jdk/src/hotspot/share/opto/vectorization.cpp
Emanuel Peter 2d267303de 8373453: C2 SuperWord: must handle load slices that have loads with different memory inputs
Reviewed-by: thartmann
Backport-of: da14813a5bdadaf0a1f81fa57ff6e1b103eaf113
2026-01-12 07:17:01 +00:00

2088 lines
97 KiB
C++

/*
* Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2023, Arm Limited. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "opto/addnode.hpp"
#include "opto/castnode.hpp"
#include "opto/connode.hpp"
#include "opto/convertnode.hpp"
#include "opto/divnode.hpp"
#include "opto/movenode.hpp"
#include "opto/mulnode.hpp"
#include "opto/noOverflowInt.hpp"
#include "opto/phaseX.hpp"
#include "opto/rootnode.hpp"
#include "opto/vectorization.hpp"
bool VLoop::check_preconditions() {
#ifndef PRODUCT
if (is_trace_preconditions()) {
tty->print_cr("\nVLoop::check_preconditions");
lpt()->dump_head();
lpt()->head()->dump();
}
#endif
VStatus status = check_preconditions_helper();
if (!status.is_success()) {
#ifndef PRODUCT
if (is_trace_preconditions()) {
tty->print_cr("VLoop::check_preconditions: failed: %s", status.failure_reason());
}
#endif
return false; // failure
}
return true; // success
}
VStatus VLoop::check_preconditions_helper() {
// Only accept vector width that is power of 2
int vector_width = Matcher::vector_width_in_bytes(T_BYTE);
if (vector_width < 2 || !is_power_of_2(vector_width)) {
return VStatus::make_failure(VLoop::FAILURE_VECTOR_WIDTH);
}
// Only accept valid counted loops (int)
if (!_lpt->_head->as_Loop()->is_valid_counted_loop(T_INT)) {
return VStatus::make_failure(VLoop::FAILURE_VALID_COUNTED_LOOP);
}
_cl = _lpt->_head->as_CountedLoop();
_iv = _cl->phi()->as_Phi();
if (_cl->is_vectorized_loop()) {
return VStatus::make_failure(VLoop::FAILURE_ALREADY_VECTORIZED);
}
if (_cl->is_unroll_only()) {
return VStatus::make_failure(VLoop::FAILURE_UNROLL_ONLY);
}
// Check for control flow in the body
_cl_exit = _cl->loopexit();
bool has_cfg = _cl_exit->in(0) != _cl;
if (has_cfg && !is_allow_cfg()) {
#ifndef PRODUCT
if (is_trace_preconditions()) {
tty->print_cr("VLoop::check_preconditions: fails because of control flow.");
tty->print(" cl_exit %d", _cl_exit->_idx); _cl_exit->dump();
tty->print(" cl_exit->in(0) %d", _cl_exit->in(0)->_idx); _cl_exit->in(0)->dump();
tty->print(" lpt->_head %d", _cl->_idx); _cl->dump();
_lpt->dump_head();
}
#endif
return VStatus::make_failure(VLoop::FAILURE_CONTROL_FLOW);
}
// Make sure the are no extra control users of the loop backedge
if (_cl->back_control()->outcnt() != 1) {
return VStatus::make_failure(VLoop::FAILURE_BACKEDGE);
}
if (_cl->is_main_loop()) {
// To align vector memory accesses in the main-loop, we will have to adjust
// the pre-loop limit.
CountedLoopEndNode* pre_end = _cl->find_pre_loop_end();
if (pre_end == nullptr) {
return VStatus::make_failure(VLoop::FAILURE_PRE_LOOP_LIMIT);
}
Node* pre_opaq1 = pre_end->limit();
if (pre_opaq1->Opcode() != Op_Opaque1) {
return VStatus::make_failure(VLoop::FAILURE_PRE_LOOP_LIMIT);
}
_pre_loop_end = pre_end;
// See if we find the infrastructure for speculative runtime-checks.
// (1) Auto Vectorization Parse Predicate
Node* pre_ctrl = pre_loop_head()->in(LoopNode::EntryControl);
const Predicates predicates(pre_ctrl);
const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block();
if (predicate_block->has_parse_predicate()) {
_auto_vectorization_parse_predicate_proj = predicate_block->parse_predicate_success_proj();
}
// (2) Multiversioning fast-loop projection
IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue();
if (before_predicates != nullptr &&
before_predicates->in(0)->is_If() &&
before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) {
_multiversioning_fast_proj = before_predicates;
}
#ifndef PRODUCT
if (is_trace_preconditions() || is_trace_speculative_runtime_checks()) {
tty->print_cr(" Infrastructure for speculative runtime-checks:");
if (_auto_vectorization_parse_predicate_proj != nullptr) {
tty->print_cr(" auto_vectorization_parse_predicate_proj: speculate and trap");
_auto_vectorization_parse_predicate_proj->dump_bfs(5,0,"");
} else if (_multiversioning_fast_proj != nullptr) {
tty->print_cr(" multiversioning_fast_proj: speculate and multiversion");
_multiversioning_fast_proj->dump_bfs(5,0,"");
} else {
tty->print_cr(" Not found.");
}
}
#endif
assert(_auto_vectorization_parse_predicate_proj == nullptr ||
_multiversioning_fast_proj == nullptr, "we should only have at most one of these");
assert(_cl->is_multiversion_fast_loop() == (_multiversioning_fast_proj != nullptr),
"must find the multiversion selector IFF loop is a multiversion fast loop");
}
return VStatus::make_success();
}
// Return true iff all submodules are loaded successfully
bool VLoopAnalyzer::setup_submodules() {
#ifndef PRODUCT
if (_vloop.is_trace_loop_analyzer()) {
tty->print_cr("\nVLoopAnalyzer::setup_submodules");
_vloop.lpt()->dump_head();
_vloop.cl()->dump();
}
#endif
VStatus status = setup_submodules_helper();
if (!status.is_success()) {
#ifndef PRODUCT
if (_vloop.is_trace_loop_analyzer()) {
tty->print_cr("\nVLoopAnalyze::setup_submodules: failed: %s", status.failure_reason());
}
#endif
return false; // failed
}
return true; // success
}
VStatus VLoopAnalyzer::setup_submodules_helper() {
// Skip any loop that has not been assigned max unroll by analysis.
if (SuperWordLoopUnrollAnalysis && _vloop.cl()->slp_max_unroll() == 0) {
return VStatus::make_failure(VLoopAnalyzer::FAILURE_NO_MAX_UNROLL);
}
if (SuperWordReductions) {
_reductions.mark_reductions();
}
VStatus body_status = _body.construct();
if (!body_status.is_success()) {
return body_status;
}
VStatus slices_status = _memory_slices.find_memory_slices();
if (!slices_status.is_success()) {
return slices_status;
}
// If there is no memory slice detected, it means there is no store.
// If there is no reduction and no store, then we give up, because
// vectorization is not possible anyway (given current limitations).
if (!_reductions.is_marked_reduction_loop() &&
_memory_slices.heads().is_empty()) {
return VStatus::make_failure(VLoopAnalyzer::FAILURE_NO_REDUCTION_OR_STORE);
}
_types.compute_vector_element_type();
_vpointers.compute_vpointers();
_dependency_graph.construct();
return VStatus::make_success();
}
// There are 2 kinds of slices:
// - No memory phi: only loads.
// - Usually, all loads have the same input memory state from before the loop.
// - Only rarely this is not the case, and we just bail out for now.
// - With memory phi. Chain of memory operations inside the loop.
VStatus VLoopMemorySlices::find_memory_slices() {
Compile* C = _vloop.phase()->C;
// We iterate over the body, which is topologically sorted. Hence, if there is a phi
// in a slice, we will find it first, and the loads and stores afterwards.
for (int i = 0; i < _body.body().length(); i++) {
Node* n = _body.body().at(i);
if (n->is_memory_phi()) {
// Memory slice with stores (and maybe loads)
PhiNode* phi = n->as_Phi();
int alias_idx = C->get_alias_index(phi->adr_type());
assert(_inputs.at(alias_idx) == nullptr, "did not yet touch this slice");
_inputs.at_put(alias_idx, phi->in(1));
_heads.at_put(alias_idx, phi);
} else if (n->is_Load()) {
LoadNode* load = n->as_Load();
int alias_idx = C->get_alias_index(load->adr_type());
PhiNode* head = _heads.at(alias_idx);
if (head == nullptr) {
// We did not find a phi on this slice yet -> must be a slice with only loads.
// For now, we can only handle slices with a single memory input before the loop,
// so if we find multiple, we bail out of auto vectorization. If this becomes
// too restrictive in the fututure, we could consider tracking multiple inputs.
// Different memory inputs can for example happen if one load has its memory state
// optimized, and the other load fails to have it optimized, for example because
// it does not end up on the IGVN worklist any more.
if (_inputs.at(alias_idx) != nullptr && _inputs.at(alias_idx) != load->in(1)) {
return VStatus::make_failure(FAILURE_DIFFERENT_MEMORY_INPUT);
}
_inputs.at_put(alias_idx, load->in(1));
} // else: the load belongs to a slice with a phi that already set heads and inputs.
#ifdef ASSERT
} else if (n->is_Store()) {
// Found a store. Make sure it is in a slice with a Phi.
StoreNode* store = n->as_Store();
int alias_idx = C->get_alias_index(store->adr_type());
PhiNode* head = _heads.at(alias_idx);
assert(head != nullptr, "should have found a mem phi for this slice");
#endif
}
}
NOT_PRODUCT( if (_vloop.is_trace_memory_slices()) { print(); } )
return VStatus::make_success();
}
#ifndef PRODUCT
void VLoopMemorySlices::print() const {
tty->print_cr("\nVLoopMemorySlices::print: %s",
heads().length() > 0 ? "" : "NONE");
for (int i = 0; i < _inputs.length(); i++) {
Node* input = _inputs.at(i);
PhiNode* head = _heads.at(i);
if (input != nullptr) {
tty->print("%3d input", i); input->dump();
if (head == nullptr) {
tty->print_cr(" load only");
} else {
tty->print(" head "); head->dump();
}
}
}
}
#endif
void VLoopVPointers::compute_vpointers() {
count_vpointers();
allocate_vpointers_array();
compute_and_cache_vpointers();
NOT_PRODUCT( if (_vloop.is_trace_vpointers()) { print(); } )
}
void VLoopVPointers::count_vpointers() {
_vpointers_length = 0;
_body.for_each_mem([&] (const MemNode* mem, int bb_idx) {
_vpointers_length++;
});
}
void VLoopVPointers::allocate_vpointers_array() {
uint bytes = _vpointers_length * sizeof(VPointer);
_vpointers = (VPointer*)_arena->Amalloc(bytes);
}
void VLoopVPointers::compute_and_cache_vpointers() {
int pointers_idx = 0;
_body.for_each_mem([&] (MemNode* const mem, int bb_idx) {
// Placement new: construct directly into the array.
::new (&_vpointers[pointers_idx]) VPointer(mem, _vloop, _pointer_expression_nodes);
_bb_idx_to_vpointer.at_put(bb_idx, pointers_idx);
pointers_idx++;
});
}
const VPointer& VLoopVPointers::vpointer(const MemNode* mem) const {
assert(mem != nullptr && _vloop.in_bb(mem), "only mem in loop");
int bb_idx = _body.bb_idx(mem);
int pointers_idx = _bb_idx_to_vpointer.at(bb_idx);
assert(0 <= pointers_idx && pointers_idx < _vpointers_length, "valid range");
return _vpointers[pointers_idx];
}
#ifndef PRODUCT
void VLoopVPointers::print() const {
tty->print_cr("\nVLoopVPointers::print:");
_body.for_each_mem([&] (const MemNode* mem, int bb_idx) {
const VPointer& p = vpointer(mem);
tty->print(" ");
p.print_on(tty);
});
}
#endif
// Construct the dependency graph:
// - Data-dependencies: implicit (taken from C2 node inputs).
// - Memory-dependencies:
// - No edges between different slices.
// - No Load-Load edges.
// - Inside a slice, add all Store-Load, Load-Store, Store-Store edges,
// except if we can prove that the memory does not overlap.
// - Strong edge: must be respected.
// - Weak edge: if we add a speculative aliasing check, we can violate
// the edge, i.e. spaw the order.
void VLoopDependencyGraph::construct() {
const GrowableArray<PhiNode*>& mem_slice_heads = _memory_slices.heads();
ResourceMark rm;
GrowableArray<MemNode*> slice_nodes;
GrowableArray<int> strong_memory_edges;
GrowableArray<int> weak_memory_edges;
// For each memory slice, create the memory subgraph
for (int i = 0; i < mem_slice_heads.length(); i++) {
PhiNode* head = mem_slice_heads.at(i);
// If there is no head (memory-phi) for this slice, then we have either no memops
// in the loop, or only loads. We do not need to add any memory edges in that case.
if (head == nullptr) { continue; }
MemNode* tail = head->in(2)->as_Mem();
_memory_slices.get_slice_in_reverse_order(head, tail, slice_nodes);
// In forward order (reverse of reverse), visit all memory nodes in the slice.
for (int j = slice_nodes.length() - 1; j >= 0 ; j--) {
MemNode* n1 = slice_nodes.at(j);
strong_memory_edges.clear();
weak_memory_edges.clear();
const VPointer& p1 = _vpointers.vpointer(n1);
// For all memory nodes before it, check if we need to add a memory edge.
for (int k = slice_nodes.length() - 1; k > j; k--) {
MemNode* n2 = slice_nodes.at(k);
// Ignore Load-Load dependencies:
if (n1->is_Load() && n2->is_Load()) { continue; }
const VPointer& p2 = _vpointers.vpointer(n2);
// If we can prove that they will never overlap -> drop edge.
if (!p1.never_overlaps_with(p2)) {
if (p1.can_make_speculative_aliasing_check_with(p2)) {
weak_memory_edges.append(_body.bb_idx(n2));
} else {
strong_memory_edges.append(_body.bb_idx(n2));
}
}
}
if (strong_memory_edges.is_nonempty() || weak_memory_edges.is_nonempty()) {
// Data edges are taken implicitly from the C2 graph, thus we only add
// a dependency node if we have memory edges.
add_node(n1, strong_memory_edges, weak_memory_edges);
}
}
slice_nodes.clear();
}
compute_depth();
NOT_PRODUCT( if (_vloop.is_trace_dependency_graph()) { print(); } )
}
void VLoopDependencyGraph::add_node(MemNode* n, GrowableArray<int>& strong_memory_edges, GrowableArray<int>& weak_memory_edges) {
assert(_dependency_nodes.at_grow(_body.bb_idx(n), nullptr) == nullptr, "not yet created");
DependencyNode* dn = new (_arena) DependencyNode(n, strong_memory_edges, weak_memory_edges, _arena);
_dependency_nodes.at_put_grow(_body.bb_idx(n), dn, nullptr);
}
int VLoopDependencyGraph::find_max_pred_depth(const Node* n) const {
int max_pred_depth = 0;
if (!n->is_Phi()) { // ignore backedge
// We must compute the dependence graph depth with all edges (including the weak edges), so that
// the independence queries work correctly, no matter if we check independence with or without
// weak edges.
for (PredsIterator it(*this, n); !it.done(); it.next()) {
Node* pred = it.current();
if (_vloop.in_bb(pred)) {
max_pred_depth = MAX2(max_pred_depth, depth(pred));
}
}
}
return max_pred_depth;
}
// We iterate over the body, which is already ordered by the dependencies, i.e. pred comes
// before use. With a single pass, we can compute the depth of every node, since we can
// assume that the depth of all preds is already computed when we compute the depth of use.
void VLoopDependencyGraph::compute_depth() {
for (int i = 0; i < _body.body().length(); i++) {
Node* n = _body.body().at(i);
set_depth(n, find_max_pred_depth(n) + 1);
}
#ifdef ASSERT
for (int i = 0; i < _body.body().length(); i++) {
Node* n = _body.body().at(i);
int max_pred_depth = find_max_pred_depth(n);
if (depth(n) != max_pred_depth + 1) {
print();
tty->print_cr("Incorrect depth: %d vs %d", depth(n), max_pred_depth + 1);
n->dump();
}
assert(depth(n) == max_pred_depth + 1, "must have correct depth");
}
#endif
}
#ifndef PRODUCT
void VLoopDependencyGraph::print() const {
tty->print_cr("\nVLoopDependencyGraph::print:");
tty->print_cr(" Memory pred edges:");
for (int i = 0; i < _body.body().length(); i++) {
Node* n = _body.body().at(i);
const DependencyNode* dn = dependency_node(n);
if (dn != nullptr) {
tty->print(" DependencyNode[%d %s:", n->_idx, n->Name());
for (uint j = 0; j < dn->num_strong_memory_edges(); j++) {
Node* pred = _body.body().at(dn->strong_memory_edge(j));
tty->print(" %d %s", pred->_idx, pred->Name());
}
tty->print(" | weak:");
for (uint j = 0; j < dn->num_weak_memory_edges(); j++) {
Node* pred = _body.body().at(dn->weak_memory_edge(j));
tty->print(" %d %s", pred->_idx, pred->Name());
}
tty->print_cr("]");
}
}
tty->cr();
// If we cannot speculate (aliasing analysis runtime checks), we need to respect all edges.
bool with_weak_memory_edges = !_vloop.use_speculative_aliasing_checks();
if (with_weak_memory_edges) {
tty->print_cr(" Complete dependency graph (with weak edges, because we cannot speculate):");
} else {
tty->print_cr(" Dependency graph without weak edges (because we can speculate):");
}
for (int i = 0; i < _body.body().length(); i++) {
Node* n = _body.body().at(i);
tty->print(" d%02d Dependencies[%d %s:", depth(n), n->_idx, n->Name());
for (PredsIterator it(*this, n); !it.done(); it.next()) {
if (!with_weak_memory_edges && it.is_current_weak_memory_edge()) { continue; }
Node* pred = it.current();
tty->print(" %d %s", pred->_idx, pred->Name());
}
tty->print_cr("]");
}
}
#endif
VLoopDependencyGraph::DependencyNode::DependencyNode(MemNode* n,
GrowableArray<int>& strong_memory_edges,
GrowableArray<int>& weak_memory_edges,
Arena* arena) :
_node(n),
_num_strong_memory_edges(strong_memory_edges.length()),
_num_weak_memory_edges(weak_memory_edges.length()),
_memory_edges(nullptr)
{
assert(strong_memory_edges.is_nonempty() || weak_memory_edges.is_nonempty(), "only generate DependencyNode if there are pred edges");
uint bytes_strong = strong_memory_edges.length() * sizeof(int);
uint bytes_weak = weak_memory_edges.length() * sizeof(int);
uint bytes_total = bytes_strong + bytes_weak;
_memory_edges = (int*)arena->Amalloc(bytes_total);
if (strong_memory_edges.length() > 0) {
memcpy(_memory_edges, strong_memory_edges.adr_at(0), bytes_strong);
}
if (weak_memory_edges.length() > 0) {
memcpy(_memory_edges + strong_memory_edges.length(), weak_memory_edges.adr_at(0), bytes_weak);
}
}
VLoopDependencyGraph::PredsIterator::PredsIterator(const VLoopDependencyGraph& dependency_graph,
const Node* node) :
_dependency_graph(dependency_graph),
_node(node),
_dependency_node(dependency_graph.dependency_node(node)),
_current(nullptr),
_is_current_memory_edge(false),
_is_current_weak_memory_edge(false),
_next_data_edge(0),
_end_data_edge(node->req()),
_next_strong_memory_edge(0),
_end_strong_memory_edge((_dependency_node != nullptr) ? _dependency_node->num_strong_memory_edges() : 0),
_next_weak_memory_edge(0),
_end_weak_memory_edge((_dependency_node != nullptr) ? _dependency_node->num_weak_memory_edges() : 0)
{
if (_node->is_Store() || _node->is_Load()) {
// Ignore ctrl and memory, only address and value are data dependencies.
// Memory edges are already covered by the strong and weak memory edges.
// Load: [ctrl, memory] address
// Store: [ctrl, memory] address, value
_next_data_edge = MemNode::Address;
} else {
assert(!_node->is_Mem(), "only loads and stores are expected mem nodes");
_next_data_edge = 1; // skip control
}
next();
}
void VLoopDependencyGraph::PredsIterator::next() {
if (_next_data_edge < _end_data_edge) {
_current = _node->in(_next_data_edge++);
_is_current_memory_edge = false;
_is_current_weak_memory_edge = false;
} else if (_next_strong_memory_edge < _end_strong_memory_edge) {
int pred_bb_idx = _dependency_node->strong_memory_edge(_next_strong_memory_edge++);
_current = _dependency_graph._body.body().at(pred_bb_idx);
_is_current_memory_edge = true;
_is_current_weak_memory_edge = false;
} else if (_next_weak_memory_edge < _end_weak_memory_edge) {
int pred_bb_idx = _dependency_node->weak_memory_edge(_next_weak_memory_edge++);
_current = _dependency_graph._body.body().at(pred_bb_idx);
_is_current_memory_edge = true;
_is_current_weak_memory_edge = true;
} else {
_current = nullptr; // done
_is_current_memory_edge = false;
_is_current_weak_memory_edge = false;
}
}
// Cost-model heuristic for nodes that do not contribute to computational
// cost inside the loop.
bool VLoopAnalyzer::has_zero_cost(Node* n) const {
// Outside body?
if (!_vloop.in_bb(n)) { return true; }
// Internal nodes of pointer expressions are most likely folded into
// the load / store and have no additional cost.
if (vpointers().is_in_pointer_expression(n)) { return true; }
// Not all AddP nodes can be detected in VPointer parsing, so
// we filter them out here.
// We don't want to explicitly model the cost of control flow,
// since we have the same CFG structure before and after
// vectorization: A loop head, a loop exit, with a backedge.
if (n->is_AddP() || // Pointer expression
n->is_CFG() || // CFG
n->is_Phi() || // CFG
n->is_Cmp() || // CFG
n->is_Bool()) { // CFG
return true;
}
// All other nodes have a non-zero cost.
return false;
}
// Compute the cost over all operations in the (scalar) loop.
float VLoopAnalyzer::cost_for_scalar_loop() const {
#ifndef PRODUCT
if (_vloop.is_trace_cost()) {
tty->print_cr("\nVLoopAnalyzer::cost_for_scalar_loop:");
}
#endif
float sum = 0;
for (int j = 0; j < body().body().length(); j++) {
Node* n = body().body().at(j);
if (!has_zero_cost(n)) {
float c = cost_for_scalar_node(n->Opcode());
sum += c;
#ifndef PRODUCT
if (_vloop.is_trace_cost_verbose()) {
tty->print_cr(" -> cost = %.2f for %d %s", c, n->_idx, n->Name());
}
#endif
}
}
#ifndef PRODUCT
if (_vloop.is_trace_cost()) {
tty->print_cr(" total_cost = %.2f", sum);
}
#endif
return sum;
}
// For now, we use unit cost. We might refine that in the future.
// If needed, we could also use platform specific costs, if the
// default here is not accurate enough.
float VLoopAnalyzer::cost_for_scalar_node(int opcode) const {
float c = 1;
#ifndef PRODUCT
if (_vloop.is_trace_cost()) {
tty->print_cr(" cost = %.2f opc=%s", c, NodeClassNames[opcode]);
}
#endif
return c;
}
// For now, we use unit cost. We might refine that in the future.
// If needed, we could also use platform specific costs, if the
// default here is not accurate enough.
float VLoopAnalyzer::cost_for_vector_node(int opcode, int vlen, BasicType bt) const {
float c = 1;
#ifndef PRODUCT
if (_vloop.is_trace_cost()) {
tty->print_cr(" cost = %.2f opc=%s vlen=%d bt=%s",
c, NodeClassNames[opcode], vlen, type2name(bt));
}
#endif
return c;
}
// For now, we use unit cost, i.e. we count the number of backend instructions
// that the vtnode will use. We might refine that in the future.
// If needed, we could also use platform specific costs, if the
// default here is not accurate enough.
float VLoopAnalyzer::cost_for_vector_reduction_node(int opcode, int vlen, BasicType bt, bool requires_strict_order) const {
// Each reduction is composed of multiple instructions, each estimated with a unit cost.
// Linear: shuffle and reduce Recursive: shuffle and reduce
float c = requires_strict_order ? 2 * vlen : 2 * exact_log2(vlen);
#ifndef PRODUCT
if (_vloop.is_trace_cost()) {
tty->print_cr(" cost = %.2f opc=%s vlen=%d bt=%s requires_strict_order=%s",
c, NodeClassNames[opcode], vlen, type2name(bt),
requires_strict_order ? "true" : "false");
}
#endif
return c;
}
// Computing aliasing runtime check using init and last of main-loop
// -----------------------------------------------------------------
//
// We have two VPointer vp1 and vp2, and would like to create a runtime check that
// guarantees that the corresponding pointers p1 and p2 do not overlap (alias) for
// any iv value in the strided range r = [init, init + iv_stride, .. limit).
// Remember that vp1 and vp2 both represent a region in memory, starting at a
// "pointer", and extending for "size" bytes:
//
// vp1(iv) = [p1(iv), size1)
// vp2(iv) = [p2(iv), size2)
//
// |---size1---> |-------size2------->
// | |
// p1(iv) p2(iv)
//
// In each iv value (intuitively: for each iteration), we check that there is no
// overlap:
//
// for all iv in r: p1(iv) + size1 <= p2(iv) OR p2(iv) + size2 <= p1(iv)
//
// This would allow situations where for some iv p1 is lower than p2, and for
// other iv p1 is higher than p2. This is not very useful in practice. We can
// strengthen the condition, which will make the check simpler later:
//
// for all iv in r: p1(iv) + size1 <= p2(iv) (P1-BEFORE-P2)
// OR
// for all iv in r: p2(iv) + size2 <= p1(iv) (P1-AFTER-P2)
//
// Note: apart from this strengthening, the checks we derive below are byte accurate,
// i.e. they are equivalent to the conditions above. This means we have NO case
// where:
// 1) The check passes (predicts no overlap) but the pointers do actually overlap.
// This would be bad because we would wrongly vectorize, possibly leading to
// wrong results.
// 2) The check does not pass (predicts overlap) but the pointers do not overlap.
// This would be suboptimal, as we would not be able to vectorize, and either
// trap (with predicate), or go into the slow-loop (with multiversioning).
//
//
// We apply the "MemPointer Linearity Corrolary" to VPointer vp and the corresponding
// pointer p:
// (C0) is given by the construction of VPointer vp, which simply wraps a MemPointer mp.
// (c1) with v = iv and scale_v = iv_scale
// (C2) with r = [init, init + iv_stride, .. last - stride_v, last], which is the set
// of possible iv values in the loop, with "init" the first iv value, and "last"
// the last iv value which is closest to limit.
// Note: iv_stride > 0 -> limit - iv_stride <= last < limit
// iv_stride < 0 -> limit < last <= limit - iv_stride
// We have to be a little careful, and cannot just use "limit" instead of "last" as
// the last value in r, because the iv never reaches limit in the main-loop, and
// so we are not sure if the memory access at p(limit) is still in bounds.
// For now, we just assume that we can compute init and limit, and we will derive
// the computation of these values later on.
// (C3) the memory accesses for every iv value in the loop must be in bounds, otherwise
// the program has undefined behaviour already.
// (C4) abs(iv_scale * iv_stride) < 2^31 is given by the checks in
// VPointer::init_are_scale_and_stride_not_too_large.
//
// Hence, it follows that we can see p and vp as linear functions of iv in r, i.e. for
// all iv values in the loop:
// p(iv) = p(init) - init * iv_scale + iv * iv_scale
// vp(iv) = vp(init) - init * iv_scale + iv * iv_scale
//
// Hence, p1 and p2 have the linear form:
// p1(iv) = p1(init) - init * iv_scale1 + iv * iv_scale1 (LINEAR-FORM-INIT)
// p2(iv) = p2(init) - init * iv_scale2 + iv * iv_scale2
//
// With the (Alternative Corrolary P) we get the alternative linar form:
// p1(iv) = p1(last) - last * iv_scale1 + iv * iv_scale1 (LINEAR-FORM-LAST)
// p2(iv) = p2(last) - last * iv_scale2 + iv * iv_scale2
//
//
// We can now use this linearity to construct aliasing runtime checks, depending on the
// different "geometry" of the two VPointer over their iv, i.e. the "slopes" of the linear
// functions. In the following graphs, the x-axis denotes the values of iv, from init to
// last. And the y-axis denotes the pointer position p(iv). Intuitively, this problem
// can be seen as having two bands that should not overlap.
//
// Case 1 Case 2 Case 3
// parallel lines same sign slope different sign slope
// but not parallel
//
// +---------+ +---------+ +---------+
// | | | #| |# |
// | | | # | | # |
// | #| | # | | # |
// | # | | # | | # |
// | # | | # | | #|
// | # ^ | | # | | ^|
// |# | #| | # | | ||
// | v # | | # | | v|
// | # | |# #| | #|
// | # | |^ # | | # |
// |# | || # | | # |
// | | |v # | | # |
// | | |# | |# |
// +---------+ +---------+ +---------+
//
//
// Case 1: parallel lines, i.e. iv_scale = iv_scale1 = iv_scale2
//
// p1(iv) = p1(init) - init * iv_scale + iv * iv_scale
// p2(iv) = p2(init) - init * iv_scale + iv * iv_scale
//
// Given this, it follows:
// p1(iv) + size1 <= p2(iv) <==> p1(init) + size1 <= p2(init)
// p2(iv) + size2 <= p1(iv) <==> p2(init) + size2 <= p1(init)
//
// Hence, we do not have to check the condition for every iv, but only for init.
//
// p1(init) + size1 <= p2(init) OR p2(init) + size2 <= p1(init)
// ----- is equivalent to ----- ---- is equivalent to ------
// (P1-BEFORE-P2) OR (P1-AFTER-P2)
//
//
// Case 2 and 3: different slopes, i.e. iv_scale1 != iv_scale2
//
// Without loss of generality, we assume iv_scale1 < iv_scale2.
// (Otherwise, we just swap p1 and p2).
//
// If iv_stride >= 0, i.e. init <= iv <= last:
// (iv - init) * iv_scale1 <= (iv - init) * iv_scale2
// (iv - last) * iv_scale1 >= (iv - last) * iv_scale2 (POS-STRIDE)
// If iv_stride <= 0, i.e. last <= iv <= init:
// (iv - init) * iv_scale1 >= (iv - init) * iv_scale2
// (iv - last) * iv_scale1 <= (iv - last) * iv_scale2 (NEG-STRIDE)
//
// Below, we show that these conditions are equivalent:
//
// p1(init) + size1 <= p2(init) (if iv_stride >= 0) | p2(last) + size2 <= p1(last) (if iv_stride >= 0) |
// p1(last) + size1 <= p2(last) (if iv_stride <= 0) | p2(init) + size2 <= p1(init) (if iv_stride <= 0) |
// ---- are equivalent to ----- | ---- are equivalent to ----- |
// (P1-BEFORE-P2) | (P1-AFTER-P2) |
// | |
// Proof: | |
// | |
// Assume: (P1-BEFORE-P2) | Assume: (P1-AFTER-P2) |
// for all iv in r: p1(iv) + size1 <= p2(iv) | for all iv in r: p2(iv) + size2 <= p1(iv) |
// => And since init and last in r => | => And since init and last in r => |
// p1(init) + size1 <= p2(init) | p2(init) + size2 <= p1(init) |
// p1(last) + size1 <= p2(last) | p2(last) + size2 <= p1(last) |
// | |
// | |
// Assume: p1(init) + size1 <= p2(init) | Assume: p2(last) + size2 <= p1(last) |
// and: iv_stride >= 0 | and: iv_stride >= 0 |
// | |
// size1 + p1(iv) | size2 + p2(iv) |
// --------- apply (LINEAR-FORM-INIT) --------- | --------- apply (LINEAR-FORM-LAST) --------- |
// = size1 + p1(init) - init * iv_scale1 + iv * iv_scale1 | = size2 + p2(last) - last * iv_scale2 + iv * iv_scale2 |
// ------ apply (POS-STRIDE) --------- | ------ apply (POS-STRIDE) --------- |
// <= size1 + p1(init) - init * iv_scale2 + iv * iv_scale2 | <= size2 + p2(last) - last * iv_scale1 + iv * iv_scale1 |
// -- assumption -- | -- assumption -- |
// <= p2(init) - init * iv_scale2 + iv * iv_scale2 | <= p1(last) - last * iv_scale1 + iv * iv_scale1 |
// --------- apply (LINEAR-FORM-INIT) --------- | --------- apply (LINEAR-FORM-LAST) --------- |
// = p2(iv) | = p1(iv) |
// | |
// | |
// Assume: p1(last) + size1 <= p2(last) | Assume: p2(init) + size2 <= p1(init) |
// and: iv_stride <= 0 | and: iv_stride <= 0 |
// | |
// size1 + p1(iv) | size2 + p2(iv) |
// --------- apply (LINEAR-FORM-LAST) --------- | --------- apply (LINEAR-FORM-INIT) --------- |
// = size1 + p1(last) - last * iv_scale1 + iv * iv_scale1 | = size2 + p2(init) - init * iv_scale2 + iv * iv_scale2 |
// ------ apply (NEG-STRIDE) --------- | ------ apply (NEG-STRIDE) --------- |
// <= size1 + p1(last) - last * iv_scale2 + iv * iv_scale2 | <= size2 + p2(init) - init * iv_scale1 + iv * iv_scale1 |
// -- assumption -- | -- assumption -- |
// <= p2(last) - last * iv_scale2 + iv * iv_scale2 | <= p1(init) - init * iv_scale1 + iv * iv_scale1 |
// --------- apply (LINEAR-FORM-LAST) --------- | --------- apply (LINEAR-FORM-INIT) --------- |
// = p2(iv) | = p1(iv) |
// | |
//
// The obtained conditions already look very simple. However, we would like to avoid
// computing 4 addresses (p1(init), p1(last), p2(init), p2(last)), and would instead
// prefer to only compute 2 addresses, and derive the other two from the distance (span)
// between the pointers at init and last. Using (LINEAR-FORM-INIT), we get:
//
// p1(last) = p1(init) - init * iv_scale1 + last * iv_scale1 (SPAN-1)
// --------------- defines -------------
// p1(init) + span1
//
// p2(last) = p2(init) - init * iv_scale2 + last * iv_scale2 (SPAN-2)
// --------------- defines -------------
// p1(init) + span2
//
// span1 = - init * iv_scale1 + last * iv_scale1 = (last - init) * iv_scale1
// span2 = - init * iv_scale2 + last * iv_scale2 = (last - init) * iv_scale2
//
// Thus, we can use the conditions below:
// p1(init) + size1 <= p2(init) OR p2(init) + span2 + size2 <= p1(init) + span1 (if iv_stride >= 0)
// p1(init) + span1 + size1 <= p2(init) + span2 OR p2(init) + size2 <= p1(init) (if iv_stride <= 0)
//
// Below, we visualize the conditions, so that the reader can gain an intuitiion.
// For simplicity, we only show the case with iv_stride > 0. Also, remember that
// iv_scale1 < iv_scale2.
//
// +---------+ +---------+
// | #| | #| <-- p1(init) + span1
// | # | ^ span2 span1 ^ | # ^|
// | # | | | | # ||
// | # | | | | # v| <-- p2(init) + span2 + size2
// | # | | v |# #|
// | # | | span2 ^ | # |
// | # | | | | # |
// | # | | | | # |
// p2(init) --> |# #| v | | # |
// |^ # | ^ span1 | | # |
// || # | | | | # |
// p1(init) + size1 --> |v # | | | | # |
// |# | v v |# |
// +---------+ +---------+
//
// -------------------------------------------------------------------------------------------------------------------------
//
// Computing the last iv value in a loop
// -------------------------------------
//
// Let us define a helper function, that computes the last iv value in a loop,
// given variable init and limit values, and a constant stride. If the loop
// is never entered, we just return the init value.
//
// LAST(init, stride, limit), where stride > 0: | LAST(init, stride, limit), where stride < 0:
// last = init | last = init
// for (iv = init; iv < limit; iv += stride) | for (iv = init; iv > limit; iv += stride)
// last = iv | last = iv
//
// It follows that for some k:
// last = init + k * stride
//
// If the loop is not entered, we can set k=0.
//
// If the loop is entered:
// last is very close to limit:
// stride > 0 -> limit - stride <= last < limit
// stride < 0 -> limit < last <= limit - stride
//
// If stride > 0:
// limit - stride <= last < limit
// limit - stride <= init + k * stride < limit
// limit - init - stride <= k * stride < limit - init
// limit - init - stride - 1 < k * stride <= limit - init - 1
// (limit - init - stride - 1) / stride < k <= (limit - init - 1) / stride
// (limit - init - 1) / stride - 1 < k <= (limit - init - 1) / stride
// -> k = (limit - init - 1) / stride
// -> dividend "limit - init - 1" is >=0. So a regular round to zero division can be used.
// Note: to incorporate the case where the loop is not entered (init >= limit), we see
// that the divident is zero or negative, and so the result will be zero or
// negative. Thus, we can just clamp k to zero, or last to init, so that we get
// a solution that also works when the loop is not entered:
//
// k = (limit - init - 1) / abs(stride)
// last = MAX(init, init + k * stride)
//
// If stride < 0:
// limit < last <= limit - stride
// limit < init + k * stride <= limit - stride
// limit - init < k * stride <= limit - init - stride
// limit - init + 1 <= k * stride < limit - init - stride + 1
// (limit - init + 1) / stride >= k > (limit - init - stride + 1) / stride
// -(limit - init + 1) / abs(stride) >= k > -(limit - init - stride + 1) / abs(stride)
// -(limit - init + 1) / abs(stride) >= k > -(limit - init + 1) / abs(stride) - 1
// (init - limit - 1) / abs(stride) >= k > (init - limit - 1) / abs(stride) - 1
// (init - limit - 1) / abs(stride) >= k > (init - limit - 1) / abs(stride) - 1
// -> k = (init - limit - 1) / abs(stride)
// -> dividend "init - limit" is >=0. So a regular round to zero division can be used.
// Note: to incorporate the case where the loop is not entered (init <= limit), we see
// that the divident is zero or negative, and so the result will be zero or
// negative. Thus, we can just clamp k to zero, or last to init, so that we get
// a solution that also works when the loop is not entered:
//
// k = (init - limit - 1) / abs(stride)
// last = MIN(init, init + k * stride)
//
// Now we can put it all together:
// LAST(init, stride, limit)
// If stride > 0:
// k = (limit - init - 1) / abs(stride)
// last = MAX(init, init + k * stride)
// If stride < 0:
// k = (init - limit - 1) / abs(stride)
// last = MIN(init, init + k * stride)
//
// We will have to consider the implications of clamping to init when the loop is not entered
// at the use of LAST further down.
//
// -------------------------------------------------------------------------------------------------------------------------
//
// Computing init and last for the main-loop
// -----------------------------------------
//
// As we have seen above, we always need the "init" of the main-loop. And if "iv_scale1 != iv_scale2", then we
// also need the "last" of the main-loop. These values need to be pre-loop invariant, because the check is
// to be performed before the pre-loop (at the predicate or multiversioning selector_if). It will be helpful
// to recall the iv structure in the pre and main-loop:
//
// | iv = pre_init
// |
// Pre-Loop | +----------------+
// phi |
// | | -> pre_last: last iv value in pre-loop
// + pre_iv_stride |
// |-----------------+
// | exit check: < pre_limit
// |
// | iv = main_init = init
// |
// Main-Loop | +------------------------------+
// phi |
// | | -> last: last iv value in main-loop
// + main_iv_stride = iv_stride |
// |-------------------------------+
// | exit check: < main_limit = limit
//
// Unfortunately, the init (aka. main_init) is not pre-loop invariant, rather it is only available
// after the pre-loop. We will have to compute:
//
// pre_last = LAST(pre_init, pre_iv_stride, pre_limit)
// init = pre_last + pre_iv_stride
//
// If we need "last", we unfortunately must compute it as well:
//
// last = LAST(init, iv_stride, limit)
//
//
// These computations assume that we indeed do enter the main-loop - otherwise
// it does not make sense to talk about the "last main iteration". Of course
// entering the main-loop implies that we entered the pre-loop already. But
// what happens if we check the aliasing runtime check, but later would never
// enter the main-loop?
//
// First: no matter if we pass or fail the aliasing runtime check, we will
// not get wrong results. If we fail the check, we end up in the less optimized
// slow-loop. If we pass the check, and we don't enter the main-loop, we
// never rely on the aliasing check, after all only the vectorized main-loop
// (and the vectorized post-loop) rely on the aliasing check.
//
// But: The worry is that we may fail the aliasing runtime check "spuriously",
// i.e. even though we would never enter the main-loop, and that this could have
// unfortunate side-effects (for example deopting unnecessarily). Let's
// look at the two possible cases:
// 1) We would never even enter the pre-loop.
// There are only predicates between the aliasing runtime check and the pre-loop,
// so a predicate would have to fail. These are rather rare cases. If we
// are using multiversioning for the aliasing runtime check, we would
// immediately fail the predicate in either the slow or fast loop, so
// the decision of the aliasing runtime check does not matter. But if
// we are using a predicate for the aliaing runtime check, then we may
// end up deopting twice: once for the aliasing runtime check, and then
// again for the other predicate. This would not be great, but again,
// failing predicates are rare in the first place.
//
// 2) We would enter the pre-loop, but not the main-loop.
// The pre_last must be accurate, because we are entering the pre-loop.
// But then we fail the zero-trip guard of the main-loop. Thus, for the
// main-loop, the init lies "after" the limit. Thus, the computed last
// for the main-loop equals the init. This means that span1 and span2
// are zero. Hence, p1(init) and p2(init) would have to alias for the
// aliasing runtime check to fail. Hence, it would not be surprising
// at all if we deopted because of the aliasing runtime check.
//
bool VPointer::can_make_speculative_aliasing_check_with(const VPointer& other) const {
const VPointer& vp1 = *this;
const VPointer& vp2 = other;
if (!_vloop.use_speculative_aliasing_checks()) { return false; }
// Both pointers need a nice linear form, otherwise we cannot formulate the check.
if (!vp1.is_valid() || !vp2.is_valid()) { return false; }
// The pointers always overlap -> a speculative check would always fail.
if (vp1.always_overlaps_with(vp2)) { return false; }
// The pointers never overlap -> a speculative check would always succeed.
assert(!vp1.never_overlaps_with(vp2), "ensured by caller");
// The speculative aliasing check happens either at the AutoVectorization predicate
// or at the multiversion_if. That is before the pre-loop. From the construction of
// VPointer, we already know that all its variables (except iv) are pre-loop invariant.
//
// In VPointer::make_speculative_aliasing_check_with we compute main_init in all
// cases. For this, we require pre_init and pre_limit. These values must be available
// for the speculative check, i.e. their control must dominate the speculative check.
// Further, "if vp1.iv_scale() != vp2.iv_scale()" we additionally need to have
// main_limit available for the speculative check.
// Note: no matter if the speculative check is inserted as a predicate or at the
// multiversion if, the speculative check happens before (dominates) the
// pre-loop.
Node* pre_init = _vloop.pre_loop_end()->init_trip();
Opaque1Node* pre_limit_opaq = _vloop.pre_loop_end()->limit()->as_Opaque1();
Node* pre_limit = pre_limit_opaq->in(1);
Node* main_limit = _vloop.cl()->limit();
if (!_vloop.is_available_for_speculative_check(pre_init)) {
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis()) {
tty->print_cr("VPointer::can_make_speculative_aliasing_check_with: pre_limit is not available at speculative check!");
}
#endif
return false;
}
if (!_vloop.is_available_for_speculative_check(pre_limit)) {
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis()) {
tty->print_cr("VPointer::can_make_speculative_aliasing_check_with: pre_limit is not available at speculative check!");
}
#endif
return false;
}
if (vp1.iv_scale() != vp2.iv_scale() && !_vloop.is_available_for_speculative_check(main_limit)) {
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis()) {
tty->print_cr("VPointer::can_make_speculative_aliasing_check_with: main_limit is not available at speculative check!");
}
#endif
return false;
}
// The speculative check also needs to create the pointer expressions for both
// VPointers. We must check that we can do that, i.e. that all variables of the
// VPointers are available at the speculative check (and not just pre-loop invariant).
if (!this->can_make_pointer_expression_at_speculative_check()) {
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis()) {
tty->print_cr("VPointer::can_make_speculative_aliasing_check_with: not all variables of VPointer are avaialbe at speculative check!");
this->print_on(tty);
}
#endif
return false;
}
if (!other.can_make_pointer_expression_at_speculative_check()) {
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis()) {
tty->print_cr("VPointer::can_make_speculative_aliasing_check_with: not all variables of VPointer are avaialbe at speculative check!");
other.print_on(tty);
}
#endif
return false;
}
return true;
}
// For description and derivation see "Computing the last iv value in a loop".
// Note: the iv computations here should not overflow. But out of an abundance
// of caution, we compute everything in long anyway.
Node* make_last(Node* initL, jint stride, Node* limitL, PhaseIdealLoop* phase) {
PhaseIterGVN& igvn = phase->igvn();
Node* abs_strideL = igvn.longcon(abs(stride));
Node* strideL = igvn.longcon(stride);
// If in some rare case the limit is "before" init, then
// this subtraction could overflow. Doing the calculations
// in long prevents this. Below, we clamp the "last" value
// back to init, which gets us back into the safe int range.
Node* diffL = (stride > 0) ? new SubLNode(limitL, initL)
: new SubLNode(initL, limitL);
Node* diffL_m1 = new AddLNode(diffL, igvn.longcon(-1));
Node* k = new DivLNode(nullptr, diffL_m1, abs_strideL);
// Compute last = init + k * iv_stride
Node* k_mul_stride = new MulLNode(k, strideL);
Node* last = new AddLNode(initL, k_mul_stride);
// Make sure that the last does not lie "before" init.
Node* last_clamped = MaxNode::build_min_max_long(&igvn, initL, last, stride > 0);
phase->register_new_node_with_ctrl_of(diffL, initL);
phase->register_new_node_with_ctrl_of(diffL_m1, initL);
phase->register_new_node_with_ctrl_of(k, initL);
phase->register_new_node_with_ctrl_of(k_mul_stride, initL);
phase->register_new_node_with_ctrl_of(last, initL);
phase->register_new_node_with_ctrl_of(last_clamped, initL);
return last_clamped;
}
BoolNode* make_a_plus_b_leq_c(Node* a, Node* b, Node* c, PhaseIdealLoop* phase) {
Node* a_plus_b = new AddLNode(a, b);
Node* cmp = CmpNode::make(a_plus_b, c, T_LONG, true);
BoolNode* bol = new BoolNode(cmp, BoolTest::le);
phase->register_new_node_with_ctrl_of(a_plus_b, a);
phase->register_new_node_with_ctrl_of(cmp, a);
phase->register_new_node_with_ctrl_of(bol, a);
return bol;
}
BoolNode* VPointer::make_speculative_aliasing_check_with(const VPointer& other, Node* ctrl) const {
// Ensure iv_scale1 <= iv_scale2.
const VPointer& vp1 = (this->iv_scale() <= other.iv_scale()) ? *this : other;
const VPointer& vp2 = (this->iv_scale() <= other.iv_scale()) ? other :*this ;
assert(vp1.iv_scale() <= vp2.iv_scale(), "ensured by swapping if necessary");
assert(vp1.can_make_speculative_aliasing_check_with(vp2), "sanity");
PhaseIdealLoop* phase = _vloop.phase();
PhaseIterGVN& igvn = phase->igvn();
// init (aka main_init): compute it from the the pre-loop structure.
// As described above, we cannot just take the _vloop.cl().init_trip(), because that
// value is pre-loop dependent, and we need a pre-loop independent value, so we can
// have it available at the predicate / multiversioning selector_if.
// For this, we need to be sure that the pre_limit is pre-loop independent as well,
// see can_make_speculative_aliasing_check_with.
Node* pre_init = _vloop.pre_loop_end()->init_trip();
jint pre_iv_stride = _vloop.pre_loop_end()->stride_con();
Opaque1Node* pre_limit_opaq = _vloop.pre_loop_end()->limit()->as_Opaque1();
Node* pre_limit = pre_limit_opaq->in(1);
assert(_vloop.is_pre_loop_invariant(pre_init), "needed for aliasing check before pre-loop");
assert(_vloop.is_pre_loop_invariant(pre_limit), "needed for aliasing check before pre-loop");
assert(_vloop.is_available_for_speculative_check(pre_init), "ctrl must be early enough to avoid cycles");
assert(_vloop.is_available_for_speculative_check(pre_limit), "ctrl must be early enough to avoid cycles");
Node* pre_initL = new ConvI2LNode(pre_init);
Node* pre_limitL = new ConvI2LNode(pre_limit);
phase->register_new_node_with_ctrl_of(pre_initL, pre_init);
phase->register_new_node_with_ctrl_of(pre_limitL, pre_init);
Node* pre_lastL = make_last(pre_initL, pre_iv_stride, pre_limitL, phase);
Node* main_initL = new AddLNode(pre_lastL, igvn.longcon(pre_iv_stride));
phase->register_new_node_with_ctrl_of(main_initL, pre_init);
Node* main_init = new ConvL2INode(main_initL);
phase->register_new_node_with_ctrl_of(main_init, pre_init);
assert(vp1.can_make_pointer_expression_at_speculative_check(), "variables must be available early enough to avoid cycles");
assert(vp2.can_make_pointer_expression_at_speculative_check(), "variables must be available early enough to avoid cycles");
Node* p1_init = vp1.make_pointer_expression(main_init, ctrl);
Node* p2_init = vp2.make_pointer_expression(main_init, ctrl);
Node* size1 = igvn.longcon(vp1.size());
Node* size2 = igvn.longcon(vp2.size());
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis() || _vloop.is_trace_speculative_runtime_checks()) {
tty->print_cr("\nVPointer::make_speculative_aliasing_check_with:");
tty->print("pre_init: "); pre_init->dump();
tty->print("pre_limit: "); pre_limit->dump();
tty->print("pre_lastL: "); pre_lastL->dump();
tty->print("main_init: "); main_init->dump();
tty->print_cr("p1_init:");
p1_init->dump_bfs(5, nullptr, "");
tty->print_cr("p2_init:");
p2_init->dump_bfs(5, nullptr, "");
}
#endif
BoolNode* condition1 = nullptr;
BoolNode* condition2 = nullptr;
if (vp1.iv_scale() == vp2.iv_scale()) {
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis() || _vloop.is_trace_speculative_runtime_checks()) {
tty->print_cr(" Same iv_scale(%d) -> parallel lines -> simple conditions:", vp1.iv_scale());
tty->print_cr(" p1(init) + size1 <= p2(init) OR p2(init) + size2 <= p1(init)");
tty->print_cr(" -------- condition1 -------- ------- condition2 ---------");
}
#endif
condition1 = make_a_plus_b_leq_c(p1_init, size1, p2_init, phase);
condition2 = make_a_plus_b_leq_c(p2_init, size2, p1_init, phase);
} else {
assert(vp1.iv_scale() < vp2.iv_scale(), "assumed in proof, established above by swapping");
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis() || _vloop.is_trace_speculative_runtime_checks()) {
tty->print_cr(" Different iv_scale -> lines with different slopes -> more complex conditions:");
tty->print_cr(" p1(init) + size1 <= p2(init) OR p2(init) + span2 + size2 <= p1(init) + span1 (if iv_stride >= 0)");
tty->print_cr(" p1(init) + span1 + size1 <= p2(init) + span2 OR p2(init) + size2 <= p1(init) (if iv_stride <= 0)");
tty->print_cr(" ---------------- condition1 ---------------- --------------- condition2 -----------------");
}
#endif
// last (aka main_last): compute from main-loop structure.
jint main_iv_stride = _vloop.iv_stride();
Node* main_limit = _vloop.cl()->limit();
assert(_vloop.is_pre_loop_invariant(main_limit), "needed for aliasing check before pre-loop");
assert(_vloop.is_available_for_speculative_check(main_limit), "ctrl must be early enough to avoid cycles");
Node* main_limitL = new ConvI2LNode(main_limit);
phase->register_new_node_with_ctrl_of(main_limitL, pre_init);
Node* main_lastL = make_last(main_initL, main_iv_stride, main_limitL, phase);
// Compute span1 = (last - init) * iv_scale1
// span2 = (last - init) * iv_scale2
Node* last_minus_init = new SubLNode(main_lastL, main_initL);
Node* iv_scale1 = igvn.longcon(vp1.iv_scale());
Node* iv_scale2 = igvn.longcon(vp2.iv_scale());
Node* span1 = new MulLNode(last_minus_init, iv_scale1);
Node* span2 = new MulLNode(last_minus_init, iv_scale2);
phase->register_new_node_with_ctrl_of(last_minus_init, pre_init);
phase->register_new_node_with_ctrl_of(span1, pre_init);
phase->register_new_node_with_ctrl_of(span2, pre_init);
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis() || _vloop.is_trace_speculative_runtime_checks()) {
tty->print("main_limitL: "); main_limitL->dump();
tty->print("main_lastL: "); main_lastL->dump();
tty->print("p1_init: "); p1_init->dump();
tty->print("p2_init: "); p2_init->dump();
tty->print("size1: "); size1->dump();
tty->print("size2: "); size2->dump();
tty->print_cr("span1: "); span1->dump_bfs(5, nullptr, "");
tty->print_cr("span2: "); span2->dump_bfs(5, nullptr, "");
}
#endif
Node* p1_init_plus_span1 = new AddLNode(p1_init, span1);
Node* p2_init_plus_span2 = new AddLNode(p2_init, span2);
phase->register_new_node_with_ctrl_of(p1_init_plus_span1, pre_init);
phase->register_new_node_with_ctrl_of(p2_init_plus_span2, pre_init);
if (_vloop.iv_stride() >= 0) {
condition1 = make_a_plus_b_leq_c(p1_init, size1, p2_init, phase);
condition2 = make_a_plus_b_leq_c(p2_init_plus_span2, size2, p1_init_plus_span1, phase);
} else {
condition1 = make_a_plus_b_leq_c(p1_init_plus_span1, size1, p2_init_plus_span2, phase);
condition2 = make_a_plus_b_leq_c(p2_init, size2, p1_init, phase);
}
}
#ifdef ASSERT
if (_vloop.is_trace_speculative_aliasing_analysis() || _vloop.is_trace_speculative_runtime_checks()) {
tty->print_cr("condition1:");
condition1->dump_bfs(5, nullptr, "");
tty->print_cr("condition2:");
condition2->dump_bfs(5, nullptr, "");
}
#endif
// Construct "condition1 OR condition2". Convert the bol value back to an int value
// that we can "OR" to create a single bol value. On x64, the two CMove are converted
// to two setbe instructions which capture the condition bits to a register, meaning
// we only have a single branch in the end.
Node* zero = igvn.intcon(0);
Node* one = igvn.intcon(1);
Node* cmov1 = new CMoveINode(condition1, zero, one, TypeInt::INT);
Node* cmov2 = new CMoveINode(condition2, zero, one, TypeInt::INT);
phase->register_new_node_with_ctrl_of(cmov1, main_initL);
phase->register_new_node_with_ctrl_of(cmov2, main_initL);
Node* c1_or_c2 = new OrINode(cmov1, cmov2);
Node* cmp = CmpNode::make(c1_or_c2, zero, T_INT);
BoolNode* bol = new BoolNode(cmp, BoolTest::ne);
phase->register_new_node_with_ctrl_of(c1_or_c2, main_initL);
phase->register_new_node_with_ctrl_of(cmp, main_initL);
phase->register_new_node_with_ctrl_of(bol, main_initL);
return bol;
}
// Creates the long pointer expression, evaluated with iv = iv_value.
// Since we are casting pointers to long with CastP2X, we must be careful
// that the values do not cross SafePoints, where the oop could be moved
// by GC, and the already cast value would not be updated, as it is not in
// the oop-map. For this, we must set a ctrl that is late enough, so that we
// cannot cross a SafePoint.
Node* VPointer::make_pointer_expression(Node* iv_value, Node* ctrl) const {
assert(is_valid(), "must be valid");
PhaseIdealLoop* phase = _vloop.phase();
PhaseIterGVN& igvn = phase->igvn();
Node* iv = _vloop.iv();
auto maybe_add = [&] (Node* n1, Node* n2, BasicType bt) {
if (n1 == nullptr) { return n2; }
Node* add = AddNode::make(n1, n2, bt);
phase->register_new_node(add, ctrl);
return add;
};
Node* expression = nullptr;
mem_pointer().for_each_raw_summand_of_int_group(0, [&] (const MemPointerRawSummand& s) {
Node* node = nullptr;
if (s.is_con()) {
// Long constant.
NoOverflowInt con = s.scaleI() * s.scaleL();
node = igvn.longcon(con.value());
} else {
// Long variable.
assert(s.scaleI().is_one(), "must be long variable");
Node* scaleL = igvn.longcon(s.scaleL().value());
Node* variable = (s.variable() == iv) ? iv_value : s.variable();
if (variable->bottom_type()->isa_ptr() != nullptr) {
// Use a ctrl that is late enough, so that we do not
// evaluate the cast before a SafePoint.
variable = new CastP2XNode(ctrl, variable);
phase->register_new_node(variable, ctrl);
}
node = new MulLNode(scaleL, variable);
phase->register_new_node(node, ctrl);
}
expression = maybe_add(expression, node, T_LONG);
});
int max_int_group = mem_pointer().max_int_group();
for (int int_group = 1; int_group <= max_int_group; int_group++) {
Node* int_expression = nullptr;
NoOverflowInt int_group_scaleL;
mem_pointer().for_each_raw_summand_of_int_group(int_group, [&] (const MemPointerRawSummand& s) {
Node* node = nullptr;
if (s.is_con()) {
node = igvn.intcon(s.scaleI().value());
} else {
Node* scaleI = igvn.intcon(s.scaleI().value());
Node* variable = (s.variable() == iv) ? iv_value : s.variable();
node = new MulINode(scaleI, variable);
phase->register_new_node(node, ctrl);
}
int_group_scaleL = s.scaleL(); // remember for multiplication after ConvI2L
int_expression = maybe_add(int_expression, node, T_INT);
});
assert(int_expression != nullptr, "no empty int group");
int_expression = new ConvI2LNode(int_expression);
phase->register_new_node(int_expression, ctrl);
Node* scaleL = igvn.longcon(int_group_scaleL.value());
int_expression = new MulLNode(scaleL, int_expression);
phase->register_new_node(int_expression, ctrl);
expression = maybe_add(expression, int_expression, T_LONG);
}
return expression;
}
#ifndef PRODUCT
void VPointer::print_on(outputStream* st, bool end_with_cr) const {
st->print("VPointer[");
if (!is_valid()) {
st->print_cr("invalid]");
return;
}
st->print("size: %2d, %s, ", size(),
_mem_pointer.base().is_object() ? "object" : "native");
Node* base = _mem_pointer.base().object_or_native();
tty->print("base(%d %s) + con(%3d) + iv_scale(%3d) * iv + invar(",
base->_idx, base->Name(),
_mem_pointer.con().value(),
_iv_scale);
int count = 0;
for_each_invar_summand([&] (const MemPointerSummand& s) {
if (count > 0) {
st->print(" + ");
}
s.print_on(tty);
count++;
});
if (count == 0) {
st->print("0");
}
st->print(")]");
if (end_with_cr) { st->cr(); }
}
#endif
AlignmentSolution* AlignmentSolver::solve() const {
DEBUG_ONLY( trace_start_solve(); )
// Out of simplicity: non power-of-2 stride not supported.
if (!is_power_of_2(abs(_pre_stride))) {
return new EmptyAlignmentSolution("non power-of-2 stride not supported");
}
assert(is_power_of_2(abs(_main_stride)), "main_stride is power of 2");
assert(_aw > 0 && is_power_of_2(_aw), "aw must be power of 2");
// Out of simplicity: non power-of-2 iv_scale not supported.
if (abs(iv_scale()) == 0 || !is_power_of_2(abs(iv_scale()))) {
return new EmptyAlignmentSolution("non power-of-2 iv_scale not supported");
}
// We analyze the address of mem_ref. The idea is to disassemble it into a linear
// expression, where we can use the constant factors as the basis for ensuring the
// alignment of vector memory accesses.
//
// The Simple form of the address is disassembled by VPointer into:
//
// adr = base + invar + iv_scale * iv + con
//
// Where the iv can be written as:
//
// iv = init + pre_stride * pre_iter + main_stride * main_iter
//
// init: value before pre-loop
// pre_stride: increment per pre-loop iteration
// pre_iter: number of pre-loop iterations (adjustable via pre-loop limit)
// main_stride: increment per main-loop iteration (= pre_stride * unroll_factor)
// main_iter: number of main-loop iterations (main_iter >= 0)
//
// In the following, we restate the Simple form of the address expression, by first
// expanding the iv variable. In a second step, we reshape the expression again, and
// state it as a linear expression, consisting of 6 terms.
//
// Simple form Expansion of iv variable Reshaped with constants Comments for terms
// ----------- ------------------------ ----------------------- ------------------
// adr = base = base = base (assume: base % aw = 0)
// + invar + invar_factor * var_invar + C_invar * var_invar (term for invariant)
// / + iv_scale * init + C_init * var_init (term for variable init)
// + iv_scale * iv -> | + iv_scale * pre_stride * pre_iter + C_pre * pre_iter (adjustable pre-loop term)
// \ + iv_scale * main_stride * main_iter + C_main * main_iter (main-loop term)
// + con + con + C_const (sum of constant terms)
//
// We describe the 6 terms:
// 1) The "base" of the address:
// - For heap objects, this is the base of the object, and as such
// ObjectAlignmentInBytes (a power of 2) aligned.
// - For off-heap / native memory, the "base" has no alignment
// gurantees. To ensure alignment we can do either of these:
// - Add a runtime check to verify ObjectAlignmentInBytes alignment,
// i.e. we can speculatively compile with an alignment assumption.
// If we pass the check, we can go into the loop with the alignment
// assumption, if we fail we have to trap/deopt or take the other
// loop version without alignment assumptions.
// - If runtime checks are not possible, then we return an empty
// solution, i.e. we do not vectorize the corresponding pack.
//
// Let us assume we have an object "base", or passed the alignment
// runtime check for native "bases", hence we know:
//
// base % ObjectAlignmentInBytes = 0
//
// We defined aw = MIN(vector_width, ObjectAlignmentInBytes), which is
// a power of 2. And hence we know that "base" is thus also aw-aligned:
//
// base % ObjectAlignmentInBytes = 0 ==> base % aw = 0 (BASE_ALIGNED)
//
// 2) The "C_const" term is the sum of all constant terms. This is "con",
// plus "iv_scale * init" if it is constant.
// 3) The "C_invar * var_invar" is the factorization of "invar" into a constant
// and variable term. If there is no invariant, then "C_invar" is zero.
//
// invar = C_invar * var_invar (FAC_INVAR)
//
// 4) The "C_init * var_init" is the factorization of "iv_scale * init" into a
// constant and a variable term. If "init" is constant, then "C_init" is
// zero, and "C_const" accounts for "init" instead.
//
// iv_scale * init = C_init * var_init + iv_scale * C_const_init (FAC_INIT)
// C_init = (init is constant) ? 0 : iv_scale
// C_const_init = (init is constant) ? init : 0
//
// 5) The "C_pre * pre_iter" term represents how much the iv is incremented
// during the "pre_iter" pre-loop iterations. This term can be adjusted
// by changing the pre-loop limit, which defines how many pre-loop iterations
// are executed. This allows us to adjust the alignment of the main-loop
// memory reference.
// 6) The "C_main * main_iter" term represents how much the iv is increased
// during "main_iter" main-loop iterations.
// For native memory, we must add a runtime-check that "base % ObjectAlignmentInBytes = ",
// to ensure (BASE_ALIGNED). If we cannot add this runtime-check, we have no guarantee on
// its alignment.
if (!_vpointer.mem_pointer().base().is_object() && !_are_speculative_checks_possible) {
return new EmptyAlignmentSolution("Cannot add speculative check for native memory alignment.");
}
// Attribute init (i.e. _init_node) either to C_const or to C_init term.
const int C_const_init = _init_node->is_ConI() ? _init_node->as_ConI()->get_int() : 0;
const int C_const = _vpointer.con() + C_const_init * iv_scale();
// Set C_invar depending on if invar is present
const int C_invar = _vpointer.compute_invar_factor();
const int C_init = _init_node->is_ConI() ? 0 : iv_scale();
const int C_pre = iv_scale() * _pre_stride;
const int C_main = iv_scale() * _main_stride;
DEBUG_ONLY( trace_reshaped_form(C_const, C_const_init, C_invar, C_init, C_pre, C_main); )
// We must find a pre_iter, such that adr is aw aligned: adr % aw = 0. Note, that we are defining the
// modulo operator "%" such that the remainder is always positive, see AlignmentSolution::mod(i, q).
//
// Since "base % aw = 0" (BASE_ALIGNED), we only need to ensure alignment of the other 5 terms:
//
// (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter + C_main * main_iter) % aw = 0 (1)
//
// Alignment must be maintained over all main-loop iterations, i.e. for any main_iter >= 0, we require:
//
// C_main % aw = 0 (2)
//
const int C_main_mod_aw = AlignmentSolution::mod(C_main, _aw);
DEBUG_ONLY( trace_main_iteration_alignment(C_const, C_invar, C_init, C_pre, C_main, C_main_mod_aw); )
if (C_main_mod_aw != 0) {
return new EmptyAlignmentSolution("EQ(2) not satisfied (cannot align across main-loop iterations)");
}
// In what follows, we need to show that the C_const, init and invar terms can be aligned by
// adjusting the pre-loop iteration count (pre_iter), which is controlled by the pre-loop
// limit.
//
// (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw = 0 (3)
//
// We strengthen the constraints by splitting the equation into 3 equations, where we
// want to find integer solutions for pre_iter_C_const, pre_iter_C_invar, and
// pre_iter_C_init, which means that the C_const, init and invar terms can be aligned
// independently:
//
// (C_const + C_pre * pre_iter_C_const) % aw = 0 (4a)
// (C_invar * var_invar + C_pre * pre_iter_C_invar) % aw = 0 (4b)
// (C_init * var_init + C_pre * pre_iter_C_init ) % aw = 0 (4c)
//
// We now prove that (4a, b, c) are sufficient as well as necessary to guarantee (3)
// for any runtime value of var_invar and var_init (i.e. for any invar and init).
// This tells us that the "strengthening" does not restrict the algorithm more than
// necessary.
//
// Sufficient (i.e (4a, b, c) imply (3)):
//
// pre_iter = pre_iter_C_const + pre_iter_C_invar + pre_iter_C_init
//
// Adding up (4a, b, c):
//
// 0 = ( C_const + C_pre * pre_iter_C_const
// + C_invar * var_invar + C_pre * pre_iter_C_invar
// + C_init * var_init + C_pre * pre_iter_C_init ) % aw
//
// = ( C_const + C_invar * var_invar + C_init * var_init
// + C_pre * (pre_iter_C_const + pre_iter_C_invar + pre_iter_C_init)) % aw
//
// = ( C_const + C_invar * var_invar + C_init * var_init
// + C_pre * pre_iter) % aw
//
// Necessary (i.e. (3) implies (4a, b, c)):
// (4a): Set var_invar = var_init = 0 at runtime. Applying this to (3), we get:
//
// 0 =
// = (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw
// = (C_const + C_invar * 0 + C_init * 0 + C_pre * pre_iter) % aw
// = (C_const + C_pre * pre_iter) % aw
//
// This is of the same form as (4a), and we have a solution:
// pre_iter_C_const = pre_iter
//
// (4b): Set var_init = 0, and assume (4a), which we just proved is implied by (3).
// Subtract (4a) from (3):
//
// 0 =
// = (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw
// - (C_const + C_pre * pre_iter_C_const) % aw
// = (C_invar * var_invar + C_init * var_init + C_pre * pre_iter - C_pre * pre_iter_C_const) % aw
// = (C_invar * var_invar + C_init * 0 + C_pre * (pre_iter - pre_iter_C_const)) % aw
// = (C_invar * var_invar + + C_pre * (pre_iter - pre_iter_C_const)) % aw
//
// This is of the same form as (4b), and we have a solution:
// pre_iter_C_invar = pre_iter - pre_iter_C_const
//
// (4c): Set var_invar = 0, and assume (4a), which we just proved is implied by (3).
// Subtract (4a) from (3):
//
// 0 =
// = (C_const + C_invar * var_invar + C_init * var_init + C_pre * pre_iter) % aw
// - (C_const + C_pre * pre_iter_C_const) % aw
// = (C_invar * var_invar + C_init * var_init + C_pre * pre_iter - C_pre * pre_iter_C_const) % aw
// = (C_invar * 0 + C_init * var_init + C_pre * (pre_iter - pre_iter_C_const)) % aw
// = ( + C_init * var_init + C_pre * (pre_iter - pre_iter_C_const)) % aw
//
// This is of the same form as (4c), and we have a solution:
// pre_iter_C_invar = pre_iter - pre_iter_C_const
//
// The solutions of Equations (4a, b, c) for pre_iter_C_const, pre_iter_C_invar, and pre_iter_C_init
// respectively, can have one of these states:
//
// trivial: The solution can be any integer.
// constrained: There is a (periodic) solution, but it is not trivial.
// empty: Statically we cannot guarantee a solution for all var_invar and var_init.
//
// We look at (4a):
//
// abs(C_pre) >= aw
// -> Since abs(C_pre) is a power of two, we have C_pre % aw = 0. Therefore:
//
// For any pre_iter_C_const: (C_pre * pre_iter_C_const) % aw = 0
//
// (C_const + C_pre * pre_iter_C_const) % aw = 0
// C_const % aw = 0
//
// Hence, we can only satisfy (4a) if C_Const is aw aligned:
//
// C_const % aw == 0:
// -> (4a) has a trivial solution since we can choose any value for pre_iter_C_const.
//
// C_const % aw != 0:
// -> (4a) has an empty solution since no pre_iter_C_const can achieve aw alignment.
//
// abs(C_pre) < aw:
// -> Since both abs(C_pre) and aw are powers of two, we know:
//
// There exists integer x > 1: aw = abs(C_pre) * x
//
// C_const % abs(C_pre) == 0:
// -> There exists integer z: C_const = C_pre * z
//
// (C_const + C_pre * pre_iter_C_const) % aw = 0
// ==>
// (C_pre * z + C_pre * pre_iter_C_const) % aw = 0
// ==>
// (C_pre * z + C_pre * pre_iter_C_const) % (abs(C_pre) * x) = 0
// ==>
// ( z + pre_iter_C_const) % x = 0
// ==>
// for any m: pre_iter_C_const = m * x - z
//
// Hence, pre_iter_C_const has a non-trivial (because x > 1) periodic (periodicity x)
// solution, i.e. it has a constrained solution.
//
// C_const % abs(C_pre) != 0:
// There exists integer x > 1: aw = abs(C_pre) * x
//
// C_const % abs(C_pre) != 0
// ==>
// (C_const + C_pre * pre_iter_C_const) % abs(C_pre) != 0
// ==>
// (C_const + C_pre * pre_iter_C_const) % (abs(C_pre) * x) != 0
// ==>
// (C_const + C_pre * pre_iter_C_const) % aw != 0
//
// This is in contradiction with (4a), and therefore there cannot be any solution,
// i.e. we have an empty solution.
//
// In summary, for (4a):
//
// abs(C_pre) >= aw AND C_const % aw == 0 -> trivial
// abs(C_pre) >= aw AND C_const % aw != 0 -> empty
// abs(C_pre) < aw AND C_const % abs(C_pre) == 0 -> constrained
// abs(C_pre) < aw AND C_const % abs(C_pre) != 0 -> empty
//
// With analogue argumentation for (4b):
//
// abs(C_pre) >= aw AND C_invar % aw == 0 -> trivial
// abs(C_pre) >= aw AND C_invar % aw != 0 -> empty
// abs(C_pre) < aw AND C_invar % abs(C_pre) == 0 -> constrained
// abs(C_pre) < aw AND C_invar % abs(C_pre) != 0 -> empty
//
// With analogue argumentation for (4c):
//
// abs(C_pre) >= aw AND C_init % aw == 0 -> trivial
// abs(C_pre) >= aw AND C_init % aw != 0 -> empty
// abs(C_pre) < aw AND C_init % abs(C_pre) == 0 -> constrained
// abs(C_pre) < aw AND C_init % abs(C_pre) != 0 -> empty
//
// Out of these states follows the state for the solution of pre_iter:
//
// Trivial: If (4a, b, c) are all trivial.
// Empty: If any of (4a, b, c) is empty, because then we cannot guarantee a solution
// for pre_iter, for all possible invar and init values.
// Constrained: Else. Incidentally, (4a, b, c) are all constrained themselves, as we argue below.
const EQ4 eq4(C_const, C_invar, C_init, C_pre, _aw);
const EQ4::State eq4a_state = eq4.eq4a_state();
const EQ4::State eq4b_state = eq4.eq4b_state();
const EQ4::State eq4c_state = eq4.eq4c_state();
#ifdef ASSERT
if (is_trace()) {
eq4.trace();
}
#endif
// If (4a, b, c) are all trivial, then also the solution for pre_iter is trivial:
if (eq4a_state == EQ4::State::TRIVIAL &&
eq4b_state == EQ4::State::TRIVIAL &&
eq4c_state == EQ4::State::TRIVIAL) {
return new TrivialAlignmentSolution();
}
// If any of (4a, b, c) is empty, then we also cannot guarantee a solution for pre_iter, for
// any init and invar, hence the solution for pre_iter is empty:
if (eq4a_state == EQ4::State::EMPTY ||
eq4b_state == EQ4::State::EMPTY ||
eq4c_state == EQ4::State::EMPTY) {
return new EmptyAlignmentSolution("EQ(4a, b, c) not all non-empty: cannot align const, invar and init terms individually");
}
// If abs(C_pre) >= aw, then the solutions to (4a, b, c) are all either trivial or empty, and
// hence we would have found the solution to pre_iter above as either trivial or empty. Thus
// we now know that:
//
// abs(C_pre) < aw
//
assert(abs(C_pre) < _aw, "implied by constrained case");
// And since abs(C_pre) < aw, the solutions of (4a, b, c) can now only be constrained or empty.
// But since we already handled the empty case, the solutions are now all constrained.
assert(eq4a_state == EQ4::State::CONSTRAINED &&
eq4a_state == EQ4::State::CONSTRAINED &&
eq4a_state == EQ4::State::CONSTRAINED, "all must be constrained now");
// And since they are all constrained, we must have:
//
// C_const % abs(C_pre) = 0 (5a)
// C_invar % abs(C_pre) = 0 (5b)
// C_init % abs(C_pre) = 0 (5c)
//
assert(AlignmentSolution::mod(C_const, abs(C_pre)) == 0, "EQ(5a): C_const must be alignable");
assert(AlignmentSolution::mod(C_invar, abs(C_pre)) == 0, "EQ(5b): C_invar must be alignable");
assert(AlignmentSolution::mod(C_init, abs(C_pre)) == 0, "EQ(5c): C_init must be alignable");
// With (5a, b, c), we know that there are integers X, Y, Z:
//
// C_const = X * abs(C_pre) ==> X = C_const / abs(C_pre) (6a)
// C_invar = Y * abs(C_pre) ==> Y = C_invar / abs(C_pre) (6b)
// C_init = Z * abs(C_pre) ==> Z = C_init / abs(C_pre) (6c)
//
// Further, we define:
//
// sign(C_pre) = C_pre / abs(C_pre) = (C_pre > 0) ? 1 : -1, (7)
//
// We know that abs(C_pre) as well as aw are powers of 2, and since (5) we can define integer q:
//
// q = aw / abs(C_pre) (8)
//
const int q = _aw / abs(C_pre);
assert(q >= 2, "implied by constrained solution");
// We now know that all terms in (4a, b, c) are divisible by abs(C_pre):
//
// (C_const / abs(C_pre) + C_pre * pre_iter_C_const / abs(C_pre)) % (aw / abs(C_pre)) =
// (X * abs(C_pre) / abs(C_pre) + C_pre * pre_iter_C_const / abs(C_pre)) % (aw / abs(C_pre)) =
// (X + pre_iter_C_const * sign(C_pre)) % q = 0 (9a)
//
// -> pre_iter_C_const * sign(C_pre) = mx1 * q - X
// -> pre_iter_C_const = mx2 * q - sign(C_pre) * X (10a)
// (for any integers mx1, mx2)
//
// (C_invar * var_invar / abs(C_pre) + C_pre * pre_iter_C_invar / abs(C_pre)) % (aw / abs(C_pre)) =
// (Y * abs(C_pre) * var_invar / abs(C_pre) + C_pre * pre_iter_C_invar / abs(C_pre)) % (aw / abs(C_pre)) =
// (Y * var_invar + pre_iter_C_invar * sign(C_pre)) % q = 0 (9b)
//
// -> pre_iter_C_invar * sign(C_pre) = my1 * q - Y * var_invar
// -> pre_iter_C_invar = my2 * q - sign(C_pre) * Y * var_invar (10b)
// (for any integers my1, my2)
//
// (C_init * var_init / abs(C_pre) + C_pre * pre_iter_C_init / abs(C_pre)) % (aw / abs(C_pre)) =
// (Z * abs(C_pre) * var_init / abs(C_pre) + C_pre * pre_iter_C_init / abs(C_pre)) % (aw / abs(C_pre)) =
// (Z * var_init + pre_iter_C_init * sign(C_pre)) % q = 0 (9c)
//
// -> pre_iter_C_init * sign(C_pre) = mz1 * q - Z * var_init
// -> pre_iter_C_init = mz2 * q - sign(C_pre) * Z * var_init (10c)
// (for any integers mz1, mz2)
//
//
// Having solved the equations using the division, we can re-substitute X, Y, and Z, and apply (FAC_INVAR) as
// well as (FAC_INIT). We use the fact that sign(x) == 1 / sign(x) and sign(x) * abs(x) == x:
//
// pre_iter_C_const = mx2 * q - sign(C_pre) * X
// = mx2 * q - sign(C_pre) * C_const / abs(C_pre)
// = mx2 * q - C_const / C_pre
// = mx2 * q - C_const / (iv_scale * pre_stride) (11a)
//
// If there is an invariant:
//
// pre_iter_C_invar = my2 * q - sign(C_pre) * Y * var_invar
// = my2 * q - sign(C_pre) * C_invar * var_invar / abs(C_pre)
// = my2 * q - sign(C_pre) * invar / abs(C_pre)
// = my2 * q - invar / C_pre
// = my2 * q - invar / (iv_scale * pre_stride) (11b, with invar)
//
// If there is no invariant (i.e. C_invar = 0 ==> Y = 0):
//
// pre_iter_C_invar = my2 * q (11b, no invar)
//
// If init is variable (i.e. C_init = iv_scale, init = var_init):
//
// pre_iter_C_init = mz2 * q - sign(C_pre) * Z * var_init
// = mz2 * q - sign(C_pre) * C_init * var_init / abs(C_pre)
// = mz2 * q - sign(C_pre) * iv_scale * init / abs(C_pre)
// = mz2 * q - iv_scale * init / C_pre
// = mz2 * q - iv_scale * init / (iv_scale * pre_stride)
// = mz2 * q - init / pre_stride (11c, variable init)
//
// If init is constant (i.e. C_init = 0 ==> Z = 0):
//
// pre_iter_C_init = mz2 * q (11c, constant init)
//
// Note, that the solutions found by (11a, b, c) are all periodic with periodicity q. We combine them,
// with m = mx2 + my2 + mz2:
//
// pre_iter = pre_iter_C_const + pre_iter_C_invar + pre_iter_C_init
// = mx2 * q - C_const / (iv_scale * pre_stride)
// + my2 * q [- invar / (iv_scale * pre_stride) ]
// + mz2 * q [- init / pre_stride ]
//
// = m * q (periodic part)
// - C_const / (iv_scale * pre_stride) (align constant term)
// [- invar / (iv_scale * pre_stride) ] (align invariant term, if present)
// [- init / pre_stride ] (align variable init term, if present) (12)
//
// We can further simplify this solution by introducing integer 0 <= r < q:
//
// r = (-C_const / (iv_scale * pre_stride)) % q (13)
//
const int r = AlignmentSolution::mod(-C_const / (iv_scale() * _pre_stride), q);
//
// pre_iter = m * q + r
// [- invar / (iv_scale * pre_stride) ]
// [- init / pre_stride ] (14)
//
// We thus get a solution that can be stated in terms of:
//
// q (periodicity), r (constant alignment), invar, iv_scale, pre_stride, init
//
// However, pre_stride and init are shared by all mem_ref in the loop, hence we do not need to provide
// them in the solution description.
DEBUG_ONLY( trace_constrained_solution(C_const, C_invar, C_init, C_pre, q, r); )
return new ConstrainedAlignmentSolution(_mem_ref, q, r, _vpointer /* holds invar and iv_scale */);
// APPENDIX:
// We can now verify the success of the solution given by (12):
//
// adr % aw =
//
// -> Simple form
// (base + invar + iv_scale * iv + con) % aw =
//
// -> Expand iv
// (base + con + invar + iv_scale * (init + pre_stride * pre_iter + main_stride * main_iter)) % aw =
//
// -> Reshape
// (base + con + invar
// + iv_scale * init
// + iv_scale * pre_stride * pre_iter
// + iv_scale * main_stride * main_iter)) % aw =
//
// -> apply (BASE_ALIGNED): base % aw = 0
// -> main-loop iterations aligned (2): C_main % aw = (iv_scale * main_stride) % aw = 0
// (con + invar + iv_scale * init + iv_scale * pre_stride * pre_iter) % aw =
//
// -> apply (12)
// (con + invar + iv_scale * init
// + iv_scale * pre_stride * (m * q - C_const / (iv_scale * pre_stride)
// [- invar / (iv_scale * pre_stride) ]
// [- init / pre_stride ]
// )
// ) % aw =
//
// -> expand C_const = con [+ init * iv_scale] (if init const)
// (con + invar + iv_scale * init
// + iv_scale * pre_stride * (m * q - con / (iv_scale * pre_stride)
// [- init / pre_stride ] (if init constant)
// [- invar / (iv_scale * pre_stride) ] (if invar present)
// [- init / pre_stride ] (if init variable)
// )
// ) % aw =
//
// -> assuming invar = 0 if it is not present
// -> merge the two init terms (variable or constant)
// -> apply (8): q = aw / (abs(C_pre)) = aw / abs(iv_scale * pre_stride)
// -> and hence: (iv_scale * pre_stride * q) % aw = 0
// -> all terms are canceled out
// (con + invar + iv_scale * init
// + iv_scale * pre_stride * m * q -> aw aligned
// - iv_scale * pre_stride * con / (iv_scale * pre_stride) -> = con
// - iv_scale * pre_stride * init / pre_stride -> = iv_scale * init
// - iv_scale * pre_stride * invar / (iv_scale * pre_stride) -> = invar
// ) % aw = 0
//
// The solution given by (12) does indeed guarantee alignment.
}
#ifdef ASSERT
void AlignmentSolver::trace_start_solve() const {
if (is_trace()) {
tty->print(" vector mem_ref:");
_mem_ref->dump();
tty->print(" VPointer: ");
_vpointer.print_on(tty);
tty->print_cr(" vector_width = %d", _vector_width);
tty->print_cr(" aw = alignment_width = min(vector_width(%d), ObjectAlignmentInBytes(%d)) = %d",
_vector_width, ObjectAlignmentInBytes, _aw);
if (!_init_node->is_ConI()) {
tty->print(" init:");
_init_node->dump();
}
tty->print_cr(" invar = SUM(invar_summands), invar_summands:");
int invar_count = 0;
_vpointer.for_each_invar_summand([&] (const MemPointerSummand& s) {
tty->print(" ");
s.print_on(tty);
tty->print(" -> ");
s.variable()->dump();
invar_count++;
});
if (invar_count == 0) {
tty->print_cr(" No invar_summands.");
}
const jint invar_factor = _vpointer.compute_invar_factor();
tty->print_cr(" invar_factor = %d", invar_factor);
// iv = init + pre_iter * pre_stride + main_iter * main_stride
tty->print(" iv = init");
if (_init_node->is_ConI()) {
tty->print("(%4d)", _init_node->as_ConI()->get_int());
} else {
tty->print("[%4d]", _init_node->_idx);
}
tty->print_cr(" + pre_iter * pre_stride(%d) + main_iter * main_stride(%d)",
_pre_stride, _main_stride);
// adr = base + con + invar + iv_scale * iv
tty->print(" adr = base[%d]", base().object_or_native()->_idx);
tty->print_cr(" + invar + iv_scale(%d) * iv + con(%d)", iv_scale(), _vpointer.con());
}
}
void AlignmentSolver::trace_reshaped_form(const int C_const,
const int C_const_init,
const int C_invar,
const int C_init,
const int C_pre,
const int C_main) const
{
if (is_trace()) {
tty->print(" = base[%d] + ", base().object_or_native()->_idx);
tty->print_cr("C_const(%d) + C_invar(%d) * var_invar + C_init(%d) * var_init + C_pre(%d) * pre_iter + C_main(%d) * main_iter",
C_const, C_invar, C_init, C_pre, C_main);
if (_init_node->is_ConI()) {
tty->print_cr(" init is constant:");
tty->print_cr(" C_const_init = %d", C_const_init);
tty->print_cr(" C_init = %d", C_init);
} else {
tty->print_cr(" init is variable:");
tty->print_cr(" C_const_init = %d", C_const_init);
tty->print_cr(" C_init = abs(iv_scale)= %d", C_init);
}
if (C_invar != 0) {
tty->print_cr(" invariant present:");
tty->print_cr(" C_invar = invar_factor = %d", C_invar);
} else {
tty->print_cr(" no invariant:");
tty->print_cr(" C_invar = %d", C_invar);
}
tty->print_cr(" C_const = con(%d) + iv_scale(%d) * C_const_init(%d) = %d",
_vpointer.con(), iv_scale(), C_const_init, C_const);
tty->print_cr(" C_pre = iv_scale(%d) * pre_stride(%d) = %d",
iv_scale(), _pre_stride, C_pre);
tty->print_cr(" C_main = iv_scale(%d) * main_stride(%d) = %d",
iv_scale(), _main_stride, C_main);
}
}
void AlignmentSolver::trace_main_iteration_alignment(const int C_const,
const int C_invar,
const int C_init,
const int C_pre,
const int C_main,
const int C_main_mod_aw) const
{
if (is_trace()) {
tty->print(" EQ(1 ): (C_const(%d) + C_invar(%d) * var_invar + C_init(%d) * var_init",
C_const, C_invar, C_init);
tty->print(" + C_pre(%d) * pre_iter + C_main(%d) * main_iter) %% aw(%d) = 0",
C_pre, C_main, _aw);
tty->print_cr(" (given base aligned -> align rest)");
tty->print(" EQ(2 ): C_main(%d) %% aw(%d) = %d = 0",
C_main, _aw, C_main_mod_aw);
tty->print_cr(" (alignment across iterations)");
}
}
void AlignmentSolver::EQ4::trace() const {
tty->print_cr(" EQ(4a): (C_const(%3d) + C_pre(%d) * pre_iter_C_const) %% aw(%d) = 0 (align const term individually)",
_C_const, _C_pre, _aw);
tty->print_cr(" -> %s", state_to_str(eq4a_state()));
tty->print_cr(" EQ(4b): (C_invar(%3d) * var_invar + C_pre(%d) * pre_iter_C_invar) %% aw(%d) = 0 (align invar term individually)",
_C_invar, _C_pre, _aw);
tty->print_cr(" -> %s", state_to_str(eq4b_state()));
tty->print_cr(" EQ(4c): (C_init( %3d) * var_init + C_pre(%d) * pre_iter_C_init ) %% aw(%d) = 0 (align init term individually)",
_C_init, _C_pre, _aw);
tty->print_cr(" -> %s", state_to_str(eq4c_state()));
}
void AlignmentSolver::trace_constrained_solution(const int C_const,
const int C_invar,
const int C_init,
const int C_pre,
const int q,
const int r) const
{
if (is_trace()) {
tty->print_cr(" EQ(4a, b, c) all constrained, hence:");
tty->print_cr(" EQ(5a): C_const(%3d) %% abs(C_pre(%d)) = 0", C_const, C_pre);
tty->print_cr(" EQ(5b): C_invar(%3d) %% abs(C_pre(%d)) = 0", C_invar, C_pre);
tty->print_cr(" EQ(5c): C_init( %3d) %% abs(C_pre(%d)) = 0", C_init, C_pre);
tty->print_cr(" All terms in EQ(4a, b, c) are divisible by abs(C_pre(%d)).", C_pre);
const int X = C_const / abs(C_pre);
const int Y = C_invar / abs(C_pre);
const int Z = C_init / abs(C_pre);
const int sign = (C_pre > 0) ? 1 : -1;
tty->print_cr(" X = C_const(%3d) / abs(C_pre(%d)) = %d (6a)", C_const, C_pre, X);
tty->print_cr(" Y = C_invar(%3d) / abs(C_pre(%d)) = %d (6b)", C_invar, C_pre, Y);
tty->print_cr(" Z = C_init( %3d) / abs(C_pre(%d)) = %d (6c)", C_init , C_pre, Z);
tty->print_cr(" q = aw( %3d) / abs(C_pre(%d)) = %d (8)", _aw, C_pre, q);
tty->print_cr(" sign(C_pre) = (C_pre(%d) > 0) ? 1 : -1 = %d (7)", C_pre, sign);
tty->print_cr(" EQ(9a): (X(%3d) + pre_iter_C_const * sign(C_pre)) %% q(%d) = 0", X, q);
tty->print_cr(" EQ(9b): (Y(%3d) * var_invar + pre_iter_C_invar * sign(C_pre)) %% q(%d) = 0", Y, q);
tty->print_cr(" EQ(9c): (Z(%3d) * var_init + pre_iter_C_init * sign(C_pre)) %% q(%d) = 0", Z, q);
tty->print_cr(" EQ(10a): pre_iter_C_const = mx2 * q(%d) - sign(C_pre) * X(%d)", q, X);
tty->print_cr(" EQ(10b): pre_iter_C_invar = my2 * q(%d) - sign(C_pre) * Y(%d) * var_invar", q, Y);
tty->print_cr(" EQ(10c): pre_iter_C_init = mz2 * q(%d) - sign(C_pre) * Z(%d) * var_init ", q, Z);
tty->print_cr(" r = (-C_const(%d) / (iv_scale(%d) * pre_stride(%d)) %% q(%d) = %d",
C_const, iv_scale(), _pre_stride, q, r);
tty->print_cr(" EQ(14): pre_iter = m * q(%3d) - r(%d)", q, r);
if (C_invar != 0) {
tty->print_cr(" - invar / (iv_scale(%d) * pre_stride(%d))",
iv_scale(), _pre_stride);
}
if (!_init_node->is_ConI()) {
tty->print_cr(" - init / pre_stride(%d)",
_pre_stride);
}
}
}
#endif