jdk/src/hotspot/share/cds/aotMetaspace.cpp
2026-01-08 18:42:20 +00:00

2256 lines
93 KiB
C++

/*
* Copyright (c) 2012, 2026, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "cds/aotArtifactFinder.hpp"
#include "cds/aotClassInitializer.hpp"
#include "cds/aotClassLinker.hpp"
#include "cds/aotClassLocation.hpp"
#include "cds/aotConstantPoolResolver.hpp"
#include "cds/aotLinkedClassBulkLoader.hpp"
#include "cds/aotLogging.hpp"
#include "cds/aotMapLogger.hpp"
#include "cds/aotMappedHeapLoader.hpp"
#include "cds/aotMetaspace.hpp"
#include "cds/aotReferenceObjSupport.hpp"
#include "cds/archiveBuilder.hpp"
#include "cds/cds_globals.hpp"
#include "cds/cdsConfig.hpp"
#include "cds/cdsProtectionDomain.hpp"
#include "cds/classListParser.hpp"
#include "cds/classListWriter.hpp"
#include "cds/cppVtables.hpp"
#include "cds/dumpAllocStats.hpp"
#include "cds/dynamicArchive.hpp"
#include "cds/filemap.hpp"
#include "cds/finalImageRecipes.hpp"
#include "cds/heapShared.inline.hpp"
#include "cds/lambdaFormInvokers.hpp"
#include "cds/lambdaProxyClassDictionary.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "classfile/classLoaderDataShared.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "classfile/loaderConstraints.hpp"
#include "classfile/modules.hpp"
#include "classfile/placeholders.hpp"
#include "classfile/stringTable.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/systemDictionaryShared.hpp"
#include "classfile/vmClasses.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/aotCodeCache.hpp"
#include "code/codeCache.hpp"
#include "gc/shared/gcVMOperations.hpp"
#include "interpreter/bytecodes.hpp"
#include "interpreter/bytecodeStream.hpp"
#include "jvm_io.h"
#include "logging/log.hpp"
#include "logging/logMessage.hpp"
#include "logging/logStream.hpp"
#include "memory/memoryReserver.hpp"
#include "memory/metaspace.hpp"
#include "memory/metaspaceClosure.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "nmt/memTracker.hpp"
#include "oops/compressedKlass.hpp"
#include "oops/constantPool.inline.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oopHandle.hpp"
#include "oops/resolvedFieldEntry.hpp"
#include "oops/trainingData.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/arguments.hpp"
#include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/safepointVerifiers.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/vmOperations.hpp"
#include "runtime/vmThread.hpp"
#include "sanitizers/leak.hpp"
#include "services/management.hpp"
#include "utilities/align.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/hashTable.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
#include <sys/stat.h>
ReservedSpace AOTMetaspace::_symbol_rs;
VirtualSpace AOTMetaspace::_symbol_vs;
bool AOTMetaspace::_archive_loading_failed = false;
bool AOTMetaspace::_remapped_readwrite = false;
void* AOTMetaspace::_aot_metaspace_static_top = nullptr;
intx AOTMetaspace::_relocation_delta;
char* AOTMetaspace::_requested_base_address;
Array<Method*>* AOTMetaspace::_archived_method_handle_intrinsics = nullptr;
bool AOTMetaspace::_use_optimized_module_handling = true;
int volatile AOTMetaspace::_preimage_static_archive_dumped = 0;
FileMapInfo* AOTMetaspace::_output_mapinfo = nullptr;
// The CDS archive is divided into the following regions:
// rw - read-write metadata
// ro - read-only metadata and read-only tables
// hp - heap region
// bm - bitmap for relocating the above 7 regions.
//
// The rw and ro regions are linearly allocated, in the order of rw->ro.
// These regions are aligned with AOTMetaspace::core_region_alignment().
//
// These 2 regions are populated in the following steps:
// [0] All classes are loaded in AOTMetaspace::load_classes(). All metadata are
// temporarily allocated outside of the shared regions.
// [1] We enter a safepoint and allocate a buffer for the rw/ro regions.
// [2] C++ vtables are copied into the rw region.
// [3] ArchiveBuilder copies RW metadata into the rw region.
// [4] ArchiveBuilder copies RO metadata into the ro region.
// [5] SymbolTable, StringTable, SystemDictionary, and a few other read-only data
// are copied into the ro region as read-only tables.
//
// The heap region is written by HeapShared::write_heap().
//
// The bitmap region is used to relocate the ro/rw/hp regions.
static DumpRegion _symbol_region("symbols");
char* AOTMetaspace::symbol_space_alloc(size_t num_bytes) {
return _symbol_region.allocate(num_bytes);
}
// os::vm_allocation_granularity() is usually 4K for most OSes. However, some platforms
// such as linux-aarch64 and macos-x64 ...
// it can be either 4K or 64K and on macos-aarch64 it is 16K. To generate archives that are
// compatible for both settings, an alternative cds core region alignment can be enabled
// at building time:
// --enable-compactible-cds-alignment
// Upon successful configuration, the compactible alignment then can be defined in:
// os_linux_aarch64.cpp
// os_bsd_x86.cpp
size_t AOTMetaspace::core_region_alignment() {
return os::cds_core_region_alignment();
}
size_t AOTMetaspace::protection_zone_size() {
return os::cds_core_region_alignment();
}
static bool shared_base_valid(char* shared_base) {
// We check user input for SharedBaseAddress at dump time.
// At CDS runtime, "shared_base" will be the (attempted) mapping start. It will also
// be the encoding base, since the headers of archived base objects (and with Lilliput,
// the prototype mark words) carry pre-computed narrow Klass IDs that refer to the mapping
// start as base.
//
// On AARCH64, The "shared_base" may not be later usable as encoding base, depending on the
// total size of the reserved area and the precomputed_narrow_klass_shift. This is checked
// before reserving memory. Here we weed out values already known to be invalid later.
return AARCH64_ONLY(is_aligned(shared_base, 4 * G)) NOT_AARCH64(true);
}
class DumpClassListCLDClosure : public CLDClosure {
static const int INITIAL_TABLE_SIZE = 1987;
static const int MAX_TABLE_SIZE = 61333;
fileStream *_stream;
ResizeableHashTable<InstanceKlass*, bool,
AnyObj::C_HEAP, mtClassShared> _dumped_classes;
void dump(InstanceKlass* ik) {
bool created;
_dumped_classes.put_if_absent(ik, &created);
if (!created) {
return;
}
if (_dumped_classes.maybe_grow()) {
log_info(aot, hashtables)("Expanded _dumped_classes table to %d", _dumped_classes.table_size());
}
if (ik->super()) {
dump(ik->super());
}
Array<InstanceKlass*>* interfaces = ik->local_interfaces();
int len = interfaces->length();
for (int i = 0; i < len; i++) {
dump(interfaces->at(i));
}
ClassListWriter::write_to_stream(ik, _stream);
}
public:
DumpClassListCLDClosure(fileStream* f)
: CLDClosure(), _dumped_classes(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE) {
_stream = f;
}
void do_cld(ClassLoaderData* cld) {
for (Klass* klass = cld->klasses(); klass != nullptr; klass = klass->next_link()) {
if (klass->is_instance_klass()) {
dump(InstanceKlass::cast(klass));
}
}
}
};
void AOTMetaspace::dump_loaded_classes(const char* file_name, TRAPS) {
fileStream stream(file_name, "w");
if (stream.is_open()) {
MutexLocker lock(ClassLoaderDataGraph_lock);
MutexLocker lock2(ClassListFile_lock, Mutex::_no_safepoint_check_flag);
DumpClassListCLDClosure collect_classes(&stream);
ClassLoaderDataGraph::loaded_cld_do(&collect_classes);
} else {
THROW_MSG(vmSymbols::java_io_IOException(), "Failed to open file");
}
}
static bool shared_base_too_high(char* specified_base, char* aligned_base, size_t cds_max) {
// Caller should have checked that aligned_base was successfully aligned and is not nullptr.
// Comparing specified_base with nullptr is UB.
assert(aligned_base != nullptr, "sanity");
assert(aligned_base >= specified_base, "sanity");
if (max_uintx - uintx(aligned_base) < uintx(cds_max)) {
// Not enough address space to hold an archive of cds_max bytes from aligned_base.
return true;
} else {
return false;
}
}
static char* compute_shared_base(size_t cds_max) {
char* specified_base = (char*)SharedBaseAddress;
size_t alignment = AOTMetaspace::core_region_alignment();
if (UseCompressedClassPointers && CompressedKlassPointers::needs_class_space()) {
alignment = MAX2(alignment, Metaspace::reserve_alignment());
}
if (SharedBaseAddress == 0) {
// Special meaning of -XX:SharedBaseAddress=0 -> Always map archive at os-selected address.
return specified_base;
}
char* aligned_base = can_align_up(specified_base, alignment)
? align_up(specified_base, alignment)
: nullptr;
if (aligned_base != specified_base) {
aot_log_info(aot)("SharedBaseAddress (" INTPTR_FORMAT ") aligned up to " INTPTR_FORMAT,
p2i(specified_base), p2i(aligned_base));
}
const char* err = nullptr;
if (aligned_base == nullptr) {
err = "too high";
} else if (shared_base_too_high(specified_base, aligned_base, cds_max)) {
err = "too high";
} else if (!shared_base_valid(aligned_base)) {
err = "invalid for this platform";
} else {
return aligned_base;
}
// Arguments::default_SharedBaseAddress() is hard-coded in cds_globals.hpp. It must be carefully
// picked that (a) the align_up() below will always return a valid value; (b) none of
// the following asserts will fail.
aot_log_warning(aot)("SharedBaseAddress (" INTPTR_FORMAT ") is %s. Reverted to " INTPTR_FORMAT,
p2i((void*)SharedBaseAddress), err,
p2i((void*)Arguments::default_SharedBaseAddress()));
specified_base = (char*)Arguments::default_SharedBaseAddress();
aligned_base = align_up(specified_base, alignment);
// Make sure the default value of SharedBaseAddress specified in globals.hpp is sane.
assert(!shared_base_too_high(specified_base, aligned_base, cds_max), "Sanity");
assert(shared_base_valid(aligned_base), "Sanity");
return aligned_base;
}
void AOTMetaspace::initialize_for_static_dump() {
assert(CDSConfig::is_dumping_static_archive(), "sanity");
aot_log_info(aot)("Core region alignment: %zu", core_region_alignment());
// The max allowed size for CDS archive. We use this to limit SharedBaseAddress
// to avoid address space wrap around.
size_t cds_max;
const size_t reserve_alignment = core_region_alignment();
#ifdef _LP64
const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
cds_max = align_down(UnscaledClassSpaceMax, reserve_alignment);
#else
// We don't support archives larger than 256MB on 32-bit due to limited
// virtual address space.
cds_max = align_down(256*M, reserve_alignment);
#endif
_requested_base_address = compute_shared_base(cds_max);
SharedBaseAddress = (size_t)_requested_base_address;
size_t symbol_rs_size = LP64_ONLY(3 * G) NOT_LP64(128 * M);
_symbol_rs = MemoryReserver::reserve(symbol_rs_size,
os::vm_allocation_granularity(),
os::vm_page_size(),
mtClassShared);
if (!_symbol_rs.is_reserved()) {
aot_log_error(aot)("Unable to reserve memory for symbols: %zu bytes.", symbol_rs_size);
AOTMetaspace::unrecoverable_writing_error();
}
_symbol_region.init(&_symbol_rs, &_symbol_vs);
if (CDSConfig::is_dumping_preimage_static_archive()) {
// We are in the AOT training run. User code is executed.
//
// On Windows, if the user code closes System.out and we open the AOT config file for output
// only at VM exit, we might get back the same file HANDLE as stdout, and the AOT config
// file may get corrupted by UL logs. By opening early, we ensure that the output
// HANDLE is different than stdout so we can avoid such corruption.
open_output_mapinfo();
} else {
// No need for the above as we won't execute any user code.
}
}
void AOTMetaspace::open_output_mapinfo() {
const char* static_archive = CDSConfig::output_archive_path();
assert(static_archive != nullptr, "sanity");
_output_mapinfo = new FileMapInfo(static_archive, true);
_output_mapinfo->open_as_output();
}
// Called by universe_post_init()
void AOTMetaspace::post_initialize(TRAPS) {
if (CDSConfig::is_using_archive()) {
FileMapInfo *static_mapinfo = FileMapInfo::current_info();
FileMapInfo *dynamic_mapinfo = FileMapInfo::dynamic_info();
if (AOTMapLogger::is_logging_at_bootstrap()) {
// The map logging needs to be done here, as it requires some stubs on Windows,
// which are not generated until the end of init_globals().
AOTMapLogger::runtime_log(static_mapinfo, dynamic_mapinfo);
}
// Close any open file descriptors. However, mmap'ed pages will remain in memory.
static_mapinfo->close();
if (HeapShared::is_loading() && HeapShared::is_loading_mapping_mode()) {
static_mapinfo->unmap_region(AOTMetaspace::bm);
}
if (dynamic_mapinfo != nullptr) {
dynamic_mapinfo->close();
dynamic_mapinfo->unmap_region(AOTMetaspace::bm);
}
int size = AOTClassLocationConfig::runtime()->length();
if (size > 0) {
CDSProtectionDomain::allocate_shared_data_arrays(size, CHECK);
}
}
}
// Extra java.lang.Strings to be added to the archive
static GrowableArrayCHeap<OopHandle, mtClassShared>* _extra_interned_strings = nullptr;
// Extra Symbols to be added to the archive
static GrowableArrayCHeap<Symbol*, mtClassShared>* _extra_symbols = nullptr;
// Methods managed by SystemDictionary::find_method_handle_intrinsic() to be added to the archive
static GrowableArray<Method*>* _pending_method_handle_intrinsics = nullptr;
void AOTMetaspace::read_extra_data(JavaThread* current, const char* filename) {
_extra_interned_strings = new GrowableArrayCHeap<OopHandle, mtClassShared>(10000);
_extra_symbols = new GrowableArrayCHeap<Symbol*, mtClassShared>(1000);
HashtableTextDump reader(filename);
reader.check_version("VERSION: 1.0");
while (reader.remain() > 0) {
int utf8_length;
int prefix_type = reader.scan_prefix(&utf8_length);
ResourceMark rm(current);
if (utf8_length == 0x7fffffff) {
// buf_len will overflown 32-bit value.
aot_log_error(aot)("string length too large: %d", utf8_length);
AOTMetaspace::unrecoverable_loading_error();
}
int buf_len = utf8_length+1;
char* utf8_buffer = NEW_RESOURCE_ARRAY(char, buf_len);
reader.get_utf8(utf8_buffer, utf8_length);
utf8_buffer[utf8_length] = '\0';
if (prefix_type == HashtableTextDump::SymbolPrefix) {
_extra_symbols->append(SymbolTable::new_permanent_symbol(utf8_buffer));
} else{
assert(prefix_type == HashtableTextDump::StringPrefix, "Sanity");
ExceptionMark em(current);
JavaThread* THREAD = current; // For exception macros.
oop str = StringTable::intern(utf8_buffer, THREAD);
if (HAS_PENDING_EXCEPTION) {
log_warning(aot, heap)("[line %d] extra interned string allocation failed; size too large: %d",
reader.last_line_no(), utf8_length);
CLEAR_PENDING_EXCEPTION;
} else {
#if INCLUDE_CDS_JAVA_HEAP
if (HeapShared::is_string_too_large_to_archive(str)) {
log_warning(aot, heap)("[line %d] extra interned string ignored; size too large: %d",
reader.last_line_no(), utf8_length);
continue;
}
// Make sure this string is included in the dumped interned string table.
assert(str != nullptr, "must succeed");
_extra_interned_strings->append(OopHandle(Universe::vm_global(), str));
#endif
}
}
}
}
void AOTMetaspace::make_method_handle_intrinsics_shareable() {
for (int i = 0; i < _pending_method_handle_intrinsics->length(); i++) {
Method* m = ArchiveBuilder::current()->get_buffered_addr(_pending_method_handle_intrinsics->at(i));
m->remove_unshareable_info();
// Each method has its own constant pool (which is distinct from m->method_holder()->constants());
m->constants()->remove_unshareable_info();
}
}
void AOTMetaspace::write_method_handle_intrinsics() {
int len = _pending_method_handle_intrinsics->length();
_archived_method_handle_intrinsics = ArchiveBuilder::new_ro_array<Method*>(len);
int word_size = _archived_method_handle_intrinsics->size();
for (int i = 0; i < len; i++) {
Method* m = _pending_method_handle_intrinsics->at(i);
ArchiveBuilder::current()->write_pointer_in_buffer(_archived_method_handle_intrinsics->adr_at(i), m);
word_size += m->size() + m->constMethod()->size() + m->constants()->size();
if (m->constants()->cache() != nullptr) {
word_size += m->constants()->cache()->size();
}
}
log_info(aot)("Archived %d method handle intrinsics (%d bytes)", len, word_size * BytesPerWord);
}
// About "serialize" --
//
// This is (probably a badly named) way to read/write a data stream of pointers and
// miscellaneous data from/to the shared archive file. The usual code looks like this:
//
// // These two global C++ variables are initialized during dump time.
// static int _archived_int;
// static MetaspaceObj* archived_ptr;
//
// void MyClass::serialize(SerializeClosure* soc) {
// soc->do_int(&_archived_int);
// soc->do_int(&_archived_ptr);
// }
//
// At dumptime, these two variables are stored into the CDS archive.
// At runtime, these two variables are loaded from the CDS archive.
// In addition, the pointer is relocated as necessary.
//
// Some of the xxx::serialize() functions may have side effects and assume that
// the archive is already mapped. For example, SymbolTable::serialize_shared_table_header()
// unconditionally makes the set of archived symbols available. Therefore, we put most
// of these xxx::serialize() functions inside AOTMetaspace::serialize(), which
// is called AFTER we made the decision to map the archive.
//
// However, some of the "serialized" data are used to decide whether an archive should
// be mapped or not (e.g., for checking if the -Djdk.module.main property is compatible
// with the archive). The xxx::serialize() functions for these data must be put inside
// AOTMetaspace::early_serialize(). Such functions must not produce side effects that
// assume we will always decides to map the archive.
void AOTMetaspace::early_serialize(SerializeClosure* soc) {
int tag = 0;
soc->do_tag(--tag);
CDS_JAVA_HEAP_ONLY(Modules::serialize_archived_module_info(soc);)
soc->do_tag(666);
}
void AOTMetaspace::serialize(SerializeClosure* soc) {
int tag = 0;
soc->do_tag(--tag);
// Verify the sizes of various metadata in the system.
soc->do_tag(sizeof(Method));
soc->do_tag(sizeof(ConstMethod));
soc->do_tag(arrayOopDesc::base_offset_in_bytes(T_BYTE));
soc->do_tag(sizeof(ConstantPool));
soc->do_tag(sizeof(ConstantPoolCache));
soc->do_tag(objArrayOopDesc::base_offset_in_bytes());
soc->do_tag(typeArrayOopDesc::base_offset_in_bytes(T_BYTE));
soc->do_tag(sizeof(Symbol));
// Need to do this first, as subsequent steps may call virtual functions
// in archived Metadata objects.
CppVtables::serialize(soc);
soc->do_tag(--tag);
// Dump/restore miscellaneous metadata.
JavaClasses::serialize_offsets(soc);
Universe::serialize(soc);
soc->do_tag(--tag);
// Dump/restore references to commonly used names and signatures.
vmSymbols::serialize(soc);
soc->do_tag(--tag);
// Dump/restore the symbol/string/subgraph_info tables
SymbolTable::serialize_shared_table_header(soc);
StringTable::serialize_shared_table_header(soc);
HeapShared::serialize_tables(soc);
SystemDictionaryShared::serialize_dictionary_headers(soc);
AOTLinkedClassBulkLoader::serialize(soc);
FinalImageRecipes::serialize(soc);
TrainingData::serialize(soc);
InstanceMirrorKlass::serialize_offsets(soc);
// Dump/restore well known classes (pointers)
SystemDictionaryShared::serialize_vm_classes(soc);
soc->do_tag(--tag);
CDS_JAVA_HEAP_ONLY(ClassLoaderDataShared::serialize(soc);)
soc->do_ptr((void**)&_archived_method_handle_intrinsics);
LambdaFormInvokers::serialize(soc);
AdapterHandlerLibrary::serialize_shared_table_header(soc);
soc->do_tag(666);
}
// In AOTCache workflow, when dumping preimage, the constant pool entries are stored in unresolved state.
// So the fast version of getfield/putfield needs to be converted to nofast version.
// When dumping the final image in the assembly phase, these nofast versions are converted back to fast versions
// if the constant pool entry refered by these bytecodes is stored in resolved state.
// Same principle applies to static and dynamic archives. If the constant pool entry is in resolved state, then
// the fast version of the bytecodes can be preserved, else use the nofast version.
//
// The fast versions of aload_0 (i.e. _fast_Xaccess_0) merges the bytecode pair (aload_0, fast_Xgetfield).
// If the fast version of aload_0 is preserved in AOTCache, then the JVMTI notifications for field access and
// breakpoint events will be skipped for the second bytecode (fast_Xgetfield) in the pair.
// Same holds for fast versions of iload_0. So for these bytecodes, nofast version is used.
static void rewrite_bytecodes(const methodHandle& method) {
ConstantPool* cp = method->constants();
BytecodeStream bcs(method);
Bytecodes::Code new_code;
LogStreamHandle(Trace, aot, resolve) lsh;
if (lsh.is_enabled()) {
lsh.print("Rewriting bytecodes for ");
method()->print_external_name(&lsh);
lsh.print("\n");
}
while (!bcs.is_last_bytecode()) {
Bytecodes::Code opcode = bcs.next();
// Use current opcode as the default value of new_code
new_code = opcode;
switch(opcode) {
case Bytecodes::_getfield: {
uint rfe_index = bcs.get_index_u2();
bool is_resolved = cp->is_resolved(rfe_index, opcode);
if (is_resolved) {
assert(!CDSConfig::is_dumping_preimage_static_archive(), "preimage should not have resolved field references");
ResolvedFieldEntry* rfe = cp->resolved_field_entry_at(bcs.get_index_u2());
switch(rfe->tos_state()) {
case btos:
// fallthrough
case ztos: new_code = Bytecodes::_fast_bgetfield; break;
case atos: new_code = Bytecodes::_fast_agetfield; break;
case itos: new_code = Bytecodes::_fast_igetfield; break;
case ctos: new_code = Bytecodes::_fast_cgetfield; break;
case stos: new_code = Bytecodes::_fast_sgetfield; break;
case ltos: new_code = Bytecodes::_fast_lgetfield; break;
case ftos: new_code = Bytecodes::_fast_fgetfield; break;
case dtos: new_code = Bytecodes::_fast_dgetfield; break;
default:
ShouldNotReachHere();
break;
}
} else {
new_code = Bytecodes::_nofast_getfield;
}
break;
}
case Bytecodes::_putfield: {
uint rfe_index = bcs.get_index_u2();
bool is_resolved = cp->is_resolved(rfe_index, opcode);
if (is_resolved) {
assert(!CDSConfig::is_dumping_preimage_static_archive(), "preimage should not have resolved field references");
ResolvedFieldEntry* rfe = cp->resolved_field_entry_at(bcs.get_index_u2());
switch(rfe->tos_state()) {
case btos: new_code = Bytecodes::_fast_bputfield; break;
case ztos: new_code = Bytecodes::_fast_zputfield; break;
case atos: new_code = Bytecodes::_fast_aputfield; break;
case itos: new_code = Bytecodes::_fast_iputfield; break;
case ctos: new_code = Bytecodes::_fast_cputfield; break;
case stos: new_code = Bytecodes::_fast_sputfield; break;
case ltos: new_code = Bytecodes::_fast_lputfield; break;
case ftos: new_code = Bytecodes::_fast_fputfield; break;
case dtos: new_code = Bytecodes::_fast_dputfield; break;
default:
ShouldNotReachHere();
break;
}
} else {
new_code = Bytecodes::_nofast_putfield;
}
break;
}
case Bytecodes::_aload_0:
// Revert _fast_Xaccess_0 or _aload_0 to _nofast_aload_0
new_code = Bytecodes::_nofast_aload_0;
break;
case Bytecodes::_iload:
if (!bcs.is_wide()) {
new_code = Bytecodes::_nofast_iload;
}
break;
default:
break;
}
if (opcode != new_code) {
*bcs.bcp() = new_code;
if (lsh.is_enabled()) {
lsh.print_cr("%d:%s -> %s", bcs.bci(), Bytecodes::name(opcode), Bytecodes::name(new_code));
}
}
}
}
// [1] Rewrite all bytecodes as needed, so that the ConstMethod* will not be modified
// at run time by RewriteBytecodes/RewriteFrequentPairs
// [2] Assign a fingerprint, so one doesn't need to be assigned at run-time.
void AOTMetaspace::rewrite_bytecodes_and_calculate_fingerprints(Thread* thread, InstanceKlass* ik) {
for (int i = 0; i < ik->methods()->length(); i++) {
methodHandle m(thread, ik->methods()->at(i));
if (ik->can_be_verified_at_dumptime() && ik->is_linked()) {
rewrite_bytecodes(m);
}
Fingerprinter fp(m);
// The side effect of this call sets method's fingerprint field.
fp.fingerprint();
}
}
class VM_PopulateDumpSharedSpace : public VM_Operation {
private:
ArchiveMappedHeapInfo _mapped_heap_info;
ArchiveStreamedHeapInfo _streamed_heap_info;
FileMapInfo* _map_info;
StaticArchiveBuilder& _builder;
void dump_java_heap_objects();
void dump_shared_symbol_table(GrowableArray<Symbol*>* symbols) {
log_info(aot)("Dumping symbol table ...");
SymbolTable::write_to_archive(symbols);
}
char* dump_early_read_only_tables();
char* dump_read_only_tables(AOTClassLocationConfig*& cl_config);
public:
VM_PopulateDumpSharedSpace(StaticArchiveBuilder& b, FileMapInfo* map_info) :
VM_Operation(), _mapped_heap_info(), _streamed_heap_info(), _map_info(map_info), _builder(b) {}
bool skip_operation() const { return false; }
VMOp_Type type() const { return VMOp_PopulateDumpSharedSpace; }
ArchiveMappedHeapInfo* mapped_heap_info() { return &_mapped_heap_info; }
ArchiveStreamedHeapInfo* streamed_heap_info() { return &_streamed_heap_info; }
void doit(); // outline because gdb sucks
bool allow_nested_vm_operations() const { return true; }
}; // class VM_PopulateDumpSharedSpace
class StaticArchiveBuilder : public ArchiveBuilder {
public:
StaticArchiveBuilder() : ArchiveBuilder() {}
virtual void iterate_roots(MetaspaceClosure* it) {
AOTArtifactFinder::all_cached_classes_do(it);
SystemDictionaryShared::dumptime_classes_do(it);
Universe::metaspace_pointers_do(it);
vmSymbols::metaspace_pointers_do(it);
TrainingData::iterate_roots(it);
// The above code should find all the symbols that are referenced by the
// archived classes. We just need to add the extra symbols which
// may not be used by any of the archived classes -- these are usually
// symbols that we anticipate to be used at run time, so we can store
// them in the RO region, to be shared across multiple processes.
if (_extra_symbols != nullptr) {
for (int i = 0; i < _extra_symbols->length(); i++) {
it->push(_extra_symbols->adr_at(i));
}
}
for (int i = 0; i < _pending_method_handle_intrinsics->length(); i++) {
it->push(_pending_method_handle_intrinsics->adr_at(i));
}
}
};
char* VM_PopulateDumpSharedSpace::dump_early_read_only_tables() {
ArchiveBuilder::OtherROAllocMark mark;
CDS_JAVA_HEAP_ONLY(Modules::dump_archived_module_info());
DumpRegion* ro_region = ArchiveBuilder::current()->ro_region();
char* start = ro_region->top();
WriteClosure wc(ro_region);
AOTMetaspace::early_serialize(&wc);
return start;
}
char* VM_PopulateDumpSharedSpace::dump_read_only_tables(AOTClassLocationConfig*& cl_config) {
ArchiveBuilder::OtherROAllocMark mark;
SystemDictionaryShared::write_to_archive();
cl_config = AOTClassLocationConfig::dumptime()->write_to_archive();
AOTClassLinker::write_to_archive();
if (CDSConfig::is_dumping_preimage_static_archive()) {
FinalImageRecipes::record_recipes();
}
TrainingData::dump_training_data();
AOTMetaspace::write_method_handle_intrinsics();
// Write lambform lines into archive
LambdaFormInvokers::dump_static_archive_invokers();
if (CDSConfig::is_dumping_adapters()) {
AdapterHandlerLibrary::dump_aot_adapter_table();
}
// Write the other data to the output array.
DumpRegion* ro_region = ArchiveBuilder::current()->ro_region();
char* start = ro_region->top();
WriteClosure wc(ro_region);
AOTMetaspace::serialize(&wc);
return start;
}
void VM_PopulateDumpSharedSpace::doit() {
CDSConfig::set_is_at_aot_safepoint(true);
if (!CDSConfig::is_dumping_final_static_archive()) {
guarantee(!CDSConfig::is_using_archive(), "We should not be using an archive when we dump");
}
DEBUG_ONLY(SystemDictionaryShared::NoClassLoadingMark nclm);
_pending_method_handle_intrinsics = new (mtClassShared) GrowableArray<Method*>(256, mtClassShared);
if (CDSConfig::is_dumping_method_handles()) {
// When dumping AOT-linked classes, some classes may have direct references to a method handle
// intrinsic. The easiest thing is to save all of them into the AOT cache.
SystemDictionary::get_all_method_handle_intrinsics(_pending_method_handle_intrinsics);
}
AOTClassLocationConfig::dumptime_check_nonempty_dirs();
NOT_PRODUCT(SystemDictionary::verify();)
// Block concurrent class unloading from changing the _dumptime_table
MutexLocker ml(DumpTimeTable_lock, Mutex::_no_safepoint_check_flag);
_builder.gather_source_objs();
_builder.reserve_buffer();
CppVtables::dumptime_init(&_builder);
_builder.sort_metadata_objs();
_builder.dump_rw_metadata();
_builder.dump_ro_metadata();
_builder.relocate_metaspaceobj_embedded_pointers();
log_info(aot)("Make classes shareable");
_builder.make_klasses_shareable();
AOTMetaspace::make_method_handle_intrinsics_shareable();
dump_java_heap_objects();
dump_shared_symbol_table(_builder.symbols());
char* early_serialized_data = dump_early_read_only_tables();
AOTClassLocationConfig* cl_config;
char* serialized_data = dump_read_only_tables(cl_config);
if (CDSConfig::is_dumping_lambdas_in_legacy_mode()) {
log_info(aot)("Adjust lambda proxy class dictionary");
LambdaProxyClassDictionary::adjust_dumptime_table();
}
log_info(cds)("Make training data shareable");
_builder.make_training_data_shareable();
// The vtable clones contain addresses of the current process.
// We don't want to write these addresses into the archive.
CppVtables::zero_archived_vtables();
// Write the archive file
_map_info->populate_header(AOTMetaspace::core_region_alignment());
_map_info->set_early_serialized_data(early_serialized_data);
_map_info->set_serialized_data(serialized_data);
_map_info->set_cloned_vtables(CppVtables::vtables_serialized_base());
_map_info->header()->set_class_location_config(cl_config);
HeapShared::delete_tables_with_raw_oops();
CDSConfig::set_is_at_aot_safepoint(false);
}
class CollectClassesForLinking : public KlassClosure {
GrowableArray<OopHandle> _mirrors;
public:
CollectClassesForLinking() : _mirrors() {
// ClassLoaderDataGraph::loaded_classes_do_keepalive() requires ClassLoaderDataGraph_lock.
// We cannot link the classes while holding this lock (or else we may run into deadlock).
// Therefore, we need to first collect all the classes, keeping them alive by
// holding onto their java_mirrors in global OopHandles. We then link the classes after
// releasing the lock.
MutexLocker lock(ClassLoaderDataGraph_lock);
ClassLoaderDataGraph::loaded_classes_do_keepalive(this);
}
~CollectClassesForLinking() {
for (int i = 0; i < _mirrors.length(); i++) {
_mirrors.at(i).release(Universe::vm_global());
}
}
void do_cld(ClassLoaderData* cld) {
assert(cld->is_alive(), "must be");
}
void do_klass(Klass* k) {
if (k->is_instance_klass()) {
_mirrors.append(OopHandle(Universe::vm_global(), k->java_mirror()));
}
}
const GrowableArray<OopHandle>* mirrors() const { return &_mirrors; }
};
// Check if we can eagerly link this class at dump time, so we can avoid the
// runtime linking overhead (especially verification)
bool AOTMetaspace::may_be_eagerly_linked(InstanceKlass* ik) {
if (!ik->can_be_verified_at_dumptime()) {
// For old classes, try to leave them in the unlinked state, so
// we can still store them in the archive. They must be
// linked/verified at runtime.
return false;
}
if (CDSConfig::is_dumping_dynamic_archive() && ik->defined_by_other_loaders()) {
// Linking of unregistered classes at this stage may cause more
// classes to be resolved, resulting in calls to ClassLoader.loadClass()
// that may not be expected by custom class loaders.
//
// It's OK to do this for the built-in loaders as we know they can
// tolerate this.
return false;
}
return true;
}
void AOTMetaspace::link_all_loaded_classes(JavaThread* current) {
while (true) {
ResourceMark rm(current);
CollectClassesForLinking collect_classes;
bool has_linked = false;
const GrowableArray<OopHandle>* mirrors = collect_classes.mirrors();
for (int i = 0; i < mirrors->length(); i++) {
OopHandle mirror = mirrors->at(i);
InstanceKlass* ik = java_lang_Class::as_InstanceKlass(mirror.resolve());
if (may_be_eagerly_linked(ik)) {
has_linked |= try_link_class(current, ik);
}
}
if (!has_linked) {
break;
}
// Class linking includes verification which may load more classes.
// Keep scanning until we have linked no more classes.
}
}
void AOTMetaspace::link_shared_classes(TRAPS) {
AOTClassLinker::initialize();
AOTClassInitializer::init_test_class(CHECK);
if (CDSConfig::is_dumping_final_static_archive()) {
// - Load and link all classes used in the training run.
// - Initialize @AOTSafeClassInitializer classes that were
// initialized in the training run.
// - Perform per-class optimization such as AOT-resolution of
// constant pool entries that were resolved during the training run.
FinalImageRecipes::apply_recipes(CHECK);
// Because the AOT assembly phase does not run the same exact code as in the
// training run (e.g., we use different lambda form invoker classes;
// generated lambda form classes are not recorded in FinalImageRecipes),
// the recipes do not cover all classes that have been loaded so far. As
// a result, we might have some unlinked classes at this point. Since we
// require cached classes to be linked, all such classes will be linked
// by the following step.
}
link_all_loaded_classes(THREAD);
// Eargerly resolve all string constants in constant pools
{
ResourceMark rm(THREAD);
CollectClassesForLinking collect_classes;
const GrowableArray<OopHandle>* mirrors = collect_classes.mirrors();
for (int i = 0; i < mirrors->length(); i++) {
OopHandle mirror = mirrors->at(i);
InstanceKlass* ik = java_lang_Class::as_InstanceKlass(mirror.resolve());
AOTConstantPoolResolver::preresolve_string_cp_entries(ik, CHECK);
}
}
}
void AOTMetaspace::dump_static_archive(TRAPS) {
CDSConfig::DumperThreadMark dumper_thread_mark(THREAD);
ResourceMark rm(THREAD);
HandleMark hm(THREAD);
if (CDSConfig::is_dumping_final_static_archive() && AOTPrintTrainingInfo) {
tty->print_cr("==================== archived_training_data ** before dumping ====================");
TrainingData::print_archived_training_data_on(tty);
}
StaticArchiveBuilder builder;
dump_static_archive_impl(builder, THREAD);
if (HAS_PENDING_EXCEPTION) {
if (PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())) {
aot_log_error(aot)("Out of memory. Please run with a larger Java heap, current MaxHeapSize = "
"%zuM", MaxHeapSize/M);
AOTMetaspace::writing_error();
} else {
oop message = java_lang_Throwable::message(PENDING_EXCEPTION);
aot_log_error(aot)("%s: %s", PENDING_EXCEPTION->klass()->external_name(),
message == nullptr ? "(null)" : java_lang_String::as_utf8_string(message));
AOTMetaspace::writing_error(err_msg("Unexpected exception, use -Xlog:aot%s,exceptions=trace for detail",
CDSConfig::new_aot_flags_used() ? "" : ",cds"));
}
}
if (CDSConfig::new_aot_flags_used()) {
if (CDSConfig::is_dumping_preimage_static_archive()) {
// We are in the JVM that runs the training run. Continue execution,
// so that it can finish all clean-up and return the correct exit
// code to the OS.
} else {
// The JLI launcher only recognizes the "old" -Xshare:dump flag.
// When the new -XX:AOTMode=create flag is used, we can't return
// to the JLI launcher, as the launcher will fail when trying to
// run the main class, which is not what we want.
struct stat st;
if (os::stat(AOTCache, &st) != 0) {
tty->print_cr("AOTCache creation failed: %s", AOTCache);
} else {
tty->print_cr("AOTCache creation is complete: %s " INT64_FORMAT " bytes", AOTCache, (int64_t)(st.st_size));
}
vm_direct_exit(0);
}
}
}
#if INCLUDE_CDS_JAVA_HEAP && defined(_LP64)
void AOTMetaspace::adjust_heap_sizes_for_dumping() {
if (!CDSConfig::is_dumping_heap() || UseCompressedOops) {
return;
}
// CDS heap dumping requires all string oops to have an offset
// from the heap bottom that can be encoded in 32-bit.
julong max_heap_size = (julong)(4 * G);
if (MinHeapSize > max_heap_size) {
log_debug(aot)("Setting MinHeapSize to 4G for CDS dumping, original size = %zuM", MinHeapSize/M);
FLAG_SET_ERGO(MinHeapSize, max_heap_size);
}
if (InitialHeapSize > max_heap_size) {
log_debug(aot)("Setting InitialHeapSize to 4G for CDS dumping, original size = %zuM", InitialHeapSize/M);
FLAG_SET_ERGO(InitialHeapSize, max_heap_size);
}
if (MaxHeapSize > max_heap_size) {
log_debug(aot)("Setting MaxHeapSize to 4G for CDS dumping, original size = %zuM", MaxHeapSize/M);
FLAG_SET_ERGO(MaxHeapSize, max_heap_size);
}
}
#endif // INCLUDE_CDS_JAVA_HEAP && _LP64
void AOTMetaspace::get_default_classlist(char* default_classlist, const size_t buf_size) {
const char* filesep = os::file_separator();
jio_snprintf(default_classlist, buf_size, "%s%slib%sclasslist",
Arguments::get_java_home(), filesep, filesep);
}
void AOTMetaspace::load_classes(TRAPS) {
char default_classlist[JVM_MAXPATHLEN];
const char* classlist_path;
get_default_classlist(default_classlist, JVM_MAXPATHLEN);
if (SharedClassListFile == nullptr) {
classlist_path = default_classlist;
} else {
classlist_path = SharedClassListFile;
}
aot_log_info(aot)("Loading classes to share ...");
ClassListParser::parse_classlist(classlist_path,
ClassListParser::_parse_all, CHECK);
if (ExtraSharedClassListFile) {
ClassListParser::parse_classlist(ExtraSharedClassListFile,
ClassListParser::_parse_all, CHECK);
}
if (classlist_path != default_classlist) {
struct stat statbuf;
if (os::stat(default_classlist, &statbuf) == 0) {
// File exists, let's use it.
ClassListParser::parse_classlist(default_classlist,
ClassListParser::_parse_lambda_forms_invokers_only, CHECK);
}
}
// Some classes are used at CDS runtime but are not yet loaded at this point.
// We can perform dummmy calls to these classes at dumptime to ensure they
// are archived.
exercise_runtime_cds_code(CHECK);
aot_log_info(aot)("Loading classes to share: done.");
}
void AOTMetaspace::exercise_runtime_cds_code(TRAPS) {
// Exercise the manifest processing code
const char* dummy = "Manifest-Version: 1.0\n";
CDSProtectionDomain::create_jar_manifest(dummy, strlen(dummy), CHECK);
// Exercise FileSystem and URL code
CDSProtectionDomain::to_file_URL("dummy.jar", Handle(), CHECK);
}
bool AOTMetaspace::preimage_static_archive_dumped() {
assert(CDSConfig::is_dumping_preimage_static_archive(), "Required");
return AtomicAccess::load_acquire(&_preimage_static_archive_dumped) == 1;
}
void AOTMetaspace::dump_static_archive_impl(StaticArchiveBuilder& builder, TRAPS) {
if (CDSConfig::is_dumping_preimage_static_archive()) {
// When dumping to the AOT configuration file ensure this function is only executed once.
// Multiple invocations may happen via JCmd, during VM exit or other means (in the future)
// from different threads and possibly concurrently.
if (AtomicAccess::cmpxchg(&_preimage_static_archive_dumped, 0, 1) != 0) {
return;
}
}
if (CDSConfig::is_dumping_classic_static_archive()) {
// We are running with -Xshare:dump
load_classes(CHECK);
if (SharedArchiveConfigFile) {
log_info(aot)("Reading extra data from %s ...", SharedArchiveConfigFile);
read_extra_data(THREAD, SharedArchiveConfigFile);
log_info(aot)("Reading extra data: done.");
}
}
if (CDSConfig::is_dumping_preimage_static_archive()) {
log_info(aot)("Reading lambda form invokers from JDK default classlist ...");
char default_classlist[JVM_MAXPATHLEN];
get_default_classlist(default_classlist, JVM_MAXPATHLEN);
struct stat statbuf;
if (os::stat(default_classlist, &statbuf) == 0) {
ClassListParser::parse_classlist(default_classlist,
ClassListParser::_parse_lambda_forms_invokers_only, CHECK);
}
}
#if INCLUDE_CDS_JAVA_HEAP
if (CDSConfig::is_dumping_heap()) {
assert(CDSConfig::allow_only_single_java_thread(), "Required");
if (!HeapShared::is_archived_boot_layer_available(THREAD)) {
report_loading_error("archivedBootLayer not available, disabling full module graph");
CDSConfig::stop_dumping_full_module_graph();
}
// Do this before link_shared_classes(), as the following line may load new classes.
HeapShared::init_for_dumping(CHECK);
}
#endif
if (CDSConfig::is_dumping_final_static_archive()) {
if (ExtraSharedClassListFile) {
log_info(aot)("Loading extra classes from %s ...", ExtraSharedClassListFile);
ClassListParser::parse_classlist(ExtraSharedClassListFile,
ClassListParser::_parse_all, CHECK);
}
}
// Rewrite and link classes
log_info(aot)("Rewriting and linking classes ...");
// Link any classes which got missed. This would happen if we have loaded classes that
// were not explicitly specified in the classlist. E.g., if an interface implemented by class K
// fails verification, all other interfaces that were not specified in the classlist but
// are implemented by K are not verified.
link_shared_classes(CHECK);
log_info(aot)("Rewriting and linking classes: done");
TrainingData::init_dumptime_table(CHECK); // captures TrainingDataSetLocker
if (CDSConfig::is_dumping_regenerated_lambdaform_invokers()) {
LambdaFormInvokers::regenerate_holder_classes(CHECK);
}
#if INCLUDE_CDS_JAVA_HEAP
if (CDSConfig::is_dumping_heap()) {
HeapShared::init_heap_writer();
if (CDSConfig::is_dumping_full_module_graph()) {
ClassLoaderDataShared::ensure_module_entry_tables_exist();
HeapShared::reset_archived_object_states(CHECK);
}
AOTReferenceObjSupport::initialize(CHECK);
AOTReferenceObjSupport::stabilize_cached_reference_objects(CHECK);
if (CDSConfig::is_dumping_aot_linked_classes()) {
// java.lang.Class::reflectionFactory cannot be archived yet. We set this field
// to null, and it will be initialized again at runtime.
log_debug(aot)("Resetting Class::reflectionFactory");
TempNewSymbol method_name = SymbolTable::new_symbol("resetArchivedStates");
Symbol* method_sig = vmSymbols::void_method_signature();
JavaValue result(T_VOID);
JavaCalls::call_static(&result, vmClasses::Class_klass(),
method_name, method_sig, CHECK);
// Perhaps there is a way to avoid hard-coding these names here.
// See discussion in JDK-8342481.
}
if (HeapShared::is_writing_mapping_mode()) {
// Do this at the very end, when no Java code will be executed. Otherwise
// some new strings may be added to the intern table.
StringTable::allocate_shared_strings_array(CHECK);
}
} else {
log_info(aot)("Not dumping heap, reset CDSConfig::_is_using_optimized_module_handling");
CDSConfig::stop_using_optimized_module_handling();
}
#endif
if (!CDSConfig::is_dumping_preimage_static_archive()) {
if (CDSConfig::is_dumping_final_static_archive()) {
FileMapInfo::free_current_info(); // FIXME: should not free current info
}
open_output_mapinfo();
}
VM_PopulateDumpSharedSpace op(builder, _output_mapinfo);
VMThread::execute(&op);
if (AOTCodeCache::is_on_for_dump() && CDSConfig::is_dumping_final_static_archive()) {
CDSConfig::enable_dumping_aot_code();
{
builder.start_ac_region();
// Write the contents to AOT code region and close AOTCodeCache before packing the region
AOTCodeCache::close();
builder.end_ac_region();
}
CDSConfig::disable_dumping_aot_code();
}
bool status = write_static_archive(&builder, _output_mapinfo, op.mapped_heap_info(), op.streamed_heap_info());
assert(!_output_mapinfo->is_open(), "Must be closed already");
_output_mapinfo = nullptr;
if (status && CDSConfig::is_dumping_preimage_static_archive()) {
tty->print_cr("%s AOTConfiguration recorded: %s",
CDSConfig::has_temp_aot_config_file() ? "Temporary" : "", AOTConfiguration);
if (CDSConfig::is_single_command_training()) {
fork_and_dump_final_static_archive(CHECK);
}
}
if (!status) {
THROW_MSG(vmSymbols::java_io_IOException(), "Encountered error while dumping");
}
}
bool AOTMetaspace::write_static_archive(ArchiveBuilder* builder,
FileMapInfo* map_info,
ArchiveMappedHeapInfo* mapped_heap_info,
ArchiveStreamedHeapInfo* streamed_heap_info) {
// relocate the data so that it can be mapped to AOTMetaspace::requested_base_address()
// without runtime relocation.
builder->relocate_to_requested();
if (!map_info->is_open()) {
return false;
}
map_info->prepare_for_writing();
builder->write_archive(map_info, mapped_heap_info, streamed_heap_info);
return true;
}
static void print_java_launcher(outputStream* st) {
st->print("%s%sbin%sjava", Arguments::get_java_home(), os::file_separator(), os::file_separator());
}
static void append_args(GrowableArray<Handle>* args, const char* arg, TRAPS) {
Handle string = java_lang_String::create_from_str(arg, CHECK);
args->append(string);
}
// Pass all options in Arguments::jvm_args_array() to a child JVM process
// using the JAVA_TOOL_OPTIONS environment variable.
static int exec_jvm_with_java_tool_options(const char* java_launcher_path, TRAPS) {
ResourceMark rm(THREAD);
HandleMark hm(THREAD);
GrowableArray<Handle> args;
const char* cp = Arguments::get_appclasspath();
if (cp != nullptr && strlen(cp) > 0 && strcmp(cp, ".") != 0) {
// We cannot use "-cp", because "-cp" is only interpreted by the java launcher,
// and is not interpreter by arguments.cpp when it loads args from JAVA_TOOL_OPTIONS
stringStream ss;
ss.print("-Djava.class.path=");
ss.print_raw(cp);
append_args(&args, ss.freeze(), CHECK_0);
// CDS$ProcessLauncher::execWithJavaToolOptions() must unset CLASSPATH, which has
// a higher priority than -Djava.class.path=
}
// Pass all arguments. These include those from JAVA_TOOL_OPTIONS and _JAVA_OPTIONS.
for (int i = 0; i < Arguments::num_jvm_args(); i++) {
const char* arg = Arguments::jvm_args_array()[i];
if (strstr(arg, "-XX:AOTCacheOutput=") == arg || // arg starts with ...
strstr(arg, "-XX:AOTConfiguration=") == arg ||
strstr(arg, "-XX:AOTMode=") == arg) {
// Filter these out. They wiill be set below.
} else {
append_args(&args, arg, CHECK_0);
}
}
// Note: because we are running in AOTMode=record, JDK_AOT_VM_OPTIONS have not been
// parsed, so they are not in Arguments::jvm_args_array. If JDK_AOT_VM_OPTIONS is in
// the environment, it will be inherited and parsed by the child JVM process
// in Arguments::parse_java_tool_options_environment_variable().
precond(strcmp(AOTMode, "record") == 0);
// We don't pass Arguments::jvm_flags_array(), as those will be added by
// the child process when it loads .hotspotrc
{
// If AOTCacheOutput contains %p, it should have been already substituted with the
// pid of the training process.
stringStream ss;
ss.print("-XX:AOTCacheOutput=");
ss.print_raw(AOTCacheOutput);
append_args(&args, ss.freeze(), CHECK_0);
}
{
// If AOTCacheConfiguration contains %p, it should have been already substituted with the
// pid of the training process.
// If AOTCacheConfiguration was not explicitly specified, it should have been assigned a
// temporary file name.
stringStream ss;
ss.print("-XX:AOTConfiguration=");
ss.print_raw(AOTConfiguration);
append_args(&args, ss.freeze(), CHECK_0);
}
append_args(&args, "-XX:AOTMode=create", CHECK_0);
Symbol* klass_name = SymbolTable::new_symbol("jdk/internal/misc/CDS$ProcessLauncher");
Klass* k = SystemDictionary::resolve_or_fail(klass_name, true, CHECK_0);
Symbol* methodName = SymbolTable::new_symbol("execWithJavaToolOptions");
Symbol* methodSignature = SymbolTable::new_symbol("(Ljava/lang/String;[Ljava/lang/String;)I");
Handle launcher = java_lang_String::create_from_str(java_launcher_path, CHECK_0);
objArrayOop array = oopFactory::new_objArray(vmClasses::String_klass(), args.length(), CHECK_0);
for (int i = 0; i < args.length(); i++) {
array->obj_at_put(i, args.at(i)());
}
objArrayHandle launcher_args(THREAD, array);
// The following call will pass all options inside the JAVA_TOOL_OPTIONS env variable to
// the child process. It will also clear the _JAVA_OPTIONS and CLASSPATH env variables for
// the child process.
//
// Note: the env variables are set only for the child process. They are not changed
// for the current process. See java.lang.ProcessBuilder::environment().
JavaValue result(T_OBJECT);
JavaCallArguments javacall_args(2);
javacall_args.push_oop(launcher);
javacall_args.push_oop(launcher_args);
JavaCalls::call_static(&result,
InstanceKlass::cast(k),
methodName,
methodSignature,
&javacall_args,
CHECK_0);
return result.get_jint();
}
void AOTMetaspace::fork_and_dump_final_static_archive(TRAPS) {
assert(CDSConfig::is_dumping_preimage_static_archive(), "sanity");
ResourceMark rm;
stringStream ss;
print_java_launcher(&ss);
const char* cmd = ss.freeze();
tty->print_cr("Launching child process %s to assemble AOT cache %s using configuration %s", cmd, AOTCacheOutput, AOTConfiguration);
int status = exec_jvm_with_java_tool_options(cmd, CHECK);
if (status != 0) {
log_error(aot)("Child process failed; status = %d", status);
// We leave the temp config file for debugging
} else if (CDSConfig::has_temp_aot_config_file()) {
const char* tmp_config = AOTConfiguration;
// On Windows, need WRITE permission to remove the file.
WINDOWS_ONLY(chmod(tmp_config, _S_IREAD | _S_IWRITE));
status = remove(tmp_config);
if (status != 0) {
log_error(aot)("Failed to remove temporary AOT configuration file %s", tmp_config);
} else {
tty->print_cr("Removed temporary AOT configuration file %s", tmp_config);
}
}
}
// Returns true if the class's status has changed.
bool AOTMetaspace::try_link_class(JavaThread* current, InstanceKlass* ik) {
ExceptionMark em(current);
JavaThread* THREAD = current; // For exception macros.
assert(CDSConfig::is_dumping_archive(), "sanity");
if (ik->in_aot_cache() && !CDSConfig::is_dumping_final_static_archive()) {
assert(CDSConfig::is_dumping_dynamic_archive(), "must be");
return false;
}
if (ik->is_loaded() && !ik->is_linked() && ik->can_be_verified_at_dumptime() &&
!SystemDictionaryShared::has_class_failed_verification(ik)) {
bool saved = BytecodeVerificationLocal;
if (ik->defined_by_other_loaders() && ik->class_loader() == nullptr) {
// The verification decision is based on BytecodeVerificationRemote
// for non-system classes. Since we are using the null classloader
// to load non-system classes for customized class loaders during dumping,
// we need to temporarily change BytecodeVerificationLocal to be the same as
// BytecodeVerificationRemote. Note this can cause the parent system
// classes also being verified. The extra overhead is acceptable during
// dumping.
BytecodeVerificationLocal = BytecodeVerificationRemote;
}
ik->link_class(THREAD);
if (HAS_PENDING_EXCEPTION) {
ResourceMark rm(THREAD);
oop message = java_lang_Throwable::message(current->pending_exception());
aot_log_warning(aot)("Preload Warning: Verification failed for %s because a %s was thrown: %s",
ik->external_name(),
current->pending_exception()->klass()->external_name(),
message == nullptr ? "(no message)" : java_lang_String::as_utf8_string(message));
CLEAR_PENDING_EXCEPTION;
SystemDictionaryShared::set_class_has_failed_verification(ik);
} else {
assert(!SystemDictionaryShared::has_class_failed_verification(ik), "sanity");
ik->compute_has_loops_flag_for_methods();
}
BytecodeVerificationLocal = saved;
return true;
} else {
return false;
}
}
void VM_PopulateDumpSharedSpace::dump_java_heap_objects() {
if (CDSConfig::is_dumping_heap()) {
HeapShared::write_heap(&_mapped_heap_info, &_streamed_heap_info);
} else {
CDSConfig::log_reasons_for_not_dumping_heap();
}
}
void AOTMetaspace::set_aot_metaspace_range(void* base, void *static_top, void* top) {
assert(base <= static_top && static_top <= top, "must be");
_aot_metaspace_static_top = static_top;
MetaspaceObj::set_aot_metaspace_range(base, top);
}
bool AOTMetaspace::in_aot_cache_dynamic_region(void* p) {
if ((p < MetaspaceObj::aot_metaspace_top()) &&
(p >= _aot_metaspace_static_top)) {
return true;
} else {
return false;
}
}
bool AOTMetaspace::in_aot_cache_static_region(void* p) {
if (in_aot_cache(p) && !in_aot_cache_dynamic_region(p)) {
return true;
} else {
return false;
}
}
// This function is called when the JVM is unable to load the specified archive(s) due to one
// of the following conditions.
// - There's an error that indicates that the archive(s) files were corrupt or otherwise damaged.
// - When -XX:+RequireSharedSpaces is specified, AND the JVM cannot load the archive(s) due
// to version or classpath mismatch.
void AOTMetaspace::unrecoverable_loading_error(const char* message) {
report_loading_error("%s", message);
if (CDSConfig::is_dumping_final_static_archive()) {
vm_exit_during_initialization("Must be a valid AOT configuration generated by the current JVM", AOTConfiguration);
} else if (CDSConfig::new_aot_flags_used()) {
vm_exit_during_initialization("Unable to use AOT cache.", nullptr);
} else {
vm_exit_during_initialization("Unable to use shared archive. Unrecoverable archive loading error (run with -Xlog:aot,cds for details)", message);
}
}
void AOTMetaspace::report_loading_error(const char* format, ...) {
// When using AOT cache, errors messages are always printed on the error channel.
LogStream ls_aot(LogLevel::Error, LogTagSetMapping<LOG_TAGS(aot)>::tagset());
// If we are loading load the default CDS archive, it may fail due to incompatible VM options.
// Print at the info level to avoid excessive verbosity.
// However, if the user has specified a CDS archive (or AOT cache), they would be interested in
// knowing that the loading fails, so we print at the error level.
LogLevelType level = (!CDSConfig::is_using_archive() || CDSConfig::is_using_only_default_archive()) ?
LogLevel::Info : LogLevel::Error;
LogStream ls_cds(level, LogTagSetMapping<LOG_TAGS(cds)>::tagset());
LogStream& ls = CDSConfig::new_aot_flags_used() ? ls_aot : ls_cds;
if (!ls.is_enabled()) {
return;
}
va_list ap;
va_start(ap, format);
static bool printed_error = false;
if (!printed_error) { // No need for locks. Loading error checks happen only in main thread.
ls.print_cr("An error has occurred while processing the %s. Run with -Xlog:%s for details.",
CDSConfig::type_of_archive_being_loaded(), CDSConfig::new_aot_flags_used() ? "aot" : "aot,cds");
printed_error = true;
}
ls.vprint_cr(format, ap);
va_end(ap);
}
// This function is called when the JVM is unable to write the specified CDS archive due to an
// unrecoverable error.
void AOTMetaspace::unrecoverable_writing_error(const char* message) {
writing_error(message);
vm_direct_exit(1);
}
// This function is called when the JVM is unable to write the specified CDS archive due to a
// an error. The error will be propagated
void AOTMetaspace::writing_error(const char* message) {
aot_log_error(aot)("An error has occurred while writing the shared archive file.");
if (message != nullptr) {
aot_log_error(aot)("%s", message);
}
}
void AOTMetaspace::initialize_runtime_shared_and_meta_spaces() {
assert(CDSConfig::is_using_archive(), "Must be called when UseSharedSpaces is enabled");
MapArchiveResult result = MAP_ARCHIVE_OTHER_FAILURE;
FileMapInfo* static_mapinfo = open_static_archive();
FileMapInfo* dynamic_mapinfo = nullptr;
if (static_mapinfo != nullptr) {
aot_log_info(aot)("Core region alignment: %zu", static_mapinfo->core_region_alignment());
dynamic_mapinfo = open_dynamic_archive();
aot_log_info(aot)("ArchiveRelocationMode: %d", ArchiveRelocationMode);
// First try to map at the requested address
result = map_archives(static_mapinfo, dynamic_mapinfo, true);
if (result == MAP_ARCHIVE_MMAP_FAILURE) {
// Mapping has failed (probably due to ASLR). Let's map at an address chosen
// by the OS.
aot_log_info(aot)("Try to map archive(s) at an alternative address");
result = map_archives(static_mapinfo, dynamic_mapinfo, false);
}
}
if (result == MAP_ARCHIVE_SUCCESS) {
bool dynamic_mapped = (dynamic_mapinfo != nullptr && dynamic_mapinfo->is_mapped());
char* cds_base = static_mapinfo->mapped_base();
char* cds_end = dynamic_mapped ? dynamic_mapinfo->mapped_end() : static_mapinfo->mapped_end();
// Register CDS memory region with LSan.
LSAN_REGISTER_ROOT_REGION(cds_base, cds_end - cds_base);
set_aot_metaspace_range(cds_base, static_mapinfo->mapped_end(), cds_end);
_relocation_delta = static_mapinfo->relocation_delta();
_requested_base_address = static_mapinfo->requested_base_address();
if (dynamic_mapped) {
// turn AutoCreateSharedArchive off if successfully mapped
AutoCreateSharedArchive = false;
}
} else {
set_aot_metaspace_range(nullptr, nullptr, nullptr);
if (CDSConfig::is_dumping_dynamic_archive()) {
aot_log_warning(aot)("-XX:ArchiveClassesAtExit is unsupported when base CDS archive is not loaded. Run with -Xlog:cds for more info.");
}
UseSharedSpaces = false;
// The base archive cannot be mapped. We cannot dump the dynamic shared archive.
AutoCreateSharedArchive = false;
CDSConfig::disable_dumping_dynamic_archive();
if (PrintSharedArchiveAndExit) {
AOTMetaspace::unrecoverable_loading_error("Unable to use shared archive.");
} else {
if (RequireSharedSpaces) {
AOTMetaspace::unrecoverable_loading_error("Unable to map shared spaces");
} else {
report_loading_error("Unable to map shared spaces");
}
}
}
// If mapping failed and -XShare:on, the vm should exit
bool has_failed = false;
if (static_mapinfo != nullptr && !static_mapinfo->is_mapped()) {
has_failed = true;
delete static_mapinfo;
}
if (dynamic_mapinfo != nullptr && !dynamic_mapinfo->is_mapped()) {
has_failed = true;
delete dynamic_mapinfo;
}
if (RequireSharedSpaces && has_failed) {
AOTMetaspace::unrecoverable_loading_error("Unable to map shared spaces");
}
}
FileMapInfo* AOTMetaspace::open_static_archive() {
const char* static_archive = CDSConfig::input_static_archive_path();
assert(static_archive != nullptr, "sanity");
FileMapInfo* mapinfo = new FileMapInfo(static_archive, true);
if (!mapinfo->open_as_input()) {
delete(mapinfo);
log_info(cds)("Opening of static archive %s failed", static_archive);
return nullptr;
}
return mapinfo;
}
FileMapInfo* AOTMetaspace::open_dynamic_archive() {
if (CDSConfig::is_dumping_dynamic_archive()) {
return nullptr;
}
const char* dynamic_archive = CDSConfig::input_dynamic_archive_path();
if (dynamic_archive == nullptr) {
return nullptr;
}
FileMapInfo* mapinfo = new FileMapInfo(dynamic_archive, false);
if (!mapinfo->open_as_input()) {
delete(mapinfo);
if (RequireSharedSpaces) {
AOTMetaspace::unrecoverable_loading_error("Failed to initialize dynamic archive");
}
return nullptr;
}
return mapinfo;
}
// use_requested_addr:
// true = map at FileMapHeader::_requested_base_address
// false = map at an alternative address picked by OS.
MapArchiveResult AOTMetaspace::map_archives(FileMapInfo* static_mapinfo, FileMapInfo* dynamic_mapinfo,
bool use_requested_addr) {
if (use_requested_addr && static_mapinfo->requested_base_address() == nullptr) {
aot_log_info(aot)("Archive(s) were created with -XX:SharedBaseAddress=0. Always map at os-selected address.");
return MAP_ARCHIVE_MMAP_FAILURE;
}
PRODUCT_ONLY(if (ArchiveRelocationMode == 1 && use_requested_addr) {
// For product build only -- this is for benchmarking the cost of doing relocation.
// For debug builds, the check is done below, after reserving the space, for better test coverage
// (see comment below).
aot_log_info(aot)("ArchiveRelocationMode == 1: always map archive(s) at an alternative address");
return MAP_ARCHIVE_MMAP_FAILURE;
});
if (ArchiveRelocationMode == 2 && !use_requested_addr) {
aot_log_info(aot)("ArchiveRelocationMode == 2: never map archive(s) at an alternative address");
return MAP_ARCHIVE_MMAP_FAILURE;
};
if (dynamic_mapinfo != nullptr) {
// Ensure that the OS won't be able to allocate new memory spaces between the two
// archives, or else it would mess up the simple comparison in MetaspaceObj::in_aot_cache().
assert(static_mapinfo->mapping_end_offset() == dynamic_mapinfo->mapping_base_offset(), "no gap");
}
ReservedSpace total_space_rs, archive_space_rs, class_space_rs;
MapArchiveResult result = MAP_ARCHIVE_OTHER_FAILURE;
size_t prot_zone_size = 0;
char* mapped_base_address = reserve_address_space_for_archives(static_mapinfo,
dynamic_mapinfo,
use_requested_addr,
total_space_rs,
archive_space_rs,
class_space_rs);
if (mapped_base_address == nullptr) {
result = MAP_ARCHIVE_MMAP_FAILURE;
aot_log_debug(aot)("Failed to reserve spaces (use_requested_addr=%u)", (unsigned)use_requested_addr);
} else {
if (Metaspace::using_class_space()) {
prot_zone_size = protection_zone_size();
}
#ifdef ASSERT
// Some sanity checks after reserving address spaces for archives
// and class space.
assert(archive_space_rs.is_reserved(), "Sanity");
if (Metaspace::using_class_space()) {
assert(archive_space_rs.base() == mapped_base_address &&
archive_space_rs.size() > protection_zone_size(),
"Archive space must lead and include the protection zone");
// Class space must closely follow the archive space. Both spaces
// must be aligned correctly.
assert(class_space_rs.is_reserved() && class_space_rs.size() > 0,
"A class space should have been reserved");
assert(class_space_rs.base() >= archive_space_rs.end(),
"class space should follow the cds archive space");
assert(is_aligned(archive_space_rs.base(),
core_region_alignment()),
"Archive space misaligned");
assert(is_aligned(class_space_rs.base(),
Metaspace::reserve_alignment()),
"class space misaligned");
}
#endif // ASSERT
aot_log_info(aot)("Reserved archive_space_rs [" INTPTR_FORMAT " - " INTPTR_FORMAT "] (%zu) bytes%s",
p2i(archive_space_rs.base()), p2i(archive_space_rs.end()), archive_space_rs.size(),
(prot_zone_size > 0 ? " (includes protection zone)" : ""));
aot_log_info(aot)("Reserved class_space_rs [" INTPTR_FORMAT " - " INTPTR_FORMAT "] (%zu) bytes",
p2i(class_space_rs.base()), p2i(class_space_rs.end()), class_space_rs.size());
if (AOTMetaspace::use_windows_memory_mapping()) {
// We have now reserved address space for the archives, and will map in
// the archive files into this space.
//
// Special handling for Windows: on Windows we cannot map a file view
// into an existing memory mapping. So, we unmap the address range we
// just reserved again, which will make it available for mapping the
// archives.
// Reserving this range has not been for naught however since it makes
// us reasonably sure the address range is available.
//
// But still it may fail, since between unmapping the range and mapping
// in the archive someone else may grab the address space. Therefore
// there is a fallback in FileMap::map_region() where we just read in
// the archive files sequentially instead of mapping it in. We couple
// this with use_requested_addr, since we're going to patch all the
// pointers anyway so there's no benefit to mmap.
if (use_requested_addr) {
assert(!total_space_rs.is_reserved(), "Should not be reserved for Windows");
aot_log_info(aot)("Windows mmap workaround: releasing archive space.");
MemoryReserver::release(archive_space_rs);
// Mark as not reserved
archive_space_rs = {};
// The protection zone is part of the archive:
// See comment above, the Windows way of loading CDS is to mmap the individual
// parts of the archive into the address region we just vacated. The protection
// zone will not be mapped (and, in fact, does not exist as physical region in
// the archive). Therefore, after removing the archive space above, we must
// re-reserve the protection zone part lest something else gets mapped into that
// area later.
if (prot_zone_size > 0) {
assert(prot_zone_size >= os::vm_allocation_granularity(), "must be"); // not just page size!
char* p = os::attempt_reserve_memory_at(mapped_base_address, prot_zone_size,
mtClassShared);
assert(p == mapped_base_address || p == nullptr, "must be");
if (p == nullptr) {
aot_log_debug(aot)("Failed to re-reserve protection zone");
return MAP_ARCHIVE_MMAP_FAILURE;
}
}
}
}
if (prot_zone_size > 0) {
os::commit_memory(mapped_base_address, prot_zone_size, false); // will later be protected
// Before mapping the core regions into the newly established address space, we mark
// start and the end of the future protection zone with canaries. That way we easily
// catch mapping errors (accidentally mapping data into the future protection zone).
*(mapped_base_address) = 'P';
*(mapped_base_address + prot_zone_size - 1) = 'P';
}
MapArchiveResult static_result = map_archive(static_mapinfo, mapped_base_address, archive_space_rs);
MapArchiveResult dynamic_result = (static_result == MAP_ARCHIVE_SUCCESS) ?
map_archive(dynamic_mapinfo, mapped_base_address, archive_space_rs) : MAP_ARCHIVE_OTHER_FAILURE;
DEBUG_ONLY(if (ArchiveRelocationMode == 1 && use_requested_addr) {
// This is for simulating mmap failures at the requested address. In
// debug builds, we do it here (after all archives have possibly been
// mapped), so we can thoroughly test the code for failure handling
// (releasing all allocated resource, etc).
aot_log_info(aot)("ArchiveRelocationMode == 1: always map archive(s) at an alternative address");
if (static_result == MAP_ARCHIVE_SUCCESS) {
static_result = MAP_ARCHIVE_MMAP_FAILURE;
}
if (dynamic_result == MAP_ARCHIVE_SUCCESS) {
dynamic_result = MAP_ARCHIVE_MMAP_FAILURE;
}
});
if (static_result == MAP_ARCHIVE_SUCCESS) {
if (dynamic_result == MAP_ARCHIVE_SUCCESS) {
result = MAP_ARCHIVE_SUCCESS;
} else if (dynamic_result == MAP_ARCHIVE_OTHER_FAILURE) {
assert(dynamic_mapinfo != nullptr && !dynamic_mapinfo->is_mapped(), "must have failed");
// No need to retry mapping the dynamic archive again, as it will never succeed
// (bad file, etc) -- just keep the base archive.
log_warning(cds, dynamic)("Unable to use shared archive. The top archive failed to load: %s",
dynamic_mapinfo->full_path());
result = MAP_ARCHIVE_SUCCESS;
// TODO, we can give the unused space for the dynamic archive to class_space_rs, but there's no
// easy API to do that right now.
} else {
result = MAP_ARCHIVE_MMAP_FAILURE;
}
} else if (static_result == MAP_ARCHIVE_OTHER_FAILURE) {
result = MAP_ARCHIVE_OTHER_FAILURE;
} else {
result = MAP_ARCHIVE_MMAP_FAILURE;
}
}
if (result == MAP_ARCHIVE_SUCCESS) {
SharedBaseAddress = (size_t)mapped_base_address;
#ifdef _LP64
if (Metaspace::using_class_space()) {
assert(prot_zone_size > 0 &&
*(mapped_base_address) == 'P' &&
*(mapped_base_address + prot_zone_size - 1) == 'P',
"Protection zone was overwritten?");
// Set up ccs in metaspace.
Metaspace::initialize_class_space(class_space_rs);
// Set up compressed Klass pointer encoding: the encoding range must
// cover both archive and class space.
const address klass_range_start = (address)mapped_base_address;
const size_t klass_range_size = (address)class_space_rs.end() - klass_range_start;
if (INCLUDE_CDS_JAVA_HEAP || UseCompactObjectHeaders) {
// The CDS archive may contain narrow Klass IDs that were precomputed at archive generation time:
// - every archived java object header (only if INCLUDE_CDS_JAVA_HEAP)
// - every archived Klass' prototype (only if +UseCompactObjectHeaders)
//
// In order for those IDs to still be valid, we need to dictate base and shift: base should be the
// mapping start (including protection zone), shift should be the shift used at archive generation time.
CompressedKlassPointers::initialize_for_given_encoding(
klass_range_start, klass_range_size,
klass_range_start, ArchiveBuilder::precomputed_narrow_klass_shift() // precomputed encoding, see ArchiveBuilder
);
assert(CompressedKlassPointers::base() == klass_range_start, "must be");
} else {
// Let JVM freely choose encoding base and shift
CompressedKlassPointers::initialize(klass_range_start, klass_range_size);
assert(CompressedKlassPointers::base() == nullptr ||
CompressedKlassPointers::base() == klass_range_start, "must be");
}
// Establish protection zone, but only if we need one
if (CompressedKlassPointers::base() == klass_range_start) {
CompressedKlassPointers::establish_protection_zone(klass_range_start, prot_zone_size);
}
if (static_mapinfo->can_use_heap_region()) {
if (static_mapinfo->object_streaming_mode()) {
HeapShared::initialize_loading_mode(HeapArchiveMode::_streaming);
} else {
// map_or_load_heap_region() compares the current narrow oop and klass encodings
// with the archived ones, so it must be done after all encodings are determined.
static_mapinfo->map_or_load_heap_region();
HeapShared::initialize_loading_mode(HeapArchiveMode::_mapping);
}
} else {
FileMapRegion* r = static_mapinfo->region_at(AOTMetaspace::hp);
if (r->used() > 0) {
if (static_mapinfo->object_streaming_mode()) {
AOTMetaspace::report_loading_error("Cannot use CDS heap data.");
} else {
if (!UseCompressedOops && !AOTMappedHeapLoader::can_map()) {
AOTMetaspace::report_loading_error("Cannot use CDS heap data. Selected GC not compatible -XX:-UseCompressedOops");
} else {
AOTMetaspace::report_loading_error("Cannot use CDS heap data. UseEpsilonGC, UseG1GC, UseSerialGC, UseParallelGC, or UseShenandoahGC are required.");
}
}
}
}
}
#endif // _LP64
log_info(aot)("initial optimized module handling: %s", CDSConfig::is_using_optimized_module_handling() ? "enabled" : "disabled");
log_info(aot)("initial full module graph: %s", CDSConfig::is_using_full_module_graph() ? "enabled" : "disabled");
} else {
unmap_archive(static_mapinfo);
unmap_archive(dynamic_mapinfo);
release_reserved_spaces(total_space_rs, archive_space_rs, class_space_rs);
}
return result;
}
// This will reserve two address spaces suitable to house Klass structures, one
// for the cds archives (static archive and optionally dynamic archive) and
// optionally one move for ccs.
//
// Since both spaces must fall within the compressed class pointer encoding
// range, they are allocated close to each other.
//
// Space for archives will be reserved first, followed by a potential gap,
// followed by the space for ccs:
//
// +-- Base address A B End
// | | | |
// v v v v
// +-------------+--------------+ +----------------------+
// | static arc | [dyn. arch] | [gap] | compr. class space |
// +-------------+--------------+ +----------------------+
//
// (The gap may result from different alignment requirements between metaspace
// and CDS)
//
// If UseCompressedClassPointers is disabled, only one address space will be
// reserved:
//
// +-- Base address End
// | |
// v v
// +-------------+--------------+
// | static arc | [dyn. arch] |
// +-------------+--------------+
//
// Base address: If use_archive_base_addr address is true, the Base address is
// determined by the address stored in the static archive. If
// use_archive_base_addr address is false, this base address is determined
// by the platform.
//
// If UseCompressedClassPointers=1, the range encompassing both spaces will be
// suitable to en/decode narrow Klass pointers: the base will be valid for
// encoding, the range [Base, End) and not surpass the max. range for that encoding.
//
// Return:
//
// - On success:
// - total_space_rs will be reserved as whole for archive_space_rs and
// class_space_rs if UseCompressedClassPointers is true.
// On Windows, try reserve archive_space_rs and class_space_rs
// separately first if use_archive_base_addr is true.
// - archive_space_rs will be reserved and large enough to host static and
// if needed dynamic archive: [Base, A).
// archive_space_rs.base and size will be aligned to CDS reserve
// granularity.
// - class_space_rs: If UseCompressedClassPointers=1, class_space_rs will
// be reserved. Its start address will be aligned to metaspace reserve
// alignment, which may differ from CDS alignment. It will follow the cds
// archive space, close enough such that narrow class pointer encoding
// covers both spaces.
// If UseCompressedClassPointers=0, class_space_rs remains unreserved.
// - On error: null is returned and the spaces remain unreserved.
char* AOTMetaspace::reserve_address_space_for_archives(FileMapInfo* static_mapinfo,
FileMapInfo* dynamic_mapinfo,
bool use_archive_base_addr,
ReservedSpace& total_space_rs,
ReservedSpace& archive_space_rs,
ReservedSpace& class_space_rs) {
address const base_address = (address) (use_archive_base_addr ? static_mapinfo->requested_base_address() : nullptr);
const size_t archive_space_alignment = core_region_alignment();
// Size and requested location of the archive_space_rs (for both static and dynamic archives)
size_t archive_end_offset = (dynamic_mapinfo == nullptr) ? static_mapinfo->mapping_end_offset() : dynamic_mapinfo->mapping_end_offset();
size_t archive_space_size = align_up(archive_end_offset, archive_space_alignment);
if (!Metaspace::using_class_space()) {
// Get the simple case out of the way first:
// no compressed class space, simple allocation.
// When running without class space, requested archive base should be aligned to cds core alignment.
assert(is_aligned(base_address, archive_space_alignment),
"Archive base address unaligned: " PTR_FORMAT ", needs alignment: %zu.",
p2i(base_address), archive_space_alignment);
archive_space_rs = MemoryReserver::reserve((char*)base_address,
archive_space_size,
archive_space_alignment,
os::vm_page_size(),
mtNone);
if (archive_space_rs.is_reserved()) {
assert(base_address == nullptr ||
(address)archive_space_rs.base() == base_address, "Sanity");
// Register archive space with NMT.
MemTracker::record_virtual_memory_tag(archive_space_rs, mtClassShared);
return archive_space_rs.base();
}
return nullptr;
}
#ifdef _LP64
// Complex case: two spaces adjacent to each other, both to be addressable
// with narrow class pointers.
// We reserve the whole range spanning both spaces, then split that range up.
const size_t class_space_alignment = Metaspace::reserve_alignment();
// When running with class space, requested archive base must satisfy both cds core alignment
// and class space alignment.
const size_t base_address_alignment = MAX2(class_space_alignment, archive_space_alignment);
assert(is_aligned(base_address, base_address_alignment),
"Archive base address unaligned: " PTR_FORMAT ", needs alignment: %zu.",
p2i(base_address), base_address_alignment);
size_t class_space_size = CompressedClassSpaceSize;
assert(CompressedClassSpaceSize > 0 &&
is_aligned(CompressedClassSpaceSize, class_space_alignment),
"CompressedClassSpaceSize malformed: %zu", CompressedClassSpaceSize);
const size_t ccs_begin_offset = align_up(archive_space_size, class_space_alignment);
const size_t gap_size = ccs_begin_offset - archive_space_size;
// Reduce class space size if it would not fit into the Klass encoding range
constexpr size_t max_encoding_range_size = 4 * G;
guarantee(archive_space_size < max_encoding_range_size - class_space_alignment, "Archive too large");
if ((archive_space_size + gap_size + class_space_size) > max_encoding_range_size) {
class_space_size = align_down(max_encoding_range_size - archive_space_size - gap_size, class_space_alignment);
log_info(metaspace)("CDS initialization: reducing class space size from %zu to %zu",
CompressedClassSpaceSize, class_space_size);
FLAG_SET_ERGO(CompressedClassSpaceSize, class_space_size);
}
const size_t total_range_size =
archive_space_size + gap_size + class_space_size;
// Test that class space base address plus shift can be decoded by aarch64, when restored.
const int precomputed_narrow_klass_shift = ArchiveBuilder::precomputed_narrow_klass_shift();
if (!CompressedKlassPointers::check_klass_decode_mode(base_address, precomputed_narrow_klass_shift,
total_range_size)) {
aot_log_info(aot)("CDS initialization: Cannot use SharedBaseAddress " PTR_FORMAT " with precomputed shift %d.",
p2i(base_address), precomputed_narrow_klass_shift);
use_archive_base_addr = false;
}
assert(total_range_size > ccs_begin_offset, "must be");
if (use_windows_memory_mapping() && use_archive_base_addr) {
if (base_address != nullptr) {
// On Windows, we cannot safely split a reserved memory space into two (see JDK-8255917).
// Hence, we optimistically reserve archive space and class space side-by-side. We only
// do this for use_archive_base_addr=true since for use_archive_base_addr=false case
// caller will not split the combined space for mapping, instead read the archive data
// via sequential file IO.
address ccs_base = base_address + archive_space_size + gap_size;
archive_space_rs = MemoryReserver::reserve((char*)base_address,
archive_space_size,
archive_space_alignment,
os::vm_page_size(),
mtNone);
class_space_rs = MemoryReserver::reserve((char*)ccs_base,
class_space_size,
class_space_alignment,
os::vm_page_size(),
mtNone);
}
if (!archive_space_rs.is_reserved() || !class_space_rs.is_reserved()) {
release_reserved_spaces(total_space_rs, archive_space_rs, class_space_rs);
return nullptr;
}
MemTracker::record_virtual_memory_tag(archive_space_rs, mtClassShared);
MemTracker::record_virtual_memory_tag(class_space_rs, mtClass);
} else {
if (use_archive_base_addr && base_address != nullptr) {
total_space_rs = MemoryReserver::reserve((char*) base_address,
total_range_size,
base_address_alignment,
os::vm_page_size(),
mtNone);
} else {
// We did not manage to reserve at the preferred address, or were instructed to relocate. In that
// case we reserve wherever possible, but the start address needs to be encodable as narrow Klass
// encoding base since the archived heap objects contain narrow Klass IDs pre-calculated toward the start
// of the shared Metaspace. That prevents us from using zero-based encoding and therefore we won't
// try allocating in low-address regions.
total_space_rs = Metaspace::reserve_address_space_for_compressed_classes(total_range_size, false /* optimize_for_zero_base */);
}
if (!total_space_rs.is_reserved()) {
return nullptr;
}
// Paranoid checks:
assert(!use_archive_base_addr || (address)total_space_rs.base() == base_address,
"Sanity (" PTR_FORMAT " vs " PTR_FORMAT ")", p2i(base_address), p2i(total_space_rs.base()));
assert(is_aligned(total_space_rs.base(), base_address_alignment), "Sanity");
assert(total_space_rs.size() == total_range_size, "Sanity");
// Now split up the space into ccs and cds archive. For simplicity, just leave
// the gap reserved at the end of the archive space. Do not do real splitting.
archive_space_rs = total_space_rs.first_part(ccs_begin_offset,
(size_t)archive_space_alignment);
class_space_rs = total_space_rs.last_part(ccs_begin_offset);
MemTracker::record_virtual_memory_split_reserved(total_space_rs.base(), total_space_rs.size(),
ccs_begin_offset, mtClassShared, mtClass);
}
assert(is_aligned(archive_space_rs.base(), archive_space_alignment), "Sanity");
assert(is_aligned(archive_space_rs.size(), archive_space_alignment), "Sanity");
assert(is_aligned(class_space_rs.base(), class_space_alignment), "Sanity");
assert(is_aligned(class_space_rs.size(), class_space_alignment), "Sanity");
return archive_space_rs.base();
#else
ShouldNotReachHere();
return nullptr;
#endif
}
void AOTMetaspace::release_reserved_spaces(ReservedSpace& total_space_rs,
ReservedSpace& archive_space_rs,
ReservedSpace& class_space_rs) {
if (total_space_rs.is_reserved()) {
aot_log_debug(aot)("Released shared space (archive + class) " INTPTR_FORMAT, p2i(total_space_rs.base()));
MemoryReserver::release(total_space_rs);
total_space_rs = {};
} else {
if (archive_space_rs.is_reserved()) {
aot_log_debug(aot)("Released shared space (archive) " INTPTR_FORMAT, p2i(archive_space_rs.base()));
MemoryReserver::release(archive_space_rs);
archive_space_rs = {};
}
if (class_space_rs.is_reserved()) {
aot_log_debug(aot)("Released shared space (classes) " INTPTR_FORMAT, p2i(class_space_rs.base()));
MemoryReserver::release(class_space_rs);
class_space_rs = {};
}
}
}
static int archive_regions[] = { AOTMetaspace::rw, AOTMetaspace::ro };
static int archive_regions_count = 2;
MapArchiveResult AOTMetaspace::map_archive(FileMapInfo* mapinfo, char* mapped_base_address, ReservedSpace rs) {
assert(CDSConfig::is_using_archive(), "must be runtime");
if (mapinfo == nullptr) {
return MAP_ARCHIVE_SUCCESS; // The dynamic archive has not been specified. No error has happened -- trivially succeeded.
}
mapinfo->set_is_mapped(false);
if (mapinfo->core_region_alignment() != (size_t)core_region_alignment()) {
report_loading_error("Unable to map CDS archive -- core_region_alignment() expected: %zu"
" actual: %zu", mapinfo->core_region_alignment(), core_region_alignment());
return MAP_ARCHIVE_OTHER_FAILURE;
}
MapArchiveResult result =
mapinfo->map_regions(archive_regions, archive_regions_count, mapped_base_address, rs);
if (result != MAP_ARCHIVE_SUCCESS) {
unmap_archive(mapinfo);
return result;
}
if (!mapinfo->validate_class_location()) {
unmap_archive(mapinfo);
return MAP_ARCHIVE_OTHER_FAILURE;
}
if (mapinfo->is_static()) {
// Currently, only static archive uses early serialized data.
char* buffer = mapinfo->early_serialized_data();
intptr_t* array = (intptr_t*)buffer;
ReadClosure rc(&array, (intptr_t)mapped_base_address);
early_serialize(&rc);
}
if (!mapinfo->validate_aot_class_linking()) {
unmap_archive(mapinfo);
return MAP_ARCHIVE_OTHER_FAILURE;
}
mapinfo->set_is_mapped(true);
return MAP_ARCHIVE_SUCCESS;
}
void AOTMetaspace::unmap_archive(FileMapInfo* mapinfo) {
assert(CDSConfig::is_using_archive(), "must be runtime");
if (mapinfo != nullptr) {
mapinfo->unmap_regions(archive_regions, archive_regions_count);
mapinfo->unmap_region(AOTMetaspace::bm);
mapinfo->set_is_mapped(false);
}
}
// For -XX:PrintSharedArchiveAndExit
class CountSharedSymbols : public SymbolClosure {
private:
size_t _count;
public:
CountSharedSymbols() : _count(0) {}
void do_symbol(Symbol** sym) {
_count++;
}
size_t total() { return _count; }
};
// Read the miscellaneous data from the shared file, and
// serialize it out to its various destinations.
void AOTMetaspace::initialize_shared_spaces() {
FileMapInfo *static_mapinfo = FileMapInfo::current_info();
FileMapInfo *dynamic_mapinfo = FileMapInfo::dynamic_info();
// Verify various attributes of the archive, plus initialize the
// shared string/symbol tables.
char* buffer = static_mapinfo->serialized_data();
intptr_t* array = (intptr_t*)buffer;
ReadClosure rc(&array, (intptr_t)SharedBaseAddress);
serialize(&rc);
// Finish initializing the heap dump mode used in the archive
// Heap initialization can be done only after vtables are initialized by ReadClosure.
HeapShared::finalize_initialization(static_mapinfo);
Universe::load_archived_object_instances();
AOTCodeCache::initialize();
if (dynamic_mapinfo != nullptr) {
intptr_t* buffer = (intptr_t*)dynamic_mapinfo->serialized_data();
ReadClosure rc(&buffer, (intptr_t)SharedBaseAddress);
DynamicArchive::serialize(&rc);
}
LogStreamHandle(Info, aot) lsh;
if (lsh.is_enabled()) {
lsh.print("Using AOT-linked classes: %s (static archive: %s aot-linked classes",
BOOL_TO_STR(CDSConfig::is_using_aot_linked_classes()),
static_mapinfo->header()->has_aot_linked_classes() ? "has" : "no");
if (dynamic_mapinfo != nullptr) {
lsh.print(", dynamic archive: %s aot-linked classes",
dynamic_mapinfo->header()->has_aot_linked_classes() ? "has" : "no");
}
lsh.print_cr(")");
}
// Set up LambdaFormInvokers::_lambdaform_lines for dynamic dump
if (CDSConfig::is_dumping_dynamic_archive()) {
// Read stored LF format lines stored in static archive
LambdaFormInvokers::read_static_archive_invokers();
}
if (PrintSharedArchiveAndExit) {
// Print archive names
if (dynamic_mapinfo != nullptr) {
tty->print_cr("\n\nBase archive name: %s", CDSConfig::input_static_archive_path());
tty->print_cr("Base archive version %d", static_mapinfo->version());
} else {
tty->print_cr("Static archive name: %s", static_mapinfo->full_path());
tty->print_cr("Static archive version %d", static_mapinfo->version());
}
SystemDictionaryShared::print_shared_archive(tty);
if (dynamic_mapinfo != nullptr) {
tty->print_cr("\n\nDynamic archive name: %s", dynamic_mapinfo->full_path());
tty->print_cr("Dynamic archive version %d", dynamic_mapinfo->version());
SystemDictionaryShared::print_shared_archive(tty, false/*dynamic*/);
}
TrainingData::print_archived_training_data_on(tty);
AOTCodeCache::print_on(tty);
// collect shared symbols and strings
CountSharedSymbols cl;
SymbolTable::shared_symbols_do(&cl);
tty->print_cr("Number of shared symbols: %zu", cl.total());
if (HeapShared::is_loading() && HeapShared::is_loading_mapping_mode()) {
tty->print_cr("Number of shared strings: %zu", StringTable::shared_entry_count());
}
tty->print_cr("VM version: %s\r\n", static_mapinfo->vm_version());
if (FileMapInfo::current_info() == nullptr || _archive_loading_failed) {
tty->print_cr("archive is invalid");
vm_exit(1);
} else {
tty->print_cr("archive is valid");
vm_exit(0);
}
}
}
// JVM/TI RedefineClasses() support:
bool AOTMetaspace::remap_shared_readonly_as_readwrite() {
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
if (CDSConfig::is_using_archive()) {
// remap the shared readonly space to shared readwrite, private
FileMapInfo* mapinfo = FileMapInfo::current_info();
if (!mapinfo->remap_shared_readonly_as_readwrite()) {
return false;
}
if (FileMapInfo::dynamic_info() != nullptr) {
mapinfo = FileMapInfo::dynamic_info();
if (!mapinfo->remap_shared_readonly_as_readwrite()) {
return false;
}
}
_remapped_readwrite = true;
}
return true;
}
void AOTMetaspace::print_on(outputStream* st) {
if (CDSConfig::is_using_archive()) {
st->print("CDS archive(s) mapped at: ");
address base = (address)MetaspaceObj::aot_metaspace_base();
address static_top = (address)_aot_metaspace_static_top;
address top = (address)MetaspaceObj::aot_metaspace_top();
st->print("[" PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "), ", p2i(base), p2i(static_top), p2i(top));
st->print("size %zu, ", top - base);
st->print("SharedBaseAddress: " PTR_FORMAT ", ArchiveRelocationMode: %d.", SharedBaseAddress, ArchiveRelocationMode);
} else {
st->print("CDS archive(s) not mapped");
}
st->cr();
}