jdk/src/hotspot/cpu/x86/stubGenerator_x86_64_arraycopy.cpp
2025-09-17 09:42:01 +00:00

3263 lines
121 KiB
C++

/*
* Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "oops/objArrayKlass.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "stubGenerator_x86_64.hpp"
#ifdef COMPILER2
#include "opto/c2_globals.hpp"
#endif
#if INCLUDE_JVMCI
#include "jvmci/jvmci_globals.hpp"
#endif
#define __ _masm->
#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif // PRODUCT
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
#ifdef PRODUCT
#define INC_COUNTER_NP(counter, rscratch) ((void)0)
#else
#define INC_COUNTER_NP(counter, rscratch) \
BLOCK_COMMENT("inc_counter " #counter); \
inc_counter_np(_masm, counter, rscratch);
static void inc_counter_np(MacroAssembler* _masm, uint& counter, Register rscratch) {
__ incrementl(ExternalAddress((address)&counter), rscratch);
}
#if COMPILER2_OR_JVMCI
static uint& get_profile_ctr(int shift) {
if (shift == 0) {
return SharedRuntime::_jbyte_array_copy_ctr;
} else if (shift == 1) {
return SharedRuntime::_jshort_array_copy_ctr;
} else if (shift == 2) {
return SharedRuntime::_jint_array_copy_ctr;
} else {
assert(shift == 3, "");
return SharedRuntime::_jlong_array_copy_ctr;
}
}
#endif // COMPILER2_OR_JVMCI
#endif // !PRODUCT
void StubGenerator::generate_arraycopy_stubs() {
// Some copy stubs publish a normal entry and then a 2nd 'fallback'
// entry immediately following their stack push. This can be used
// as a post-push branch target for compatible stubs when they
// identify a special case that can be handled by the fallback
// stub e.g a disjoint copy stub may be use as a special case
// fallback for its compatible conjoint copy stub.
//
// A no push entry is always returned in the following local and
// then published by assigning to the appropriate entry field in
// class StubRoutines. The entry value is then passed to the
// generator for the compatible stub. That means the entry must be
// listed when saving to/restoring from the AOT cache, ensuring
// that the inter-stub jumps are noted at AOT-cache save and
// relocated at AOT cache load.
address nopush_entry;
StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(&nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_jbyte_disjoint_arraycopy_nopush = nopush_entry;
StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(StubRoutines::_jbyte_disjoint_arraycopy_nopush, &nopush_entry);
// conjoint nopush entry is needed by generic/unsafe copy
StubRoutines::_jbyte_arraycopy_nopush = nopush_entry;
StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(&nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_jshort_disjoint_arraycopy_nopush = nopush_entry;
StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(StubRoutines::_jshort_disjoint_arraycopy_nopush, &nopush_entry);
// conjoint nopush entry is needed by generic/unsafe copy
StubRoutines::_jshort_arraycopy_nopush = nopush_entry;
StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(StubId::stubgen_jint_disjoint_arraycopy_id, &nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_jint_disjoint_arraycopy_nopush = nopush_entry;
StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(StubId::stubgen_jint_arraycopy_id, StubRoutines::_jint_disjoint_arraycopy_nopush, &nopush_entry);
// conjoint nopush entry is needed by generic/unsafe copy
StubRoutines::_jint_arraycopy_nopush = nopush_entry;
StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(StubId::stubgen_jlong_disjoint_arraycopy_id, &nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_jlong_disjoint_arraycopy_nopush = nopush_entry;
StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(StubId::stubgen_jlong_arraycopy_id, StubRoutines::_jlong_disjoint_arraycopy_nopush, &nopush_entry);
// conjoint nopush entry is needed by generic/unsafe copy
StubRoutines::_jlong_arraycopy_nopush = nopush_entry;
if (UseCompressedOops) {
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(StubId::stubgen_oop_disjoint_arraycopy_id, &nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_oop_disjoint_arraycopy_nopush = nopush_entry;
StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(StubId::stubgen_oop_arraycopy_id, StubRoutines::_oop_disjoint_arraycopy_nopush, &nopush_entry);
// conjoint nopush entry is needed by generic/unsafe copy
StubRoutines::_oop_arraycopy_nopush = nopush_entry;
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(StubId::stubgen_oop_disjoint_arraycopy_uninit_id, &nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_oop_disjoint_arraycopy_uninit_nopush = nopush_entry;
// note that we don't need a returned nopush entry because the
// generic/unsafe copy does not cater for uninit arrays.
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(StubId::stubgen_oop_arraycopy_uninit_id, StubRoutines::_oop_disjoint_arraycopy_uninit_nopush, nullptr);
} else {
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(StubId::stubgen_oop_disjoint_arraycopy_id, &nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_oop_disjoint_arraycopy_nopush = nopush_entry;
StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(StubId::stubgen_oop_arraycopy_id, StubRoutines::_oop_disjoint_arraycopy_nopush, &nopush_entry);
// conjoint nopush entry is needed by generic/unsafe copy
StubRoutines::_oop_arraycopy_nopush = nopush_entry;
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(StubId::stubgen_oop_disjoint_arraycopy_uninit_id, &nopush_entry);
// disjoint nopush entry is needed by conjoint copy
StubRoutines::_oop_disjoint_arraycopy_uninit_nopush = nopush_entry;
// note that we don't need a returned nopush entry because the
// generic/unsafe copy does not cater for uninit arrays.
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(StubId::stubgen_oop_arraycopy_uninit_id, StubRoutines::_oop_disjoint_arraycopy_uninit_nopush, nullptr);
}
StubRoutines::_checkcast_arraycopy = generate_checkcast_copy(StubId::stubgen_checkcast_arraycopy_id, &nopush_entry);
// checkcast nopush entry is needed by generic copy
StubRoutines::_checkcast_arraycopy_nopush = nopush_entry;
// note that we don't need a returned nopush entry because the
// generic copy does not cater for uninit arrays.
StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy(StubId::stubgen_checkcast_arraycopy_uninit_id, nullptr);
StubRoutines::_unsafe_arraycopy = generate_unsafe_copy(StubRoutines::_jbyte_arraycopy_nopush,
StubRoutines::_jshort_arraycopy_nopush,
StubRoutines::_jint_arraycopy_nopush,
StubRoutines::_jlong_arraycopy_nopush);
StubRoutines::_generic_arraycopy = generate_generic_copy(StubRoutines::_jbyte_arraycopy_nopush,
StubRoutines::_jshort_arraycopy_nopush,
StubRoutines::_jint_arraycopy_nopush,
StubRoutines::_oop_arraycopy_nopush,
StubRoutines::_jlong_arraycopy_nopush,
StubRoutines::_checkcast_arraycopy_nopush);
StubRoutines::_jbyte_fill = generate_fill(StubId::stubgen_jbyte_fill_id);
StubRoutines::_jshort_fill = generate_fill(StubId::stubgen_jshort_fill_id);
StubRoutines::_jint_fill = generate_fill(StubId::stubgen_jint_fill_id);
StubRoutines::_arrayof_jbyte_fill = generate_fill(StubId::stubgen_arrayof_jbyte_fill_id);
StubRoutines::_arrayof_jshort_fill = generate_fill(StubId::stubgen_arrayof_jshort_fill_id);
StubRoutines::_arrayof_jint_fill = generate_fill(StubId::stubgen_arrayof_jint_fill_id);
StubRoutines::_unsafe_setmemory = generate_unsafe_setmemory(StubRoutines::_jbyte_fill);
// We don't generate specialized code for HeapWord-aligned source
// arrays, so just use the code we've already generated
StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
}
// Verify that a register contains clean 32-bits positive value
// (high 32-bits are 0) so it could be used in 64-bits shifts.
//
// Input:
// Rint - 32-bits value
// Rtmp - scratch
//
void StubGenerator::assert_clean_int(Register Rint, Register Rtmp) {
#ifdef ASSERT
Label L;
assert_different_registers(Rtmp, Rint);
__ movslq(Rtmp, Rint);
__ cmpq(Rtmp, Rint);
__ jcc(Assembler::equal, L);
__ stop("high 32-bits of int value are not 0");
__ bind(L);
#endif
}
// Generate overlap test for array copy stubs
//
// Input:
// c_rarg0 - from
// c_rarg1 - to
// c_rarg2 - element count
//
// Output:
// rax - &from[element count - 1]
//
void StubGenerator::array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
const Register from = c_rarg0;
const Register to = c_rarg1;
const Register count = c_rarg2;
const Register end_from = rax;
__ cmpptr(to, from);
__ lea(end_from, Address(from, count, sf, 0));
if (NOLp == nullptr) {
RuntimeAddress no_overlap(no_overlap_target);
__ jump_cc(Assembler::belowEqual, no_overlap);
__ cmpptr(to, end_from);
__ jump_cc(Assembler::aboveEqual, no_overlap);
} else {
__ jcc(Assembler::belowEqual, (*NOLp));
__ cmpptr(to, end_from);
__ jcc(Assembler::aboveEqual, (*NOLp));
}
}
// Copy big chunks forward
//
// Inputs:
// end_from - source arrays end address
// end_to - destination array end address
// qword_count - 64-bits element count, negative
// tmp1 - scratch
// L_copy_bytes - entry label
// L_copy_8_bytes - exit label
//
void StubGenerator::copy_bytes_forward(Register end_from, Register end_to,
Register qword_count, Register tmp1,
Register tmp2, Label& L_copy_bytes,
Label& L_copy_8_bytes, DecoratorSet decorators,
BasicType type) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
DEBUG_ONLY(__ stop("enter at entry label, not here"));
Label L_loop;
__ align(OptoLoopAlignment);
if (UseUnalignedLoadStores) {
Label L_end;
__ BIND(L_loop);
if (UseAVX >= 2) {
bs->copy_load_at(_masm, decorators, type, 32,
xmm0, Address(end_from, qword_count, Address::times_8, -56),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 32,
Address(end_to, qword_count, Address::times_8, -56), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 32,
xmm0, Address(end_from, qword_count, Address::times_8, -24),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 32,
Address(end_to, qword_count, Address::times_8, -24), xmm0,
tmp1, tmp2, xmm1);
} else {
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(end_from, qword_count, Address::times_8, -56),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(end_to, qword_count, Address::times_8, -56), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(end_from, qword_count, Address::times_8, -40),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(end_to, qword_count, Address::times_8, -40), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(end_from, qword_count, Address::times_8, -24),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(end_to, qword_count, Address::times_8, -24), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(end_from, qword_count, Address::times_8, -8),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(end_to, qword_count, Address::times_8, -8), xmm0,
tmp1, tmp2, xmm1);
}
__ BIND(L_copy_bytes);
__ addptr(qword_count, 8);
__ jcc(Assembler::lessEqual, L_loop);
__ subptr(qword_count, 4); // sub(8) and add(4)
__ jcc(Assembler::greater, L_end);
// Copy trailing 32 bytes
if (UseAVX >= 2) {
bs->copy_load_at(_masm, decorators, type, 32,
xmm0, Address(end_from, qword_count, Address::times_8, -24),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 32,
Address(end_to, qword_count, Address::times_8, -24), xmm0,
tmp1, tmp2, xmm1);
} else {
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(end_from, qword_count, Address::times_8, -24),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(end_to, qword_count, Address::times_8, -24), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(end_from, qword_count, Address::times_8, -8),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(end_to, qword_count, Address::times_8, -8), xmm0,
tmp1, tmp2, xmm1);
}
__ addptr(qword_count, 4);
__ BIND(L_end);
} else {
// Copy 32-bytes per iteration
__ BIND(L_loop);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(end_from, qword_count, Address::times_8, -24),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(end_to, qword_count, Address::times_8, -24), tmp1,
tmp2);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(end_from, qword_count, Address::times_8, -16),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(end_to, qword_count, Address::times_8, -16), tmp1,
tmp2);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(end_from, qword_count, Address::times_8, -8),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(end_to, qword_count, Address::times_8, -8), tmp1,
tmp2);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(end_from, qword_count, Address::times_8, 0),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(end_to, qword_count, Address::times_8, 0), tmp1,
tmp2);
__ BIND(L_copy_bytes);
__ addptr(qword_count, 4);
__ jcc(Assembler::lessEqual, L_loop);
}
__ subptr(qword_count, 4);
__ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
}
// Copy big chunks backward
//
// Inputs:
// from - source arrays address
// dest - destination array address
// qword_count - 64-bits element count
// tmp1 - scratch
// L_copy_bytes - entry label
// L_copy_8_bytes - exit label
//
void StubGenerator::copy_bytes_backward(Register from, Register dest,
Register qword_count, Register tmp1,
Register tmp2, Label& L_copy_bytes,
Label& L_copy_8_bytes, DecoratorSet decorators,
BasicType type) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
DEBUG_ONLY(__ stop("enter at entry label, not here"));
Label L_loop;
__ align(OptoLoopAlignment);
if (UseUnalignedLoadStores) {
Label L_end;
__ BIND(L_loop);
if (UseAVX >= 2) {
bs->copy_load_at(_masm, decorators, type, 32,
xmm0, Address(from, qword_count, Address::times_8, 32),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 32,
Address(dest, qword_count, Address::times_8, 32), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 32,
xmm0, Address(from, qword_count, Address::times_8, 0),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 32,
Address(dest, qword_count, Address::times_8, 0), xmm0,
tmp1, tmp2, xmm1);
} else {
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(from, qword_count, Address::times_8, 48),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(dest, qword_count, Address::times_8, 48), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(from, qword_count, Address::times_8, 32),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(dest, qword_count, Address::times_8, 32), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(from, qword_count, Address::times_8, 16),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(dest, qword_count, Address::times_8, 16), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(from, qword_count, Address::times_8, 0),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(dest, qword_count, Address::times_8, 0), xmm0,
tmp1, tmp2, xmm1);
}
__ BIND(L_copy_bytes);
__ subptr(qword_count, 8);
__ jcc(Assembler::greaterEqual, L_loop);
__ addptr(qword_count, 4); // add(8) and sub(4)
__ jcc(Assembler::less, L_end);
// Copy trailing 32 bytes
if (UseAVX >= 2) {
bs->copy_load_at(_masm, decorators, type, 32,
xmm0, Address(from, qword_count, Address::times_8, 0),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 32,
Address(dest, qword_count, Address::times_8, 0), xmm0,
tmp1, tmp2, xmm1);
} else {
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(from, qword_count, Address::times_8, 16),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(dest, qword_count, Address::times_8, 16), xmm0,
tmp1, tmp2, xmm1);
bs->copy_load_at(_masm, decorators, type, 16,
xmm0, Address(from, qword_count, Address::times_8, 0),
tmp1, xmm1);
bs->copy_store_at(_masm, decorators, type, 16,
Address(dest, qword_count, Address::times_8, 0), xmm0,
tmp1, tmp2, xmm1);
}
__ subptr(qword_count, 4);
__ BIND(L_end);
} else {
// Copy 32-bytes per iteration
__ BIND(L_loop);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(from, qword_count, Address::times_8, 24),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(dest, qword_count, Address::times_8, 24), tmp1,
tmp2);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(from, qword_count, Address::times_8, 16),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(dest, qword_count, Address::times_8, 16), tmp1,
tmp2);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(from, qword_count, Address::times_8, 8),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(dest, qword_count, Address::times_8, 8), tmp1,
tmp2);
bs->copy_load_at(_masm, decorators, type, 8,
tmp1, Address(from, qword_count, Address::times_8, 0),
tmp2);
bs->copy_store_at(_masm, decorators, type, 8,
Address(dest, qword_count, Address::times_8, 0), tmp1,
tmp2);
__ BIND(L_copy_bytes);
__ subptr(qword_count, 4);
__ jcc(Assembler::greaterEqual, L_loop);
}
__ addptr(qword_count, 4);
__ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
}
#if COMPILER2_OR_JVMCI
// Note: Following rules apply to AVX3 optimized arraycopy stubs:-
// - If target supports AVX3 features (BW+VL+F) then implementation uses 32 byte vectors (YMMs)
// for both special cases (various small block sizes) and aligned copy loop. This is the
// default configuration.
// - If copy length is above AVX3Threshold, then implementation use 64 byte vectors (ZMMs)
// for main copy loop (and subsequent tail) since bulk of the cycles will be consumed in it.
// - If user forces MaxVectorSize=32 then above 4096 bytes its seen that REP MOVs shows a
// better performance for disjoint copies. For conjoint/backward copy vector based
// copy performs better.
// - If user sets AVX3Threshold=0, then special cases for small blocks sizes operate over
// 64 byte vector registers (ZMMs).
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
//
// Side Effects:
// disjoint_copy_avx3_masked is set to the no-overlap entry point
// used by generate_conjoint_[byte/int/short/long]_copy().
//
address StubGenerator::generate_disjoint_copy_avx3_masked(StubId stub_id, address* entry) {
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
int shift;
bool is_oop;
bool dest_uninitialized;
switch (stub_id) {
case StubId::stubgen_jbyte_disjoint_arraycopy_id:
shift = 0;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_jshort_disjoint_arraycopy_id:
shift = 1;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_jint_disjoint_arraycopy_id:
shift = 2;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_jlong_disjoint_arraycopy_id:
shift = 3;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_disjoint_arraycopy_id:
shift = (UseCompressedOops ? 2 : 3);
is_oop = true;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_disjoint_arraycopy_uninit_id:
shift = (UseCompressedOops ? 2 : 3);
is_oop = true;
dest_uninitialized = true;
break;
default:
ShouldNotReachHere();
}
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
int avx3threshold = VM_Version::avx3_threshold();
bool use64byteVector = (MaxVectorSize > 32) && (avx3threshold == 0);
const int large_threshold = 2621440; // 2.5 MB
Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry;
Label L_repmovs, L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64;
Label L_copy_large, L_finish;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register temp1 = r8;
const Register temp2 = r11;
const Register temp3 = rax;
const Register temp4 = rcx;
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
BasicType type = is_oop ? T_OBJECT : type_vec[shift];
setup_argument_regs(type);
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
{
// Type(shift) byte(0), short(1), int(2), long(3)
int loop_size[] = { 192, 96, 48, 24};
int threshold[] = { 4096, 2048, 1024, 512};
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
// temp1 holds remaining count and temp4 holds running count used to compute
// next address offset for start of to/from addresses (temp4 * scale).
__ mov64(temp4, 0);
__ movq(temp1, count);
// Zero length check.
__ BIND(L_tail);
__ cmpq(temp1, 0);
__ jcc(Assembler::lessEqual, L_exit);
// Special cases using 32 byte [masked] vector copy operations.
arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift,
temp4, temp3, use64byteVector, L_entry, L_exit);
// PRE-MAIN-POST loop for aligned copy.
__ BIND(L_entry);
if (MaxVectorSize == 64) {
__ movq(temp2, temp1);
__ shlq(temp2, shift);
__ cmpq(temp2, large_threshold);
__ jcc(Assembler::greaterEqual, L_copy_large);
}
if (avx3threshold != 0) {
__ cmpq(count, threshold[shift]);
if (MaxVectorSize == 64) {
// Copy using 64 byte vectors.
__ jcc(Assembler::greaterEqual, L_pre_main_post_64);
} else {
assert(MaxVectorSize < 64, "vector size should be < 64 bytes");
// REP MOVS offer a faster copy path.
__ jcc(Assembler::greaterEqual, L_repmovs);
}
}
if ((MaxVectorSize < 64) || (avx3threshold != 0)) {
// Partial copy to make dst address 32 byte aligned.
__ movq(temp2, to);
__ andq(temp2, 31);
__ jcc(Assembler::equal, L_main_pre_loop);
__ negptr(temp2);
__ addq(temp2, 32);
if (shift) {
__ shrq(temp2, shift);
}
__ movq(temp3, temp2);
copy32_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift);
__ movq(temp4, temp2);
__ movq(temp1, count);
__ subq(temp1, temp2);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail);
__ BIND(L_main_pre_loop);
__ subq(temp1, loop_size[shift]);
// Main loop with aligned copy block size of 192 bytes at 32 byte granularity.
__ align32();
__ BIND(L_main_loop);
copy64_avx(to, from, temp4, xmm1, false, shift, 0);
copy64_avx(to, from, temp4, xmm1, false, shift, 64);
copy64_avx(to, from, temp4, xmm1, false, shift, 128);
__ addptr(temp4, loop_size[shift]);
__ subq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop);
__ addq(temp1, loop_size[shift]);
// Tail loop.
__ jmp(L_tail);
__ BIND(L_repmovs);
__ movq(temp2, temp1);
// Swap to(RSI) and from(RDI) addresses to comply with REP MOVs semantics.
__ movq(temp3, to);
__ movq(to, from);
__ movq(from, temp3);
// Save to/from for restoration post rep_mov.
__ movq(temp1, to);
__ movq(temp3, from);
if(shift < 3) {
__ shrq(temp2, 3-shift); // quad word count
}
__ movq(temp4 , temp2); // move quad ward count into temp4(RCX).
__ rep_mov();
__ shlq(temp2, 3); // convert quad words into byte count.
if(shift) {
__ shrq(temp2, shift); // type specific count.
}
// Restore original addresses in to/from.
__ movq(to, temp3);
__ movq(from, temp1);
__ movq(temp4, temp2);
__ movq(temp1, count);
__ subq(temp1, temp2); // tailing part (less than a quad ward size).
__ jmp(L_tail);
}
if (MaxVectorSize > 32) {
__ BIND(L_pre_main_post_64);
// Partial copy to make dst address 64 byte aligned.
__ movq(temp2, to);
__ andq(temp2, 63);
__ jcc(Assembler::equal, L_main_pre_loop_64bytes);
__ negptr(temp2);
__ addq(temp2, 64);
if (shift) {
__ shrq(temp2, shift);
}
__ movq(temp3, temp2);
copy64_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift, 0 , true);
__ movq(temp4, temp2);
__ movq(temp1, count);
__ subq(temp1, temp2);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail64);
__ BIND(L_main_pre_loop_64bytes);
__ subq(temp1, loop_size[shift]);
// Main loop with aligned copy block size of 192 bytes at
// 64 byte copy granularity.
__ align32();
__ BIND(L_main_loop_64bytes);
copy64_avx(to, from, temp4, xmm1, false, shift, 0 , true);
copy64_avx(to, from, temp4, xmm1, false, shift, 64, true);
copy64_avx(to, from, temp4, xmm1, false, shift, 128, true);
__ addptr(temp4, loop_size[shift]);
__ subq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop_64bytes);
__ addq(temp1, loop_size[shift]);
// Zero length check.
__ jcc(Assembler::lessEqual, L_exit);
__ BIND(L_tail64);
// Tail handling using 64 byte [masked] vector copy operations.
use64byteVector = true;
arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift,
temp4, temp3, use64byteVector, L_entry, L_exit);
}
__ BIND(L_exit);
}
__ BIND(L_finish);
address ucme_exit_pc = __ pc();
// When called from generic_arraycopy r11 contains specific values
// used during arraycopy epilogue, re-initializing r11.
if (is_oop) {
__ movq(r11, shift == 3 ? count : to);
}
bs->arraycopy_epilogue(_masm, decorators, type, from, to, count);
restore_argument_regs(type);
INC_COUNTER_NP(get_profile_ctr(shift), rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
if (MaxVectorSize == 64) {
__ BIND(L_copy_large);
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, false, ucme_exit_pc);
arraycopy_avx3_large(to, from, temp1, temp2, temp3, temp4, count, xmm1, xmm2, xmm3, xmm4, shift);
__ jmp(L_finish);
}
return start;
}
void StubGenerator::arraycopy_avx3_large(Register to, Register from, Register temp1, Register temp2,
Register temp3, Register temp4, Register count,
XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
XMMRegister xmm4, int shift) {
// Type(shift) byte(0), short(1), int(2), long(3)
int loop_size[] = { 256, 128, 64, 32};
int threshold[] = { 4096, 2048, 1024, 512};
Label L_main_loop_large;
Label L_tail_large;
Label L_exit_large;
Label L_entry_large;
Label L_main_pre_loop_large;
Label L_pre_main_post_large;
assert(MaxVectorSize == 64, "vector length != 64");
__ BIND(L_entry_large);
__ BIND(L_pre_main_post_large);
// Partial copy to make dst address 64 byte aligned.
__ movq(temp2, to);
__ andq(temp2, 63);
__ jcc(Assembler::equal, L_main_pre_loop_large);
__ negptr(temp2);
__ addq(temp2, 64);
if (shift) {
__ shrq(temp2, shift);
}
__ movq(temp3, temp2);
copy64_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift, 0, true);
__ movq(temp4, temp2);
__ movq(temp1, count);
__ subq(temp1, temp2);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail_large);
__ BIND(L_main_pre_loop_large);
__ subq(temp1, loop_size[shift]);
// Main loop with aligned copy block size of 256 bytes at 64 byte copy granularity.
__ align32();
__ BIND(L_main_loop_large);
copy256_avx3(to, from, temp4, xmm1, xmm2, xmm3, xmm4, shift, 0);
__ addptr(temp4, loop_size[shift]);
__ subq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop_large);
// fence needed because copy256_avx3 uses non-temporal stores
__ sfence();
__ addq(temp1, loop_size[shift]);
// Zero length check.
__ jcc(Assembler::lessEqual, L_exit_large);
__ BIND(L_tail_large);
// Tail handling using 64 byte [masked] vector copy operations.
__ cmpq(temp1, 0);
__ jcc(Assembler::lessEqual, L_exit_large);
arraycopy_avx3_special_cases_256(xmm1, k2, from, to, temp1, shift,
temp4, temp3, L_exit_large);
__ BIND(L_exit_large);
}
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
//
address StubGenerator::generate_conjoint_copy_avx3_masked(StubId stub_id, address* entry, address nooverlap_target) {
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
int shift;
bool is_oop;
bool dest_uninitialized;
switch (stub_id) {
case StubId::stubgen_jbyte_arraycopy_id:
shift = 0;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_jshort_arraycopy_id:
shift = 1;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_jint_arraycopy_id:
shift = 2;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_jlong_arraycopy_id:
shift = 3;
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_arraycopy_id:
shift = (UseCompressedOops ? 2 : 3);
is_oop = true;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_arraycopy_uninit_id:
shift = (UseCompressedOops ? 2 : 3);
is_oop = true;
dest_uninitialized = true;
break;
default:
ShouldNotReachHere();
}
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
int avx3threshold = VM_Version::avx3_threshold();
bool use64byteVector = (MaxVectorSize > 32) && (avx3threshold == 0);
Label L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64;
Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register temp1 = r8;
const Register temp2 = rcx;
const Register temp3 = r11;
const Register temp4 = rax;
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, (Address::ScaleFactor)(shift));
BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
BasicType type = is_oop ? T_OBJECT : type_vec[shift];
setup_argument_regs(type);
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
{
// Type(shift) byte(0), short(1), int(2), long(3)
int loop_size[] = { 192, 96, 48, 24};
int threshold[] = { 4096, 2048, 1024, 512};
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
// temp1 holds remaining count.
__ movq(temp1, count);
// Zero length check.
__ BIND(L_tail);
__ cmpq(temp1, 0);
__ jcc(Assembler::lessEqual, L_exit);
__ mov64(temp2, 0);
__ movq(temp3, temp1);
// Special cases using 32 byte [masked] vector copy operations.
arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift,
temp4, use64byteVector, L_entry, L_exit);
// PRE-MAIN-POST loop for aligned copy.
__ BIND(L_entry);
if ((MaxVectorSize > 32) && (avx3threshold != 0)) {
__ cmpq(temp1, threshold[shift]);
__ jcc(Assembler::greaterEqual, L_pre_main_post_64);
}
if ((MaxVectorSize < 64) || (avx3threshold != 0)) {
// Partial copy to make dst address 32 byte aligned.
__ leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0));
__ andq(temp2, 31);
__ jcc(Assembler::equal, L_main_pre_loop);
if (shift) {
__ shrq(temp2, shift);
}
__ subq(temp1, temp2);
copy32_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail);
__ BIND(L_main_pre_loop);
// Main loop with aligned copy block size of 192 bytes at 32 byte granularity.
__ align32();
__ BIND(L_main_loop);
copy64_avx(to, from, temp1, xmm1, true, shift, -64);
copy64_avx(to, from, temp1, xmm1, true, shift, -128);
copy64_avx(to, from, temp1, xmm1, true, shift, -192);
__ subptr(temp1, loop_size[shift]);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop);
// Tail loop.
__ jmp(L_tail);
}
if (MaxVectorSize > 32) {
__ BIND(L_pre_main_post_64);
// Partial copy to make dst address 64 byte aligned.
__ leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0));
__ andq(temp2, 63);
__ jcc(Assembler::equal, L_main_pre_loop_64bytes);
if (shift) {
__ shrq(temp2, shift);
}
__ subq(temp1, temp2);
copy64_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift, 0 , true);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::less, L_tail64);
__ BIND(L_main_pre_loop_64bytes);
// Main loop with aligned copy block size of 192 bytes at
// 64 byte copy granularity.
__ align32();
__ BIND(L_main_loop_64bytes);
copy64_avx(to, from, temp1, xmm1, true, shift, -64 , true);
copy64_avx(to, from, temp1, xmm1, true, shift, -128, true);
copy64_avx(to, from, temp1, xmm1, true, shift, -192, true);
__ subq(temp1, loop_size[shift]);
__ cmpq(temp1, loop_size[shift]);
__ jcc(Assembler::greater, L_main_loop_64bytes);
// Zero length check.
__ cmpq(temp1, 0);
__ jcc(Assembler::lessEqual, L_exit);
__ BIND(L_tail64);
// Tail handling using 64 byte [masked] vector copy operations.
use64byteVector = true;
__ mov64(temp2, 0);
__ movq(temp3, temp1);
arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift,
temp4, use64byteVector, L_entry, L_exit);
}
__ BIND(L_exit);
}
address ucme_exit_pc = __ pc();
// When called from generic_arraycopy r11 contains specific values
// used during arraycopy epilogue, re-initializing r11.
if(is_oop) {
__ movq(r11, count);
}
bs->arraycopy_epilogue(_masm, decorators, type, from, to, count);
restore_argument_regs(type);
INC_COUNTER_NP(get_profile_ctr(shift), rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
void StubGenerator::arraycopy_avx3_special_cases(XMMRegister xmm, KRegister mask, Register from,
Register to, Register count, int shift,
Register index, Register temp,
bool use64byteVector, Label& L_entry, Label& L_exit) {
Label L_entry_64, L_entry_96, L_entry_128;
Label L_entry_160, L_entry_192;
int size_mat[][6] = {
/* T_BYTE */ {32 , 64, 96 , 128 , 160 , 192 },
/* T_SHORT*/ {16 , 32, 48 , 64 , 80 , 96 },
/* T_INT */ {8 , 16, 24 , 32 , 40 , 48 },
/* T_LONG */ {4 , 8, 12 , 16 , 20 , 24 }
};
// Case A) Special case for length less than equal to 32 bytes.
__ cmpq(count, size_mat[shift][0]);
__ jccb(Assembler::greater, L_entry_64);
copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift);
__ jmp(L_exit);
// Case B) Special case for length less than equal to 64 bytes.
__ BIND(L_entry_64);
__ cmpq(count, size_mat[shift][1]);
__ jccb(Assembler::greater, L_entry_96);
copy64_masked_avx(to, from, xmm, mask, count, index, temp, shift, 0, use64byteVector);
__ jmp(L_exit);
// Case C) Special case for length less than equal to 96 bytes.
__ BIND(L_entry_96);
__ cmpq(count, size_mat[shift][2]);
__ jccb(Assembler::greater, L_entry_128);
copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector);
__ subq(count, 64 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 64);
__ jmp(L_exit);
// Case D) Special case for length less than equal to 128 bytes.
__ BIND(L_entry_128);
__ cmpq(count, size_mat[shift][3]);
__ jccb(Assembler::greater, L_entry_160);
copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector);
copy32_avx(to, from, index, xmm, shift, 64);
__ subq(count, 96 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 96);
__ jmp(L_exit);
// Case E) Special case for length less than equal to 160 bytes.
__ BIND(L_entry_160);
__ cmpq(count, size_mat[shift][4]);
__ jccb(Assembler::greater, L_entry_192);
copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector);
copy64_avx(to, from, index, xmm, false, shift, 64, use64byteVector);
__ subq(count, 128 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 128);
__ jmp(L_exit);
// Case F) Special case for length less than equal to 192 bytes.
__ BIND(L_entry_192);
__ cmpq(count, size_mat[shift][5]);
__ jcc(Assembler::greater, L_entry);
copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector);
copy64_avx(to, from, index, xmm, false, shift, 64, use64byteVector);
copy32_avx(to, from, index, xmm, shift, 128);
__ subq(count, 160 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 160);
__ jmp(L_exit);
}
void StubGenerator::arraycopy_avx3_special_cases_256(XMMRegister xmm, KRegister mask, Register from,
Register to, Register count, int shift, Register index,
Register temp, Label& L_exit) {
Label L_entry_64, L_entry_128, L_entry_192, L_entry_256;
int size_mat[][4] = {
/* T_BYTE */ {64, 128, 192, 256},
/* T_SHORT*/ {32, 64 , 96 , 128},
/* T_INT */ {16, 32 , 48 , 64},
/* T_LONG */ { 8, 16 , 24 , 32}
};
assert(MaxVectorSize == 64, "vector length != 64");
// Case A) Special case for length less than or equal to 64 bytes.
__ BIND(L_entry_64);
__ cmpq(count, size_mat[shift][0]);
__ jccb(Assembler::greater, L_entry_128);
copy64_masked_avx(to, from, xmm, mask, count, index, temp, shift, 0, true);
__ jmp(L_exit);
// Case B) Special case for length less than or equal to 128 bytes.
__ BIND(L_entry_128);
__ cmpq(count, size_mat[shift][1]);
__ jccb(Assembler::greater, L_entry_192);
copy64_avx(to, from, index, xmm, false, shift, 0, true);
__ subq(count, 64 >> shift);
copy64_masked_avx(to, from, xmm, mask, count, index, temp, shift, 64, true);
__ jmp(L_exit);
// Case C) Special case for length less than or equal to 192 bytes.
__ BIND(L_entry_192);
__ cmpq(count, size_mat[shift][2]);
__ jcc(Assembler::greater, L_entry_256);
copy64_avx(to, from, index, xmm, false, shift, 0, true);
copy64_avx(to, from, index, xmm, false, shift, 64, true);
__ subq(count, 128 >> shift);
copy64_masked_avx(to, from, xmm, mask, count, index, temp, shift, 128, true);
__ jmp(L_exit);
// Case D) Special case for length less than or equal to 256 bytes.
__ BIND(L_entry_256);
copy64_avx(to, from, index, xmm, false, shift, 0, true);
copy64_avx(to, from, index, xmm, false, shift, 64, true);
copy64_avx(to, from, index, xmm, false, shift, 128, true);
__ subq(count, 192 >> shift);
copy64_masked_avx(to, from, xmm, mask, count, index, temp, shift, 192, true);
__ jmp(L_exit);
}
void StubGenerator::arraycopy_avx3_special_cases_conjoint(XMMRegister xmm, KRegister mask, Register from,
Register to, Register start_index, Register end_index,
Register count, int shift, Register temp,
bool use64byteVector, Label& L_entry, Label& L_exit) {
Label L_entry_64, L_entry_96, L_entry_128;
Label L_entry_160, L_entry_192;
bool avx3 = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
int size_mat[][6] = {
/* T_BYTE */ {32 , 64, 96 , 128 , 160 , 192 },
/* T_SHORT*/ {16 , 32, 48 , 64 , 80 , 96 },
/* T_INT */ {8 , 16, 24 , 32 , 40 , 48 },
/* T_LONG */ {4 , 8, 12 , 16 , 20 , 24 }
};
// Case A) Special case for length less than equal to 32 bytes.
__ cmpq(count, size_mat[shift][0]);
__ jccb(Assembler::greater, L_entry_64);
copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift);
__ jmp(L_exit);
// Case B) Special case for length less than equal to 64 bytes.
__ BIND(L_entry_64);
__ cmpq(count, size_mat[shift][1]);
__ jccb(Assembler::greater, L_entry_96);
if (avx3) {
copy64_masked_avx(to, from, xmm, mask, count, start_index, temp, shift, 0, true);
} else {
copy32_avx(to, from, end_index, xmm, shift, -32);
__ subq(count, 32 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift);
}
__ jmp(L_exit);
// Case C) Special case for length less than equal to 96 bytes.
__ BIND(L_entry_96);
__ cmpq(count, size_mat[shift][2]);
__ jccb(Assembler::greater, L_entry_128);
copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector);
__ subq(count, 64 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift);
__ jmp(L_exit);
// Case D) Special case for length less than equal to 128 bytes.
__ BIND(L_entry_128);
__ cmpq(count, size_mat[shift][3]);
__ jccb(Assembler::greater, L_entry_160);
copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector);
copy32_avx(to, from, end_index, xmm, shift, -96);
__ subq(count, 96 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift);
__ jmp(L_exit);
// Case E) Special case for length less than equal to 160 bytes.
__ BIND(L_entry_160);
__ cmpq(count, size_mat[shift][4]);
__ jccb(Assembler::greater, L_entry_192);
copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector);
copy64_avx(to, from, end_index, xmm, true, shift, -128, use64byteVector);
__ subq(count, 128 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift);
__ jmp(L_exit);
// Case F) Special case for length less than equal to 192 bytes.
__ BIND(L_entry_192);
__ cmpq(count, size_mat[shift][5]);
__ jcc(Assembler::greater, L_entry);
copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector);
copy64_avx(to, from, end_index, xmm, true, shift, -128, use64byteVector);
copy32_avx(to, from, end_index, xmm, shift, -160);
__ subq(count, 160 >> shift);
copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift);
__ jmp(L_exit);
}
void StubGenerator::copy256_avx3(Register dst, Register src, Register index, XMMRegister xmm1,
XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
int shift, int offset) {
if (MaxVectorSize == 64) {
Address::ScaleFactor scale = (Address::ScaleFactor)(shift);
__ prefetcht0(Address(src, index, scale, offset + 0x200));
__ prefetcht0(Address(src, index, scale, offset + 0x240));
__ prefetcht0(Address(src, index, scale, offset + 0x280));
__ prefetcht0(Address(src, index, scale, offset + 0x2C0));
__ prefetcht0(Address(src, index, scale, offset + 0x400));
__ prefetcht0(Address(src, index, scale, offset + 0x440));
__ prefetcht0(Address(src, index, scale, offset + 0x480));
__ prefetcht0(Address(src, index, scale, offset + 0x4C0));
__ evmovdquq(xmm1, Address(src, index, scale, offset), Assembler::AVX_512bit);
__ evmovdquq(xmm2, Address(src, index, scale, offset + 0x40), Assembler::AVX_512bit);
__ evmovdquq(xmm3, Address(src, index, scale, offset + 0x80), Assembler::AVX_512bit);
__ evmovdquq(xmm4, Address(src, index, scale, offset + 0xC0), Assembler::AVX_512bit);
__ evmovntdquq(Address(dst, index, scale, offset), xmm1, Assembler::AVX_512bit);
__ evmovntdquq(Address(dst, index, scale, offset + 0x40), xmm2, Assembler::AVX_512bit);
__ evmovntdquq(Address(dst, index, scale, offset + 0x80), xmm3, Assembler::AVX_512bit);
__ evmovntdquq(Address(dst, index, scale, offset + 0xC0), xmm4, Assembler::AVX_512bit);
}
}
void StubGenerator::copy64_masked_avx(Register dst, Register src, XMMRegister xmm,
KRegister mask, Register length, Register index,
Register temp, int shift, int offset,
bool use64byteVector) {
BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
assert(MaxVectorSize >= 32, "vector length should be >= 32");
if (!use64byteVector) {
copy32_avx(dst, src, index, xmm, shift, offset);
__ subptr(length, 32 >> shift);
copy32_masked_avx(dst, src, xmm, mask, length, index, temp, shift, offset+32);
} else {
Address::ScaleFactor scale = (Address::ScaleFactor)(shift);
assert(MaxVectorSize == 64, "vector length != 64");
__ mov64(temp, -1L);
__ bzhiq(temp, temp, length);
__ kmovql(mask, temp);
__ evmovdqu(type[shift], mask, xmm, Address(src, index, scale, offset), false, Assembler::AVX_512bit);
__ evmovdqu(type[shift], mask, Address(dst, index, scale, offset), xmm, true, Assembler::AVX_512bit);
}
}
void StubGenerator::copy32_masked_avx(Register dst, Register src, XMMRegister xmm,
KRegister mask, Register length, Register index,
Register temp, int shift, int offset) {
assert(MaxVectorSize >= 32, "vector length should be >= 32");
BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
Address::ScaleFactor scale = (Address::ScaleFactor)(shift);
__ mov64(temp, -1L);
__ bzhiq(temp, temp, length);
__ kmovql(mask, temp);
__ evmovdqu(type[shift], mask, xmm, Address(src, index, scale, offset), false, Assembler::AVX_256bit);
__ evmovdqu(type[shift], mask, Address(dst, index, scale, offset), xmm, true, Assembler::AVX_256bit);
}
void StubGenerator::copy32_avx(Register dst, Register src, Register index, XMMRegister xmm,
int shift, int offset) {
assert(MaxVectorSize >= 32, "vector length should be >= 32");
Address::ScaleFactor scale = (Address::ScaleFactor)(shift);
__ vmovdqu(xmm, Address(src, index, scale, offset));
__ vmovdqu(Address(dst, index, scale, offset), xmm);
}
void StubGenerator::copy64_avx(Register dst, Register src, Register index, XMMRegister xmm,
bool conjoint, int shift, int offset, bool use64byteVector) {
assert(MaxVectorSize == 64 || MaxVectorSize == 32, "vector length mismatch");
if (!use64byteVector) {
if (conjoint) {
copy32_avx(dst, src, index, xmm, shift, offset+32);
copy32_avx(dst, src, index, xmm, shift, offset);
} else {
copy32_avx(dst, src, index, xmm, shift, offset);
copy32_avx(dst, src, index, xmm, shift, offset+32);
}
} else {
Address::ScaleFactor scale = (Address::ScaleFactor)(shift);
__ evmovdquq(xmm, Address(src, index, scale, offset), Assembler::AVX_512bit);
__ evmovdquq(Address(dst, index, scale, offset), xmm, Assembler::AVX_512bit);
}
}
#endif // COMPILER2_OR_JVMCI
// Arguments:
// entry - location for return of (post-push) entry
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// entry is set to the no-overlap entry point
// used by generate_conjoint_byte_copy().
//
address StubGenerator::generate_disjoint_byte_copy(address* entry) {
StubId stub_id = StubId::stubgen_jbyte_disjoint_arraycopy_id;
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(stub_id, entry);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
Label L_copy_byte, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register byte_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(byte_count, count);
__ shrptr(count, 3); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count); // make the count negative
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(byte_count, 4);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
__ addptr(end_from, 4);
__ addptr(end_to, 4);
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(byte_count, 2);
__ jccb(Assembler::zero, L_copy_byte);
__ movw(rax, Address(end_from, 8));
__ movw(Address(end_to, 8), rax);
__ addptr(end_from, 2);
__ addptr(end_to, 2);
// Check for and copy trailing byte
__ BIND(L_copy_byte);
__ testl(byte_count, 1);
__ jccb(Assembler::zero, L_exit);
__ movb(rax, Address(end_from, 8));
__ movb(Address(end_to, 8), rax);
}
__ BIND(L_exit);
address ucme_exit_pc = __ pc();
restore_arg_regs();
INC_COUNTER_NP(SharedRuntime::_jbyte_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
UnsafeMemoryAccessMark umam(this, !aligned, false, ucme_exit_pc);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, T_BYTE);
__ jmp(L_copy_4_bytes);
}
return start;
}
// Arguments:
// entry - location for return of (post-push) entry
// nooverlap_target - entry to branch to if no overlap detected
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address StubGenerator::generate_conjoint_byte_copy(address nooverlap_target, address* entry) {
StubId stub_id = StubId::stubgen_jbyte_arraycopy_id;
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(stub_id, entry, nooverlap_target);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register byte_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_1);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(byte_count, count);
__ shrptr(count, 3); // count => qword_count
// Copy from high to low addresses.
// Check for and copy trailing byte
__ testl(byte_count, 1);
__ jcc(Assembler::zero, L_copy_2_bytes);
__ movb(rax, Address(from, byte_count, Address::times_1, -1));
__ movb(Address(to, byte_count, Address::times_1, -1), rax);
__ decrement(byte_count); // Adjust for possible trailing word
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(byte_count, 2);
__ jcc(Assembler::zero, L_copy_4_bytes);
__ movw(rax, Address(from, byte_count, Address::times_1, -2));
__ movw(Address(to, byte_count, Address::times_1, -2), rax);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(byte_count, 4);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, qword_count, Address::times_8));
__ movl(Address(to, qword_count, Address::times_8), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
restore_arg_regs();
INC_COUNTER_NP(SharedRuntime::_jbyte_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, T_BYTE);
}
restore_arg_regs();
INC_COUNTER_NP(SharedRuntime::_jbyte_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// entry - location for return of (post-push) entry
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// entry is set to the no-overlap entry point
// used by generate_conjoint_short_copy().
//
address StubGenerator::generate_disjoint_short_copy(address *entry) {
StubId stub_id = StubId::stubgen_jshort_disjoint_arraycopy_id;
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(stub_id, entry);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register word_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(word_count, count);
__ shrptr(count, 2); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Original 'dest' is trashed, so we can't use it as a
// base register for a possible trailing word copy
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(word_count, 2);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
__ addptr(end_from, 4);
__ addptr(end_to, 4);
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(word_count, 1);
__ jccb(Assembler::zero, L_exit);
__ movw(rax, Address(end_from, 8));
__ movw(Address(end_to, 8), rax);
}
__ BIND(L_exit);
address ucme_exit_pc = __ pc();
restore_arg_regs();
INC_COUNTER_NP(SharedRuntime::_jshort_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
UnsafeMemoryAccessMark umam(this, !aligned, false, ucme_exit_pc);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, T_SHORT);
__ jmp(L_copy_4_bytes);
}
return start;
}
address StubGenerator::generate_fill(StubId stub_id) {
BasicType t;
bool aligned;
switch (stub_id) {
case StubId::stubgen_jbyte_fill_id:
t = T_BYTE;
aligned = false;
break;
case StubId::stubgen_jshort_fill_id:
t = T_SHORT;
aligned = false;
break;
case StubId::stubgen_jint_fill_id:
t = T_INT;
aligned = false;
break;
case StubId::stubgen_arrayof_jbyte_fill_id:
t = T_BYTE;
aligned = true;
break;
case StubId::stubgen_arrayof_jshort_fill_id:
t = T_SHORT;
aligned = true;
break;
case StubId::stubgen_arrayof_jint_fill_id:
t = T_INT;
aligned = true;
break;
default:
ShouldNotReachHere();
}
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
BLOCK_COMMENT("Entry:");
const Register to = c_rarg0; // destination array address
const Register value = c_rarg1; // value
const Register count = c_rarg2; // elements count
__ mov(r11, count);
__ enter(); // required for proper stackwalking of RuntimeStub frame
{
// Add set memory mark to protect against unsafe accesses faulting
UnsafeMemoryAccessMark umam(this, ((t == T_BYTE) && !aligned), true);
__ generate_fill(t, aligned, to, value, r11, rax, xmm0);
}
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// entry - location for return of (post-push) entry
// nooverlap_target - entry to branch to if no overlap detected
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address StubGenerator::generate_conjoint_short_copy(address nooverlap_target, address *entry) {
StubId stub_id = StubId::stubgen_jshort_arraycopy_id;
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
#if COMPILER2_OR_JVMCI
if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(stub_id, entry, nooverlap_target);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register word_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_2);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(word_count, count);
__ shrptr(count, 2); // count => qword_count
// Copy from high to low addresses. Use 'to' as scratch.
// Check for and copy trailing word
__ testl(word_count, 1);
__ jccb(Assembler::zero, L_copy_4_bytes);
__ movw(rax, Address(from, word_count, Address::times_2, -2));
__ movw(Address(to, word_count, Address::times_2, -2), rax);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(word_count, 2);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, qword_count, Address::times_8));
__ movl(Address(to, qword_count, Address::times_8), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
restore_arg_regs();
INC_COUNTER_NP(SharedRuntime::_jshort_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, T_SHORT);
}
restore_arg_regs();
INC_COUNTER_NP(SharedRuntime::_jshort_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// stub_id - unqiue id for stub to generate
// entry - location for return of (post-push) entry
// is_oop - true => oop array, so generate store check code
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomically.
//
// Side Effects:
// disjoint_int_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_int_oop_copy().
//
address StubGenerator::generate_disjoint_int_oop_copy(StubId stub_id, address* entry) {
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
bool is_oop;
bool dest_uninitialized;
switch (stub_id) {
case StubId::stubgen_jint_disjoint_arraycopy_id:
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_disjoint_arraycopy_id:
assert(UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_disjoint_arraycopy_uninit_id:
assert(UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = true;
break;
default:
ShouldNotReachHere();
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
#if COMPILER2_OR_JVMCI
if ((!is_oop || bs->supports_avx3_masked_arraycopy()) && VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(stub_id, entry);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register dword_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_INT;
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(dword_count, count);
__ shrptr(count, 1); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(dword_count, 1); // Only byte test since the value is 0 or 1
__ jccb(Assembler::zero, L_exit);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
}
__ BIND(L_exit);
address ucme_exit_pc = __ pc();
bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count);
restore_arg_regs_using_thread();
INC_COUNTER_NP(SharedRuntime::_jint_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ vzeroupper();
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, false, ucme_exit_pc);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, is_oop ? T_OBJECT : T_INT);
__ jmp(L_copy_4_bytes);
}
return start;
}
// Arguments:
// entry - location for return of (post-push) entry
// nooverlap_target - entry to branch to if no overlap detected
// is_oop - true => oop array, so generate store check code
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomically.
//
address StubGenerator::generate_conjoint_int_oop_copy(StubId stub_id, address nooverlap_target, address *entry) {
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
bool is_oop;
bool dest_uninitialized;
switch (stub_id) {
case StubId::stubgen_jint_arraycopy_id:
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_arraycopy_id:
assert(UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_arraycopy_uninit_id:
assert(UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = true;
break;
default:
ShouldNotReachHere();
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
#if COMPILER2_OR_JVMCI
if ((!is_oop || bs->supports_avx3_masked_arraycopy()) && VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(stub_id, entry, nooverlap_target);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register dword_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_4);
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_INT;
// no registers are destroyed by this call
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
assert_clean_int(count, rax); // Make sure 'count' is clean int.
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// 'from', 'to' and 'count' are now valid
__ movptr(dword_count, count);
__ shrptr(count, 1); // count => qword_count
// Copy from high to low addresses. Use 'to' as scratch.
// Check for and copy trailing dword
__ testl(dword_count, 1);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, dword_count, Address::times_4, -4));
__ movl(Address(to, dword_count, Address::times_4, -4), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
if (is_oop) {
__ jmp(L_exit);
}
restore_arg_regs_using_thread();
INC_COUNTER_NP(SharedRuntime::_jint_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, is_oop ? T_OBJECT : T_INT);
}
__ BIND(L_exit);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count);
restore_arg_regs_using_thread();
INC_COUNTER_NP(SharedRuntime::_jint_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// entry - location for return of (post-push) entry
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// Side Effects:
// disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
// no-overlap entry point used by generate_conjoint_long_oop_copy().
//
address StubGenerator::generate_disjoint_long_oop_copy(StubId stub_id, address *entry) {
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
bool is_oop;
bool dest_uninitialized;
switch (stub_id) {
case StubId::stubgen_jlong_disjoint_arraycopy_id:
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_disjoint_arraycopy_id:
assert(!UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_disjoint_arraycopy_uninit_id:
assert(!UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = true;
break;
default:
ShouldNotReachHere();
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
#if COMPILER2_OR_JVMCI
if ((!is_oop || bs->supports_avx3_masked_arraycopy()) && VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_disjoint_copy_avx3_masked(stub_id, entry);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register qword_count = rdx; // elements count
const Register end_from = from; // source array end address
const Register end_to = rcx; // destination array end address
const Register saved_count = r11;
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
// Save no-overlap entry point for generate_conjoint_long_oop_copy()
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
// 'from', 'to' and 'qword_count' are now valid
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_LONG;
bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count);
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
bs->copy_load_at(_masm, decorators, type, 8,
rax, Address(end_from, qword_count, Address::times_8, 8),
r10);
bs->copy_store_at(_masm, decorators, type, 8,
Address(end_to, qword_count, Address::times_8, 8), rax,
r10);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
if (is_oop) {
__ jmp(L_exit);
} else {
restore_arg_regs_using_thread();
INC_COUNTER_NP(SharedRuntime::_jlong_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
}
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, is_oop ? T_OBJECT : T_LONG);
}
__ BIND(L_exit);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count);
restore_arg_regs_using_thread();
INC_COUNTER_NP(is_oop ? SharedRuntime::_oop_array_copy_ctr :
SharedRuntime::_jlong_array_copy_ctr,
rscratch1); // Update counter after rscratch1 is free
__ vzeroupper();
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// entry - location for return of (post-push) entry
// nooverlap_target - entry to branch to if no overlap detected
// is_oop - true => oop array, so generate store check code
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
address StubGenerator::generate_conjoint_long_oop_copy(StubId stub_id, address nooverlap_target, address *entry) {
// aligned is always false -- x86_64 always uses the unaligned code
const bool aligned = false;
bool is_oop;
bool dest_uninitialized;
switch (stub_id) {
case StubId::stubgen_jlong_arraycopy_id:
is_oop = false;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_arraycopy_id:
assert(!UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = false;
break;
case StubId::stubgen_oop_arraycopy_uninit_id:
assert(!UseCompressedOops, "inconsistent oop copy size!");
is_oop = true;
dest_uninitialized = true;
break;
default:
ShouldNotReachHere();
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
#if COMPILER2_OR_JVMCI
if ((!is_oop || bs->supports_avx3_masked_arraycopy()) && VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) {
return generate_conjoint_copy_avx3_masked(stub_id, entry, nooverlap_target);
}
#endif
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register qword_count = rdx; // elements count
const Register saved_count = rcx;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != nullptr) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_8);
setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
// r9 is used to save r15_thread
// 'from', 'to' and 'qword_count' are now valid
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
if (aligned) {
decorators |= ARRAYCOPY_ALIGNED;
}
BasicType type = is_oop ? T_OBJECT : T_LONG;
bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count);
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
bs->copy_load_at(_masm, decorators, type, 8,
rax, Address(from, qword_count, Address::times_8, -8),
r10);
bs->copy_store_at(_masm, decorators, type, 8,
Address(to, qword_count, Address::times_8, -8), rax,
r10);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
}
if (is_oop) {
__ jmp(L_exit);
} else {
restore_arg_regs_using_thread();
INC_COUNTER_NP(SharedRuntime::_jlong_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ vzeroupper();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
}
{
// UnsafeMemoryAccess page error: continue after unsafe access
UnsafeMemoryAccessMark umam(this, !is_oop && !aligned, true);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, r10, L_copy_bytes, L_copy_8_bytes, decorators, is_oop ? T_OBJECT : T_LONG);
}
__ BIND(L_exit);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count);
restore_arg_regs_using_thread();
INC_COUNTER_NP(is_oop ? SharedRuntime::_oop_array_copy_ctr :
SharedRuntime::_jlong_array_copy_ctr,
rscratch1); // Update counter after rscratch1 is free
__ vzeroupper();
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Helper for generating a dynamic type check.
// Smashes no registers.
void StubGenerator::generate_type_check(Register sub_klass,
Register super_check_offset,
Register super_klass,
Label& L_success) {
assert_different_registers(sub_klass, super_check_offset, super_klass);
BLOCK_COMMENT("type_check:");
Label L_miss;
__ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, nullptr,
super_check_offset);
__ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, nullptr);
// Fall through on failure!
__ BIND(L_miss);
}
//
// Generate checkcasting array copy stub
//
// Input:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
// c_rarg3 - size_t ckoff (super_check_offset)
// not Win64
// c_rarg4 - oop ckval (super_klass)
// Win64
// rsp+40 - oop ckval (super_klass)
//
// Output:
// rax == 0 - success
// rax == -1^K - failure, where K is partial transfer count
//
address StubGenerator::generate_checkcast_copy(StubId stub_id, address *entry) {
bool dest_uninitialized;
switch (stub_id) {
case StubId::stubgen_checkcast_arraycopy_id:
dest_uninitialized = false;
break;
case StubId::stubgen_checkcast_arraycopy_uninit_id:
dest_uninitialized = true;
break;
default:
ShouldNotReachHere();
}
Label L_load_element, L_store_element, L_do_card_marks, L_done;
// Input registers (after setup_arg_regs)
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register length = rdx; // elements count
const Register ckoff = rcx; // super_check_offset
const Register ckval = r8; // super_klass
// Registers used as temps (r13, r14 are save-on-entry)
const Register end_from = from; // source array end address
const Register end_to = r13; // destination array end address
const Register count = rdx; // -(count_remaining)
const Register r14_length = r14; // saved copy of length
// End pointers are inclusive, and if length is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
const Register rax_oop = rax; // actual oop copied
const Register r11_klass = r11; // oop._klass
//---------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the two arrays are subtypes of Object[] but the
// destination array type is not equal to or a supertype
// of the source type. Each element must be separately
// checked.
__ align(CodeEntryAlignment);
StubCodeMark mark(this, stub_id);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef ASSERT
// caller guarantees that the arrays really are different
// otherwise, we would have to make conjoint checks
{ Label L;
array_overlap_test(L, TIMES_OOP);
__ stop("checkcast_copy within a single array");
__ bind(L);
}
#endif //ASSERT
setup_arg_regs_using_thread(4); // from => rdi, to => rsi, length => rdx
// ckoff => rcx, ckval => r8
// r9 is used to save r15_thread
#ifdef _WIN64
// last argument (#4) is on stack on Win64
__ movptr(ckval, Address(rsp, 6 * wordSize));
#endif
// Caller of this entry point must set up the argument registers.
if (entry != nullptr) {
*entry = __ pc();
BLOCK_COMMENT("Entry:");
}
// allocate spill slots for r13, r14
enum {
saved_r13_offset,
saved_r14_offset,
saved_r10_offset,
saved_rbp_offset
};
__ subptr(rsp, saved_rbp_offset * wordSize);
__ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
__ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
__ movptr(Address(rsp, saved_r10_offset * wordSize), r10);
#ifdef ASSERT
Label L2;
__ get_thread_slow(r14);
__ cmpptr(r15_thread, r14);
__ jcc(Assembler::equal, L2);
__ stop("StubRoutines::call_stub: r15_thread is modified by call");
__ bind(L2);
#endif // ASSERT
// check that int operands are properly extended to size_t
assert_clean_int(length, rax);
assert_clean_int(ckoff, rax);
#ifdef ASSERT
BLOCK_COMMENT("assert consistent ckoff/ckval");
// The ckoff and ckval must be mutually consistent,
// even though caller generates both.
{ Label L;
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ cmpl(ckoff, Address(ckval, sco_offset));
__ jcc(Assembler::equal, L);
__ stop("super_check_offset inconsistent");
__ bind(L);
}
#endif //ASSERT
// Loop-invariant addresses. They are exclusive end pointers.
Address end_from_addr(from, length, TIMES_OOP, 0);
Address end_to_addr(to, length, TIMES_OOP, 0);
// Loop-variant addresses. They assume post-incremented count < 0.
Address from_element_addr(end_from, count, TIMES_OOP, 0);
Address to_element_addr(end_to, count, TIMES_OOP, 0);
DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT;
if (dest_uninitialized) {
decorators |= IS_DEST_UNINITIALIZED;
}
BasicType type = T_OBJECT;
size_t element_size = UseCompressedOops ? 4 : 8;
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
// Copy from low to high addresses, indexed from the end of each array.
__ lea(end_from, end_from_addr);
__ lea(end_to, end_to_addr);
__ movptr(r14_length, length); // save a copy of the length
assert(length == count, ""); // else fix next line:
__ negptr(count); // negate and test the length
__ jcc(Assembler::notZero, L_load_element);
// Empty array: Nothing to do.
__ xorptr(rax, rax); // return 0 on (trivial) success
__ jmp(L_done);
// ======== begin loop ========
// (Loop is rotated; its entry is L_load_element.)
// Loop control:
// for (count = -count; count != 0; count++)
// Base pointers src, dst are biased by 8*(count-1),to last element.
__ align(OptoLoopAlignment);
__ BIND(L_store_element);
bs->copy_store_at(_masm,
decorators,
type,
element_size,
to_element_addr,
rax_oop,
r10);
__ increment(count); // increment the count toward zero
__ jcc(Assembler::zero, L_do_card_marks);
// ======== loop entry is here ========
__ BIND(L_load_element);
bs->copy_load_at(_masm,
decorators,
type,
element_size,
rax_oop,
from_element_addr,
r10);
__ testptr(rax_oop, rax_oop);
__ jcc(Assembler::zero, L_store_element);
__ load_klass(r11_klass, rax_oop, rscratch1);// query the object klass
generate_type_check(r11_klass, ckoff, ckval, L_store_element);
// ======== end loop ========
// It was a real error; we must depend on the caller to finish the job.
// Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
// Emit GC store barriers for the oops we have copied (r14 + rdx),
// and report their number to the caller.
assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
Label L_post_barrier;
__ addptr(r14_length, count); // K = (original - remaining) oops
__ movptr(rax, r14_length); // save the value
__ notptr(rax); // report (-1^K) to caller (does not affect flags)
__ jccb(Assembler::notZero, L_post_barrier);
__ jmp(L_done); // K == 0, nothing was copied, skip post barrier
// Come here on success only.
__ BIND(L_do_card_marks);
__ xorptr(rax, rax); // return 0 on success
__ BIND(L_post_barrier);
bs->arraycopy_epilogue(_masm, decorators, type, from, to, r14_length);
// Common exit point (success or failure).
__ BIND(L_done);
__ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
__ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
__ movptr(r10, Address(rsp, saved_r10_offset * wordSize));
restore_arg_regs_using_thread();
INC_COUNTER_NP(SharedRuntime::_checkcast_array_copy_ctr, rscratch1); // Update counter after rscratch1 is free
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Generate 'unsafe' array copy stub
// Though just as safe as the other stubs, it takes an unscaled
// size_t argument instead of an element count.
//
// Input:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - byte count, treated as ssize_t, can be zero
//
// Examines the alignment of the operands and dispatches
// to a long, int, short, or byte copy loop.
//
address StubGenerator::generate_unsafe_copy(address byte_copy_entry, address short_copy_entry,
address int_copy_entry, address long_copy_entry) {
Label L_long_aligned, L_int_aligned, L_short_aligned;
// Input registers (before setup_arg_regs)
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register size = c_rarg2; // byte count (size_t)
// Register used as a temp
const Register bits = rax; // test copy of low bits
__ align(CodeEntryAlignment);
StubId stub_id = StubId::stubgen_unsafe_arraycopy_id;
StubCodeMark mark(this, stub_id);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
// bump this on entry, not on exit:
INC_COUNTER_NP(SharedRuntime::_unsafe_array_copy_ctr, rscratch1);
__ mov(bits, from);
__ orptr(bits, to);
__ orptr(bits, size);
__ testb(bits, BytesPerLong-1);
__ jccb(Assembler::zero, L_long_aligned);
__ testb(bits, BytesPerInt-1);
__ jccb(Assembler::zero, L_int_aligned);
__ testb(bits, BytesPerShort-1);
__ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
__ BIND(L_short_aligned);
__ shrptr(size, LogBytesPerShort); // size => short_count
__ jump(RuntimeAddress(short_copy_entry));
__ BIND(L_int_aligned);
__ shrptr(size, LogBytesPerInt); // size => int_count
__ jump(RuntimeAddress(int_copy_entry));
__ BIND(L_long_aligned);
__ shrptr(size, LogBytesPerLong); // size => qword_count
__ jump(RuntimeAddress(long_copy_entry));
return start;
}
// Static enum for helper
enum USM_TYPE {USM_SHORT, USM_DWORD, USM_QUADWORD};
// Helper for generate_unsafe_setmemory
//
// Atomically fill an array of memory using 2-, 4-, or 8-byte chunks
static void do_setmemory_atomic_loop(USM_TYPE type, Register dest,
Register size, Register wide_value,
Register tmp, Label& L_exit,
MacroAssembler *_masm) {
Label L_Loop, L_Tail, L_TailLoop;
int shiftval = 0;
int incr = 0;
switch (type) {
case USM_SHORT:
shiftval = 1;
incr = 16;
break;
case USM_DWORD:
shiftval = 2;
incr = 32;
break;
case USM_QUADWORD:
shiftval = 3;
incr = 64;
break;
}
// At this point, we know the lower bits of size are zero
__ shrq(size, shiftval);
// size now has number of X-byte chunks (2, 4 or 8)
// Number of (8*X)-byte chunks into tmp
__ movq(tmp, size);
__ shrq(tmp, 3);
__ jccb(Assembler::zero, L_Tail);
__ BIND(L_Loop);
// Unroll 8 stores
for (int i = 0; i < 8; i++) {
switch (type) {
case USM_SHORT:
__ movw(Address(dest, (2 * i)), wide_value);
break;
case USM_DWORD:
__ movl(Address(dest, (4 * i)), wide_value);
break;
case USM_QUADWORD:
__ movq(Address(dest, (8 * i)), wide_value);
break;
}
}
__ addq(dest, incr);
__ decrementq(tmp);
__ jccb(Assembler::notZero, L_Loop);
__ BIND(L_Tail);
// Find number of remaining X-byte chunks
__ andq(size, 0x7);
// If zero, then we're done
__ jccb(Assembler::zero, L_exit);
__ BIND(L_TailLoop);
switch (type) {
case USM_SHORT:
__ movw(Address(dest, 0), wide_value);
break;
case USM_DWORD:
__ movl(Address(dest, 0), wide_value);
break;
case USM_QUADWORD:
__ movq(Address(dest, 0), wide_value);
break;
}
__ addq(dest, incr >> 3);
__ decrementq(size);
__ jccb(Assembler::notZero, L_TailLoop);
}
// Generate 'unsafe' set memory stub
// Though just as safe as the other stubs, it takes an unscaled
// size_t (# bytes) argument instead of an element count.
//
// Input:
// c_rarg0 - destination array address
// c_rarg1 - byte count (size_t)
// c_rarg2 - byte value
//
// Examines the alignment of the operands and dispatches
// to an int, short, or byte fill loop.
//
address StubGenerator::generate_unsafe_setmemory(address unsafe_byte_fill) {
__ align(CodeEntryAlignment);
StubId stub_id = StubId::stubgen_unsafe_setmemory_id;
StubCodeMark mark(this, stub_id);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert(unsafe_byte_fill != nullptr, "Invalid call");
// bump this on entry, not on exit:
INC_COUNTER_NP(SharedRuntime::_unsafe_set_memory_ctr, rscratch1);
{
Label L_exit, L_fillQuadwords, L_fillDwords, L_fillBytes;
const Register dest = c_rarg0;
const Register size = c_rarg1;
const Register byteVal = c_rarg2;
const Register wide_value = rax;
const Register rScratch1 = r10;
assert_different_registers(dest, size, byteVal, wide_value, rScratch1);
// fill_to_memory_atomic(unsigned char*, unsigned long, unsigned char)
__ testq(size, size);
__ jcc(Assembler::zero, L_exit);
// Propagate byte to full Register
__ movzbl(rScratch1, byteVal);
__ mov64(wide_value, 0x0101010101010101ULL);
__ imulq(wide_value, rScratch1);
// Check for pointer & size alignment
__ movq(rScratch1, dest);
__ orq(rScratch1, size);
__ testb(rScratch1, 7);
__ jcc(Assembler::equal, L_fillQuadwords);
__ testb(rScratch1, 3);
__ jcc(Assembler::equal, L_fillDwords);
__ testb(rScratch1, 1);
__ jcc(Assembler::notEqual, L_fillBytes);
// Fill words
{
UnsafeMemoryAccessMark umam(this, true, true);
// At this point, we know the lower bit of size is zero and a
// multiple of 2
do_setmemory_atomic_loop(USM_SHORT, dest, size, wide_value, rScratch1,
L_exit, _masm);
}
__ jmpb(L_exit);
__ BIND(L_fillQuadwords);
// Fill QUADWORDs
{
UnsafeMemoryAccessMark umam(this, true, true);
// At this point, we know the lower 3 bits of size are zero and a
// multiple of 8
do_setmemory_atomic_loop(USM_QUADWORD, dest, size, wide_value, rScratch1,
L_exit, _masm);
}
__ BIND(L_exit);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
__ BIND(L_fillDwords);
// Fill DWORDs
{
UnsafeMemoryAccessMark umam(this, true, true);
// At this point, we know the lower 2 bits of size are zero and a
// multiple of 4
do_setmemory_atomic_loop(USM_DWORD, dest, size, wide_value, rScratch1,
L_exit, _masm);
}
__ jmpb(L_exit);
__ BIND(L_fillBytes);
// Set up for tail call to previously generated byte fill routine
// Parameter order is (ptr, byteVal, size)
__ xchgq(c_rarg1, c_rarg2);
__ leave(); // Clear effect of enter()
__ jump(RuntimeAddress(unsafe_byte_fill));
}
return start;
}
// Perform range checks on the proposed arraycopy.
// Kills temp, but nothing else.
// Also, clean the sign bits of src_pos and dst_pos.
void StubGenerator::arraycopy_range_checks(Register src, // source array oop (c_rarg0)
Register src_pos, // source position (c_rarg1)
Register dst, // destination array oo (c_rarg2)
Register dst_pos, // destination position (c_rarg3)
Register length,
Register temp,
Label& L_failed) {
BLOCK_COMMENT("arraycopy_range_checks:");
// if (src_pos + length > arrayOop(src)->length()) FAIL;
__ movl(temp, length);
__ addl(temp, src_pos); // src_pos + length
__ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
// if (dst_pos + length > arrayOop(dst)->length()) FAIL;
__ movl(temp, length);
__ addl(temp, dst_pos); // dst_pos + length
__ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
// Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
// Move with sign extension can be used since they are positive.
__ movslq(src_pos, src_pos);
__ movslq(dst_pos, dst_pos);
BLOCK_COMMENT("arraycopy_range_checks done");
}
// Generate generic array copy stubs
//
// Input:
// c_rarg0 - src oop
// c_rarg1 - src_pos (32-bits)
// c_rarg2 - dst oop
// c_rarg3 - dst_pos (32-bits)
// not Win64
// c_rarg4 - element count (32-bits)
// Win64
// rsp+40 - element count (32-bits)
//
// Output:
// rax == 0 - success
// rax == -1^K - failure, where K is partial transfer count
//
address StubGenerator::generate_generic_copy(address byte_copy_entry, address short_copy_entry,
address int_copy_entry, address oop_copy_entry,
address long_copy_entry, address checkcast_copy_entry) {
Label L_failed, L_failed_0, L_objArray;
Label L_copy_shorts, L_copy_ints, L_copy_longs;
// Input registers
const Register src = c_rarg0; // source array oop
const Register src_pos = c_rarg1; // source position
const Register dst = c_rarg2; // destination array oop
const Register dst_pos = c_rarg3; // destination position
#ifndef _WIN64
const Register length = c_rarg4;
const Register rklass_tmp = r9; // load_klass
#else
const Address length(rsp, 7 * wordSize); // elements count is on stack on Win64
const Register rklass_tmp = rdi; // load_klass
#endif
{ int modulus = CodeEntryAlignment;
int target = modulus - 5; // 5 = sizeof jmp(L_failed)
int advance = target - (__ offset() % modulus);
if (advance < 0) advance += modulus;
if (advance > 0) __ nop(advance);
}
StubId stub_id = StubId::stubgen_generic_arraycopy_id;
StubCodeMark mark(this, stub_id);
// Short-hop target to L_failed. Makes for denser prologue code.
__ BIND(L_failed_0);
__ jmp(L_failed);
assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
__ align(CodeEntryAlignment);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
__ push_ppx(rklass_tmp); // rdi is callee-save on Windows
#endif
// bump this on entry, not on exit:
INC_COUNTER_NP(SharedRuntime::_generic_array_copy_ctr, rscratch1);
//-----------------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the following conditions are met:
//
// (1) src and dst must not be null.
// (2) src_pos must not be negative.
// (3) dst_pos must not be negative.
// (4) length must not be negative.
// (5) src klass and dst klass should be the same and not null.
// (6) src and dst should be arrays.
// (7) src_pos + length must not exceed length of src.
// (8) dst_pos + length must not exceed length of dst.
//
// if (src == nullptr) return -1;
__ testptr(src, src); // src oop
size_t j1off = __ offset();
__ jccb(Assembler::zero, L_failed_0);
// if (src_pos < 0) return -1;
__ testl(src_pos, src_pos); // src_pos (32-bits)
__ jccb(Assembler::negative, L_failed_0);
// if (dst == nullptr) return -1;
__ testptr(dst, dst); // dst oop
__ jccb(Assembler::zero, L_failed_0);
// if (dst_pos < 0) return -1;
__ testl(dst_pos, dst_pos); // dst_pos (32-bits)
size_t j4off = __ offset();
__ jccb(Assembler::negative, L_failed_0);
// The first four tests are very dense code,
// but not quite dense enough to put four
// jumps in a 16-byte instruction fetch buffer.
// That's good, because some branch predicters
// do not like jumps so close together.
// Make sure of this.
guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
// registers used as temp
const Register r11_length = r11; // elements count to copy
const Register r10_src_klass = r10; // array klass
// if (length < 0) return -1;
__ movl(r11_length, length); // length (elements count, 32-bits value)
__ testl(r11_length, r11_length);
__ jccb(Assembler::negative, L_failed_0);
__ load_klass(r10_src_klass, src, rklass_tmp);
#ifdef ASSERT
// assert(src->klass() != nullptr);
{
BLOCK_COMMENT("assert klasses not null {");
Label L1, L2;
__ testptr(r10_src_klass, r10_src_klass);
__ jcc(Assembler::notZero, L2); // it is broken if klass is null
__ bind(L1);
__ stop("broken null klass");
__ bind(L2);
__ load_klass(rax, dst, rklass_tmp);
__ cmpq(rax, 0);
__ jcc(Assembler::equal, L1); // this would be broken also
BLOCK_COMMENT("} assert klasses not null done");
}
#endif
// Load layout helper (32-bits)
//
// |array_tag| | header_size | element_type | |log2_element_size|
// 32 30 24 16 8 2 0
//
// array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
//
const int lh_offset = in_bytes(Klass::layout_helper_offset());
// Handle objArrays completely differently...
const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
__ jcc(Assembler::equal, L_objArray);
// if (src->klass() != dst->klass()) return -1;
__ load_klass(rax, dst, rklass_tmp);
__ cmpq(r10_src_klass, rax);
__ jcc(Assembler::notEqual, L_failed);
const Register rax_lh = rax; // layout helper
__ movl(rax_lh, Address(r10_src_klass, lh_offset));
// if (!src->is_Array()) return -1;
__ cmpl(rax_lh, Klass::_lh_neutral_value);
__ jcc(Assembler::greaterEqual, L_failed);
// At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
{
BLOCK_COMMENT("assert primitive array {");
Label L;
__ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
__ jcc(Assembler::greaterEqual, L);
__ stop("must be a primitive array");
__ bind(L);
BLOCK_COMMENT("} assert primitive array done");
}
#endif
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
r10, L_failed);
// TypeArrayKlass
//
// src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
// dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
//
const Register r10_offset = r10; // array offset
const Register rax_elsize = rax_lh; // element size
__ movl(r10_offset, rax_lh);
__ shrl(r10_offset, Klass::_lh_header_size_shift);
__ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
__ addptr(src, r10_offset); // src array offset
__ addptr(dst, r10_offset); // dst array offset
BLOCK_COMMENT("choose copy loop based on element size");
__ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
#ifdef _WIN64
__ pop_ppx(rklass_tmp); // Restore callee-save rdi
#endif
// next registers should be set before the jump to corresponding stub
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register count = c_rarg2; // elements count
// 'from', 'to', 'count' registers should be set in such order
// since they are the same as 'src', 'src_pos', 'dst'.
__ cmpl(rax_elsize, 0);
__ jccb(Assembler::notEqual, L_copy_shorts);
__ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(byte_copy_entry));
__ BIND(L_copy_shorts);
__ cmpl(rax_elsize, LogBytesPerShort);
__ jccb(Assembler::notEqual, L_copy_ints);
__ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(short_copy_entry));
__ BIND(L_copy_ints);
__ cmpl(rax_elsize, LogBytesPerInt);
__ jccb(Assembler::notEqual, L_copy_longs);
__ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(int_copy_entry));
__ BIND(L_copy_longs);
#ifdef ASSERT
{
BLOCK_COMMENT("assert long copy {");
Label L;
__ cmpl(rax_elsize, LogBytesPerLong);
__ jcc(Assembler::equal, L);
__ stop("must be long copy, but elsize is wrong");
__ bind(L);
BLOCK_COMMENT("} assert long copy done");
}
#endif
__ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(long_copy_entry));
// ObjArrayKlass
__ BIND(L_objArray);
// live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
Label L_plain_copy, L_checkcast_copy;
// test array classes for subtyping
__ load_klass(rax, dst, rklass_tmp);
__ cmpq(r10_src_klass, rax); // usual case is exact equality
__ jcc(Assembler::notEqual, L_checkcast_copy);
// Identically typed arrays can be copied without element-wise checks.
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
r10, L_failed);
__ lea(from, Address(src, src_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
__ lea(to, Address(dst, dst_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
__ movl2ptr(count, r11_length); // length
__ BIND(L_plain_copy);
#ifdef _WIN64
__ pop_ppx(rklass_tmp); // Restore callee-save rdi
#endif
__ jump(RuntimeAddress(oop_copy_entry));
__ BIND(L_checkcast_copy);
// live at this point: r10_src_klass, r11_length, rax (dst_klass)
{
// Before looking at dst.length, make sure dst is also an objArray.
__ cmpl(Address(rax, lh_offset), objArray_lh);
__ jcc(Assembler::notEqual, L_failed);
// It is safe to examine both src.length and dst.length.
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
rax, L_failed);
const Register r11_dst_klass = r11;
__ load_klass(r11_dst_klass, dst, rklass_tmp); // reload
// Marshal the base address arguments now, freeing registers.
__ lea(from, Address(src, src_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ lea(to, Address(dst, dst_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ movl(count, length); // length (reloaded)
Register sco_temp = c_rarg3; // this register is free now
assert_different_registers(from, to, count, sco_temp,
r11_dst_klass, r10_src_klass);
assert_clean_int(count, sco_temp);
// Generate the type check.
const int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ movl(sco_temp, Address(r11_dst_klass, sco_offset));
assert_clean_int(sco_temp, rax);
generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
// Fetch destination element klass from the ObjArrayKlass header.
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
__ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
__ movl( sco_temp, Address(r11_dst_klass, sco_offset));
assert_clean_int(sco_temp, rax);
#ifdef _WIN64
__ pop_ppx(rklass_tmp); // Restore callee-save rdi
#endif
// the checkcast_copy loop needs two extra arguments:
assert(c_rarg3 == sco_temp, "#3 already in place");
// Set up arguments for checkcast_copy_entry.
setup_arg_regs_using_thread(4);
__ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
__ jump(RuntimeAddress(checkcast_copy_entry));
}
__ BIND(L_failed);
#ifdef _WIN64
__ pop_ppx(rklass_tmp); // Restore callee-save rdi
#endif
__ xorptr(rax, rax);
__ notptr(rax); // return -1
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
#undef __