result |= CPU_FLUSHOPT;
|
|
if (ext_cpuid1_edx.bits.rdtscp != 0)
|
|
result |= CPU_RDTSCP;
|
|
if (sef_cpuid7_ecx.bits.rdpid != 0)
|
|
result |= CPU_RDPID;
|
|
|
|
// AMD|Hygon features.
|
|
if (is_amd_family()) {
|
|
if ((ext_cpuid1_edx.bits.tdnow != 0) ||
|
|
(ext_cpuid1_ecx.bits.prefetchw != 0))
|
|
result |= CPU_3DNOW_PREFETCH;
|
|
if (ext_cpuid1_ecx.bits.lzcnt != 0)
|
|
result |= CPU_LZCNT;
|
|
if (ext_cpuid1_ecx.bits.sse4a != 0)
|
|
result |= CPU_SSE4A;
|
|
}
|
|
|
|
// Intel features.
|
|
if (is_intel()) {
|
|
if (ext_cpuid1_ecx.bits.lzcnt != 0) {
|
|
result |= CPU_LZCNT;
|
|
}
|
|
if (ext_cpuid1_ecx.bits.prefetchw != 0) {
|
|
result |= CPU_3DNOW_PREFETCH;
|
|
}
|
|
if (sef_cpuid7_ebx.bits.clwb != 0) {
|
|
result |= CPU_CLWB;
|
|
}
|
|
if (sef_cpuid7_edx.bits.serialize != 0)
|
|
result |= CPU_SERIALIZE;
|
|
}
|
|
|
|
// ZX features.
|
|
if (is_zx()) {
|
|
if (ext_cpuid1_ecx.bits.lzcnt != 0) {
|
|
result |= CPU_LZCNT;
|
|
}
|
|
if (ext_cpuid1_ecx.bits.prefetchw != 0) {
|
|
result |= CPU_3DNOW_PREFETCH;
|
|
}
|
|
}
|
|
|
|
// Protection key features.
|
|
if (sef_cpuid7_ecx.bits.pku != 0) {
|
|
result |= CPU_PKU;
|
|
}
|
|
if (sef_cpuid7_ecx.bits.ospke != 0) {
|
|
result |= CPU_OSPKE;
|
|
}
|
|
|
|
// Control flow enforcement (CET) features.
|
|
if (sef_cpuid7_ecx.bits.cet_ss != 0) {
|
|
result |= CPU_CET_SS;
|
|
}
|
|
if (sef_cpuid7_edx.bits.cet_ibt != 0) {
|
|
result |= CPU_CET_IBT;
|
|
}
|
|
|
|
// Composite features.
|
|
if (supports_tscinv_bit() &&
|
|
((is_amd_family() && !is_amd_Barcelona()) ||
|
|
is_intel_tsc_synched_at_init())) {
|
|
result |= CPU_TSCINV;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool VM_Version::os_supports_avx_vectors() {
|
|
bool retVal = false;
|
|
int nreg = 2 LP64_ONLY(+2);
|
|
if (supports_evex()) {
|
|
// Verify that OS save/restore all bits of EVEX registers
|
|
// during signal processing.
|
|
retVal = true;
|
|
for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
|
|
if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
|
|
retVal = false;
|
|
break;
|
|
}
|
|
}
|
|
} else if (supports_avx()) {
|
|
// Verify that OS save/restore all bits of AVX registers
|
|
// during signal processing.
|
|
retVal = true;
|
|
for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
|
|
if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
|
|
retVal = false;
|
|
break;
|
|
}
|
|
}
|
|
// zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
|
|
if (retVal == false) {
|
|
// Verify that OS save/restore all bits of EVEX registers
|
|
// during signal processing.
|
|
retVal = true;
|
|
for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
|
|
if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
|
|
retVal = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return retVal;
|
|
}
|
|
|
|
uint VM_Version::cores_per_cpu() {
|
|
uint result = 1;
|
|
if (is_intel()) {
|
|
bool supports_topology = supports_processor_topology();
|
|
if (supports_topology) {
|
|
result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
|
|
_cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
|
|
}
|
|
if (!supports_topology || result == 0) {
|
|
result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
|
|
}
|
|
} else if (is_amd_family()) {
|
|
result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
|
|
} else if (is_zx()) {
|
|
bool supports_topology = supports_processor_topology();
|
|
if (supports_topology) {
|
|
result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
|
|
_cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
|
|
}
|
|
if (!supports_topology || result == 0) {
|
|
result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
uint VM_Version::threads_per_core() {
|
|
uint result = 1;
|
|
if (is_intel() && supports_processor_topology()) {
|
|
result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
|
|
} else if (is_zx() && supports_processor_topology()) {
|
|
result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
|
|
} else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
|
|
if (cpu_family() >= 0x17) {
|
|
result = _cpuid_info.ext_cpuid1E_ebx.bits.threads_per_core + 1;
|
|
} else {
|
|
result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
|
|
cores_per_cpu();
|
|
}
|
|
}
|
|
return (result == 0 ? 1 : result);
|
|
}
|
|
|
|
uint VM_Version::L1_line_size() {
|
|
uint result = 0;
|
|
if (is_intel()) {
|
|
result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
|
|
} else if (is_amd_family()) {
|
|
result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
|
|
} else if (is_zx()) {
|
|
result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
|
|
}
|
|
if (result < 32) // not defined ?
|
|
result = 32; // 32 bytes by default on x86 and other x64
|
|
return result;
|
|
}
|
|
|
|
bool VM_Version::is_intel_tsc_synched_at_init() {
|
|
if (is_intel_family_core()) {
|
|
uint32_t ext_model = extended_cpu_model();
|
|
if (ext_model == CPU_MODEL_NEHALEM_EP ||
|
|
ext_model == CPU_MODEL_WESTMERE_EP ||
|
|
ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
|
|
ext_model == CPU_MODEL_IVYBRIDGE_EP) {
|
|
// <= 2-socket invariant tsc support. EX versions are usually used
|
|
// in > 2-socket systems and likely don't synchronize tscs at
|
|
// initialization.
|
|
// Code that uses tsc values must be prepared for them to arbitrarily
|
|
// jump forward or backward.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int VM_Version::allocate_prefetch_distance(bool use_watermark_prefetch) {
|
|
// Hardware prefetching (distance/size in bytes):
|
|
// Pentium 3 - 64 / 32
|
|
// Pentium 4 - 256 / 128
|
|
// Athlon - 64 / 32 ????
|
|
// Opteron - 128 / 64 only when 2 sequential cache lines accessed
|
|
// Core - 128 / 64
|
|
//
|
|
// Software prefetching (distance in bytes / instruction with best score):
|
|
// Pentium 3 - 128 / prefetchnta
|
|
// Pentium 4 - 512 / prefetchnta
|
|
// Athlon - 128 / prefetchnta
|
|
// Opteron - 256 / prefetchnta
|
|
// Core - 256 / prefetchnta
|
|
// It will be used only when AllocatePrefetchStyle > 0
|
|
|
|
if (is_amd_family()) { // AMD | Hygon
|
|
if (supports_sse2()) {
|
|
return 256; // Opteron
|
|
} else {
|
|
return 128; // Athlon
|
|
}
|
|
} else { // Intel
|
|
if (supports_sse3() && cpu_family() == 6) {
|
|
if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
|
|
return 192;
|
|
} else if (use_watermark_prefetch) { // watermark prefetching on Core
|
|
#ifdef _LP64
|
|
return 384;
|
|
#else
|
|
return 320;
|
|
#endif
|
|
}
|
|
}
|
|
if (supports_sse2()) {
|
|
if (cpu_family() == 6) {
|
|
return 256; // Pentium M, Core, Core2
|
|
} else {
|
|
return 512; // Pentium 4
|
|
}
|
|
} else {
|
|
return 128; // Pentium 3 (and all other old CPUs)
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VM_Version::is_intrinsic_supported(vmIntrinsicID id) {
|
|
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
|
|
switch (id) {
|
|
case vmIntrinsics::_floatToFloat16:
|
|
case vmIntrinsics::_float16ToFloat:
|
|
if (!supports_float16()) {
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|